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Abstract Chest X-ray images (CXRs) are the most common radiological exam-
ination tool for screening and diagnosis of cardiac and pulmonary diseases. The
automatic segmentation of anatomical structures in CXRs is critical for many clin-
ical applications. However, existing deep models work on severely down-sampled
images (commonly 256 × 256 pixels), reducing the quality of the contours of the
resulting segmentation and negatively affecting the possibilities of such methods
to be effectively used in a real environment. In this paper, we study multi-organ
(clavicles, lungs, and hearts) segmentation, one of the most important problems in
semantic understanding of CXRs. We completely avoid down-sampling in images
up to 1024× 1024 (as in the JSRT dataset) and we diminish its impact in higher
resolutions via network architecture simplification without a significant loss in the
accuracy. To do so, we propose four different convolutional models by introducing
structural changes to the baselines employed (U-Net and InvertedNet) as well as
by integrating several techniques barely used by CXRs segmentation algorithms,
such as instance normalization and atrous convolution. We also compare single-
class and multi-class strategies to elucidate which approach is the most convenient
for this problem. Our best proposal, X-Net+, outperforms 9 state-of-the-art meth-
ods on clavicles and lungs obtaining a Dice similarity coefficient of 0.938 and 0.978,
respectively, employing a 10-fold cross validation protocol. The same architecture
yields comparable results to the state-of-the-art in heart segmentation with a Dice
value of 0.938. Finally, its reduced version, RX-Net+, obtains similar results but
with a significant reduction in memory usage and training time.
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1 Introduction

X-ray images represent the most commonly employed medical imaging modality
[1]. In particular, chest X-rays (CXRs) are the most commonly performed radiology
examination world-wide [2] because they are able to produce images of the heart,
lungs, airways, blood, vessels, spine, and chest [3], and because of their diagnosis
and treatment potential [2, 4]. In order to quantify the importance of CXR analysis,
it is important to notice that 2.02 million CXRs were performed in 2015/16 by
the National Health Service of United Kingdom [5], and that 150 million CXRs
are annually acquired in the United States alone[6].

Among all anatomical structures displayed in CXRs, the lungs, the heart and
the clavicles are particularly important. Lungs radiography has been largely used
for the diagnosis of pulmonary diseases such as pneumonia, tuberculosis, emphy-
sema, and lung cancer [3, 7, 8]. Hearts are often employed to detect cardiovascular
disease such as chronic stable angina or valvular heart disease [9]. Lastly, clavicles
are used to detect lesions, such as tumorous lesions [10], or for forensic identifi-
cation [11] via comparing their silhouette in ante-mortem and post-mortem X-ray
images. Despite the great clinical importance of X-ray image understanding, a task
such as the segmentation of anatomical structures in CXRs remains very challeng-
ing. This is mainly due to the projective nature of X-ray imaging, which causes
large overlapping of anatomies, fuzzy object boundaries and complex texture pat-
terns. For instance, even among expert radiologists, minor errors in diagnosis are
performed in circa 30% of studies [12] and major errors in 3-6% [13, 14]. CXRs are
a cornerstone of acute triage as well as longitudinal surveillance. Despite the ubiq-
uity of the exam and its apparent technical simplicity, CXRs are widely regarded
among radiologists as among the most difficult to master [13].

The automatic CXRs segmentation has been extensively studied since the ’70s,
at least regarding the segmentation of lungs, rib cage, heart, and clavicles [15, 16].
Conventional methods rely on prior knowledge [17] to delineate anatomical objects
from X-ray images. Modern approaches utilize deep convolutional networks and
have shown superior performance [18]. More than 150 research works dealing with
this problem were already published during the twentieth century [19], raising the
number to 331 at present, according to Scopus1. Most works have focused on the
segmentation of a single organ, mainly the lungs [8, 20, 21] for its medical im-
portance2; followed by the heart [22], where most works plainly extrapolate the
approaches used for lungs; and lastly the clavicles [23], the organ whose segmenta-
tion entails greater difficulty (reflected in a lower quality of the final segmentation
[24]). Despite the great advances made in the automatic segmentation of these
organs, limitations still persist, such as the need to use down-sampled CXRs or
the irregularity and imprecision of the edges resulting from segmentation, which
reduce their applicability in clinical settings.

In this paper, we tackle the segmentation of hearts, clavicles and lungs in CXRs
using convolutional neural networks (ConvNets). For this study, we have used a
public database of CXRs called JSRT [25] with its associated ground truth [26].

1 Search performed the 8th September 2018 using the keywords ( TITLE-ABS-KEY ( chest
AND x-ray AND segmentation ) OR TITLE-ABS-KEY ( chest AND radiograph AND seg-
mentation ) AND NOT TITLE-ABS-KEY ( computed AND tomography ) )

2 According to the International Agency for Research on Cancer, lung cancer was the most
common cause of cancer death in 2015 with 1.69 million deaths.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Deep architectures for high-resolution multi-organ chest X-ray image segmentation 3

The main goal of this paper is threefold. First, to improve the state-of-the-art
results in CXR segmentation. To do so, we introduce a new architecture, called
X-Net, that incorporates structural changes in the network architecture as well as
integrates several techniques barely used by CXRs segmentation algorithms, such
as instance normalization [27] and atrous convolution (a.k.a. dilated convolution)
[28]. These modifications allow us to improve the segmentation accuracy of the
state of the art. Further structural modifications (resulting in an extension termed
X-Net+) also allow us to work with images up to 1024×1024 in only one GPU (an
example of a segmentation obtained by X-Net+, our best network, is shown in the
Figure 1). Second, to propose a simplification of X-Net and X-Net+, called RX-Net
(Reduced X-Net) and RX-Net+, respectively, that reduce even more both memory
usage and training time, while keeping similar results. Third, to investigate single-
class (a ConvNet is trained to segment each organ separately) and multi-class (a
ConvNet is trained to segment all organs simultaneously) segmentation approaches
to elucidate which one is more suitable for the task at hand.

This paper is structured as follows. Section 2 reviews the current state of the
art in CXRs segmentation. Section 3 describes our proposals. Section 4 presents
experiments and results. The conclusions are detailed in Section 5.

2 Related works

Many different taxonomies can be presented to classify image segmentation ap-
proaches [19, 29, 30, 31]. One possible classification could be the following: (1)
rule-based methods, where the image is segmented by the application of a set of
low-level and spatially blind rules (such as thresholding, edge detection, or region
growing) [19]; (2) shape-based methods [32], where the segmentation is performed
by matching a model, that includes some sort of prior shape information, to the
image (such as active shape models, or active appearance models); (3) atlas-based
methods [33], generally based on the registration of an atlas (i.e. an already seg-
mented image) and a target image; (4) graph-based methods [34], that represent
the image as a graph that is partitioned into a set of separated connected com-
ponents (generally making use of techniques such as conditional random fields
or Markov random fields); (5) machine learning-based methods [31], traditionally
based on handcrafted features (e.g. SIFT) together with a classifier (i.e. k-NN or
an artificial neural network) but, with the advent of ConvNets [35], this paradigm
has shifted towards end-to-end approaches where the ConvNet input is directly the
image to segment and the output is the target segmentation. Since each methodol-
ogy has its own pros and cons, the best results are commonly achieved via hybrid
approaches that combine two or more of the previous strategies [36, 37]. In general
terms, in the case of CXRs segmentation, most approaches are either rule-based
[19], shape-based [26], or machine learning-based [8]. Given that the state of the art
in CXRs segmentation are deep learning techniques, and ConvNets in particular,
this paper delves into this research line.

The Japanese Society of Radiological Technology (JSRT) [25], in cooperation
with the Japanese Radiological Society (JRS), created the standard digital image
database with and without chest lung nodules (JSRT dataset) in 1998. Since then,
the JSRT dataset has been used by a number of researchers in the world for various
research purposes such as image processing, image compression, and computer-
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4 Oscar Gómez et al.

Fig. 1 Example of a segmentation obtained by X-Net+ with the overlap between the ground-
truth and the segmentation in green, blue, and red for the clavicle, lungs, and heart, re-
spectively; the over-segmented area in orange, and the under-segmented one in yellow. This
segmentation obtains errors of 0.964, 0.931 and 10 for the DSC, JI and HD measures (detailed
in the Section 4.2), respectively, with the clavicle, 0.965 and 16.763 with heart, and 0.985 and
53.225 with the lungs.

aided diagnosis. In particular, the JSRT dataset represents the most popular
dataset for CXRs segmentation, including high resolution images (2048×2048 size,
0.175mm pixel size) and high resolution segmentation masks (provided by [26]).
Those segmentation masks have a resolution of 1024×1024 (i.e. ground truth reso-
lution). Methods tested on JSRT are commonly evaluated using images of smaller
resolution (256×256).

The state of the art in lungs segmentation with the JSRT dataset [36] is based
on a hybrid approach with four stages devoted to: 1) preprocessing the X-ray im-
ages by augmenting the contrast between the lungs and their surrounding area; 2)
extracting the foreground (which incorporates the upper torso region) by using an
intelligent block-based binarization; 3) excluding lung regions from the foreground
through a series of spatial-based processing operations; and 4) employing an adap-
tive graph cut technique to locally refine the preliminary lung boundaries. On the
other hand, the state of the art in hearts [38] and clavicles [24] segmentation is
based on deep learning approaches that we describe below.

With the advent of deep learning, many works have employed deep models
to achieve state-of-the-art results in many problems, such as gait-pattern classi-
fication [39], object tracking [40], image classification [41], electroencephalogram
classification [42], and semantic segmentation [35, 43], just to name few examples.
In particular, CXRs segmentation methods based on ConvNets have outperformed
prior art based on classical techniques (corresponding to the first four categories in
the aforementioned taxonomy). In particular, CXRs segmentation methods based
on ConvNets have outperformed prior art based on classical techniques (corre-
sponding to the first four categories in the aforementioned taxonomy). Firstly, an
encoder-decoder network called U-Net [18] was studied for multi-class segmenta-
tion of lungs, heart and clavicles achieving comparable, or higher, accuracy on most
of the structures when compared with the state-of-the-art segmentation methods
[44]. They also studied the differences between multi-class and single-class train-
ing approaches, showing that for U-Net a multi-class approach helps the deep
neural network to converge faster and deliver better segmentation results on the
clavicles than the single-class. However, network outputs present holes inside the
targeted structures as well as artifacts (i.e. small isolated segmented areas), which
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Deep architectures for high-resolution multi-organ chest X-ray image segmentation 5

were solved with a post-processing step based on a level-set method. Afterwards,
another work proposed a small modification of U-Net, called LF-SegNet [45]. LF-
SegNet modified the up-sampling strategy, incorporated normalization techniques
such as batch normalization [46], and employed data augmentation, slightly im-
proving the performance on lungs segmentation in both the JSRT dataset and the
Montgomery dataset [47] (that includes 138 CXRs and ground truth only for the
lungs). Very recently, several articles tackled the segmentation of CXRs employ-
ing fully ConvNets [48, 44]. Also, a generative adversarial network approach called
dual-path adversarial learning (DAL) based on a hybridization of a fully convolu-
tional network and U-Net [38] was proposed for different kinds of medical image
segmentation problems. DAL was tested for the segmentation of lungs and hearts,
trained with images of 512 × 512 and evaluated on images on the ground truth
resolution 1024× 1024 resulting in the state of the art for heart segmentation.

A work closely related to ours was published by Novikov et al. [24] in 2018,
where a modification of U-Net, called InvertedNet (INET), segmented the three
organs and achieved state-of-the-art results for clavicle segmentation. INET out-
performed prior art by reducing the number of filters per convolutional layer,
therefore decreasing the possibility of over-fitting. Furthermore, motivated by the
Gaussian noise inherited from the X-ray images acquisition process, INET added
Gaussian dropout layers [49] and utilized a weighted loss function based on the
Dice Similarity Coefficient (DSC) [50]. Gaussian dropout is a generalization of
dropout where the activations are multiplied with random variables drawn from
other distributions. This new form of dropout amounts to adding a Gaussian dis-
tributed random variable with zero mean and standard deviation equal to the
activation of the unit. INET only considers the multi-class approach and do not
compare with training the network for only one class. Finally, it can only be used
with down-sampled images (with a resolution of 256 × 256 pixels) and the main
option pointed by the authors to operate with higher resolution images was the use
of a multi-GPU scenario, unlike in this work where we opted for the modification
of the network architecture.

To the best of our knowledge, there are no other works in the literature that
apply the atrous convolution [28] to the segmentation of CXRs, while it is one of
the key elements of the state-of-the-art network for image segmentation in general
[43]. Atrous convolution is a convolutional operation that introduces a spacing
between the values in a kernel (the number of spaces between values is called
dilated rate). This allows to adjust filter’s field-of-view and capture multi-scale
context information without reducing the spatial dimensions of the features maps
(i.e. a 3 × 3 kernel with a dilation rate of 2 will have the same field-of-view as
a 5 × 5 kernel, while only using 9 parameters). However, this is computationally
expensive and takes a lot of memory, as a consequence its use is normally preceded
by a few pooling layers to make the features maps computationally approachable
as in DeepLab [43]. Also, we are not aware of other works studying the com-
pression/simplification of deep networks, devoted to medical image segmentation,
for their deployment in single-GPU devices or to allow them to work with larger
images. Many researchers have pointed out that ConvNets suffer from heavy over-
parameterization and can be efficiently reconstructed with only a small subset of
its original parameters [51]. Therefore, several works have been published studying
the simplification/compression of ConvNets reducing the required resources with-
out significant loss in the original accuracy [52, 53]. Furthermore, we also perform

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 Oscar Gómez et al.

a comparison between multi-class and single-class approaches using a k-fold cross-
validation protocol, which is a much more rigorous evaluation strategy than the
one commonly employed in the deep learning literature (where generally a simple
hold-out is used).

3 Methodology

3.1 Architectures

The deep architectures proposed in this paper are inspired by INET [24] (described
in Section 2 and depicted in Fig. 2) which, in turn, is a modification of U-Net.
INET is devoted to the segmentation of lungs, hearts and clavicles in CXRs, and
represents the state of the art in clavicle segmentation.

(a)                                                        (b)                                                     (c)                                                         (d)
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Fig. 2 Schematic view comparing two preceding deep networks (a and b), and two of the deep
networks proposed in this paper (c and d). All architectures employ Gaussian dropout, except
U-Net that uses conventional dropout. ’in’ stands for ’instance normalization’.

Even if INET currently offers the best performance in CXRs multi-class seg-
mentation, it does not include some very relevant advances made in the image
segmentation research field (atrous convolution) and deep learning in general (in-
stance normalization). Consequently, the first methodological contribution of this
paper is the introduction of a new architecture, called X-Net, that aims to in-
crease the accuracy of INET through the inclusion of these advances. X-Net takes
its name both from being designed to segment X-ray images and from the shape of
the network (where, as usual, there is an encoding stage, which provides a reduced
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dimensionality representation of the input, and a decoding stage, that allows to
recover an output of equal size to the input). First, X-Net takes advantage of
instance normalization [27] at the end of each convolutional layer to add a nor-
malization factor, accelerate the training, improve generalization, and reduce the
dependency on the weights initialization. Second, X-Net changes the two central
convolutional layers of INET by five atrous convolutional layers with increasing
dilated rates of 1, 2, 4, 8 and 16 (see Fig. 2). These specific dilated rates are the
most commonly employed in recent literature [54, 55, 56]. Atrous convolutions
are convolutions with upsampled filters, that allow to enlarge the field-of-view
and, therefore, to take into account more contextual information. The combined
use of atrous convolution and instance normalization leads to a greater gain in
performance than when they are employed separately (detailed in Section 4.4).

The second proposal introduced in this paper, termed Reduced X-Net (RX-
Net), consists of a simplification of X-Net with the aim of obtaining similar accu-
racy but with a significantly lower memory usage and training time. Importantly,
the main source of memory usage is not the trainable parameters, but instead
the feature maps. Reducing the number of features maps of resolution N ×N will
result in a large memory reduction. RX-Net represents one alternative that makes
possible experimenting with images of higher resolution than the one generally
used, as we will discuss in the next paragraph. Therefore, the simplification in-
volves the elimination of the first and last convolutional blocks of X-Net (notice
that the first and last layers have the largest activation maps), and the reduction
to half the number of convolutional filters of each convolutional layer (see Fig. 2),
since these changes lead to the larger reduction in the ConvNet memory usage
with the smaller drop in accuracy.

One important goal in CXRs image segmentation is to design a network able to
work without any down-sampling or at least to reduce it to the minimum possible.
The objective is to avoid upsampling the results (or diminish its impact) since
upsampling causes a loss of detail in the final segmentation. In this sense, our next
proposals are able to manage images of up to 1024 × 1024 in a single GPU (see
subsection 4.3 for the technical details) without any down-sampling. Thus, these
proposals are able to work with the ground truth resolution [26] of JSRT [25].
INET and X-Net would require too much memory or a multi-GPU scenario, being
only able to work with images up to 256 × 256 (that is the resolution in which
INET results, and most of the results in literature, are reported [24]). Our RX-Net
can handle images up to 1024×1024, four times the usual resolution, but changing
the input resolution results in a change in the relation between filter’s field-of-view
and feature maps, which would lead to a different behaviour than the one showed
by RX-Net with images of 256× 256. To avoid this drawback, a new architecture
called RX-Net+ is proposed. This network is an incremental step from RX-Net
maintaining all their layers (except the last convolutional block) with the same
resolution (i.e. the value N/4 of RX-Net+ is equal to 256).

It allows us to employ the weights resulting from training RX-Net with 256×
256 in RX-Net+ for images of 1024 × 1024, which significantly reduces the total
training time. Additionally, RX-Net+ adds two pooling layers at the beginning
(they could be replaced by convolutional layers but, if the number of feature maps
introduced as input to the pre-trained RX-Net block is different to one, it would
make impossible to re-use the weights from RX-Net in RX-Net+), and two final
convolutional blocks connected to the inputs of the first two pooling layers (see Fig.
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8 Oscar Gómez et al.

2). Furthermore, performing the pooling within the ConvNet allows to pass high-
resolution information to the final layers of the ConvNet (see Fig. 2). Notice that
comparing RX-Net and RX-Net+ for images of 1024 × 1024 will allow to study
the importance of the relation between the filter’s field-of-view and the feature
maps. This approach could also be applied to X-Net giving rise to X-Net+. X-
Net+ combines all the advantages of X-Net as well as allows to work with images
of 1024 × 1024 in just one GPU. Training time and accuracy for both X-Net+
and RX-Net+ are improved thanks to training X-Net and RX-Net, respectively,
then re-using the central block of common weights, and finally employing a simple
fine-tuning. We will refer to our proposed deep networks as X-Net architectures,
since they all are based on X-Net.

   (a)                                                                            (b)

X-Net+
input: 1 x N x N

pooling: 2x2; s=2

pooling: 2x2; s=2

3x3@256; s=1; d=0.1 

pooling: 2x2; s=1

3x3@128; s=1; d=0.1 

pooling: 2x2; s=1

3x3@64; s=2; d=0.1  

pooling: 2x2; s=1

3x3@32; s=2; d=0.1  

pooling: 2x2; s=1

3x3@16; s=2; d=0.1; dr N   N__ __x
32  32

upsampling: 2x2

3x3@32; s=1; d=0.1  

upsampling: 2x2

3x3@64; s=1; d=0.1  

upsampling: 2x2

3x3@128; s=1; d=0.1 

3x3@256; s=1; d=0.1 

3x3@64;  s=1;  d=0.1 

3x3@128; s=1; d=0.1 N x N

1x1@M; s=1N x N

output: M x N x N

N   N

RX-Net+
input: 1 x N x N

pooling: 2x2; s=2

pooling: 2x2; s=2

1x1@M; s=1N x N

output: M x N x N

3x3@64;  s=1;  d=0.1 

3x3@128; s=1; d=0.1 N x N

N   N

3x3@64;  s=1;  d=0.1 

pooling: 2x2; s=1

3x3@32; s=2; d=0.1  

pooling: 2x2; s=1

3x3@16; s=2; d=0.1  

pooling: 2x2; s=1

3x3@8 ; s=2;  d=0.1; dr 

upsampling: 2x2

3x3@16; s=1; d=0.1  

upsampling: 2x2

3x3@32; s=1; d=0.1  

upsampling: 2x2

3x3@64;  s=1;  d=0.1 

X
-N

e
t R

X
-N

e
t

upsampling: 2x2

upsampling: 2x2
upsampling: 2x2

upsampling: 2x2

Fig. 3 Schematic view of two of the deep networks proposed in this paper. These networks
are extension of X-Net and RX-Net, respectively, allowing to handle ground truth resolution
images (i.e. 1024 × 1024) in just one GPU. The legend of this figure can be seen in Fig. 2.

3.2 Training strategies

Two strategies are compared to train all networks: a single-class approach (to train
a network to segment only one organ, i.e. three different networks are required to
segment the three organs), and a multi-class approach (to train a network to
jointly segment the three organs). The loss function in the single-class approach is
directly the usual DSC [50] (see Section 4.2), and for the multi-class segmentation
we employ a balanced version of this measure, defined as the product of the DSC
values obtained for each single organ, i.e. DSC =

∏n
i=1 DSCi, where n is the

number of classes to segment, and DSCi is the DSC value for the segmentation of
the class i (corresponding to each organ to segment). This loss function allows to
deal with the imbalanced nature of the CXRs segmentation problem (for instance,
in the JSRT dataset ground truth[26], the 73.53%, 21.85%, and 4.62% of image
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Deep architectures for high-resolution multi-organ chest X-ray image segmentation 9

pixels on average belong to lungs, hearts and clavicles, respectively) looking for
solutions that properly segment the three classes. This loss function is stricter than
others employed in the state of the art (for instance, the weighted mean in [24])
because we intend to encourage solutions that segment properly the three organs.
INET has been trained using the weighted mean as loss function as in the original
work [24].

3.3 Post-processing

The predictions provided for each pixel by the neural architectures range from 0
to 1. To turn this soft classification into a binary mask, it is necessary to thresh-
old the output at a given value. In this paper, we use the same threshold value
(0.25) as in [24], where this value was fixed empirically based on a preliminary
experimentation. This output does not ensure the presence of a single connected
object for the heart, and two for clavicles and lungs. Therefore, a last and very
simple post-processing step is considered: the largest connected object is selected
for the hearts, and the two largest ones for the clavicles and lungs (notice that this
post-processing step is a simplified version of the one proposed by [26], since it
does not fill the holes within the object). The algorithm employed for this task was
the Block-Based Decision Table algorithm [57] with 8-way connectivity. This very
simple post-processing step has a minor but positive impact, as can be seen in Ta-
ble 8, and it does not differ from other simple post-processing strategies employed
[26, 58, 59, 60].

4 Experiments

The empirical evaluation of this paper includes two experiments. The first ex-
periment is devoted to the study of performance, precision, robustness, and the
trade-off between accuracy and memory/time consumption of the X-Net architec-
tures and INET with both single-class and multi-class training approaches. This
study is performed using a 3-fold cross validation protocol as in [24]. The goal of
the second experiment is the comparison of the X-Net architectures performance
(except the worst performing architectures from the latter experiment, that are
excluded from the comparison) with the state-of-the-art results using a 10-fold
cross validation to avoid any bias caused by the stochastic components of training
a ConvNet.

It is important to highlight the computational cost of performing the experi-
mentation following a rigorous experimental design in deep learning (cross valida-
tion). Overall, around 1608 hours (67 days) were required to perform Experiment
I, and around 1840 hours (77 days) were necessary to run Experiment II. Detailed
information about training times are included in Sections 4.5 and 4.6.

4.1 Data

The dataset employed in the experiments is the JSRT dataset [25]. It is the most
widely used dataset in CXRs segmentation. This dataset is composed of 247 CXRs
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10 Oscar Gómez et al.

of 2048 × 2048 pixels with a grayscale depth of 12 bits. These images contain
manual/ground-truth segmentations of the lungs, clavicles, and heart[26] with a
resolution of 1024× 1024 pixels, where ∼73%, ∼5%, and ∼22% of pixels belong to
lungs, clavicles, and hearts, respectively.

4.2 Performance metrics

Three metrics are employed to quantitatively evaluate the quality of the segmen-
tation results obtained: Hausdorff Distance (HD) [61], Jaccard Index (JI) [62], and
DSC [50]. The HD represents a measure of the spatial distance between two sets
of points: it is the largest of all distances from any point in the resulting segmen-
tation to the closest point in the ground truth, and a value of 0 indicates perfect
agreement. Meanwhile, the DSC and the JI measure set agreement: a value of
0 indicates no overlap with the ground truth, and a value of 1 indicates perfect
agreement. Notice that, DSC and JI are equivalent metrics, and one can be derived
from the other. Thus, for the comparison between X-Net architectures only the
HD and JI will be reported. However, in order to facilitate the comparison with
competitor methods (Experiment II), the DSC is also included in the tables.

Our final goal is to be able to segment CXRs in the original resolution of
their ground truth segmentation (i.e. 1024 × 1024), and not in a down-sampled
resolution, because up-sampling to the ground truth resolution will worsen the
accuracy of the final segmentation. As consequence, all results are reported in the
ground truth resolution, either if they correspond to the ConvNet output (e.g.
X-Net+ and RX-Net+) or to the up-sampled version of it (INET, X-Net and
RX-Net).

4.3 Experimental set-up

The first experiment involves the application of 6 deep network configurations
(INET and X-Net can only run using the 256 × 256 resolution, RX-Net with
256×256 and 1024×1024 resolutions, and lastly X-Net+ and RX-Net only with the
1024 × 1024 resolution), and two training strategies (single-class and multi-class
approaches). INET, X-Net and RX-Net are trained from scratch for 4000 epochs
(since that was the number of epochs required by INET to converge according to
[24]). X-Net+ and RX-Net+ are trained for 100 epochs using as initialization the
weights of X-Net and RX-Net in the shared layers, respectively. These are tested
using a 3-fold cross validation approach (as in INET [24]), where one fold is de-
voted to testing (33% of all available data), and each one of the remaining two
folds is divided into training and validation (90% and 10%, respectively). Further-
more, the results are evaluated with and without post-processing to measure the
contribution of this refinement step. To sum up, 12 deep networks are evaluated
(see Table 3), rising up to 24 architectures if we include results with and with-
out post-processing (see Table 4). The notation employed to refer to each model
uses the following labeling protocol: <Network Name> <Single(s) or Multi(m) organ

problem> <Input/Output resolution>. As an example, the architecture INET m 256
corresponds to INET trained to solve the multi-class problem on 256×256 images.
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Deep architectures for high-resolution multi-organ chest X-ray image segmentation 11

The second experiment involves the comparison of INET and the best pro-
posals from the latter experiment in terms of accuracy (X-Net+ for single-class
and multi-class) and accuracy-memory/time balance (RX-Net+) with a 10-fold
cross validation, where on each fold 80% of data are used for training, 10% for
validation, and 10% for test. This allows to study more rigorously the proposals
reducing possible bias, as remarked in [63], caused by the stochastic effect inherent
to the training process or the effect that different training and test sets have on
the final performance. The results obtained by X-Net architectures are compared
among them and with the state-of-the-art (see Tables 6, 7, and 8).

Both experiments (Sections 4.5 and 4.6) include the results provided by our
implementation of INET. This allows us to replicate the exact same experimen-
tal conditions in all methods and, therefore, to perform a fair comparison. The
only exception is Table 8, dedicated to the comparison with the state of the art,
where we show the original results reported on each paper. The difference between
the results provided by our implementation of INET and the results reported in
[24] is minor, as can be seen by comparing the results in the original paper with
Tables 3 and 6, and can be due to several reasons: from differences in the parti-
tions employed in the 3-fold and 10-fold, respectively; differences in the batch size
employed (as theirs is not reported in the paper); or just the inherent stochastic
behavior of training a network from scratch.

No data augmentation is performed and the images are zero centered, as in
[24], using the mean and standard deviation of the training set. The batch size
was set to 1. The optimizer is Adam (with a learning rate of 1e-5, beta1 of 0.9,
and beta2 of 0.999). The outputs of lower resolution than the ground truth (i.e.
1024×1024) are scaled using a bicubic interpolation, since it showed better results
than the other alternatives tested, although the gap between the best and worst
interpolation was lower than 0.001 according to the JI.

All experiments have been performed on an Nvidia Titan X with 12 GBs of
memory using Keras 2.1.6 with TensorFlow 1.4.1 as backend. Codes and trained
architectures will be made publicly available upon acceptance of the paper.

4.4 Preliminary Experiment: Evaluating the influence of architectural changes on
INET and post-processing

The purpose of the first preliminary experiment is to measure the influence of
the different architectural changes introduced on INET to obtain X-Net. The re-
sults of this ablation study are shown in Table 1. The best results are obtained
by instance normalization together with atrous convolution, being both sources
of improvement. However, we can claim that instance normalization has a greater
contribution to this improvement. Instance normalization introduces some noise
into the network, helping to improve its generalization ability. We hypothesize
that, since we have at our disposal a small dataset, this noise inducing process
contributes to enforce regularization and, therefore, to improve the results ob-
tained.

A second preliminary experiment was performed to measure the impact of the
post-processing step (see Section 3.3). The post-processing step (see Table 2) has
shown to improve the results according to both JI and HD, providing statistically
significant differences according to Wilcoxon’s rank sum test [64] (9.8·10−90 for JI;
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12 Oscar Gómez et al.

Table 1 Summary of the preliminary experiments according to the average JI and HD of the
three organs to study the influence of architectural changes on INET without post-processing.
’in’ and ’ac’ stand for ’instance normalization’ and ’atrous convolution’, respectively.

Network
JI

mean sd min max
INET 0.885 0.012 0.685 0.944
INET + ac 0.892 0.013 0.721 0.953
INET + in 0.910 0.007 0.832 0.963
X-Net (INET + in + ac) 0.925 0.007 0.797 0.967

Network
HD

mean sd min max
INET 132.37 72.38 100.33 255.27
INET + ac 128.27 68.10 99.03 239.50
INET + in 124.65 84.30 97.54 226.27
X-Net (INET + in + ac) 121.68 62.32 98.27 188.73

and 0 for HD). On average, the JI improves from 0.895 to 0.899, and the HD from
86.699 to 35.069. This simple post-processing step is important for metrics that
focus on the quality of the final contours (like HD), since removing the artifacts
allows for a better comparison of the error in the boundaries of the segmented
organs. We want to highlight that, even if the post-processing has a positive impact
on the final result, almost all X-Net architectures without post-processing yield a
better performance than our implementation of INET with post-processing.

Table 2 Summary of the preliminary experiments according to the average JI and HD of the
three organs to study the influence of the post-processing.

Network
Without post-processing With post-processing
JI mean HD mean JI mean HD mean

INET 0.876 132.522 0.883 43.143
X-Net 0.905 91.653 0.908 31.006
RX-Net 0.899 60.599 0.899 34.400

4.5 Experiment I: Comparison of X-Net architectures and INET with single-class
and multi-class strategies

The results obtained for the single-class and multi-class strategies are shown in
Table 3, employing JI and HD as evaluation metrics. The first conclusion worth
mentioning is that single-class training strategies generally outperform multi-class
strategies for CXRs segmentation. There are statistically significant differences in
favor of the former with p-values, according to the Wilcoxon’s rank sum test [64]
of 0.02 for the JI, and 6.5 · 10−20 for HD. In particular, single-class approaches
obtain the best segmentation results for clavicles and lungs, while the best re-
sults on hearts are obtained by a multi-class approach. Thus, despite multi-task
learning has shown useful in other problems [65, 66], its use must be studied for
each particular problem. Finally, the comparison of the results of RX-Net and
RX-Net+ for images of 1024 × 1024, i.e. RX-Net m 1024 and RX-Net+ m 1024,
provides support about the fact that the relation between the filter’s field-of-view
and the feature maps affects significantly to the performance. Since this simple
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Deep architectures for high-resolution multi-organ chest X-ray image segmentation 13

Table 3 Summary of results evaluated using JI and HD per architecture and organ. All X-Net
and INET variants are included.

Network Organ\Metric
JI HD

mean std median min max mean std median min max

INET m 256
Clavicles 0.833 0.015 0.843 0.639 0.905 22.390 10.721 20.180 6.031 72.764

Heart 0.869 0.024 0.894 0.511 0.955 50.245 32.378 40.464 13.867 195.971
Lungs 0.951 0.006 0.957 0.842 0.972 56.795 40.207 42.804 13.176 229.373

INET s 256
Clavicles 0.862 0.017 0.876 0.635 0.931 20.375 12.672 17.825 5.846 88.730

Heart 0.866 0.032 0.896 0.350 0.961 51.971 33.839 40.764 13.403 185.146
Lungs 0.949 0.007 0.957 0.821 0.974 49.071 37.883 35.783 11.362 207.247

X-Net m 256
Clavicles 0.876 0.013 0.887 0.701 0.934 18.518 9.538 16.383 5.025 64.325

Heart 0.890 0.014 0.905 0.751 0.963 38.317 18.297 34.434 11.369 93.118

Lungs 0.961 0.004 0.965 0.903 0.976 36.183 25.384 27.083 10.599 140.922

X-Net s 256
Clavicles 0.855 0.013 0.867 0.682 0.919 19.151 11.812 16.434 6.640 89.206

Heart 0.889 0.017 0.905 0.654 0.969 37.501 18.953 34.505 10.295 100.593
Lungs 0.959 0.004 0.961 0.892 0.976 36.909 29.552 25.281 10.343 176.254

X-Net+ m 1024
Clavicles 0.883 0.015 0.894 0.686 0.949 18.468 10.761 15.818 4.824 67.755

Heart 0.892 0.014 0.903 0.735 0.965 37.732 19.318 33.318 10.889 118.317
Lungs 0.963 0.004 0.967 0.908 0.980 38.352 27.830 27.611 10.181 144.794

X-Net+ s 1024
Clavicles 0.885 0.016 0.896 0.630 0.953 18.022 11.241 15.941 4.824 87.660

Heart 0.890 0.016 0.907 0.706 0.970 37.207 20.542 32.514 8.872 107.929
Lungs 0.963 0.004 0.967 0.896 0.980 36.100 29.485 26.605 7.912 184.837

RX-Net m 256
Clavicles 0.860 0.017 0.874 0.661 0.929 20.047 10.479 17.202 7.066 70.187

Heart 0.889 0.015 0.905 0.738 0.961 38.007 18.074 34.350 13.150 99.823
Lungs 0.955 0.005 0.961 0.889 0.976 45.146 30.254 36.291 11.338 167.700

RX-Net s 256
Clavicles 0.869 0.017 0.881 0.606 0.934 18.049 10.101 16.058 4.667 70.237

Heart 0.883 0.016 0.898 0.704 0.963 40.068 19.971 36.872 11.312 105.527
Lungs 0.959 0.004 0.963 0.899 0.976 38.694 29.625 27.335 11.105 168.505

RX-Net m 1024
Clavicles 0.855 0.023 0.880 0.548 0.942 22.872 11.765 19.616 6.535 66.767

Heart 0.874 0.020 0.894 0.657 0.967 46.055 26.915 39.795 13.631 155.417
Lungs 0.951 0.007 0.959 0.823 0.976 51.204 35.061 41.329 14.524 190.915

RX-Net s 1024
Clavicles 0.866 0.019 0.880 0.642 0.949 21.762 13.535 18.989 5.878 95.639

Heart 0.855 0.032 0.880 0.367 0.961 49.850 31.894 41.383 12.801 182.362
Lungs 0.953 0.006 0.961 0.869 0.976 49.069 35.060 37.430 11.656 190.086

RX-Net+ m 1024
Clavicles 0.867 0.018 0.880 0.612 0.940 19.472 9.751 16.962 7.333 60.711

Heart 0.889 0.015 0.903 0.726 0.961 37.330 18.653 33.224 11.646 105.080
Lungs 0.955 0.005 0.961 0.881 0.978 44.751 30.678 34.837 11.600 167.060

RX-Net+ s 1024
Clavicles 0.880 0.016 0.892 0.646 0.946 17.728 9.301 15.695 5.277 53.971

Heart 0.883 0.017 0.896 0.686 0.965 40.472 21.172 35.936 11.200 119.962
Lungs 0.961 0.004 0.967 0.894 0.978 38.596 29.747 26.927 10.051 169.883

post-processing has shown to be beneficial, all results of X-Net architectures and
our implementation of INET include it (see Tables 3, 6, 4, and 7).

We rank the performance of the X-Net architectures, as well as our implemen-
tation of INET, in Table 4 according to JI and HD. Methods with a difference in
performance smaller than 0.0025 and 5 for JI and HD, respectively, are considered
equivalent. This ranking does not show the values of JI and HD, but the average
position of each network for a given metric and organ. Thus, the values of the
ranking goes from 1 to the number of networks, and smaller values are associated
with a better performance. All our proposals outperform INET (even the reduced
ones which require lower resources than INET), INET being the worst performing
approach in the comparison. It is important to remember that INET is the current
state-of-the-art approach in multi-class CXRs segmentation. Another important
conclusion is that, generally, ground truth resolution approaches (1024 × 1024)
outperform downsampled approaches. In particular, the best method in all rank-
ings is X-Net+ in ground truth resolution using a single-class training approach
(with X-Net+ m 1024 being the second best performing approach).

The time required to train INET was about 26 hours per run (i.e. 26 hours for
multi-class approach and 78 hours for single-class since three networks are trained),
and 9 GBs of memory are necessary (for both the single-class and multi-class
configuration). X-Net requires 36 hours and 9 GBs to train, while the finetuning
of X-Net+, from the X-Net weights, takes only 3 hours (for a total of 39 hours),
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Table 4 Average ranking position of X-Net architectures and INET per organ and metric (JI,
HD, and their average) using 3-fold cross validation [24]. Two networks are considered equal
if the difference in performance between them is lower than 0.0025 for JI and 5 pixels for HD.

Network\Metric
Clavicles Lungs Hearts 3 organs

JI HD Aver. JI HD Aver. JI HD Aver. JI HD Aver.
X-Net+ s 1024 2.2 5.3 3.8 4.8 2.8 3.8 2.8 4.2 3.5 3.3 4.1 3.7

X-Net+ m 1024 2.2 5.3 3.8 4.8 3.8 4.3 2.8 4.2 3.5 3.3 4.4 3.9
X-Net m 256 3.3 5.3 4.3 4.8 2.8 3.8 2.8 4.2 3.5 3.7 4.1 3.9
RX-Net+ s 1024 2.8 5.3 4.1 4.8 5.2 5.0 6.7 5.5 6.1 4.8 5.3 5.1
X-Net s 256 9.7 5.3 7.5 4.8 3.8 4.3 4.7 4.2 4.4 6.4 4.4 5.4
RX-Net s 256 6.3 5.3 5.8 4.8 5.2 5.0 7.0 5.5 6.3 6.1 5.3 5.7
RX-Net+ m 1024 6.8 5.3 6.1 6.7 7.3 7.0 5.2 4.2 4.7 6.2 5.6 5.9
RX-Net m 256 8.7 5.3 7.0 6.2 8.7 7.4 4.0 4.2 4.1 6.3 6.1 6.2
RX-Net s 1024 6.8 7.7 7.3 6.2 9.5 7.8 11.7 10.3 11.0 8.2 9.2 8.7
INET s 256 7.5 7.0 7.3 9.5 9.0 9.3 10.3 11.0 10.7 9.1 9.0 9.1
RX-Net m 1024 9.7 11.2 10.4 11.3 10.2 10.8 9.3 9.7 9.5 10.1 10.3 10.2
INET m 256 12.0 9.5 10.8 9.2 9.7 9.4 10.7 11.0 10.8 10.6 10.1 10.3

Table 5 Summary of the average time and memory requirements of X-Net architectures and
INET with both the mono-class and multi-class approaches.

Network Muti-class time (h) Single-class time (h) GPU memory (GB)

INET (256× 256) 26h 26h×3=78h 9GB

INET (1024× 1024) Cannot be trained due to its GPU memory requirements.

X-Net (256× 256) 36h 36h×3=108h 9GB

X-Net (1024× 1024) Cannot be trained due to its GPU memory requirements.

X-Net+ (1024× 1024) 36h+3h =39h (36h+3h)×3=117h 12GB

RX-Net (256× 256) 12h 12h×3=36h 3.5 GB

RX-Net (1024× 1024) 55h 55h×3=165h 11GB

RX-Net+ (1024× 1024) 12h+2h =14h (12h+2h)×3=42h 10GB

requiring almost 12GBs of GPU memory. RX-Net requires only 12 hours and 3.5
GBs with images of 256×256, and 55 hours and 11 GBs with images of 1024×1024.
Meanwhile, RX-Net+ with images of 1024×1024 takes only 2 hours to be finetuned
from the weight of RX-Net (256) (i.e. a total of 14 hours) and 10 GBs. Thus, RX-
Net outperforms INET in accuracy but also reduces the required memory and the
training time (see Table 5 for a summary of the time and memory requirement of
all the architectures). Overall, around 1608 computational hours (67 days) were
required to perform the 3-fold cross validation.

Given that X-Net, the proposal that is closest to INET, is better than INET
(see rankings of Table 4, where X-Net s and X-Net m are systematically ranked
above their INET counterparts), we can conclude that the modifications intro-
duced in X-Net are responsible for such improvement. Therefore, the use of atrous
convolution and instance normalization to improve the results in CXRs segmen-
tation is highly recommended.

4.6 Experiment II: Comparison with State-of-the-art approaches

The results obtained by the best X-Net architectures employing 10-fold cross vali-
dation are shown in Table 6. All those results include post-processing. The results
of INET [24] correspond to our implementation, in order to perform a comparison
as rigorous as possible with the same 10-folds. The comparison of Tables 3 and
6 shows that the results obtained have not changed significantly from the 3-fold
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to the 10-fold cross validation protocol. X-Net architectures are robust to differ-
ent initialization and training-test subsets. This is supported by the unchanged
positions of the different proposals in the ranking showed in Table 7. Lastly, the
Nemenyi test [67] was performed to look for statistically significant differences be-
tween the best ranked proposal, X-Net+ s 1024, and all the other networks. The
test showed that there is no statistical significant difference with X-Net+ m 1024
with p-values larger than 0.1 for both and HD. Therefore, both X-Net+ s 1024
and X-Net+ m 1024 must be considered the best performing approaches. More
specifically, when employing JI and DSC as evaluation metrics, X-Net+ s 1024
is better for clavicles, and X-Net+ m 1024 for lungs and hearts. However, X-
Net+ s 1024 becomes also the best method in clavicles when HD is considered.
The Nemenyi test finds statistically significant differences with all the other net-
works with a p-value always lower than 1 ·10−06 for both JI and HD. In particular,
for INET m 256, it obtains a p-value of 5.2 · 10−15 for JI and 1.2 · 10−12 for HD.

The time required to train a fold of all architectures with the two training
approaches is lower since only 3000 epochs are performed instead of the 4000 from
the previous experiment, and also the number of X-Net architectures compared is
lower. Nevertheless, the computational time needed to tackle this experimentation
is significantly higher because a 10-fold cross validation were performed, and thus
circa of 1840 computational hours (i.e. 77 days) were required.

X-Net+, evaluated using a 10-fold cross validation protocol, provides better
results in the ground truth resolution than all the other methods in the state-of-
the-art (9 competitor approaches) for clavicles and lungs. It also yields comparable
results with the state-of-the-art method [38] for heart segmentation (with a dif-
ference in performance smaller than 0.01 (JI) and 0.005 (DSC)). X-Net+ also
outperforms the human observer in lungs and hearts (see Table 8). Importantly,
X-Net+ without post-processing yields comparable results to X-Net+ with post-
processing.

5 Conclusion and future works

This paper tackles the problem of segmenting multiple organs (hearts, lungs and
clavicles) in chest X-ray images using convolutional neural networks. Several new
deep architectures are proposed to deal with this complex problem. First, X-Net
focuses on improving the segmentation accuracy in images of 256×256 (the conven-
tional resolution used in the literature). Second, RX-Net represents a simplification
of X-Net, and it is focused on reducing the required computational resources (train-
ing memory and time) without significant loss in the original accuracy. Finally,
X-Net+ and RX-Net+, are extensions of the former architectures that allow us
to work with images up to 1024× 1024, maintaining the original relation between
filter’s field-of-view and the feature maps, and to transfer the learning from their
precedent versions (X-Net and RX-Net, respectively, for images of 1024× 1024).

Remarkably, state-of-the-art results have been obtained. Our best performing
proposal, X-Net+ for single-class segmentation, obtains better results than the
state of the art with clavicles with an average error of 0.884 (JI), 0.939 (DSC),
and 18.022 (HD), and lungs with 0.963 (JI), 0.981 (DSC), 36.1 (HI). The results for
hearts segmentation are as good as the state of the art with 0.89 (JI), 0.942 (DSC),
and 37.207 (HD). The quantitative evaluation of our X-Net architectures by means
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16 Oscar Gómez et al.

Table 6 Summary of JI and HD results per architecture and organ employing a 10-fold cross
validation protocol to the best performing architectures in Experiment I (see Section 4.5).

Network Organ\Metric
JI HD

mean std median min max mean std median min max

INET m 256
Clavicles 0.835 0.018 0.850 0.663 0.905 21.937 10.946 19.732 8.218 55.271

Heart 0.850 0.033 0.883 0.546 0.944 64.605 41.183 50.472 20.807 178.663
Lung 0.953 0.005 0.959 0.885 0.972 51.679 36.886 41.390 13.676 163.012

X-Net m 256
Clavicles 0.848 0.017 0.862 0.667 0.910 20.507 12.043 17.734 7.519 60.869

Heart 0.881 0.019 0.901 0.663 0.951 42.179 23.456 36.361 14.808 119.029
Lung 0.951 0.005 0.957 0.890 0.972 47.416 35.574 35.761 13.287 170.676

X-Net s 256
Clavicles 0.859 0.013 0.869 0.748 0.912 18.381 9.789 16.133 7.826 51.733

Heart 0.878 0.017 0.892 0.718 0.955 45.603 24.703 40.355 14.842 110.086
Lung 0.951 0.006 0.957 0.880 0.972 46.333 37.479 32.960 11.806 177.618

X-Net+ m 1024
Clavicles 0.874 0.018 0.889 0.678 0.940 20.361 11.891 17.336 7.587 59.583

Heart 0.883 0.018 0.898 0.698 0.959 42.638 27.027 35.422 13.773 132.061
Lung 0.957 0.005 0.961 0.898 0.976 46.477 34.094 35.544 13.321 161.642

X-Net+ s 1024
Clavicles 0.883 0.015 0.896 0.745 0.944 18.357 11.567 15.795 6.595 60.463

Heart 0.878 0.018 0.896 0.714 0.957 43.671 24.269 37.844 13.342 107.652

Lung 0.955 0.006 0.961 0.881 0.976 46.248 37.529 32.567 12.189 174.856

RX-Net m 256
Clavicles 0.838 0.018 0.852 0.645 0.905 21.515 12.103 18.920 8.449 61.395

Heart 0.876 0.019 0.896 0.682 0.951 44.508 23.747 38.192 16.442 117.139
Lung 0.947 0.006 0.951 0.866 0.969 53.350 35.161 44.273 17.195 162.182

RX-Net s 256
Clavicles 0.845 0.017 0.860 0.685 0.908 19.882 11.984 17.109 7.620 61.342

Heart 0.864 0.020 0.878 0.684 0.946 50.112 30.619 42.176 16.232 147.602
Lung 0.947 0.007 0.955 0.860 0.970 51.975 42.228 38.710 13.080 198.489

RX-Net+ m 1024
Clavicles 0.864 0.019 0.881 0.653 0.934 20.718 11.953 17.965 7.962 62.627

Heart 0.880 0.017 0.896 0.717 0.953 43.526 23.499 37.026 15.560 111.432
Lung 0.951 0.006 0.957 0.873 0.972 51.912 37.211 41.463 16.028 172.276

RX-Net+ s 1024
Clavicles 0.871 0.019 0.890 0.676 0.942 19.404 12.283 16.332 7.292 63.905

Heart 0.866 0.020 0.880 0.689 0.949 50.412 31.395 43.437 16.247 144.748
Lung 0.925 0.012 0.940 0.779 0.969 79.469 45.211 69.918 21.169 208.965

Table 7 Average ranking position of the best X-Net architectures and INET per organ and
metric (JI, HD, and their average). Two networks are considered equal if the difference in
performance between them is lower than 0.0025 for JI and 5 pixels for HD. A 10-fold cross
validation protocol is applied to the best performing architectures in Experiment I (see Section
4.5).

Network\Metric
Clavicles Lungs Hearts 3 organs

JI HD Aver. JI HD Aver. JI HD Aver. JI HD Aver.
X-Net+ s 1024 1.8 3.2 2.5 4.4 3.7 4.0 3.9 3.5 3.7 3.3 3.5 3.4

X-Net+ m 1024 2.5 5.4 3.9 3.8 2.8 3.3 3.3 4.1 3.7 3.2 4.1 3.6
X-Net s 256 4.8 3.2 4.0 4.1 3.9 4.0 4.0 4.9 4.4 4.3 4.0 4.1
X-Net m 256 6.5 5.4 5.9 4.1 3.4 3.8 4.0 3.7 3.8 4.8 4.2 4.5
RX-Net+ m 1024 4.1 6.4 5.2 4.5 5.6 5.0 4.5 4.4 4.4 4.3 5.4 4.9
RX-Net s 256 6.7 5.2 5.9 5.2 5.5 5.4 6.5 6.2 6.4 6.1 5.6 5.9
RX-Net m 256 7.8 6.0 6.9 6.3 6.2 6.2 4.9 4.3 4.6 6.3 5.5 5.9
RX-Net+ s 1024 2.8 3.4 3.1 8.7 8.5 8.6 6.4 6.0 6.2 6.0 6.0 6.0
INET m 256 8.3 7.0 7.7 4.1 5.5 4.8 7.7 8.1 7.9 6.7 6.9 6.8

of a rigorous experimental design protocol (10-fold cross validation, rankings and
statistical tests) shows the empirical advantages of employing them in this task.

Overall, the single-class training approach achieved better segmentation than
the multi-class approach. This shows that multi-task learning is not always the best
solution, despite its success in many other applications, and it must be analyzed
for every particular problem separately. Furthermore, we have empirically shown,
by comparing RX-Net and RX-Net+ for images of 1024 × 1024, that re-sizing a
network to fit an input changes the relation between filter’s field-of-view and the
feature maps leading to a change in its behaviour. In our case, this change has
significantly worsened the results of RX-Net obtaining the worst results among
our proposals, meanwhile RX-Net+ has been ranked in the top 5.
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Table 8 Comparison of our best X-Net-based architectures, with and without post-processing,
with state-of-the-art approaches. JI and DSC represent the results reported in the trained
resolution (indicated by the number in parentheses at the end of the name of the method). JI
Full and DSC Full report the results in the original resolution of the segmentation mask (i.e.
1024 × 1024). DSC and DSC Full (as well as JI and JI Full) have the same value for methods
trained with the original image resolution. The best results in the ground truth resolution,
1024 × 1024, are displayed in bold per organ and metric. Notice that all approaches report
better results in the down-sampled resolution than in the ground truth resolution. The reason
is that the resulting segmentation is evaluated more roughly, and thus we lose details and
nuances. Since the segmentation results are always more precise in the ground truth resolution,
we employ it as reference to highlight in bold the performance of the different algorithms under
comparison. Cells containing a “—” represent either that the proposed method does not tackle
the segmentation of the organ, or that the results at the original or down-sampled resolution
are not reported. Values calculated from other metric, where only one of them was reported,
are marked with a “*”. Results without the post-processing step are also reported to allow a
fair comparison with “pure” deep learning methods.

Clavicles Lungs Hearts

Method JI
JI

Full
DSC

DSC

Full
JI

JI

Full
DSC

DSC

Full
JI

JI

Full
DSC

DSC

Full
Human observer [26] — 0.896 — 0.945* — 0.946 — 0.972* — 0.878 — 0.935*
TVC2018 (512) [38] — — — — — 0.951 — 0.975 — 0.893 — 0.943
WPC2018, a.k.a. LF-
SegNet (224) [45]

— — — — 0.951 — 0.975* — — — — —

WPC2018-2, a.k.a.
FCN (224) [48]

— — — — 0.959 — 0.979* — — — — —

JBHI2018 (256) [21] — — — — 0.952 — 0.975 — — — — —
MP2017 (256) [68] — — — — 0.955 — 0.977 — — — — —
N2018 (256) [36] — — — — 0.963 0.948 0.983 0.974 — — — —
MIA2012 (256) [23] 0.860 — 0.925* — — — — — — — — —
SCIA2017 (256) [44] 0.863 — 0.926* — 0.959 — 0.979* — 0.899 — 0.947* —
TMI2018, a.k.a.
INET (256) [24]

0.868 — 0.929 — 0.950 — 0.974 — 0.882 — 0.937 —

X-Net+ m 1024
without post-proc.

0.871 0.931 0.954 0.976 0.879 0.935

X-Net+ m 1024 0.874 0.933 0.956 0.978 0.884 0.938
X-Net+ s 1024
without post-proc.

0.880 0.936 0.954 0.976 0.863 0.927

X-Net+ s 1024 0.883 0.938 0.955 0.977 0.879 0.935
RX-Net+ m 1024
without post-proc.

0.859 0.924 0.948 0.973 0.876 0.934

RX-Net+ m 1024 0.864 0.927 0.951 0.975 0.880 0.936
RX-Net+ s 1024
without post-proc.

0.867 0.929 0.924 0.960 0.849 0.919

RX-Net+ s 1024 0.870 0.931 0.925 0.961 0.865 0.928

Regarding future lines of research, the first future work will be to study the ca-
pability of our proposals to be applied to other problems, such as the segmentation
of different sets of organs, different datasets, and different kinds of radiographs.
Second, we aim to adapt our methods to the volumetric medical image segmen-
tation scenario following an approach similar to V-Net [69]. Third, we would like
to study further network simplifications following an automatic pruning approach
as in ThinNet [70]. Last, we plan to test the applicability of this segmentation
framework in a challenging real world problem, such as forensic identification via
comparative radiography [11], to study if the quality of the resulting segmentation
is sufficient for that task.
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20 Oscar Gómez et al.

2017.
44. Chunliang Wang. Segmentation of multiple structures in chest radiographs using multi-

task fully convolutional networks. In Puneet Sharma and Filippo Maria Bianchi, editors,
SCIA, pages 282–289, 2017.

45. Ajay Mittal, Rahul Hooda, and Sanjeev Sofat. LF-SegNet: A fully convolutional encoder–
decoder network for segmenting lung fields from chest radiographs. Wireless Personal
Communications, 101(1):511–529, Jul 2018.

46. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. ICML, 1:448–456, 2015.

47. Stefan Jaeger, Sema Candemir, Sameer Antani, Yı̀-Xiáng J Wáng, Pu-Xuan Lu, and
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