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Abstract—Keystroke dynamics authentication aims at recog-
nizing individuals on their way of typing on a keyboard. It suffers
from a high intra-class variability as any behavioral biometric
modality; to provide a large quantity of enrollment samples often
overcomes this issue.

In this paper, we analyze the feasibility of using siamese
networks to rely on biometric samples provided by other users
instead of requesting a new user to provide a large number of
enrollment samples. Such networks aim at comparing two inputs
to compute their similarity: the authentication process consists
then at comparing the query to an enrollment sample.

The proposed method is compared to several compatible
baselines in the literature. Its EER outperforms the best baseline
of 28 % in a oneshot context and 31% when using 200 enrollment
samples. This proves the viability of such approach and opens the
path to improvements for using it in other contexts of keystroke
dynamics authentication.

I. INTRODUCTION

Biometric authentication allows to verify the identity of
individuals based on what they are or how they behave.
Keystroke dynamics [1] is the behavioral modality that allows
recognizing one individual based on his way to type on
a keyboard. The main information collected correspond to
various timing deltas between key presses. Static keystroke
dynamics flavor relies on the input of a predefined text to
make this verification. It is mainly used with the verification
password of a single user or the verification of a shared
password within a group of users (which is the focus of this
paper).

Deep learning-based methods [2] generally perform better
than most other historical methods in various domains and
biometrics authentication is not an exception [3]. However,
most related works concern face and speaker recognition
while keystroke dynamics has not attracted much attention.
This is explained for practical reasons because deep neural
networks need a large collection of samples to train; that
implies numerous inputs of the password by each user of the
system. This is definitively not doable in practice. However,
siamese networks [4] may alleviate this issue by requesting
users to provide a reasonable amount of samples.

The feasibility of such kind of architecture to improve the
performance of static keystroke dynamics authentication sys-
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tem is verified through different experiments. As this first step
is proved to be efficient, it will be necessary to generalize the
approach to other kind of keystroke dynamics authentication
systems.

The originality of the paper relies on three main points. (i)
So far from our knowledge, this is the first time a siamese
network is applied in the context of keystroke dynamics
authentication. Although the concept is not new, it proves its
effectiveness on such subject, and will open the path for future
experiments and improvements. (ii) Different suitable architec-
tures are tested in order to select the simplest model having the
best performance. (iii) A fair evaluation protocol that ensures
results are not over-optimistic is applied: individuals used to
train the siamese network are different from individuals used
to evaluate the biometric authentication system.

The paper is organized as follows. Section II presents pre-
vious works related on (a) keystroke dynamics authentication
with a focus on static password and neural networks, and
(b) siamese networks for biometrics. Section III describes
the proposed method. Section IV presents the experimental
protocol used to evaluate the proposed method and Section V
describes and discusses the obtained results. Section VI lists
some limitations of the current study associated to various
ways to tackle then. Finally, Section VI concludes this paper.

II. RELATED WORK

Static keystroke dynamics aims at verifying the identity
of individuals based on their way of typing a predefined
password. Among the public compatible databases [5]-[7], the
CMU dataset [5] has been deeply studied in reason of its huge
number of samples per individual. The baseline evaluated by
its creators achieves an average (over individuals) Equal Error
Rate (EER) of 9.6%. EER corresponds to a standard evaluation
metric indicating an equal ratio of False Rejection of genuine
samples and False Acceptance of imposters samples.

Other studies rely on this dataset and outperform this
baseline. However, they also use different experimental pro-
tocols that may make their comparison unfair. We focus on
neural network-based methods. DeepSecure [8] obtains an
EER of 3% using a four layers Multi-Layers Perceptron (MLP)
individually trained for each user. Each model is trained with
200 genuine samples and 5 impostors samples per each other
individual. Ceker and Upadhyaya [9] obtain an EER of 2.3%



with a single multiclass Convolutional Neural Network (CNN)
model trained using a tailored data augmentation technique
and 80% of the samples. An inductive transfer encoder [10]
obtains an EER of 6.3% by mapping the gallery samples in a
manifold similar to the one of the query sample and using the
Manhattan distance for comparison.

Other datasets have also been experimented. DeepSer-
vice [11] focuses on mobile-phone free-text authentication.
Using a multi-class (one per user) and multi-view (alphabet
data, other char data, accelerometer) deep learning model, it
reaches 93% of identification accuracy in a closed-set scenario
of 40 individuals. Lin et al. [12] evaluate a CNN on a
database of 10 users. One instance is trained per user; the
False Rejection Rate is of 13% for a False Acceptance Rate
of 0%.

Additionally, siamese networks have already been success-
fully applied to other biometric modalities. Some examples
follow. OSVNet [13] is a CNN-based siamese network trained
using the contrastive loss [14] in order to output two vectors
on which the euclidean distance is computed. Results are
competitive in comparison to other works on the MCYT-100
database. Facenet [15] proposes the triplet loss on a CNN-like
encoder. It tries to enforce a margin between each pair of faces
from one person to all other faces. Thus, the training of the
network needs triplets of faces: the anchor, a positive sample
and a negative sample and the comparison is done on the
latent space. Zhang et al. [16] use the contrastive loss to learn
to generate features specific to image-based gait recognition.
Euclidean distance is used for the comparison. The system
performs better than most baselines.

III. METHODOLOGY

We propose to use a single siamese network shared with all
users in the verification process. Such choice is justified by the
fact that, in opposite to other network architectures, siamese
networks can be trained with samples of individuals that are
not real users of the system. It allows real users to provide
fewer samples for training: this is more convenient for them.

For the context of biometric authentication, it is possible to
add a novel user to the system without collecting myriads of
samples and training a complex model. Indeed, the network
is already able to verify if two samples of a user are similar
enough to grant such user access to a system or consider them
different users. And to compute one global model instead of
one model per individual is enough for such task. The number
of enrollment samples to collect in order to have a system
performing properly is reduced.

The enrollment consists of storing the user’s samples in a
gallery while the verification consists of feeding the query
with one enrollment sample into the network and computing
their similarity score. It allows the use of neural networks
without having enough user’s samples to train them. Under
the hood, such system also allows to change the manifold of
the biometric data space to another one where the comparison
is done more efficiently.

The rest of this section describes the workflow.
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Fig. 1. Siamese network architecture (part A). Each leg (part B&B’) extracts

features from the samples to compare, a layer computes their absolute
difference and the rest of the network decides if both samples are similar.

A. Samples comparison through a siamese network

Figure 1 summarizes the proposed architecture. It has been
designed on a trial and error process (see Section V) on the
CMU dataset [5]. The two legs of the siamese network (fea-
tures extraction part) consist of a simple multi-layer perceptron
sharing the same weights and architecture; they aim at pro-
jecting two keystroke dynamics samples onto the same latent
space in which it is easier to compare them. Part of the training
consists in optimally searching the transformations to project
samples onto this space. Then, the network (comparison part)
computes the absolute difference of the two input samples
projected onto the latent space. Finally (decision part), another
MLP is used to decide if the two biometric samples share the
same identity by computing a similarity score. It is thus a full
stack network that computes the latent space and the decision.

The feature extraction part consists of a single 256 nodes
layer followed by a ReLU activation. An L2 norm regularizes
its weight. We have chosen not to use a dropout before the
comparison layer. The decision part consists of three dense
layers; each one is preceded by a dropout of 40% and its
weights are regularized by an L2 norm. The number of
neurones is respectively 256, 32, and 1, while their activation
is respectively ReL.U, ReLU and Sigmoid.

B. Pairs construction for training the network

The siamese network needs to be trained with pairs of
samples that belong to two categories: (a) similar pairs contain
two samples of a single individual and (b) dissimilar pairs
contain two samples of two distinct individuals. Training
quality is directly impacted by the construction of these pairs.

The similar pairs are built by generating the cross-product
of the samples of each user: each sample of each user is
matched one time with each other sample of the same user.

The dissimilar pairs are randomly generated by matching
the sample of one user to the sample of another one. Selec-
tion is done with replacement and the number of generated
dissimilar pairs is chosen to be the double than the number
of similar pairs, while the selected pairs are among the most
difficult ones to compare. They are generated as follows: for



10 pairs randomly generated with replacement, we keep only
the two ones having the shortest Euclidean distance. This way,
we expect the boundary decision to be of better quality.

C. Biometric authentication

A trained siamese network can be used to compute the
similarity score of two samples. As for any biometric authen-
tication system, we consider a match when this score is higher
than a threshold (that needs to be specified by the operator of
the system) and a non match otherwise. Two error rates can be
computed given a threshold and a set of comparison scores:
False Match Rate (FMR) corresponds to the ratio of dissimilar
comparisons considered to be similar and False Non Match
Rate (FNMR) corresponds to the ratio of similar comparisons
considered to be dissimilar.

However, several samples are collected during the enroll-
ment and any of them could be compared with each query. For
this reason, we propose different strategies for the verification
process. (i) To compare each sample of the gallery to the query
by feeding each pair in the siamese network and to compute
the mean of the produced scores. All gallery samples are used
whatever is their closeness to the query. (ii) To compare each
sample of the gallery to the query by feeding them in the
siamese network and to compute the mean of the k best scores.
This way, only enrollment samples close enough to the query
are taken into account. It should decrease the FNMR but could
negatively affect the FMR. (iii) To use the feature extraction
(part B only) of the network in order to project the query onto
the latent space for comparison. Thus, each biometric sample
of the gallery, as well as the query, is mapped onto this latent
space thanks to this subnetwork. The score is then computed
on this space using a standard distance measure. Although we
are confident in the feature extraction part of the network, we
prefer to outsource decision-making.

IV. EXPERIMENTAL PROTOCOL

This paper focuses on the CMU dataset [5]: 51 individuals
each typed 400 times the password “.tieSRoanl” during 8
collection sessions each of 50 inputs. Each input is represented
by a 31-sized vector containing keydown-keydown times,
keyup-keydown times, and hold times for all keys in the
password. Section II has shown that different studies have used
it. However, due to the various constraints of their classifiers,
most of them used a different experimental protocol. We also
need to use a different one, especially on the data partition
side, because of our siamese approach.

A. Data partition

The dataset must be split in several sub-datasets, each with
a specific semantic. Firstly, a sub-dataset is needed to train
the siamese network. It is built using all samples of randomly
chosen users S from the whole set of users U. All samples of S
are used to generate the training pairs (see Section III-B). The
rest of users B = U \ S is used for the biometric verification
part. The number of samples in the enrollment process is a
parameter of our experiments. First samples are used to build

their gallery, while the others feed the probe used to compute
the biometric scores in order to evaluate the biometric system.
Each biometric sample in the probe dataset is compared to
each biometric reference. A k-fold approach is used to split
the users in S and B. k is fixed to 3, which gives for each
run: 34 users for training the network and 17 users for testing
the biometric authentication system. The various experiments
are repeated three times; we present the aggregated results.

B. Training procedure

Nadam optimizer [17] (with a learning rate of 0.003 and
other parameters set to Keras [18] default) is used with the
binary crossentropy loss. No extra loss is used to force the
comparison layer to generate activations of small (respectively
large) norm when fed with similar (respectively dissimilar)
samples. Each batch contains 51200 pairs. The network is
trained during 150 epochs while monitoring the binary accu-
racy on the validation set (25% random pairs of the training
set). If it does not improve after 10 epochs, the learning rate
is decreased by a factor of 0.2. If it does not improve after
30 epochs, the training is stopped. The model having the best
binary accuracy among the various epochs is kept.

C. Configuration of the proposed methods

We have previously seen that different combinations can be
used for the verification part. The tested one are:

o network, that corresponds to the siamese network when
all the scores computed against the gallery are averaged;

e network knnvy, that corresponds to the siamese network
when the best «y scores are averaged (with v € [20, 50]);

o network manhattan scaled, that corresponds to the use of
the part B of the network to extract features of gallery
samples and the query and compute the manhattan scaled
(see (3)) score on them.

D. Comparison baselines

We have selected different baselines compatible with our
training constraints. This is not the case of other neural
network based approaches (see Section II) that need users
samples during their training whereas we ensure it is not the
case in our protocol.

Let X;, = {21, ...,2},} be the n training samples of size s
of user 4, ;* the mean of X;al, 6" its standard deviation, and
q € X, ., @ query sample.

The simple baseline corresponds to a statistical distance that
has been proven to be efficient in [19] and later studies:
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The manhattan distance is one of the best classifiers in [5]:
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Fig. 2. Evaluation of different architectures for the proposed method. (a)
evaluates different heights and (b) evaluates different width.

where a’ corresponds to the mean of the absolute difference
of each sample of X}, to yi".
Finally, the mahalanobis distance performs better in [5]:

i\ ~i—1 i
(¢—n') C (a—n') C)
where O is the covariance matrix computed with X;al.

E. Evaluation of the proposed methods

Several questions of interest have to be answered to assert
the performance and usefulness of the proposed methods.

What is the minimum number of layers needed for
good performances ? We modified the number of dense layers
of part B from the set [0,1,2,3,4] (0 means there are no
features extraction) and compare their mean EER using 200
enrollment samples (similar to most studies evaluating this
dataset). Experiment is repeated 2 times, width is fixed to 64.

Q2| What is the typical features dimensional? We mod-
ified the number of neurons of the dense layer of part B
as well as on the first layer of the decision from the set
[16, 32, 64,128, 256,512] and compare their mean EER using
200 enrollment samples. Experiment is repeated 2 times,
height is fixed to 1.
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Fig. 3. Loss over epochs for each run. 150 epochs maximum where
allowed, the loss corresponds to the binary crossentropy summed with the
normalization parameters.
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Fig. 4. Global EER for each configuration. After reaching a certain amount
of training samples, our method always outperform the baselines.

What is the impact on the number of enrollment
samples on the final decision? Is it possible to do oneshot
authentication? There is no pressure to collect several samples
for enrollment as the network has been trained with other
individuals samples and expect that few samples allow obtain-
ing good performances with an increase of performance with
the number of samples. To verify this point, we try different
gallery size: [1,5, 10, 20, 30, 40, 50, 100, 150, 200]. We expect
to obtain good performance even for few samples.

How the proposed methods perform compared to the
baselines? Nowadays, deep learning-based systems outperform
traditional methods and we expect it is the case here; the
difficulty being on the fact that baselines do not need masses of
data for training in opposite to the proposed methods. We thus
compare the performance of the proposals to various baselines.

V. RESULTS AND DISCUSSION

Fig. 2a shows the performance of the network depending on
the depth of the feature extraction part. The best configuration



WORST SYSTEM , BLUE CELLS REPRESENT THE BEST SYSTEM , ORANGE CELL REPRESENT THE BEST BASELINE

TABLE I
AVERAGE (AND STANDARD DEVIATION) OF EER (IN %) OVER USERS AND FOLDS FOR EACH COMBINATION. RED CELLS REPRESENT THE

AND GREEN CELLS ARE

BETTER THAN THE BEST BASELINE FOR A GIVEN GALLERY SIZE. BEST COMBINATION (SYSTEM AND GALLERY SIZE) IS IN BOLD.

Gallery size 1 5 10 20 30 40 50 100 150 200
System

manhattan scaled 35.1(16.5) 28.8(17.6) 25.8(17.3) 22.9(15.8) 21.1(14.8) 20.3(14.5) 19.4(14.0) 15.8(11.0) 14.3(10.3) 13.2(9.0)
mahalanobis ] 43.4(16.3) 35.5(13.9) 29.5(11.4) 24.5(12.1) 21.2(11.4) 20.1(11.3) 17.1(9.3) 16.1(9.4) 15.3(8.9)
manhattan 37.9(16.6) 34.1(16.7) 30.9(15.8) 27.0(14.6) 24.9(13.9) 23.9(13.4) 23.2(13.2) 20.5(11.1) 18.8(10.1) 18.0(9.4)
simple 43.3(5.2) 31.5(16.4) 29.0(16.0) 25.3(15.1) 23.1(14.4) 21.7(14.1) 20.8(13.8) 18.1(12.8) 16.6(12.4) 15.7(12.4)
network 25.2(12.8) 21.0(14.0) 18.8(13.2) 15.8(11.1) 14.4(10.5) 13.5(10.3) 13.1(10.4) 10.98.7) 9.8(8.1) 9.1(7.0)
network knn50 25.2(12.8) 21.0(14.0) 18.8(13.2) 15.8(11.1) 14.4(10.5) 13.5(10.3) 13.1(10.4) 11.8(8.9) 11.3(8.5) 10.9(8.0)
network knn20 25.2(12.8) 21.0(14.0) 18.8(13.2) 15.8(11.1) 14.7(10.4) 14.1(10.2) 13.9(10.2) 13.1(9.2) 12.7(9.1) 12.3(8.6)
network manhattan scaled 32.4(16.0) 34.8(19.1) 30.8(19.0) 26.5(17.7) 23.7(16.8) 22.5(16.4) 21.2(16.0) 16.4(12.4) 14.4(11.5) 12.5(9.1)

has a depth of 1; to add extra layers decreases performances,
while using 4 makes the network unable to with our protocol.
To do no feature transformation is less efficient that having a
single layer. We had expected that a deepest network would
allow extracting more complex and discriminative features.
We assume it is not the case because of the simplicity of
keystroke features and the fact that they already correspond
to extracted features. Fig. 2b shows the performance of the
network depending on the width of the feature extraction part.
Performance increases with the width of the network until
reaching a maximum at 256: the preferred feature extractor is
wider than the features (256 vs 31) and only needs one layer.
Note that this architecture suits well the CMU dataset but may
be less effective with another dataset.

Additional modifications have been tested without providing
significant improvements. Minmax scaling has been initially
used during the first iterations of the study; removing it has im-
proved the results: the network learns faster, has fewer plateaux
and then improves during more epochs. We can explain that
because the domain of the biometric characteristics is already
in [0;1] and the number of users (and thus variability) is not
sufficent to compute a coherent scaling factor. The use of
the LeakyReLU as in DeepSecure [8] has not changed the
results. Finally, a three inputs network trained using the triplet
loss [15] was unable to learn.

The number of parameters to train for part B of the selected
network is 8192 while the total number of parameters for the
remaining part is 74 049: the feature extraction part is less
complex than the decision part. Fig. 3 draws the loss (sum
of the binary crossentropy and the regularization parameters)
over the epochs for each training round. Although 150 epochs
were allowed, all rounds early stopped because of a lack of
improvement during 30 epochs; most of the training was done
during the first 40 epochs.

Fig. 4 presents the global EER (i.e., computed with all
aggregated scores) evolution over gallery size for each eval-
uated system. For each system, to augment the number of
enrollment samples increases the performance. With 200 en-
rollment samples, the performance of the baselines are greatly
inferior to the one announced in their original study [5].
This is explained by the difference of evaluation protocol:

in our case we have less inter-scores, the k-fold partitioning
may have generated more difficult configurations, and we
present a global EER. Most of the proposed methods always
perform better than the baselines whatever is the number of
enrollment samples. Only network manhattan scaled shows
lower performance with few enrollment samples. It can be
explained because the network is trained to minimize the
binary accuracy and is not forced to explicitly extract features
that differ for similar/dissimilar pairs. The siamese network
is then less efficient in extracting features in comparison to
decision-making. The network systematically performs better
than any other methods (network knn~vy are equal to network
when the number of enrollment samples is lower than v which
explains the same result in these cases).

Tab. I provides the average (and standard deviation) of
EER over users and folds for each combination (i.e., the
EER of each user of each fold is independently computed).
Each user has a different decision threshold; although it may
not be realistic and easy to apply, most papers using the
CMU dataset use such evaluation. We can observe that this
way of computing results is more optimistic for all systems
and manhattan scaled jumps from the worst system to the
best baseline. From this table, it is still clear that network
always outperforms the baseline manhattan scaled. Standard
deviation for the proposed methods is also often smaller
than the one of the baselines. network EER in the oneshot
scenario is about 25% whereas the best baseline achieve about
35% (improvement of 28.2%) and the mahalanobis cannot
be computed. network EER with 200 enrollment samples
is about 9% whereas the best baseline achieves about 13%
(improvement of 31%). The network knny methods do not
bring additional performance in comparison to network which
means that intra-variability of this modality is so important
that the biometric model have to encode most of it.

From these results: better performances are obtained with a
wide but shallow network ( & ); to increase the number
of training samples increases the recognition performance
(); proposed methods provides best results than baselines
in the oneshot scenario, but performances are still too low to
be usable in an operational scenario (); and the proposed



method performs better than the baselines ().

VI. LIMITATIONS OF THE PROPOSED METHOD

There are still some limitations in this work that deserve to
be investigated with additional experiments.

The pairs selection to train the siamese network is based on
a greedy algorithm executed only one time before the training
process and the choice is only done from the biometric sample
space and not from the latent space. It is highly probable that
training would be improved if the selection was done on a per
epoch basis within the latent space.

This work focuses on the CMU dataset [5] but could be
generalized with other ones [6], [7]. A naive approach would
be to use a tailored network for each dataset. However, it
is more interesting to design a single architecture that works
properly with these three datasets.

The system targets static keystroke dynamics authentication
with a shared password. A generalization to a user-based
password authentication [7] or even free text is expected.
Artificial samples generation with handcrafted methods [9],
[20] or Generative Adversarial Networks [21] could help to
generate additional training data if required for such system.

Finally, it is known that keystroke dynamics suffers from
high intra-class variability and adaptive systems [22] are
needed to achieve interesting performances. A tailored update
system is expected in order to update the gallery of each user
as well as the network to take into account user data.

VII. CONCLUSION

Keystroke dynamics authentication systems allow authenti-
cating individuals based on their way of typing on a keyboard
while siamese networks allow to project a pair of inputs
onto a latent space in which they are compared in order to
compute a similarity score. Such network architecture has been
successfully studied for several biometric modality, but never
studied for keystroke dynamics.

This paper has presented the feasibility of using a siamese
network in the context of keystroke dynamics authentication.
For this purpose, a siamese network tailored for the CMU
dataset [5] has been proposed. Several widths and depths has
been tested in order to select the best performing architecture
that remains quite simple as the feature extraction part contains
only one layer.

The proposed network has been evaluated and compared
to various baselines and has shown its superiority in all cases,
especially when few enrollment samples are available. Thanks
to these experiments, we know that such kind of architecture
can be used in the context of static keystroke dynamics
authentication with password shared. It is then necessary
to improve it in order to be usable in more scenarios less
constrained for the users, such as systems having a different
password per individual or free-text based systems.
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