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On some stable boundary closures

of finite difference schemes for the transport equation

Jean-François Coulombel∗ & Tomas Lundquist†

January 6, 2020

Abstract

We explore in this article the possibilities and limitations of the so-called energy method for an-
alyzing the stability of finite difference approximations to the transport equation with extrapolation
numerical boundary conditions at the outflow boundary. We first show that for the most simple
schemes, namely the explicit schemes with a three point stencil, the energy method can be applied
for proving stability estimates when the scheme is implemented with either the first or second order
extrapolation boundary condition. We then examine the case of five point stencils and give several
examples of schemes and second order extrapolation numerical boundary conditions for which the en-
ergy method produces stability estimates. However, we also show that for the standard first or second
order translatory extrapolation boundary conditions, the energy method cannot be applied for proving
stability of the classical fourth order scheme originally proposed by Strang. This gives a clear limi-
tation of the energy method with respect to the more general approach based on the normal mode
decomposition.

AMS classification: 65M12, 65M06, 65M20.

Keywords: transport equation, numerical schemes, extrapolation boundary condition, energy, stability.

1 Introduction

A general approach for studying the stability of numerical boundary conditions for discretized hyperbolic
equations has been initiated in the fundamental contribution [GKS72]. However, for technical reasons,
the stability estimates in [GKS72] are restricted to zero initial data and can be obtained only after
verifying the fulfillment of some “algebraic” condition which is commonly referred to as the Uniform
Kreiss-Lopatinskii Condition. The theory in [GKS72] has been successfully applied to some well-known
extrapolation procedures at outflow boundaries, see a preliminary announcement in [Kre66] and the
complete proof in [Gol77]. In the recent work [CL20], one of the authors has revisited the stability
estimates for the outflow extrapolation procedures in [Kre66, Gol77] and shown that a suitably devised
energy argument could bypass the (technical and lenghty) arguments of [GKS72]. In this article, we
examine in a systematic way the possible applications but also the limitations of the energy method
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31062 Toulouse Cedex 9, France. Email: jean-francois.coulombel@math.univ-toulouse.fr. Research of the author was
supported by ANR project NABUCO, ANR-17-CE40-0025.
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for analyzing the stability of extrapolation procedures at an outflow boundary for the most simple one-
dimensional transport equation. We begin by reviewing some central concepts and notation that will be
extensively used throughout the remainder of this paper.

1.1 Continuous problem

We consider the scalar advection equation in 1D on a semi-infinite interval with an outflow boundary at
x = 0,

ut + ux = 0, −∞ ≤ x ≤ 0 , t ≥ 0 . (1)

The differential operator ∂t + ∂x is semi-bounded on this domain, i.e. for all 0 ≤ t1 ≤ t2 and integrable
smooth functions Φ(x, t) where Φ(−∞, t) = 0, we have,

Φt +Φx = 0 ⇒ ‖Φ‖2(t2) = ‖Φ‖2(t1)−

∫ t2

t1

Φ(0, τ)2 dτ ≤ ‖Φ‖2(t1) , (2)

where we have used the standard definition of the L2 inner product and norm (with respect to the space
variable x) for real valued functions,

(Φ,Ψ) :=

∫ 0

−∞

Φ(x)Ψ(x) dx , ‖Φ‖2 := (Φ,Φ) .

When later discretizing (1) in time and space, we shall seek to mimic the energy balance (2).

1.2 Discretizing on the whole real line

We seek to discretize the problem (1) in time and space using a finite difference method. In the interior
of the spatial domain we use a repeated interior stencil, which we analyze for the Cauchy version of (1).
We introduce an equispaced spatial grid over the whole real line,

xj := j∆x, −∞ ≤ j ≤ ∞ ,

where ∆x > 0 is the grid spacing. Unless otherwise stated, sequences (Φj) on the grid are assumed to be
real valued, and the norm on ℓ2(Z) is defined by,

‖Φ‖2ℓ2(Z) :=
∑

j∈Z

Φ2
j .

Next, we introduce a time step ∆t > 0 (and accordingly, tn = n∆t) and consider the ratio z := ∆t/∆x
(the so-called Courant-Friedrichs-Lewy parameter [CFL28]) as a constant. In what follows, unj stands for
an approximation of the solution u to the Cauchy version of (1) in the neighborhood of (xj, tn). We
consider explicit finite difference discretizations to (1) of the form:

un+1
j = A(z)unj , −∞ ≤ j ≤ ∞ , n ∈ N , (3)

where A(z) is a polynomial with respect to z = ∆t/∆x of difference operators. E.g, decomposing A(z) in
terms of simple shift operators, A(z) then acts on sequences (Φj) indexed by j according to,

A(z)Φj :=

ℓ+∑

ℓ=−ℓ−

aℓ(z)Φj+ℓ ,
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where the integers ℓ± mark the extent (or bandwidth) of the difference stencil, and where the coefficients
aℓ(z) are polynomial expressions with respect to z. Most of the examples we will consider below fall into
the classes of three point stencils (ℓ− = ℓ+ = 1) and five point stencils (ℓ− = ℓ+ = 2). It is clear that A(z)
acts boundedly on ℓ2(Z), and we shall say that A(z) is a contraction if the norm of A(z) as an operator
on ℓ2(Z) is not larger than 1.

In what follows, we only consider finite difference schemes that are consistent with the transport
equation (1). In other words, see for instance [RM94, GKO95], we only consider operators A(z) in (3)
that satisfy at least the first order accuracy relations,

ℓ+∑

ℓ=−ℓ−

aℓ(z) = 1 , and

ℓ+∑

ℓ=−ℓ−

ℓ aℓ(z) = −z .

In order to prove stability estimates, be they on the whole space Z or on the half-space Z−, we aim to
use the energy method in order to prove that the scheme is a contraction with respect to a certain norm.
For the Cauchy problem, we thus need for A(z) to be a contraction on ℓ2(Z). Since the coefficients of the
operator A(z) do not depend on j, we can achieve this by splitting each local energy balance term into a
telescopic and a dissipative part. In other words, the goal will be to show that, for an arbitrary sequence
(Φj)j∈Z,

Ψj = A(z)Φj ⇒ Ψ2
j = Φ2

j + Tj − Tj−1 + Sj , Sj ≤ 0 , (4)

for all values of z within a certain specified interval. In (4), Tj , Tj−1 and Sj are quadratic quantities over
the Φk entries for j− ℓ− ≤ k ≤ j+ ℓ+. When summing over all whole numbers, the telescopic part cancels
and we are left with

‖Ψ‖2ℓ2(Z) = ‖Φ‖2ℓ2(Z) +
∑

j∈Z

Sj ≤ ‖Φ‖2ℓ2(Z) ,

showing that A(z) is a contraction, just as the continuous problem (2).
The main goal of analyzing schemes of the form (3) will be to derive integration by parts decompositions

of the form (4) with Sj ≤ 0 for any j. There is a lot of freedom involved in splitting the difference Ψ2
j −Φ2

j

into telescopic and non-telescopic parts as in (4), see for instance [CL20, Lemma A.1]. In this paper we
will take advantage of this in order to expand and refine the energy method arguments used in [CL20].

1.2.1 Finite difference operators

The basic unit for constructing all finite difference stencils will be the backward difference operator,

DΦj := Φj − Φj−1 . (5)

In order to define a parametric family of schemes with a three point stencil, we will use the standard first
and second order derivative approximations (the ”centered finite difference” and the ”discrete Laplacian”,
respectively). On normalized form with respect to the spacing ∆x, we thus consider,

D0 Φj =
1

2
(DΦj +DΦj+1) =

1

2
(Φj+1 −Φj−1) , (6)

∆Φj =DΦj+1 −DΦj = Φj−1 − 2Φj +Φj+1 . (7)
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Note that both of these operators can easily be shown to be of accuracy order 2. To define a family of
five point stencils, we also need to approximate the third and fourth derivatives, which we define using,

D0 ∆Φj =
1

2
(−Φj−2 + 2Φj−1 − 2Φj+1 +Φj+2) , (8)

∆2Φj =Φj−2 − 4Φj−1 + 6Φj − 4Φj+1 +Φj+2 . (9)

Since we will not consider schemes with more than a five point stencil, in this paper we will limit our
attention to only the finite difference operators introduced above.

1.3 Outflow boundary conditions

We close the discrete domain at the outflow boundary x = 0, and define a general vector on the grid as,

Φ =
(
. . . ,Φ−2,Φ−1,Φ0

)
.

At the points nearest to the outflow boundary at x = 0, extrapolation to ghost points outside the
computational domain are needed in order to close the finite difference stencils and thus the numerical
scheme (3) itself. Namely, we need a method to define the Φ1, . . . ,Φℓ+ values in order to compute
Ψj := A(z)Φj for all j ∈ Z

−. Note that this extrapolation step may or may not reduce the local accuracy
order from that of the interior stencil itself.

Next, we define an inner product on Z
− in the form of a quadrature rule, such that in general only

the last r quadrature weights hj > 0 are non-unity,

‖Φ‖2H := (Φ,Φ)H , (Φ,Ψ)H :=
∑

j≤−r

Φj Ψj +

0∑

j=−r+1

hj Φj Ψj . (10)

Now let’s assume that contractivity (4) holds for all sequences (Φj) ∈ ℓ2(Z). Then, using an arbitrary set
of extrapolation conditions to define the Φj values with positive indices j = 1, . . . , ℓ+, we have,

∀ j ∈ Z
− , Ψj = A(z)Φj ⇒ ‖Ψ‖2H − ‖Φ‖2H −

∑

j≤−r

Sj =

0∑

j=−r

(hj − hj+1)Tj +

0∑

j=−r+1

hj Sj =: E ,

(11)
where we have defined h−r := 1 and h1 := 0. Since the local dissipation Sj is nonpositive for any j, we
get from (11):

∀ j ∈ Z
− , Ψj = A(z)Φj ⇒ ‖Ψ‖2H ≤ ‖Φ‖2H +E .

The goal at this point is to determine the extrapolation procedure and the quadrature weights such that
E is, at least, non-positive. In that case, the combination of the operator A(z) with the extrapolation
procedure yields a contraction on ℓ2(Z−) provided that the latter space is equipped with the norm (10).
We formalize this notion below.

Definition 1. Together with suitable extrapolation conditions at an outflow boundary, we say that the
operator A(z) in (3) is semi-bounded with respect to the inner product defined in (10) if, for a given z ≥ 0,
the following two conditions are satified.

1. The scheme is contractive, that is A(z) admits a decomposition (4) with Sj ≤ 0.
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2. The boundary contribution is non-positive, i.e.

E :=

0∑

j=−r

(hj − hj+1)Tj +

0∑

j=−r+1

hj Sj ≤ 0 , (12)

where we use the convention h−r := 1 and h1 := 0.

As a matter of fact, it is useful for the purpose of convergence proofs (see, e.g., [Gus75, GKO95, CL20])
to infer from (11) a trace estimate on the sequence Φ. This will be the case provided that E is a negative
definite quadratic form of its arguments, as evidenced below on several examples. This energy argument
bypasses, as in [Wu95, CG11, CL20], the lengthy verification of the fulfillment of the so-called Uniform
Lopatinskii Condition. We refer to [GKS72, Cou13] for a general presentation of this topic.

The rest of this article is organized as follows. In Section 2, we examine the application of the energy
method described above in the case of three point schemes (ℓ− = ℓ+ = 1). Since such schemes have
at most second order accuracy [GKO95], we restrict our analysis to the case of first and second order
extrapolation at the outflow boundary. We then examine the case of five point schemes (ℓ− = ℓ+ = 2)
in Section 3. Since the involved algebra becomes heavier, we restrict sometimes the analysis to three
particular cases which are analogues of some well-known three point schemes. We give examples of
extrapolation procedures for which we can construct a suitable energy that yields semi-boundedness. In
contrast to what is more commonly used, these energy stable extrapolation procedures are not translation
invariant. Finally, in section 5 we demonstrate the limitation of more standard extrapolation procedures,
proving that for a fourth order five point scheme combined with the most common first and second order
extrapolation procedures, the energy method actually fails to work, though the corresponding closure of
the operator A(z) is known to be power-bounded. This shows that the normal mode analysis developed
in [GKS72] and subsequent works is sometimes necessary to capture stability in general.

2 Three point schemes

The family of three point stencils of at least first order accuracy can be defined using a single free
parameter ν as follows (see [RM94, GKO95]),

A(z) = I − z D0 +
ν

2
∆ . (13)

Famous examples include the Euler forward (ν = 0), Lax-Friedrichs (ν = 1), the two-point upwind (ν = z)
as well as the second order accurate Lax-Wendroff (ν = z2) schemes.

2.1 Contractivity on the whole real line

For the family of schemes considered in (13), our first result is the following.

Lemma 1. Let z, ν ∈ R, and consider the scheme (3) with A(z) as in (13). Then (4) holds with

Tj :=

(
Φj

DΦj+1

)T

Q

(
Φj

DΦj+1

)
, Q :=




−z
ν − z

2
ν − z

2

ν (1− z)

2


 , (14)
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and

Sj =

(
DΦj

DΦj+1

)T

M

(
DΦj

DΦj+1

)
, M := a1

(
1 0
0 1

)
+ a2

(
1 −1
−1 1

)
, (15)

where

a1 := −
ν − z2

2
, a2 :=

ν2 − z2

4
.

In particular, A(z) is a contraction on ℓ2(Z), i.e. Sj ≤ 0, if z and ν satisfy the relation z2 ≤ ν ≤ 1.

Proof. With A(z) as in (13), we have in (4),

Ψ2
j − Φ2

j = −2 zΦj (D0 Φj) + z2 (D0 Φj)
2 + ν Φj (∆Φj)− z ν (D0 Φj) (∆Φj) +

ν2

4
(∆Φj)

2 . (16)

In order to split this expression into telescopic and non-telescopic parts, we first note that the (D0 Φj)
2

term can be expressed as the sum of squares (this is nothing but the parallelogram identity),

(D0 Φj)
2 =

1

4

[
2 (DΦj)

2 + 2 (DΦj+1)
2 − (∆Φj)

2
]
. (17)

Moreover, we will use the purely telescopic formulas,

2Φj D0Φj = Φj Φj+1 − Φj−1Φj =
(
Φ2
j +Φj DΦj+1

)
−
(
Φ2
j−1 +Φj−1DΦj

)
, (18)

2D0 Φj ∆Φj = (DΦj+1)
2 − (DΦj)

2 . (19)

Finally, the Φj ∆Φj term can be written as the combination of non-telescopic (sum of squares) and
telescopic parts1,

2Φj ∆Φj = −(DΦj)
2 − (DΦj+1)

2 +Φ2
j+1 − 2Φ2

j +Φ2
j−1

= −(DΦj)
2 − (DΦj+1)

2 +
[
2Φj DΦj+1 + (DΦj+1)

2
]
−
[
2Φj−1DΦj + (DΦj)

2
]
. (20)

Inserting the formulas (17) through (20) into (16), we get the desired form Ψ2
j −Φ2

j = Tj −Tj−1+Sj with
Tj directly as in (14) and Sj given by

Sj = a1
[
(DΦj)

2 + (DΦj+1)
2
]
+ a2 (∆Φj)

2 .

From the definition of the discrete Laplacian ∆ in (7), we can further rewrite this into (15). This proves
the first part of the Lemma.

Next, an orthogonal set of eigenvectors to M is given by (1 1)T and (1 − 1)T , and the associated
eigenvalues are,

λ1 = a1 = −
ν − z2

2
, λ2 = a1 + 2 a2 = −

ν (1− ν)

2
.

We have,
λ1 ≤ 0 ⇔ z2 ≤ ν ,

λ2 ≤ 0 ⇔ ν ∈ [0, 1] .

and we have thus shown that the scheme defined by A(z) is a contraction if z2 ≤ ν ≤ 1.

1The decomposition mimics the equality 2uu
′′ = −2 (u′)2 + (u2)′′.
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It is worth to mention here that the same exact bounds on z, ν for ℓ2 stability given in Lemma 1
above can also be derived using Fourier analysis (they are both necessary and sufficient for A(z) to be
a contraction). However, for a wider stencil we can not in general guarantee that the energy method
will yield the same bounds as obtained with the Fourier method. Since we will use the energy method
to derive extrapolation boundary conditions leading to semi-boundedness, we shall in this paper only
consider stencils for which contractivity can be shown using the energy method in a similar fashion to the
one above.

To conclude this section, we write down the eigenvalues associated with the quadratic form Sj for the
important special cases mentioned at the beginning of this section. The Euler forward method (ν = 0)
yields,

λ1 =
z2

2
, λ2 = 0 ,

showing that this scheme is not contractive for any z. Moreover, the Lax-Friedrichs scheme (ν = 1) yields,

λ1 = −
1− z2

2
, λ2 = 0 ,

the upwind scheme (ν = z) yields,

λ1 = λ2 = −
z (1− z)

2
,

and finally the Lax-Wendroff (ν = z2) scheme,

λ1 = 0 , λ2 = −
z2 (1− z2)

4
.

This shows that the Lax-Friedrichs and Lax-Wendroff schemes are both contractive for all |z| ≤ 1 (meaning
that we can freely change the sign in front of ux in (1) without modifying the stability property of the
scheme), while the upwind scheme is contractive for 0 ≤ z ≤ 1.

2.2 Outflow boundary conditions

For simplicity, in (10) we let r = 1 from the start, i.e. the norm of Φ ∈ ℓ2(Z−) in (10) is defined by

‖Φ‖2H =
∑

j≤−1

Φ2
j + h0 Φ

2
0 ,

and for now we consider the last quadrature weight h0 as a free (positive) parameter. In (12) we then
have, using Lemma 1 from the previous paragraph,

E =(1− h0)T−1 + h0 T0 + h0 S0

=(1− h0)

(
Φ−1

DΦ0

)T

Q

(
Φ−1

DΦ0

)
+ h0

(
Φ0

DΦ1

)T

Q

(
Φ0

DΦ1

)
+ h0

(
DΦ0

DΦ1

)T

M

(
DΦ0

DΦ1

)
. (21)

Inserting (14) and (15) into the above expression (21) for E gives us right away a stability estimate for
the most popular first order extrapolation boundary closure.
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Corollary 1. Let z ∈ (0, 1] and let ν satisfy z2 ≤ ν ≤ 1. Then the scheme (13) together with the first
order extrapolation condition Φ1 = Φ0 is semi-bounded. In particular, the energy balance is given by,

∑

j≤0

Ψ2
j ≤

∑

j≤0

Φ2
j − z Φ2

0 ≤
∑

j≤0

Φ2
j , (22)

which exactly mimics (2) with added dissipation.

Proof. We choose h0 = 1 for the last quadrature weight. From the extrapolation condition we can use
DΦ1 = 0 in (21) to immediately get,

E =

(
Φ0

0

)T

Q

(
Φ0

0

)
+

(
DΦ0

0

)T

M

(
DΦ0

0

)
= −zΦ2

0 + S0 .

The energy balance (22) then follows from (11) and the fact that Sj ≤ 0 for any j ≤ 0 if z2 ≤ ν ≤ 1.

We now examine the case of a second order extrapolation condition at the outflow boundary, that is
we impose ∆Φ0 = 0. Our result is the following.

Corollary 2. Let z ∈ (0, 1] and let ν satisfy z2 ≤ ν ≤ 1, and consider the scheme (13) together with the
second order extrapolation condition ∆Φ0 = 0. Then E in (12) is given by

E =

(
Φ0

DΦ0

)T

B

(
Φ0

DΦ0

)
, B =

(
−z z(12 − h0) +

ν
2

z(12 − h0) +
ν
2 h0z

2 − ν(1+z)
2

)
. (23)

Moreover, B is negative definite (and thus the scheme is semi-bounded) for the choice h0 = (1−z+ν/z)/2.

Proof. From the second order extrapolation condition, we have,

∆Φ0 = 0 ⇒ DΦ1 = DΦ0 .

We also have, from the definition of D in (5),

Φ−1 = Φ0 −DΦ0 .

Going back to (21), we now write E as,

E = (1− h0)

(
Φ0 −DΦ0

DΦ0

)T

Q

(
Φ0 −DΦ0

DΦ0

)
+ h0

(
Φ0

DΦ0

)T

Q

(
Φ0

DΦ0

)
+ h0

(
DΦ0

DΦ0

)T

M

(
DΦ0

DΦ0

)
,

which, using (14) and (15), can be further simplified into (23).
In order to see whether B in (23) is negative definite, we rotate to diagonal form using the similarity

transformation,

R :=


1

(
ν + z

2
− z h0

)
/z

0 1


 ⇒ RTBR =

(
−z 0
0 γ

)
,

where
γ :=

[
(ν + z − 2 z h0)

2 + 4h0 z
3 − 2 z (1 + z) ν

]
/(4 z) .
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The minimum of γ with respect to h0 is obtained for

∂γ

∂h0
= z2 − z − ν + 2h0 z = 0 ⇔ h0 =

ν
z
− z + 1

2
≥

1

2
,

which in all cases leads to the same negative value of γ,

γ = −z3/4 .

With this choice of h0, the quantity (10) (with r = 1) defines a norm on ℓ2(−∞, 0) and the second
condition of Definition 1 is always satisfied for z ∈ (0, 1] and ν ∈ [z2, 1]. Semi-boundedness is thus
obtained as long as the interior scheme is contractive.

In particular, the second order accurate Lax-Wendroff scheme (ν = z2) is associated with the likewise
second order accurate Trapezoidal rule with the constant value h0 = 1/2 (independently of z ∈ (0, 1]).
For all other three-point schemes, the above value for h0 as obtained with this method depends on z and
grows to infinity as z approaches 0 (ν being fixed).

3 Five point schemes

In this preliminary work we do not aim for a complete theory encompassing finite difference schemes of
any order. Instead we go on to consider a slightly more involved example than in the previous section,
namely the family of schemes with a five point stencil and at least second order accuracy. Such schemes
can be parametrized with two free parameters σ, τ as follows,

A(z) = I − z D0 +
z2

2
∆ + σD0 ∆+ τ ∆2 . (24)

We first derive a general integration by parts decomposition formula for A(z) and thereby obtain three
interesting examples for which A(z) is contractive.

3.1 Contractivity on the whole real line

Generalizing Lemma 1 to the family of operators in (24), our result is the following.

Lemma 2. Let z, σ, τ ∈ R, and consider the scheme (3) with A(z) as in (24). Then (4) holds with

Tj :=




Φj

DΦj+1

∆Φj

D∆Φj+1




T

Q




Φj

DΦj+1

∆Φj

D∆Φj+1


 ,

Q :=




−z − z (1−z)
2 σ σ

2 + τ

− z (1−z)
2

z2 (1−z)
2 − σ σ

2 − z σ − τ −z
(
σ
2 + τ

)

σ σ
2 − z σ − τ z2 σ

2 + z τ z (1+z)
2

(
σ
2 + τ

)
− a1

3
σ
2 + τ −z

(
σ
2 + τ

) z (1+z)
2

(
σ
2 + τ

)
− a1

3
z σ
4 + z2 τ

2 + σ τ − a1
3


 , (25)
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and

Sj :=



∆Φj−1

∆Φj

∆Φj+1




T

M



∆Φj−1

∆Φj

∆Φj+1


 , M :=

a1
3



1 0 0
0 1 0
0 0 1


+ a2




1 −1 0
−1 2 −1
0 −1 1


+ a3




1 −2 1
−2 4 −2
1 −2 1


 ,

(26)
where

a1 :=
z2 (z2 − 1)

4
+ 2 z σ + 2 τ , a2 := −

z σ

4
+

σ2

2
−

z2 τ

2
, a3 := −

σ2

4
+ τ2 .

In particular, A(z) is a contraction on ℓ2(Z) in each of the three following cases:

• σ = 0, τ = −(1− z2)/12 and z ∈ [−1, 1],

• σ = z (1− z2)/6, τ = −σ/2 and z ∈ [0, 1],

• σ = z (1− z2)/6, τ = −z2 (1− z2)/24 and z ∈ [−1, 1].

Proof. Using (24) in (4), we now have,

Ψ2
j − Φ2

j = − 2 z Φj D0 Φj + z2 (D0 Φj)
2 + z2Φj ∆Φj − z3 (D0 Φj) (∆Φj) +

z4

4
(∆Φj)

2

+ 2σΦj D0 ∆Φj − 2 z σ (D0Φj) (D0 ∆Φj) + z2 σ (∆Φj) (D0 ∆Φj) + σ2 (D0 ∆Φj)
2

+ 2 τ Φj (∆
2Φj)− 2 z τ (D0 Φj) (∆

2 Φj) + z2 τ (∆Φj) (∆
2 Φj) + 2σ τ (D0 ∆Φj) (∆

2 Φj)

+ τ2 (∆2 Φj)
2 . (27)

The terms in the first line on the right hand side above are covered by the previous formulas (17), (18),
(19) and (20). Further, by substituting Φj for ∆Φj in the same formulas, we get,

(D0 ∆Φj)
2 =

1

4

[
2 (D∆Φj)

2 + 2 (D∆Φj+1)
2 − (∆2 Φj)

2
]
, (28)

as well as

2 (∆Φj) (D0 ∆Φj) =
[
(∆Φj)

2 +∆Φj D∆Φj+1

]
−
[
(∆Φj−1)

2 +∆Φj−1D∆Φj

]
, (29)

2 (D0 ∆Φj) (∆
2 Φj) = (D∆Φj+1)

2 − (D∆Φj)
2 , (30)

and
2∆Φj ∆

2Φj = − (D∆Φj)
2 − (D∆Φj+1)

2

+
[
2∆Φj D∆Φj+1 + (D∆Φj+1)

2
]
−
[
2∆Φj−1D∆Φj + (D∆Φj)

2
]
.

(31)

For the remaining terms on the right hand side of (27), we need to introduce the following four new high
order formulas, the proof of which can be found in Appendix,

2D0 Φj D0 ∆Φj = −2 (∆Φj)
2 +

1

4

[
(D∆Φj)

2 + (D∆Φj+1)
2
]

+

[
(DΦj+1 −

1

4
D∆Φj+1) (D∆Φj+1 + 2∆Φj)

]
−

[
(DΦj −

1

4
D∆Φj) (D∆Φj + 2∆Φj−1)

]
, (32)
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as well as,

2Φj D0 ∆Φj = [Φj (D∆Φj+1 + 2∆Φj) + (∆Φj −DΦj+1)DΦj+1] (33)

− [Φj−1 (D∆Φj + 2∆Φj−1) + (∆Φj−1 −DΦj)DΦj] ,

2D0 Φj ∆
2Φj = [−(D∆Φj+1 +∆Φj)∆Φj + 2DΦj+1D∆Φj+1] (34)

− [−(D∆Φj +∆Φj−1)∆Φj−1 + 2DΦj D∆Φj] ,

and

2Φj ∆
2 Φj = 2 (∆Φj)

2 + [2Φj D∆Φj+1 − 2DΦj+1∆Φj]− [2Φj−1D∆Φj − 2DΦj ∆Φj−1] . (35)

Note that all the non-telescopic parts above are expressed in terms of the three variables (∆Φj)
2,

(∆2 Φj)
2 and (D∆Φj)

2 + (D∆Φj+1)
2. The last two of these can be written as,

(∆2 Φj)
2 =



∆Φj−1

∆Φj

∆Φj+1




T 


1
−2
1


 (

1 −2 1
)


∆Φj−1

∆Φj

∆Φj+1


 =



∆Φj−1

∆Φj

∆Φj+1




T 


1 −2 1
−2 4 −2
1 −2 1





∆Φj−1

∆Φj

∆Φj+1


 ,

and

(D∆Φj)
2 + (D∆Φj+1)

2 =



∆Φj−1

∆Φj

∆Φj+1




T 


1 −1 0
−1 2 −1
0 −1 1





∆Φj−1

∆Φj

∆Φj+1


 .

Thus, in order to analyze the sign of the complete non-telescopic part, it is convenient to expand (∆Φj)
2

into a similar matrix form with a telescopic correction,

(∆Φj)
2 =

1

3



∆Φj−1

∆Φj

∆Φj+1




T 

1 0 0
0 1 0
0 0 1





∆Φj−1

∆Φj

∆Φj+1




−
1

3

[
(D∆Φj +∆Φj)

2 + (∆Φj)
2
]
+

1

3

[
(D∆Φj−1 +∆Φj−1)

2 + (∆Φj−1)
2
]
.

Inserting (28) through (35) into (27) and then rewriting (∆Φj)
2, (∆2Φj)

2 and (D∆Φj)
2 + (D∆Φj+1)

2

according to the above, the first part of the Lemma follows. Note that the term a1 (∆Φj)
2 has been split

between between the telescopic and dissipative parts.
The same orthogonal set of eigenvectors to each of the three terms in (26) is given by (1, 1, 1)T ,

(−1, 0, 1)T and (1,−2, 1)T , with the associated eigenvalues of M ,

λ1 :=
a1
3

, λ2 :=
a1
3

+ a2 , λ3 :=
a1
3

+ 3 a2 + 6 a3 .

The operator A(z) is a contraction on ℓ2(Z) if all three eigenvalues λ1,2,3 of M are non-positive. In
contrast to the three point stencil case, we can not easily rewrite the conditions for contractivity into
explicit relations for σ and τ . However, three special cases seem to be worth to mention. First, if we let
σ = 0 and τ = −(1− z2)/12, then the eigenvalues of M simplify into,

λ1 = −
(1− z2) (2 + 3 z2)

36
, λ2 = −

(1− z2) (4 + 3 z2)

72
, λ3 = −

1− z2

72
.
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Hence A(z) is a contraction for any z ∈ [−1, 1] in that case. Recall that for the second order Lax-Wendroff
scheme, the dissipation approaches 0 as z approaches 0, which is not the case here. In terms of dissipation
properties, this new scheme can instead be seen in some sense to be analogous to the three-point Lax-
Friedrichs scheme (though one eigenvalue for the Lax-Friedrichs scheme is zero, which is not the case
here).

A skewed 4−point stencil of accuracy order 3, which can be seen as analogous to the two-point upwind
scheme, is given by σ := z (1− z2)/6 and τ := −σ/2 = −z(1− z2)/12, yielding,

λ1 = −
z (1− z2) (2− z)

36
, λ2 = −

z (1− z2) (1 + z) (2 − z)2

72
,

λ3 = −
z (1− z2) (2− z) (2 + 3 z − 3 z2)

72
.

Again, A(z) is a contraction on ℓ2(Z) for any z ∈ [0, 1]. Finally, the so-called Strang scheme of fourth
order accuracy [Str62] is given by σ := z (1 − z2)/6 and τ := −z2 (1 − z2)/24, with the corresponding
eigenvalues,

λ1 = 0 , λ2 = −
z2 (1− z2) (4 − z2)

144
, λ3 = −

z2 (1− z2) (3 − z2) (4 − z2)

96
.

The operator A(z) is again a contraction on ℓ2(Z) for any z ∈ [−1, 1]. This scheme is a high (i.e., fourth)
order analogue to the second order accurate Lax-Wendroff scheme.

We note that the corresponding stability analysis for the fourth order Strang scheme in [Str62] is performed
by means of the Fourier transform and is therefore not applicable for the outflow problem, which will be
considered next.

3.2 Outflow boundary conditions

We examine in this paragraph two sets of outflow boundary conditions based on second order accurate
extrapolation, and thus leave higher order boundary conditions as a topic for future work. As opposed
to the three point stencil case, we have not found a single set of second order boundary conditions which
is stable for all of the three example schemes listed in Lemma 2, which is why we consider two different
alternatives below.

In what follows, we shall use the inner product (10) with r = 1 and h0 = 1/2. In (12), we thus have,

E =
1

2




Φ−1

DΦ0

∆Φ−1

D∆Φ0




T

Q




Φ−1

DΦ0

∆Φ−1

D∆Φ0


+

1

2




Φ0

DΦ1

∆Φ0

D∆Φ1




T

Q




Φ0

DΦ1

∆Φ0

D∆Φ1


+

1

2



∆Φ−1

∆Φ0

∆Φ1




T

M



∆Φ−1

∆Φ0

∆Φ1


 ,

(36)
with Q given in (25) and M given in (26).

3.2.1 Second order extrapolation of type 1

We can prove
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Proposition 1. Let r = 1, h0 = 1/2, and consider the set of second order extrapolation conditions
∆Φ0 = D0 ∆Φ0 = 0. In (36), we then have,

E =




Φ0

DΦ0

D2Φ0




T

B




Φ0

DΦ0

D2Φ0


 , B :=




−z
z2

2

σ

2
z2

2
−
z3

2
− σ

−zσ

2
σ

2

−zσ

2

2 τ

3
+ σ τ +

5 z σ

12
−

z2 τ

2
+ 2 τ2 −

z2 (1− z2)

12




.

(37)
In particular, the scheme is semi-bounded (i.e. B is negative semi-definite) for all z ∈ (0, 1) at least in
the following two special cases,

• σ = 0 and τ = −(1− z2)/12,

• σ = z (1− z2)/6 and τ = −σ/2.

Proof. The two extrapolation conditions readily yield,

DΦ1 = DΦ0 ∆Φ1 = ∆Φ−1 .

By combining the two we also get D∆Φ1 = ∆Φ−1, and by definition we also have Φ−1 = Φ0 −DΦ0 as
well as ∆Φ−1 = D2Φ0. With these formulas, we can now simplify E in (36) into,

E =
1

2




Φ0 −DΦ0

DΦ0

D2 Φ0

−D2Φ0




T

Q




Φ0 −DΦ0

DΦ0

D2 Φ0

−D2Φ0


+

1

2




Φ0

DΦ0

0
D2Φ0




T

Q




Φ0

DΦ0

0
D2Φ0


+

1

2



D2 Φ0

0
D2 Φ0




T

M



D2Φ0

0
D2Φ0


 ,

which in turn, after some straightforward algebra, leads to (37).
For the semi-boundedness part of the Proposition, let us first consider the case σ = 0 and τ =

−(1− z2)/12. The general expression for the matrix B in (37) reduces to,

B :=




−z z2/2 0

z2/2 −
z3

2
0

0 0 −
(1− z2) (3 + 4 z2)

72


 .

It is a simple exercise to verify that the upper left 2× 2 block is negative definite for z ∈ (0, 1), hence B
is negative definite for z ∈ (0, 1). We get in that case the conclusion of Proposition 1 as an immediate
consequence. We now focus on the case σ = z (1− z2)/6 and τ = −σ/2, for which the matrix B reads:

B = −z




1 −z/2 −(1− z2)/12

−z/2
1 + 2 z2

6
z (1− z2)/12

−(1− z2)/12 z (1− z2)/12
(1− z2) (1 + z) (4 − 3 z)

72


 .
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We then compute:




U
V
W




T

B




U
V
W




= −z

((
U −

z

2
V −

1− z2

12
W

)2

+
z2

4
V 2 +

(1− z2)

6

((
V +

z

4
W
)2

+
14 + 4 z − 8 z2

48
W 2

))
,

thereby showing that B is negative semi-definite for z ∈ (0, 1). This completes the proof of Proposition
1.

3.2.2 Outflow boundary: second order extrapolation of type 2

We examine in this paragraph a second set of outflow boundary conditions with second order accuracy.

Proposition 2. Let r = 1, h0 = 1/2, and consider the set of second order extrapolation conditions
∆Φ0 = ∆2Φ0 = 0. Then we have

E =




Φ0

DΦ0

D2Φ0




T

B




Φ0

DΦ0

D2 Φ0


 , B :=




−z z2/2 −τ

z2/2 − z3

2 − σ z τ

−τ z τ 2 τ
3 + σ τ + 5 z σ

12 − z2 τ
2 + σ2

2 − z2 (1−z2)
12


 .

(38)
In particular, the scheme is semi-bounded (i.e. B is negative semi-definite) for all z ∈ (0, 1) at least in
the following two special cases,

• σ = z (1− z2)/6 and τ = −σ/2,

• σ = z (1− z2)/6 and τ = −z2 (1− z2)/24.

Proof. We use (36) and insert the second order extrapolation conditions ∆Φ0 = ∆2Φ0 = 0, from which
we deduce the relations DΦ1 = DΦ0, and D∆Φ1 = ∆Φ1 = −∆Φ−1. The boundary contribution E in
the energy balance (11) reads

E =
1

2




Φ0 −DΦ0

DΦ0

D2Φ0

−D2Φ0




T

Q




Φ0 −DΦ0

DΦ0

D2Φ0

−D2 Φ0


+

1

2




Φ0

DΦ0

0
−D2Φ0




T

Q




Φ0

DΦ0

0
−D2Φ0




+
1

2




D2Φ0

0
−D2Φ0




T

M




D2Φ0

0
−D2Φ0


 ,

which leads to (38).
We first focus on the case σ = z (1− z2)/6 and τ = −σ/2, for which the matrix B reads:

B = −z




1 −z/2 −(1− z2)/12

−z/2
1 + 2 z2

6
z (1− z2)/12

−(1− z2)/12 z (1− z2)/12
(1− z2) (1 + z) (4 − 3 z)

72


 ,
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which we have already analyzed in the proof of Proposition 1. In particular, we have already shown that
B is negative semi-definite for any z ∈ (0, 1) and the result of Proposition 2 follows in that case. Finally,
and most importantly, the fourth order Strang scheme σ = z (1 − z2)/6, τ = −z2 (1 − z2)/24 yields the
expression,

B = −z




1 −z/2 −z (1− z2)/24

−z/2
1 + 2 z2

6
z2 (1− z2)/24

−z (1− z2)/24 z2 (1− z2)/24 z (1−z2) (4−z2+z (1−z2))
144


 .

We thus compute:




U
V
W




T

B




U
V
W




= −z

((
U −

z

2
V −

z (1− z2)

24
W

)2

+
1

6
V 2 +

z2

12

(
V +

1− z2

4
W

)2

+
z (1− z2) (4 − z2)

144
W 2

)
,

showing that B is negative semi-definite for any z ∈ (0, 1). Hence the result of Proposition 2 follows in
the case of the fourth order Strang scheme.

In view of all above results, the energy method seems to be a rather efficient tool to prove stability
estimates for numerical schemes that are contractive in the whole space Z combined with some carefully
selected extrapolation conditions at an outflow boundary. It is the purpose of the next section to illustrate
the limitations of this energy approach, namely that it can not be applied to the more often considered
translation invariant extrapolation conditions. For such boundary conditions and more general schemes
(based for instance on multistep quadrature methods in time), the general theory for proving stability of
numerical boundary conditions initiated in [GKS72] remains the only available one.

4 On the limitation of the energy method for analyzing numerical

boundary conditions

In this paragraph, we consider the fourth order Strang scheme [Str62]:

A(z) := I − z D0 +
z2

2
∆ +

z (1− z2)

6
D0∆−

z2 (1− z2)

24
∆2 . (39)

With a prescribed five point stencil, the finite difference scheme (39) is the only one that achieves fourth
order accuracy (with respect to both space and time), just like the Lax-Wendroff scheme is the only three
point scheme that achieves second order accuracy. Our goal is to study the semi-boundedness of (39) when
implemented on a half line Z

− with extrapolation numerical boundary conditions, be they for instance
of order 1 or 2. The extrapolation boundary conditions considered in [Kre66, Gol77, CL20] are, in the
terminology of [GT78, GT81], translatory, meaning that they are of the exact same form in each ghost
cell (as opposed to the extrapolation conditions considered in Propositions 1 and 2). The main results in
[Kre66, Kre68, Gol77, CL20] show that, whatever the extrapolation order at the outflow boundary, the
corresponding operator on ℓ2(−∞, 0) is power-bounded. The proof of this result in [Kre66, Kre68, Gol77]
relies on the normal mode decomposition and power-boundedness follows from the general result in [Wu95],
while the more direct proof of the same result in [CL20] relies first on the energy method for the Dirichlet
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boundary condition and on an induction argument with respect to the extrapolation order at the outflow
boundary. Our goal below is to determine whether, as in Corollary 2, such stability estimates can be
achieved by means of a straightforward energy method without using “auxiliary problems”. The answer
is negative, see Theorems 1 and 2 below, which seems to indicate that the induction argument in [CL20]
is more or less the shortest way to derive stability estimates for translatory extrapolation numerical
boundary conditions. Examples of uniformly stable, though non dissipative, boundary conditions have
been known for quite some time in the context of hyperbolic partial differential equations, see for instance
the examples provided in [BGRSZ02, Ben14]. As far as we are aware of, the example given by Theorem
1 seems to be the first in the fully discrete setting.

Our first main result for the Strang scheme (39) is the following.

Theorem 1. There does not exist a parameter z0 > 0, an integer r ∈ N, and a continuous map H
from [0, z0] with values in Mr(R) such that for all z ∈ [0, z0], H(z) is a symmetric matrix satisfying
the following property: for any sequence Φ ∈ ℓ2(−∞, 2) satisfying the first order extrapolation boundary
condition Φ2 = Φ1 = Φ0, the following energy inequality holds:

∑

j≤−r

Ψ2
j +



Ψ−r+1

...
Ψ0




T

H(z)



Ψ−r+1

...
Ψ0


−

∑

j≤−r

Φ2
j −



Φ−r+1

...
Φ0




T

H(z)



Φ−r+1

...
Φ0


 ≤ 0 , (40)

with the sequence Ψ ∈ ℓ2(Z−) being defined by:

∀ j ≤ 0 , Ψj := A(z)Φj = Φj − z D0 Φj +
z2

2
∆Φj +

z (1− z2)

6
D0 ∆Φj −

z2 (1− z2)

24
∆2Φj .

Let us observe that we do not even assume the matrix H(z) to be positive definite, which would be
necessary to make the quantity:

∑

j≤−r

Φ2
j +



Φ−r+1

...
Φ0




T

H(z)



Φ−r+1

...
Φ0


 ,

the square of a norm on the space of sequences Φ ∈ ℓ2(−∞, 2) with the prescribed boundary conditions.
The obstacle for the existence of H(z) in Theorem 1 comes from the small values of z. It could very well
be that for some z ∈ (0, 1), one can construct a real symmetric positive definite matrix H(z) of size r ∈ N

such that one has the optimal energy balance:

∑

j≤−r

Ψ2
j +



Ψ−r+1

...
Ψ0




T

H(z)



Ψ−r+1

...
Ψ0


−

∑

j≤−r

Φ2
j −



Φ−r+1

...
Φ0




T

H(z)



Φ−r+1

...
Φ0


+ c (Φ2

−1 +Φ2
0) ≤ 0 ,

with c a positive constant. Theorem 1 shows, however, that such a construction will not be possible for
all values of z ∈ (0, 1) with the additional requirement that H(z) extends continuously to z = 0 (as was
the case, for instance, for the Lax-Wendroff scheme with second order extrapolation by Corollary 2).

Proof of Theorem 1. The proof of Theorem 1 is based on an induction argument with respect to the
integer r. As will follow from the argument below, it appears that the initial step of the induction
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argument corresponds to r = 2. The first two cases r = 0 and r = 1 are dealt with separately, though the
argument is similar to the one for r = 2. Let us start with a general argument from which the conclusion
of Theorem 1 will follow.

• The derivative of the energy balance with respect to z at 0. In all what follows, we assume that the
opposite statement to Theorem 1 holds, meaning that we assume that there exist a parameter z0 > 0, an
integer r ∈ N, and a continuous mapH from [0, z0] with values in Mr(R) such that for any z ∈ [0, z0], H(z)
is a real symmetric matrix with the previously stated property. Let us consider a sequence Φ ∈ ℓ2(−∞, 2)
that satisfies Φ2 = Φ1 = Φ0, and let us then denote with f(z) the quantity on the left hand side of (40).
Since the sequence Ψ(z) depends in a C 1 fashion on z in ℓ2, and since H is continuous at 0, the function
f is differentiable at 0 and it holds that,

f ′(0) =
∑

j≤−r

2Ψj(0)Ψ
′
j(0) + 2



Ψ′

−r+1(0)
...

Ψ′
0(0)




T

H(0)



Φ−r+1

...
Φ0


 . (41)

Substituting the value of Ψ′
j(0), (41) can be expressed in terms of the sequence Φ only, i.e.

f ′(0) =
∑

j≤−r

−2Φj D0 Φj +
1

3
Φj D0 ∆Φj

+



−(Φ−r+2 − Φ−r) + (Φ−r+3 − 2Φ−r+2 + 2Φ−r − Φ−r−1)/6

...
−(Φ1 − Φ−1) + (Φ2 − 2Φ1 + 2Φ−1 − Φ−2)/6




T

H(0)



Φ−r+1

...
Φ0




= −
4

3
Φ−r Φ−r+1 +

1

6
(Φ−r−1Φ−r+1 +Φ−r Φ−r+2)

+



−(Φ−r+2 − Φ−r) + (Φ−r+3 − 2Φ−r+2 + 2Φ−r − Φ−r−1)/6

...
−(Φ1 − Φ−1) + (Φ2 − 2Φ1 + 2Φ−1 − Φ−2)/6




T

H(0)



Φ−r+1

...
Φ0


 .

We observe that f vanishes at z = 0 because Ψj(0) = Φj for all j, and f takes nonpositive values on
[0, z0] by (40). Hence 0 is a maximum of f on [0, z0] and the derivative f ′(0) is nonpositive. In other
words, we have just obtained that there exists a real symmetric matrix H of size r such that for any
sequence Φ ∈ ℓ2(−∞, 2) satisfying Φ2 = Φ1 = Φ0, the following inequality holds:

−
4

3
Φ−r Φ−r+1 +

1

6
(Φ−r−1Φ−r+1 +Φ−r Φ−r+2)

+



−(Φ−r+2 − Φ−r) + (Φ−r+3 − 2Φ−r+2 + 2Φ−r − Φ−r−1)/6

...
−(Φ1 − Φ−1) + (Φ2 − 2Φ1 + 2Φ−1 − Φ−2)/6




T

H



Φ−r+1

...
Φ0


 ≤ 0 . (42)

It remains to examine the consequences of (42), which is where the specific value of r comes into play
because the values Φ1 and Φ2 are not arbitrary due to the extrapolation boundary conditions.

• The case r = 0. In that case, the inequality (42) reduces to:

−
4

3
Φ0Φ1 +

1

6
(Φ−1Φ1 +Φ0 Φ2) ≤ 0 .
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Using the extrapolation boundary conditions Φ2 = Φ1 = Φ0, we end up with:

−
7

6
Φ2
0 +

1

6
Φ0Φ−1 ≤ 0 ,

which is obviously impossible since the values Φ0,Φ−1 are arbitrary. This means that we cannot use the
standard ℓ2 norm on Z

− for proving the stability of (39) with first order extrapolation condition. Let us
now deal with the next case (r = 1) in the induction argument.

• The case r = 1. In that case, the inequality (42) reduces to:

−
4

3
Φ−1Φ0 +

1

6
(Φ−2 Φ0 +Φ−1Φ1)− H Φ0 (Φ1 −Φ−1) +

H

6
Φ0 (Φ2 − 2Φ1 + 2Φ−1 − Φ−2) ≤ 0 ,

where H is a real number. After using the boundary conditions Φ2 = Φ1 = Φ0, we get:

−
7

6
Φ−1Φ0 +

1

6
Φ−2Φ0 − H Φ0 (Φ0 − Φ−1)−

H

6
Φ0 (Φ0 − 2Φ−1 +Φ−2) ≤ 0 , (43)

where now the three values Φ0,Φ−1,Φ−2 are arbitrary. It is useful to introduce the new variables:

y3 := Φ0 , y2 := Φ0 − Φ−1 , y1 := Φ0 − 2Φ−1 +Φ−2 ,

with which (43) is rewritten as follows:

∀ y ∈ R
3 , −y23 +

(
5

6
− H

)
y3 y2 +

1− H

6
y3 y1 ≤ 0 , (44)

The latter inequality is obviously impossible since the only available parameter H should equal both 1
and 5/6 to cancel the off-diagonal terms y3 y2 and y3 y1. This completes the proof of Theorem 1 in the
case r = 1. Let us now deal with the case r = 2.

• The case r = 2. This is really the starting point of the induction argument, and we shall borrow the
methodology introduced for the case r = 1. Namely, when r equals 2, the inequality (42) reduces to:

−
4

3
Φ−2Φ−1+

1

6
(Φ−3Φ−1+Φ−2Φ0)+

(
−(Φ0 − Φ−2) + (Φ1 − 2Φ0 + 2Φ−2 −Φ−3)/6
−(Φ1 − Φ−1) + (Φ2 − 2Φ1 + 2Φ−1 −Φ−2)/6

)T

H

(
Φ−1

Φ0

)
≤ 0 .

(45)
After using the boundary conditions Φ2 = Φ1 = Φ0, (45) reduces to:

−
4

3
Φ−2Φ−1+

1

6
(Φ−3Φ−1+Φ−2Φ0)−

(
(Φ0 − Φ−2) + (Φ0 − 2Φ−2 +Φ−3)/6
(Φ0 − Φ−1) + (Φ0 − 2Φ−1 +Φ−2)/6

)T

H

(
Φ−1

Φ0

)
≤ 0 . (46)

Let us extend the strategy used in the case r = 1, and introduce the new variables:

y4 := Φ0 , y3 := DΦ0 , y2 := D2Φ0 , y1 := D3Φ0 .

The inequality (46) can be equivalently rewritten as:

− y24 +3 y4 y3−
2

3
y4 y2−

1

6
y4 y1−

13

6
y23 +

5

6
y3 y2+

1

6
y3 y1−

1

6

(
13 y3 − 5 y2 − y1

6 y3 + y2

)T

H

(
y4 − y3

y4

)
≤ 0 ,

(47)
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where (47) holds for all y ∈ R
4, since Φ0,Φ−1,Φ−2,Φ−3 in (46) are arbitrary. It is useful at this stage to

introduce the coefficients of the symmetric matrix H , and we thus write:

H =

(
h11 h12
h12 h22

)
.

The quadratic form in y ∈ R
4 on the left hand side of (47) is nonpositive, and furthermore it has no

y21 term. This implies that the coefficients of the cross products y4 y1 and y3 y1 must vanish. Computing
those coefficients, we get:

h11 = 1 , h12 = 0 ,

which means that the matrix H reads:

H =

(
1 0
0 h22

)
,

and then (47) reduces to:

−y24 +

(
5

6
− h22

)
y4 y3 +

1− h22
6

y4 y2 ≤ 0 ,

which is nothing else but the inequality (44) we had obtained in the analysis of the case r = 1 except for
the shift in the indeces (one should only substitute (y4, y3, y2) in place of (y3, y2, y1) in (44), and h22 in
place of H ). As already observed in the analysis of the case r = 1, we are led to a contradiction, which
completes the proof of Theorem 1 in the case r = 2.

• The general case r ≥ 3. We go back to (42) and assume r ≥ 3. In particular, the first line on the left
hand side of (42) does not involve the ghost cell values Φ1,Φ2. Substituting the first order extrapolation
boundary conditions Φ2 = Φ1 = Φ0 in (42), we get the inequality:

−
4

3
Φ−r Φ−r+1 +

1

6
(Φ−r−1Φ−r+1 +Φ−r Φ−r+2)

+




−(Φ−r+2 − Φ−r) + (Φ−r+3 − 2Φ−r+2 + 2Φ−r − Φ−r−1)/6
...

−(Φ−1 − Φ−3) + (Φ0 − 2Φ−1 + 2Φ−3 − Φ−4)/6
−(Φ0 − Φ−2)− (Φ0 − 2Φ−2 +Φ−3)/6
−(Φ0 − Φ−1)− (Φ0 − 2Φ−1 +Φ−2)/6




T

H




Φ−r+1
...

Φ−2

Φ−1

Φ0




≤ 0 . (48)

We introduce the variable y ∈ R
r+2 defined by:

∀ ℓ = 1, . . . , r + 2 , yℓ := Dr+2−ℓΦ0 ,

which, conversely, corresponds to:

∀ ℓ = 0, . . . , r + 1 , Φ−ℓ = Dℓ yr+2 .
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Using from now on the coordinates of y ∈ R
r+2 as free parameters, (48) reads:

−
4

3
Dr yr+2D

r−1 yr+2 +
1

6
(Dr+1 yr+2D

r−1 yr+2 +Dr yr+2D
r−2 yr+2)

+




−2Dr−2 yr+1 +Dr−2 yr + (2Dr−3 yr−1 −Dr−3 yr−2)/6
...

−2Dyr+1 +Dyr + (2 yr−1 − yr−2)/6
−(13 yr+1 − 5 yr − yr−1)/6

−yr+1 − yr/6




T

H




Dr−1 yr+2
...

D2 yr+2

Dyr+2

yr+2




≤ 0 . (49)

We are not going to compute all the coefficients of the quadratic form (in y) arising on the left hand
side of (49). It is useful however to observe that the first two coordinates y1 and y2 of y do not appear in
the expressions of Dr−1 yr+2, . . . , Dyr+2, yr+2. Therefore, if we rewrite the quadratic form (in y) arising
on the left hand side of (49) as yT S y, with S a real symmetric matrix of size r + 2, then not only S is
nonpositive because of (49), but S also reads:

S =




S̃ Υ2 Υ1

ΥT
2 0 0

ΥT
1 0 0


 ,

with Υ1,Υ1 ∈ R
r, and S̃ a real symmetric matrix of size r. Since S is nonnegative, we must necessarily

have Υ1 = Υ2 = 0. In other words, this means that no cross product of the form y1 y3, . . . , y1 yr+2 or
y2 y3, . . . , y2 yr+2 arises on the left hand side of (49), or, equivalently, that the quantity on the left hand
side of (49) does not depend on (y1, y2). Computing the partial derivative with respect to y1, we get the
relation:

(−1)r+1

6

(
(1− H11)D

r−1 yr+2 +

r∑

ℓ=2

H1ℓD
r−ℓ yr+2

)
= 0 ,

from which we deduce that the first line of H should read:

(
1 0 · · · 0

)
.

Since H is symmetric, (49) reduces to:

−
4

3
Dr yr+2D

r−1 yr+2 +
1

6
(Dr+1 yr+2D

r−1 yr+2 +Dr yr+2D
r−2 yr+2)

+
(
− 2Dr−2 yr+1 +Dr−2 yr +

1

3
Dr−3 yr−1 −

1

6
Dr−3 yr−2

)
Dr−1 yr+2 (50)

+




−2Dr−3 yr+1 +Dr−3 yr + (2Dr−4 yr−1 −Dr−4 yr−2)/6
...

−2Dyr+1 +Dyr + (2 yr−1 − yr−2)/6
−(13 yr+1 − 5 yr − yr−1)/6

−yr+1 − yr/6




T

H♯




Dr−2 yr+2
...

D2 yr+2

Dyr+2

yr+2




≤ 0 ,

where the real symmetric matrix H♯ of size r − 1 corresponds to the block decomposition of H :

H =

(
1 0
0 H♯

)
.
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We can simplify the first two lines of (50) by using the relation:

− 2Dr−2 yr+1 +Dr−2 yr +
1

3
Dr−3 yr−1 −

1

6
Dr−3 yr−2

= −
(
Dr−2 yr+2 −Dr yr+2

)
+

1

6

(
Dr−3 yr+2 − 2Dr−2 yr+2 + 2Dr yr+2 −Dr+1 yr+2

)
,

and (50) can be rewritten as:

−
4

3
Dr−1 yr+2D

r−2 yr+2 +
1

6
(Dr yr+2D

r−2 yr+2 +Dr−1 yr+2D
r−3 yr+2)

+




−2Dr−3 yr+1 +Dr−3 yr + (2Dr−4 yr−1 −Dr−4 yr−2)/6
...

−2Dyr+1 +Dyr + (2 yr−1 − yr−2)/6
−(13 yr+1 − 5 yr − yr−1)/6

−yr+1 − yr/6




T

H♯




Dr−2 yr+2
...

D2 yr+2

Dyr+2

yr+2




≤ 0 . (51)

Shfiting the indeces in the variables, that is introducing the vector:

(ỹr+1, . . . , ỹ1) := (yr+2, . . . , y2) ,

and forgetting about the tilde, we see that (51) is exactly the same as (49) with the integer r− 1 in place
of r. By a finite induction process, we can therefore show that the validity of (49) for some real symmetric
matrix H of size r implies the validity of (47) (which is exactly (49) in the particular case r = 2), and
we have already seen that this leads to a contradiction. The proof of Theorem 1 is now complete.

The exact same argument of proof can be used to deal with the case of second order extrapolation at the
boundary. We shall not reproduce the proof here and leave the (minor) modifications to the interested
reader. We thus only state the final result, which is entirely similar to Theorem 1 above except for the
extrapolation conditions.

Theorem 2. There does not exist a parameter z0 > 0, an integer r ∈ N, and a continuous map H
from [0, z0] with values in Mr(R) such that for any z ∈ [0, z0], H(z) is a symmetric matrix satisfying
the following property: for any sequence Φ ∈ ℓ2(−∞, 2) verifying the second order extrapolation boundary
conditions ∆Φ1 = ∆Φ0 = 0, with the sequence Ψ being defined by:

∀ j ≤ 0 , Ψj := A(z)Φj = Φj − z D0 Φj +
z2

2
∆Φj +

z (1− z2)

6
D0 ∆Φj −

z2 (1− z2)

24
∆2Φj ,

then the following energy inequality holds:

∑

j≤−r

Ψ2
j +



Ψ−r+1

...
Ψ0




T

H(z)



Ψ−r+1

...
Ψ0


−

∑

j≤−r

Φ2
j −



Φ−r+1

...
Φ0




T

H(z)



Φ−r+1

...
Φ0


 ≤ 0 .

Theorems 1 and 2 show that for the fourth order Strang scheme (39), stability for the translatory first or
second order extrapolation conditions:

(first order) Φ2 = Φ1 = Φ0 ,

(second order) ∆Φ1 = ∆Φ0 = 0 ,
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cannot be obtained by a ‘straightforward’ energy argument (at least for all relevant values of the CFL
parameter z), meaning by the construction of an energy that is a finite rank perturbation of the identity
that is non-increasing for the associated evolution operator. It is known nevertheless that these numerical
boundary conditions satisfy the strong stability condition of [GKS72], see [Gol77]. These two above
examples clearly indicate that the theory initiated in [GKS72] is the only one able to capture stability for
numerical boundary conditions in general.

A Higher order integration by parts decompositions

This appendix is devoted to the proof of the relations (32)-(35) which we have used in the proof of Lemma
2. Let us start with the proof of formula (32), which we rewrite here for the reader’s convenience:

2D0 Φj D0 ∆Φj = −2 (∆Φj)
2 +

1

4

[
(D∆Φj)

2 + (D∆Φj+1)
2
]

+

[
(DΦj+1 −

1

4
D∆Φj+1) (D∆Φj+1 + 2∆Φj)

]
−

[
(DΦj −

1

4
D∆Φj) (D∆Φj + 2∆Φj−1)

]
. (52)

We first apply the formula (20) to get:

2D0 Φj ∆D0 Φj = −(DD0 Φj)
2 − (DD0 Φj+1)

2

+
[
2D0 Φj DD0 Φj+1 + (DD0 Φj+1)

2
]
−
[
2D0 Φj−1DD0 Φj + (DD0 Φj)

2
]
. (53)

and then rewrite the first line on the right hand side of (53) (that is, the symmetric terms) as:

(DD0 Φj)
2 + (DD0 Φj+1)

2 =
1

4
(∆Φj−1 +∆Φj)

2 +
1

4
(∆Φj +∆Φj+1)

2

=
1

4
(−D∆Φj + 2∆Φj)

2 +
1

4
(2∆Φj +D∆Φj+1)

2

=2 (∆Φj)
2 +∆Φj ∆

2Φj +
1

4

(
(D∆Φj)

2 + (D∆Φj+1)
2
)

We use again (20) for the term ∆Φj ∆
2Φj and get:

(DD0 Φj)
2 + (DD0 Φj+1)

2 = 2 (∆Φj)
2 −

1

4

(
(D∆Φj)

2 + (D∆Φj+1)
2
)

+

[
1

2
(∆Φj+1)

2 −
1

2
(∆Φj)

2

]
−

[
1

2
(∆Φj)

2 −
1

2
(∆Φj−1)

2

]
.

Substituting this relation in the first line on the right hand side of (53), we have thus obtained the
decomposition:

2D0 Φj ∆D0 Φj = −2 (∆Φj)
2 +

1

4

(
(D∆Φj)

2 + (D∆Φj+1)
2
)
+ Tj − Tj−1 ,

with

Tj := 2D0 Φj DD0 Φj+1 + (DD0 Φj+1)
2 −

1

2
(∆Φj+1)

2 +
1

2
(∆Φj)

2

=(D0 Φj+1)
2 − (D0 Φj)

2 −
1

2
(∆Φj+1)

2 +
1

2
(∆Φj)

2 .
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The decomposition (52) then follows by just rewriting the quantity Tj in terms of DΦj+1, ∆Φj and
D∆Φj+1. The (small) details are left to the reader.

We now wish to justify the purely telescopic formula (33), which we also rewrite here for convenience:

2Φj D0 ∆Φj = [Φj (D∆Φj+1 + 2∆Φj) + (∆Φj −DΦj+1)DΦj+1]

− [Φj−1 (D∆Φj + 2∆Φj−1) + (∆Φj−1 −DΦj)DΦj] . (54)

Let us write the left hand side of (54) as:

2Φj D0 ∆Φj =




Φj+2

Φj+1

Φj

Φj−1

Φj−2




T 


0 0 1/2 0 0
0 0 −1 0 0
1/2 −1 0 1 −1/2
0 0 1 0 0
0 0 −1/2 0 0







Φj+2

Φj+1

Φj

Φj−1

Φj−2




,

and decompose the corresponding symmetric matrix in a telescopic way:




0 0 1/2 0 0
0 0 −1 0 0
1/2 −1 0 1 −1/2
0 0 1 0 0
0 0 −1/2 0 0




=




0 0 1/2 0 0
0 0 −1 1/2 0

1/2 −1 0 0 0
0 1/2 0 0 0
0 0 0 0 0




−




0 0 0 0 0
0 0 0 1/2 0
0 0 0 −1 1/2
0 1/2 −1 0 0
0 0 1/2 0 0




.

At this stage, we have obtained the telescopic decomposition:

2Φj D0 ∆Φj = [Φj Φj+2 − 2Φj Φj+1 +Φj−1Φj+1]− [Φj−1Φj+1 − 2Φj−1Φj +Φj−2Φj] ,

and the proof of (54) follows by rewriting the telescopic term as:

Φj Φj+2 − 2Φj Φj+1 +Φj−1Φj+1 =Φj ∆Φj+1 +Φj ∆Φj −DΦj DΦj+1

=Φj (D∆Φj+1 + 2∆Φj) + (∆Φj −DΦj+1)DΦj+1 .

This completes the proof of (54).

We now turn to the proof of the telescopic formula (34), which we also rewrite here for convenience:

2D0 Φj ∆
2 Φj = [− (D∆Φj+1 +∆Φj)∆Φj + 2DΦj+1D∆Φj+1]

− [−(D∆Φj +∆Φj−1)∆Φj−1 + 2DΦj D∆Φj] . (55)

We expand the left hand side of (55) as follows:

2D0 Φj ∆
2Φj =(Φj+1 − Φj−1) (Φj+2 − 4Φj+1 + 6Φj − 4Φj−1 +Φj−2)

= 6Φj (Φj+1 − Φj−1)− 4 (Φ2
j+1 − Φ2

j−1) + (Φj+1 − Φj−1) (Φj+2 +Φj−2)

=
[
6Φj Φj+1 − 4Φ2

j − 4Φ2
j+1

]
−
[
6Φj−1Φj − 4Φ2

j−1 − 4Φ2
j

]

+ (Φj+1 − Φj−1) (Φj+2 +Φj−2)

=Tj − Tj−1 ,
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with

Tj := 7Φj Φj+1 − 4Φ2
j − 4Φ2

j+1 +Φj+1Φj+2 − Φj−1Φj+2 +Φj−1Φj

= − 4 (DΦj+1)
2 + (Φj+2 − Φj) (Φj+1 − Φj−1)

= − 4 (DΦj+1)
2 + (∆Φj+1 + 2DΦj+1) (2DΦj+1 −∆Φj)

= −∆Φj ∆Φj+1 + 2DΦj+1D∆Φj+1 = −(D∆Φj+1 +∆Φj)∆Φj + 2DΦj+1D∆Φj+1 .

This completes the proof of (55).

It only remains to prove the formula (35), that is:

Φj ∆
2 Φj = (∆Φj)

2 + [Φj D∆Φj+1 −DΦj+1∆Φj]− [Φj−1D∆Φj −DΦj ∆Φj−1] , (56)

which is the discrete counterpart of the relation uu′′′′ = (u′′)2 + (uu′′′ − u′ u′′)′. We compute:

Φj ∆
2Φj − (∆Φj)

2 =




Φj+2

Φj+1

Φj

Φj−1

Φj−2




T 


0 0 1/2 0 0
0 −1 0 −1 0
1/2 0 2 0 1/2
0 −1 0 −1 0
0 0 1/2 0 0







Φj+2

Φj+1

Φj

Φj−1

Φj−2




,

and decompose the corresponding symetric matrix in a telescopic way:




0 0 1/2 0 0
0 −1 0 −1 0
1/2 0 2 0 1/2
0 −1 0 −1 0
0 0 1/2 0 0




=




0 0 1/2 0 0
0 −1 0 −1/2 0
1/2 0 1 0 0
0 −1/2 0 0 0
0 0 0 0 0




−




0 0 0 0 0
0 0 0 1/2 0
0 0 −1 0 −1/2
0 1/2 0 1 0
0 0 −1/2 0 0




.

We have thus obtained the telescopic decomposition:

Φj ∆
2Φj − (∆Φj)

2 =
[
Φj Φj+2 − (Φj+1)

2 + (Φj)
2 − Φj−1Φj+1

]

−
[
Φj−1Φj+1 − (Φj)

2 + (Φj−1)
2 − Φj−2Φj

]
,

and (56) eventually follows from rewriting the telescopic quantity in terms of Φj, DΦj+1, ∆Φj and
D∆Φj+1:

Φj Φj+2−(Φj+1)
2+(Φj)

2−Φj−1Φj+1 = Φj (Φj+2−3Φj+1+3Φj−Φj−1)−(Φj+1−Φj) (Φj+1−2Φj+Φj−1) .
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