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Large in-plane elastic deformations of bi-pantographic fabrics: asymp-

totic homogenisation and experimental validation

Emilio Barchiesi, Simon R. Eugster, Francesco dell'Isola and François Hild

Abstract. Bi-pantographic fabrics are composed of two families of pantographic beams and correspond to a class
of architectured materials that are described in plane as second-gradient 2D-continua. On a discrete level, a pan-
tographic beam is a periodic arrangement of cells and looks like an expanding barrier. The materialisation of a
bi-pantographic fabrics made by Polyamide was achieved by additive manufacturing techniques. Starting from a
discrete spring system, the deformation energy of the corresponding continuum is derived for large strains by as-
ymptotic homogenisation. The obtained energy depends on the second gradient of the deformation through the
rate of change in orientation and stretch of material lines directed along the pantographic beams. Displacement-
controlled bias extension tests were performed on rectangular prototypes for total elastic extension up to 25%.
Force-displacement measurements complemented by local digital image correlation analyses were used to �t the
continuum model achieving excellent agreement.

Keywords: variational asymptotic homogenisation, bi-pantographic fabrics, second gradient continua, additive man-
ufacturing, local digital image correlation, Piola's ansatz, experimental mechanics

1. Introduction

Continuum modelling, i.e. spatially continuous formulations [1, 2, 3, 4, 5], is routinely exploited to describe at macro
length scales the collective behaviour of � mostly periodic � discrete systems, whose element-by-element micro-scale
description [6, 7, 8, 9, 10] can get computationally challenging. Homogenisation procedures [11, 12, 13, 14, 15] can
be used to pass from a discrete to a continuous description. These procedures involve the de�nition of speci�c micro-
macro correspondences [16], which enable to give a precise meaning to many features of the macro-model in terms
of those of the micro-model.
The last few decades have witnessed a high acceleration in the development of additive and subtractive techniques
such as 3D-printing [17]. Such techniques allow for micro-structure control at very small scales, which motivate the
renewed interest in homogenisation [18, 19, 20, 21, 22].

Pantographic structures [23, 24, 25] are among the most straightforward examples of micro-structures whose
continuum modelling gives a wealth of non-standard problems in the theory of higher-gradient [26, 27, 28] and micro-
morphic continua [29, 11, 30, 31], also of mathematical interest [32]. Convenient discrete descriptions of pantographic
structures have been obtained in the literature by Hencky-type modelling [30, 7, 8].

The derivation of a 1D-continuum model being capable of describing the �nite planar deformation of a discrete
slender pantographic structure, referred to as pantographic beam, is presented in [33]. The continuum model is de-
duced from a discrete one by applying a variational asymptotic procedure [34, 11, 20, 35]. Within the homogenisation
process, the overall dimension of the system is kept �xed, while the number of the periodically appearing subsystems
� called cells � is increased, and the sti�nesses are appropriately scaled.

In [33], the model of [34, 35] has been generalized to the �nite strain regime. Remarkably, the deformation energy
density of such a 1D-continuum, [33], does not only depend on the material curvature but also on the stretch gradient.
Besides a more pedagogical presentation of such a continuum model, Barchiesi et al. [36] addressed numerically the
evaluation of di�erences between the micro- and the macro-model in order to elucidate to what extent the continuum
retains the relevant phenomenology of the discrete system. Special attention has been given to the di�erence between
the deformation energy of the micro- and the macro-model when the micro length scale tends to zero, i.e. the discrete-
continuum error. This deviation gives a quantitative value to assess the quality of the approximation of the discrete
by its continuous counterpart.
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Bi-pantographic fabrics have been �rst introduced by Seppecher et al. [35] as assemblies of discrete pantographic
beams leading at macroscopic scale to second gradient materials [37, 38, 39]. The corresponding deformation energy
depends upon the rate of change in orientation and stretch of material lines directed along the pantographic beams.
The aims of this work are the following ones. First, we want to generalize the homogenisation carried out in [35]
in two respects. In particular, extensible elements and arbitrarily large strains are considered. Secondly, a possible
design of bi-pantographic prototypes is sought, which is obeying the discrete model. Lastly, the derived results will
be validated.

Addressing the above objectives leads to the following organisation of the paper. In Section 2, the discrete
bi-pantographic structure is introduced followed by a homogenisation that is carried out by exploiting the results
obtained for pantographic beams. In Section 3, we establish relations between quantities for the microscopic and
macroscopic models, which go beyond Piola's micro-macro identi�cation used throughout the homogenisation. Based
on these relations, a non-standard bias extension test is then introduced for both models. Lastly, the �nite element
method employed to solve the continuum model is introduced with a special emphasis on the challenges arising from
a weak mixed formulation. In Section 4, the design and manufacturing of a bi-pantographic prototype is reported
together with the description of the experimental setup. The Digital Image Correlation (DIC) technique used to
retrieve discrete displacement measures is also brie�y recalled. In Section 5, the �tting of parameters by means of
acquired experimental measures is presented and continuum is compared with experiments.

2. Heuristic homogenisation

The continuum is deduced by applying Piola's micro-macro identi�cation procedure [11, 40], which can be considered
as a heuristic variational asymptotic procedure. The steps describing such a procedure can be sketched as:

(i) A family of discrete spring systems embedded in the two-dimensional Euclidean vector space E2, i.e. the micro-
model with micro length scale ε > 0, is introduced � generalized coordinates and energy contributions Eε are
de�ned

(ii) The kinematic descriptors of the continuum, i.e. the macro-model, are introduced as continuous functions with
a closed subset of E2 as their common domain � these functions must be chosen such that their evaluation at
particular points can be related to the generalized coordinates of the micro-model

(iii) Formulation of the deformation energy of the micro-model Eε using the evaluation of the continuum descriptors
at particular points, followed by a Taylor expansion of the energy with respect to the micro length scale ε

(iv) Speci�cation of scaling laws for the constitutive parameters in the micro-model followed by a limit process in
which the energy of the continuum E is related to the micro-model by E = lim

ε→0
Eε

2.1. Preliminaries

To ease the presentation, before addressing bi-pantographic structures, some preliminary computations related to
pantographic beams are revisited.
Pantographic beam � discrete model. The assembly and kinematics of a discrete pantographic beam slightly gen-
eralizing that presented in [33, 36] are sketched in Fig. 1. In the undeformed con�guration, see Fig. 1(a), N cells
are arranged upon a straight line along the direction of the unit basis vector ex ∈ E2. The total length L ∈ R of
the undeformed pantographic beam accounts for N − 1 cells, as depicted in Fig. 1(a). The cells are centred at the
positions Pi = iεex for i ∈ {0, 1, . . . , N − 1} with ε = L/(N−1). The basic i-th unit cell is formed by four extensional
springs hinge-joined together at Pi having length ε/(2 cos γ). Rotational springs, which are coloured in blue, red, and
green in Fig. 1(d), are placed between opposite collinear and adjacent springs belonging to the same cell and between
adjacent springs belonging to di�erent cells. Note that extensional springs are rigid with respect to bending such
that they can transmit torques. White-�lled circles in Fig. 1 depict hinge constraints, requiring the end points of
the corresponding springs to have the same position in space. We note that the assembly considered herein is a
generalization of that studied in [33], as the angle γ ∈ (0, π) between springs concurring at point Pi from the right in
Fig. [33] is generally di�erent from π/4. Moreover, further rotational springs, which are coloured in green in Fig. 1(d),
are considered. When not otherwise mentioned, the indices i, µ and ν henceforth belong respectively to the following
sets: i ∈ {0, 1, . . . , N − 1}, µ ∈ {1, 2} and ν ∈ {D,S}1.

The kinematics of the spring system is locally described by �nitely many generalized coordinates. The coor-
dinates are the positions pi ∈ E2 of the points at position Pi in the reference con�guration and the lengths of the
oblique deformed springs lµνi ∈ R. Various other kinematical quantities are considered to formulate the total potential

1D stands for dextrum, S for sinistrum.
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Figure 1. Pantographic beam. (a) Undeformed con�guration. (b) Generalized coordinates of i-th
cell. (c) Deformed con�guration with redundant kinematic quantities. (d) Force elements of a single
cell.

energy in a most compact form. Applying the law of cosines, the angles ϕµνi depicted in Fig. 1(c) are determined by
the following relationships

ϕ1D
i = cos−1

[
‖pi+1 − pi‖2 +

(
l1Di
)2 − (l2Si+1

)2
2l1Di ‖pi+1 − pi‖

]
,

ϕ1S
i = cos−1

[
‖pi − pi−1‖2 +

(
l1Si
)2 − (l2Di−1

)2
2l1Si ‖pi − pi−1‖

]
,

ϕ2D
i = cos−1

[
‖pi+1 − pi‖2 +

(
l2Di
)2 − (l1Si+1

)2
2l2Di ‖pi+1 − pi‖

]
,

ϕ2S
i = cos−1

[
‖pi − pi−1‖2 +

(
l2Si
)2 − (l1Di−1

)2
2l2Si ‖pi − pi−1‖

]
,

(1)

while the angles ξµi depicted in Fig. 1(c) are determined by

ξ
1(2)
i = cos−1

[(
l
1(2)D
i

)2
+
(
l
2(1)S
i+1

)2 − ‖pi+1 − pi‖2

2l
1(2)D
i l

2(1)S
i+1

]
. (2)

For a ∈ E2, ‖a‖ =
√
a · a corresponds to the norm induced by the inner product denoted by the dot.

Note that ϕµS0 and ϕµDN−1 cannot be determined by equations (1) and belong also to the set of generalized
coordinates. Another restriction is that the choice of generalized coordinates holds only locally, as long as the angles
ϕ1D
i and ϕ2D

i do not change sign. Throughout the derivation of the macro-model, it is assumed that the angles ϕ1D
i

and ϕ2D
i remain in the range (0, π). This entails that ξµi ∈ (0, π). For the reduced index set i = {1, 2, . . . , N − 2}, the

angle between the two vectors pi − pi−1 and ex is denoted by ϑi. Then the angle θi between the vectors pi − pi−1

and pi+1 − pi reads

θi = ϑi+1 − ϑi = tan−1

[
(pi+1 − pi) · ey
(pi+1 − pi) · ex

]
− tan−1

[
(pi − pi−1) · ey
(pi − pi−1) · ex

]
. (3)

Let us set θ0 = θ1 and θN−1 = θN−2 such that the deviation angles of two adjacent oblique springs from being
collinear are given for the entire index set of i by

β1
i = θi + ϕ1D

i − ϕ1S
i , β2

i = θi + ϕ2S
i − ϕ2D

i . (4)
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For the undeformed con�guration, see Fig. 1(a), the following equalities are satis�ed

lµνi =
1

2 cos γ
ε , β1

i = β2
i = 0 , ‖pi − pi−1‖ = ε . (5)

Letting the summations for i, µ and ν range over the above introduced sets {0, . . . , N − 1}, {1, 2} and {D,S},
respectively, the micro-model deformation energy is de�ned as

Eε =
kE
2

∑
i

∑
µ,ν

(
lµνi −

1

2 cos γ
ε

)2

+
kF
2

∑
i

∑
µ

(βµi )
2

+
kS
2

∑
i

∑
µ

(ξµi − π + 2γ)2

(4)
=
kE
2

∑
i

∑
µ,ν

(
lµνi −

1

2 cos γ
ε

)2

+
kF
2

∑
i

∑
µ

[
θi + (−1)

µ
(
ϕµSi − ϕ

µD
i

)]2
+
kS
2

N−2∑
i=0

∑
µ

(ξµi − π + 2γ)2,

(6)

where kE > 0 and kF , kS > 0 are the sti�nesses of the extensional and rotational springs, respectively. Boundedness
of the deformation energy, both for the micro-model and for the macro-model is considered throughout this paper.
It is worth noting that, besides the rigid body modes, the set of admissible con�gurations de�ned by

lµνi =
1

2 cos γ
ε , pi = pi−1 +Kex , p0 = P0 , for K ∈

(
0,

1

cos γ
ε
)
, (7)

also entails null deformation energy when kS = 0, i.e. when removing green springs in Fig. 1(d), and is referred to as
extensional �oppy mode [34]. Looking at the points pi, one observes uniform extension or compression.
For the lengths lµνi of the oblique springs, the following asymptotic expansion is assumed

lµνi =
1

2 cos γ
ε+ ε2 l̃µνi + o(ε2) , (8)

where l̃µνi ∈ R. Inserting assumption (8) into the energy (6) leads to

Eε =
kE
2

∑
i

∑
µ,ν

[
ε2 l̃µνi + o(ε2)

]2
+
kF
2

∑
i

∑
µ

[
θi + (−1)

µ (
ϕµSi − ϕ

µD
i

)]2
+
kS
2

∑
i

∑
µ

(ξµi − π + 2γ)2. (9)

Pantographic beam � micro-macro identi�cation. The slenderness of the discrete system makes it reasonable to aim
for a one-dimensional continuum [41] in the limit of vanishing ε. The continuum is then parametrised by the arclength
s ∈ [0, L] of the straight segment of length L connecting all points Pi.
The independent kinematic Lagrangian descriptors of the macro-model are assumed to be the functions χ : [0, L]→
E2 and l̃µν : [0, L]→ R. The placement function χ places the 1D-continuum into E2 and is best suited to describe the
points pi ∈ E2 of the discrete system on a macro-level. To take into account also the e�ect of changing spring lengths
l̃µνi introduced in equation (8), the placement function is augmented by the four micro-strain functions l̃µν . The
identi�cation of the discrete system is possible with a one-dimensional continuum that is classi�ed as a micromorphic
continuum [42, 43, 44, 45]. It is also convenient to introduce the functions ρ : [0, L]→ R+ and ϑ : [0, L]→ [0, 2π) in
order to rewrite the tangent vector �eld χ′ to the deformed 1D-continuum as

χ′(s) = ρ(s) [cosϑ(s)ex + sinϑ(s)ey] , (10)

where prime denotes di�erentiation with respect to the reference arc length s. Thus ρ corresponds to the norm of
the tangent vector ‖χ′‖ and is referred to as stretch. The current curve χ([0, L]) can, in general, have a length∫ L

0
ρ ds di�erent from L, as s is not an arc-length parametrisation for χ but for the reference placement χ0(s) = sex.

Introducing the normal vector �eld χ′⊥(s) = ρ(s) [− sinϑ(s)ex + cosϑ(s)ey], being rotated against χ′(s) about 90◦ in
the anti-clockwise direction, the following results are found

ρ′(s) =
χ′(s) · χ′′(s)
‖χ′(s)‖

, ϑ′(s) =
χ′′(s) · χ′⊥(s)

‖χ′(s)‖2
. (11)

In the sequel ρ′ and ϑ′ are called stretch gradient and material curvature, respectively. For Piola's micro-macro
identi�cation the generalized coordinates of the discrete system are related to the functions χ and l̃µν evaluated at
si = iε as

χ(si) = pi , l̃µν(si) = l̃µνi . (12)

For the asymptotic identi�cation, the energy (9) is expanded in ε. The expansion of χ is given by

χ(si±1) = χ(si)± εχ′(si) +
ε2

2
χ′′(si) + o(ε2) . (13)
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Combining the asymptotic expansion (8) with (12)2 and the expansion l̃µν(si±1) = l̃µν(si) + o(ε0), leads to

lµνi±1 =
1

2 cos γ
ε+ l̃µν(si)ε

2 + o(ε2) . (14)

In order to further expand (9), the terms θi, ϕ
µS
i − ϕ

µD
i and ξµi are expanded up to �rst order (see App. A). For θi

according to equation (71)

θi = ϑ′(si)ε+ o(ε) . (15)

The di�erences ϕ
1(2)S
i − ϕ1(2)D

i are given by equation (78) as

ϕ
1(2)S
i − ϕ1(2)D

i =
4[ρ2 − (1/2 cos2 γ)](l̃1(2)S − l̃1(2)D) + (1/cos γ)(ρ2)′ + (2/cos2 γ)(l̃2(1)D − l̃2(1)S)

4ρ(1/2 cos γ)
√

(1/cos2 γ)− ρ2

∣∣∣∣∣
s=si

ε+ o(ε) . (16)

The angles ξµi are given by (80) as

ξµi = cos−1

(
1− ρ2

1/2 cos2 γ

)∣∣∣∣
s=si

+ o(ε0) . (17)

Substituting (15), (16) and (17) into (9) together with ρ(si) = ‖χ′(si)‖, the sought expansion of the micro-model

energy Eε as a function of the kinematic descriptors χ and l̃µν reads

Eε =
∑
i

{
kEε

4

2

[∑
µ,ν

(
l̃µν
)2

+ o(ε0)

]
+ kS

[
cos−1

(
1− ρ2

1/2 cos2 γ

)
− π + 2γ + o(ε0)

]2
}
s=si

+
∑
i

kF ε
2

2

[
ϑ′ +

4[ρ2 − (1/2 cos2 γ)](l̃1S − l̃1D) + (1/cos γ)(ρ2)′ + (2/cos2 γ)(l̃2D − l̃2S)

4ρ(1/2 cos γ)
√

(1/cos2 γ)− ρ2
+ o(ε0)

]2

s=si

+
∑
i

kF ε
2

2

[
ϑ′ +

4[ρ2 − (1/2 cos2 γ)](l̃2S − l̃2D) + (1/cos γ)(ρ2)′ + (2/cos2 γ)(l̃1D − l̃1S)

4ρ(1/2 cos γ)
√

(1/cos2 γ)− ρ2
+ o(ε0)

]2

s=si

.

(18)

Let the parameters KE ,KF ,KS > 0 be constants, which do not depend on ε. Then they are related to the sti�nesses
of each discrete system with micro length scale ε by a scaling law

kE = KEε
−3 , kF = KF ε

−1 , kS = KSε . (19)

Pantographic beam � macro-model. The continuum limit is now obtained by letting ε→ 0. The deformation energy
for the homogenised macro-model becomes

E =

∫ L

0

{
KS

[
cos−1

(
1− ρ2

1/2 cos2 γ

)
− π + 2γ

]2

+
KE

2

∑
µν

(
l̃µν
)2}

ds

+

∫ L

0

KF

2

[
ϑ′ +

4[ρ2 − (1/2 cos2 γ)](l̃1S − l̃1D) + (1/cos γ)(ρ2)′ + (2/cos2 γ)(l̃2D − l̃2S)

4ρ(1/2 cos γ)
√

(1/cos2 γ)− ρ2

]2

ds

+

∫ L

0

KF

2

[
ϑ′ +

4[ρ2 − (1/2 cos2 γ)](l̃2S − l̃2D) + (1/cos γ)(ρ2)′ + (2/cos2 γ)(l̃1D − l̃1S)

4ρ(1/2 cos γ)
√

(1/cos2 γ)− ρ2

]2

ds .

(20)

The basic properties of the energy are preserved during the asymptotic process. Both the energy of the micro- and the
macro-model (6) and (20), respectively, are invariant under superimposed rigid body motions. Also the extensional

�oppy mode of the discrete model, see (7), transfers to the continuum. Namely, if ρ′ = ϑ′ = l̃µν = 0 and ρ(s) = 1,

then the deformation energy vanishes. When KS = 0, if ρ′ = ϑ′ = l̃µν = 0, a constant stretch ρ(s) = K ∈ (0, 1/cos γ)
can still be present without causing the deformation energy being di�erent from zero.

Let us now de�ne the deformation energy density Ψ as the integrand of (20). For the energy to be stationary,
the necessary conditions are obtained by equating to zero the variation of the deformation energy functional (20)
with respect to admissible variations in the independent kinematic descriptors. At this stage, only the variation with
respect to l̃µν is carried out. This results in a linear system of four algebraic equations given by ∂Ψ/∂l̃µν = 0 in

which l̃µν are the unknowns. Introducing the abbreviations

C1 =
KF

2KF ρ2 − 1/4 cos2 γ (KEρ2 + 8KF )
, C2 =

KF

√
1/cos2 γ − ρ2

KE(1/4 cos2 γ)ρ2 − 2KF ρ2 − 4KE(1/16 cos4 γ)
, (21)
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necessary conditions for equilibrium are that

l̃µD =
1

2 cos γ
ρ
[
ρ′C1 + (−1)µ−1ϑ′C2

]
, l̃µS =

1

2 cos γ
ρ [−ρ′C1 + (−1)µϑ′C2] . (22)

By substituting the results (22) into (20), a kinematic reduction is performed resulting in the deformation energy
functional of the pantographic beam

E =

∫ L

0

{
KEKF

[
ρ2 cos2 γ − 1

ρ2 cos2 γ (KE − 8KF cos2 γ)−KE
ϑ′2

+
ρ2 cos2 γ

(1− ρ2 cos2 γ) [8KF + ρ2 (KE − 8KF cos2 γ)]
ρ′2
]
+KS

[
cos−1

(
1− ρ2

1/2 cos2 γ

)
− π + 2γ

]2}
ds ,

(23)

which merely depends on the placement function χ. The energy (23) is positive de�nite for 0 < ρ < 1/ cos γ and the
complete second gradient χ′′ of χ contributes to the deformation energy. Besides the term

(
χ′⊥ ·χ′′

)
being related to

the material curvature ϑ′ by means of (11)1, also the term
(
χ′ · χ′′

)
appears, which in turn is related to the stretch

gradient ρ′ given by (23)2. It is also worth noting that, if ρ(x) = 1/ cos γ, then the term multiplying ϑ′ in (23)
vanishes. Consequently, at point s = s0 the beam undergoes a beam-to-cable transition, being curvature no more
energetically penalized. At the same time, if ρ(s0) = 1/ cos γ then the term multiplying ρ′ in (23) diverges. Therefore,
boundedness of energy requires ρ′(s0) = 0.

2.2. Bi-pantographic fabrics � discrete model

The assembly of a discrete bi-pantographic fabric is sketched in Fig. 2(b). The kinematics (and employed nota-
tion thereof) of discrete bi-pantographic fabrics is given by generalizing that of pantographic beams once the bi-
pantographic structure is regarded as an assembly of two identical orthogonal families of parallel equi-spaced panto-
graphic beams hinge joined at their intersection points. Thus, aimed at avoiding unwieldy pictures, we omit to show
it in Fig. 2.

In the undeformed con�guration, see Fig. 2(a), cells are arranged within the reference domain Ω upon straight
lines in direction of the unit basis vectors ex, ey ∈ E2. The set Ω ⊆ R2 is in general a non-simple reference domain
with boundary ∂Ω being the disjoint union of NΩ ∈ N smooth line sets ∂Ωk, k ∈ [1;NΩ], pairwise intersecting in
distinct vertices belonging to the set [∂∂Ω]. A discussion on smoothness requirements for Ω is beyond the scope of
this paper. For such a discussion the reader is referred to [46]. The cells are centred at the positions Pi,j = iεex+jεey
� see Fig. 2(b). The basic (i, j)-th unit cell � see Fig. 2(c) � is formed by eight extensional springs hinge-joined
together at Pi,j having length ε/(2 cos γ). Rotational springs � which are coloured in blue, red, and green in Fig. 2(c)
� are placed between opposite collinear adjacent springs belonging to the same cell and between adjacent springs
belonging to di�erent cells. The kinematics of the spring system is locally described by �nitely many generalized
coordinates. The coordinates are the positions pi,j ∈ E2 of the points at position Pi,j in the reference con�guration
(equivalently one can consider the nodal displacements ui,j ∈ R2 such that ui,j = pi,j − Pi,j) and the lengths of the
oblique deformed springs lµν(i,j),α ∈ R, α ∈ x, y. The index α will be henceforth employed to distinguish quantities

related to pantographic beams directed along ex (α = x) and ey (α = y). Various other kinematical quantities are
introduced to formulate the total potential energy in a most compact form. Applying the law of cosines, the angles
ϕµν(i,j),α are determined by

ϕ1D
(i,j),x = cos−1

‖pi+1,j − pi,j‖2 +
(
l1D(i,j),x

)2 − (l2S(i+1,j),x

)2
2l1D(i,j),x‖pi+1,j − pi,j‖

 ,

ϕ1S
(i,j),x = cos−1

‖pi,j − pi−1,j‖2 +
(
l1S(i,j),x

)2 − (l2D(i−1,j),x

)2
2l1S(i,j),x‖pi,j − pi−1,j‖

 ,

ϕ2D
(i,j),x = cos−1

‖pi+1,j − pi,j‖2 +
(
l2D(i,j),x

)2 − (l1S(i+1,j),x

)2
2l2D(i,j),x‖pi+1,j − pi,j‖

 ,

ϕ2S
(i,j),x = cos−1

‖pi,j − pi−1,j‖2 +
(
l2S(i,j),x

)2 − (l1D(i−1,j),x

)2
2l2S(i,j),x‖pi,j − pi−1,j‖

 ,

(24)
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Figure 2. Bi-pantographic fabrics. (a) Domain Ω. (b) Undeformed con�guration of (i, j)-th cell
(including neighbouring elements). (c) Force elements of a single cell. (d) Deformed con�guration of
(i, j)-th cell (including neighbouring elements).

and

ϕ1D
(i,j),y = cos−1

‖pi,j+1 − pi,j‖2 +
(
l1D(i,j),y

)2 − (l2S(i,j+1),y

)2
2l1D(i,j),y‖pi,j+1 − pi,j‖

 ,

ϕ1S
(i,j),y = cos−1

‖pi,j − pi,j−1‖2 +
(
l1S(i,j),y

)2 − (l2D(i,j−1),y

)2
2l1S(i,j),y‖pi,j − pi,j−1‖

 ,

ϕ2D
(i,j),y = cos−1

‖pi,j+1 − pi,j‖2 +
(
l2D(i,j),y

)2 − (l1S(i,j+1),y

)2
2l2D(i,j),y‖pi,j+1 − pi,j‖

 ,

ϕ2S
(i,j),y = cos−1

‖pi,j − pi,j−1‖2 +
(
l2S(i,j),y

)2 − (l1D(i,j−1),x

)2
2l2S(i,j),y‖pi,j − pi,j−1‖

 ,

(25)

while the angles ξµ(i,j),α become

ξ
1(2)
(i,j),x = cos−1

(l1(2)D
(i,j),x

)2
+
(
l
2(1)S
(i+1,j),x

)2 − ‖pi+1,j − pi,j‖2

2l
1(2)D
(i,j),xl

2(1)S
(i+1,j),x

 ,

ξ
1(2)
(i,j),y = cos−1

(l1(2)D
(i,j),y

)2
+
(
l
2(1)S
(i,j+1),y

)2 − ‖pi,j+1 − pi,j‖2

2l
1(2)D
(i,j),yl

2(1)S
(i,j+1),y

 .

(26)

Having used the law of cosines to determine ϕµν(i,j),α, the choice of generalized coordinates holds only locally as long

as the angles ϕ1D
(i,j),α and ϕ2D

(i,j),α do not change sign. Throughout the derivation of the macro-model, it is assumed

that the angles ϕ1D
(i,j),α and ϕ2D

(i,j),α remain in the range (0, π). This entails that ξµ(i,j),α ∈ (0, π). The angle between

the two vectors pi,j − pi−1,j and ex is denoted by ϑ(i,j),x, while the angle between the two vectors pi,j − pi,j−1 and
ey is denoted by ϑ(i,j),y. Then the angle θ(i,j),x between the vectors pi,j − pi−1,j and pi+1,j − pi,j becomes

θ(i,j),x = ϑ(i+1,j),x − ϑ(i,j),x = tan−1

[
(pi+1,j − pi,j) · ey
(pi+1,j − pi,j) · ex

]
− tan−1

[
(pi,j − pi−1,j) · ey
(pi,j − pi−1,j) · ex

]
, (27)



8 Emilio Barchiesi, Simon R. Eugster, Francesco dell'Isola and François Hild

while the angle θ(i,j),y between the vectors pi,j − pi,j−1 and pi,j+1 − pi,j reads

θ(i,j),y = ϑ(i,j+1),y − ϑ(i,j),y = tan−1

[
(pi,j+1 − pi,j) · ey
(pi,j+1 − pi,j) · ex

]
− tan−1

[
(pi,j − pi,j−1) · ey
(pi,j − pi,j−1) · ex

]
. (28)

The following relations hold true

β1
(i,j),α = θ(i,j),α + ϕ1D

(i,j),α − ϕ
1S
(i,j),α , β2

(i,j),α = θ(i,j),α + ϕ2S
(i,j),α − ϕ

2D
(i,j),α . (29)

Letting the summations for µ, ν and α range over the sets {1, 2}, {D,S} and {x, y}, respectively, and those for (i, j)
over a set such that all energy contributions due to elastic elements in Ω are included in the subsequent formula, the
micro-model deformation energy is de�ned as

Eε =
kE
2

∑
i,j

∑
α

[∑
µ,ν

(
lµν(i,j),α −

1

2 cos γ
ε

)2

+
kF
2

∑
µ

(
βµ(i,j),α

)2

+
kS
2

∑
µ

(ξµ(i,j),α − π + 2γ)2

]
(29)
=

kE
2

∑
i,j

∑
α

{∑
µ,ν

(
lµν(i,j),α −

1

2 cos γ
ε

)2

+
kF
2

∑
µ

[
θ(i,j),α + (−1)

µ
(
ϕµS(i,j),α − ϕ

µD
(i,j),α

)]2
+
kS
2

∑
µ

(ξµ(i,j),α − π + 2γ)2

}
,

(30)

with kE > 0 and kF , kS > 0 being the sti�nesses of the extensional and rotational springs, respectively. The summand
in (6) for the sum over (i, j) will be henceforth denoted by Ψi,j .

It is worth noting that, when kS = 0, besides the rigid body modes also the set of admissible con�gurations
obtained as all possible combinations of 1) uniform shear, i.e. the angle between the centrelines of the two families
of pantographic beams is uniform and ranging from 0◦ to 180◦ (pantographic beams are transformed rigidly, and
hence this gives an in�nite family of �oppy modes parametrised on a single parameter that is the above mentioned
angle; when a bias rectangular specimen is considered � i.e. �bers form ±45◦ with the sides � this deformation
mode corresponds to uniform extension/compression of the rectangle) and 2) extensional �oppy mode of constituting
pantographic beams entails null deformation energy. For more details on �oppy modes in bi-pantographic structures
the reader is referred to [35]. While each pantographic beam � as well as pantographic fabrics (whose only non-
rigid zero energy deformation mode is given by uniform macroscopic shear; pantographic beams are replaced by
(extensible) Elasticae that cannot extend with zero energy) � admits an in�nite family of extensional �oppy modes
parametrised over a single parameter (see equation (7)), the bi-pantographic structure admits an in�nite family of
�oppy modes parametrised over four parameters, see Fig. 11 in [35].

For the lengths lµν(i,j),α of the oblique springs, the following asymptotic expansion is assumed

lµν(i,j),α =
1

2 cos γ
ε+ ε2 l̃µν(i,j),α + o(ε2) , (31)

where l̃µν(i,j),α ∈ R. Inserting assumption (31) into the energy (30) leads to

Eε =
∑
α

∑
i,j

{
kE
2

∑
µ,ν

[
ε2 l̃µν(i,j),α + o(ε2)

]2
+
kF
2

∑
µ

[
θ(i,j),α + (−1)

µ (
ϕµS(i,j),α − ϕ

µD
(i,j),α

)]2
+
kS
2

∑
µ

(ξµ(i,j),α − π + 2γ)2

}
.

(32)

2.3. Bi-pantographic fabrics � micro-macro identi�cation

The two-dimensional extension of the discrete system makes it reasonable to aim for a two-dimensional continuum
in the limit of vanishing ε. The independent kinematic Lagrangian descriptors of the macro-model are assumed to
be the functions χ : Ω → E2 and l̃µνα : Ω → R. The placement function χ places the 2D-continuum into E2 and
is best suited to describe the points pi,j ∈ E2 of the discrete system on the macro-level. To take into account the

e�ect of changing spring lengths l̃µν(i,j),α introduced in (8), the placement function is augmented by the eight micro-

strain functions l̃µνα . The identi�cation of the discrete system with a two-dimensional continuum is also classi�ed as
a micromorphic continuum [42, 43, 44, 45].
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It is also convenient to introduce the functions ρα : Ω → R+ and ϑα : Ω → [0, 2π) in order to rewrite the
tangent vector �eld ∂χ/∂α to deformed material lines oriented along eα in the reference con�guration as

∂χ

∂x
(x, y) = ρx(x, y) {[cosϑx(x, y)] ex + [sinϑx(x, y)] ey} ,

∂χ

∂y
(x, y) = ρy(x, y) {[cosϑy(x, y)] ey + [sinϑy(x, y)] ex} .

(33)

Thus ρα corresponds to the norm of the tangent vector ‖∂χ/∂α‖ to the deformed material lines directed along eα
in the reference con�guration, and it is referred to as α-stretch. Introducing the normal vector �elds to deformed
material lines directed, respectively, along ex and ey in the reference con�guration(

∂χ

∂x

)
⊥

(x, y) = ρx(x, y) {− [sinϑx(x, y)] ex + [cosϑx(x, y)] ey} ,(
∂χ

∂y

)
⊥

(x, y) = ρy(x, y) {− [sinϑy(x, y)] ey + [cosϑy(x, y)] ex} ,
(34)

being respectively rotated against ∂χ/∂x and ∂χ/∂y about 90◦ in the anti-clockwise direction, it is found that

∂ρx
∂x

(x, y) =
∂χ
∂x (x, y) · ∂

2χ
∂x2 (x, y)

‖∂χ∂x (x, y)‖
,

∂ϑx
∂x

(x, y) =

∂2χ
∂x2 (x, y) ·

(
∂χ
∂x

)
⊥

(x, y)

‖∂χ∂x (x, y)‖2
,

∂ρy
∂y

(x, y) =

∂χ
∂y (x, y) · ∂

2χ
∂y2 (x, y)

‖∂χ∂y (x, y)‖
,

∂ϑy
∂y

(x, y) =

∂2χ
∂y2 (x, y) ·

(
∂χ
∂y

)
⊥

(x, y)

‖∂χ∂y (x, y)‖2
.

(35)

In the following ∂ρα/∂α and ∂ϑα/∂α are called α-stretch α-derivative and material α-curvature, respectively. For Piola's

micro-macro identi�cation the generalized coordinates of the discrete system are related to the functions χ and l̃µνα
evaluated at (xi, yj) = (iε, jε) as

χ(xi, yj) = pi,j , l̃µνα (xi, yj) = l̃µν(i,j),α . (36)

For the asymptotic identi�cation, the energy (32) needs to be expanded in ε. The expansion of χ is given by

χ(xi±1, yj) = χ(xi, yj)± ε
∂χ

∂x
(xi, yj) +

ε2

2

∂2χ

∂x2
(xi, yj) + o(ε2) ,

χ(xi, yj±1) = χ(xi, yj)± ε
∂χ

∂y
(xi, yj) +

ε2

2

∂2χ

∂y2
(xi, yj) + o(ε2) .

(37)

Combining the asymptotic expansion (31) with (36)2, l̃
µν
x (xi±1, yj) = l̃µνx (xi, yj)+o(ε

0) and l̃µνy (xi, yj±1) = l̃µνy (xi, yj)+

o(ε0), yields

lµν(i±1,j),x =
1

2 cos γ
ε+ l̃µνx (xi, yj)ε

2 + o(ε2) ,

lµν(i,j±1),y =
1

2 cos γ
ε+ l̃µνy (xi, yj)ε

2 + o(ε2) .

(38)

In order to further expand (32), the terms θ(i,j),α, ϕ
µS
(i,j),α−ϕ

µD
(i,j),α and ξµ(i,j),α need to be expanded up to �rst order

(see App. 6). For θ(i,j),α according to (71)

θ(i,j),α = ε
∂ϑ(i,j),α

∂α
(xi, yj) + o(ε) . (39)

The di�erences ϕ
1(2)S
(i,j),α − ϕ

1(2)D
(i,j),α are given by (78) as

ϕ
1(2)S
(i,j),α − ϕ

1(2)D
(i,j),α =

4[ρ2
α − (1/2 cos2 γ)](l̃

1(2)S
α − l̃1(2)D

α ) + (1/cos γ)
∂(ρ2

α)
∂α + (2/cos2 γ)(l̃

2(1)D
α − l̃2(1)S

α )

4ρα(1/2 cos γ)
√

(1/cos2 γ)− ρ2
α

∣∣∣∣∣
(x,y)=(xi,yj)

ε+ o(ε) .

(40)
The angles ξµ(i,j),α are given by (80) as

ξµ(i,j),α = cos−1

(
1− ρ2

α

1/2 cos2 γ

)∣∣∣∣
(x,y)=(xi,yj)

+ o(ε0) . (41)
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Substituting (39), (40) and (41) into (32) together with ρα(xi, yj) = ‖ ∂χ∂α‖, the desired expansion of the micro-model

energy Eε is derived as a function of the kinematic descriptors χ and l̃µνα as

Eε =
∑
i,j

∑
α

{
kEε

4

2

[∑
µ,ν

(
l̃µνα
)2

+ o(ε0)

]
+ kS

[
cos−1

(
1− ρ2

α

1/2 cos2 γ

)
− π + 2γ + o(ε0)

]2
}

(x,y)=(xi,yj)

+
∑
i,j

∑
α

kF ε
2

2

[
∂ϑ

∂α
+

4[ρ2
α − (1/2 cos2 γ)](l̃1Sα − l̃1Dα ) + (1/cos γ)

∂(ρ2
α)

∂α + (2/cos2 γ)(l̃2Dα − l̃2Sα )

4ρα(1/2 cos γ)
√

(1/cos2 γ)− ρ2
α

+ o(ε0)

]2

(x,y)=(xi,yj)

+
∑
i,j

∑
α

kF ε
2

2

[
∂ϑ

∂α
+

4[ρ2
α − (1/2 cos2 γ)](l̃2Sα − l̃2Dα ) + (1/cos γ)

∂(ρ2
α)

∂α + (2/cos2 γ)(l̃1Dα − l̃1Sα )

4ρα(1/2 cos γ)
√

(1/cos2 γ)− ρ2
α

+ o(ε0)

]2

(x,y)=(xi,yj)

.

(42)

Let the parameters KE ,KF ,KS > 0 be constants, which do not depend on ε. Then these constants are related to
the sti�nesses of each discrete system with micro length scale ε by a scaling law

kE = KEε
−2 , kF = KF , kS = KSε

2 . (43)

2.4. Bi-pantographic fabrics � macro-model

The continuum limit is now obtained by letting ε→ 0 and considering the sum to turn into an integral according to∑
i,j f(xi, yj)ε

2 ε→0−→
∫

Ω
f dA, where f is a real valued function de�ned on Ω. Using (42) together with the scaling

law (43), the deformation energy for the homogenised macro-model becomes

E =

∫
Ω

∑
α

{
KE

2

[∑
µ,ν

(
l̃µνα
)2]

+KS

[
cos−1

(
1− ρ2

α

1/2 cos2 γ

)
− π + 2γ

]2
}

dA

+

∫
Ω

∑
α

KF

2

[
∂ϑα
∂α

+
4[ρ2

α − (1/2 cos2 γ)](l̃1Sα − l̃1Dα ) + (1/cos γ)
∂(ρ2

α)
∂α + (2/cos2 γ)(l̃2Dα − l̃2Sα )

4ρα(1/2 cos γ)
√

(1/cos2 γ)− ρ2
α

]2

dA

+

∫
Ω

∑
α

KF

2

[
∂ϑα
∂α

+
4[ρ2

α − (1/2 cos2 γ)](l̃2Sα − l̃2Dα ) + (1/cos γ)
∂(ρ2

α)
∂α + (2/cos2 γ)(l̃1Dα − l̃1Sα )

4ρα(1/2 cos γ)
√

(1/cos2 γ)− ρ2
α

]2

dA .

(44)

Considerations on the above derived continuum limit analogous to those made in the previous subsection dealing
with preliminary computations can be invoked. The above deformation energy is objective and discrete �oppy modes
transfer to the continuum after homogenisation. The above deformation energy is vanishing for χ(x, y) = [x+ (ay +
b)x]ex + [y + (cy + d)x]ey [35] when KS = 0. When a = c = d = 0, then χ represents uniform extension, while
when a = c = 0 it describes uniform shear deformation, which is the only non-rigid zero energy deformation mode
for pantographic fabrics, [11]. The derived continuum limit � as for pantographic fabrics � inherits its orthotropicity
from its �bered structure at the micro-scale, i.e. it can be regarded as made by assembling two identical orthogonal
families of (equispaced) parallel discrete pantographic beams. Let us now de�ne the deformation energy density Ψ
as the integrand of (44). For the energy to be stationary, the necessary conditions are obtained by equating to zero
the variation of the deformation energy functional (44) with respect to admissible variations in the independent

kinematic descriptors. First, only the variation with respect to l̃µνα is studied, and results in a linear system of eight

algebraic equations given by ∂Ψ/∂l̃µνα = 0 in which l̃µνα are the unknowns. Introducing the notations

Cα1 =
KF

2KF ρ2
α − 1/4 cos2 γ (KEρ2

α + 8KF )
, Cα2 =

KF

√
1/cos2 γ − ρ2

α

KE(1/4 cos2 γ)ρ2
α − 2KF ρ2

α − 4KE(1/16 cos4 γ)
, (45)

necessary conditions for equilibrium are that

l̃µDα =
1

2 cos γ
ρα

[
∂ρα
∂α

Cα1 + (−1)µ−1 ∂ϑα
∂α

Cα2

]
, l̃µSα =

1

2 cos γ
ρα

[
−∂ρα
∂α

Cα1 + (−1)µ
∂ϑα
∂α

Cα2

]
. (46)
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By substituting the results (46) into (44), a kinematic reduction is performed and results in the deformation energy
functional of the bi-pantographic structure

E =

∫
Ω

∑
α

{
KEKF

[
ρ2
α cos2 γ − 1

ρ2
α cos2 γ (KE − 8KF cos2 γ)−KE

(
∂ϑα
∂α

)2

+
ρ2
α cos2 γ

(1− ρ2
α cos2 γ) [8KF + ρ2

α (KE − 8KF cos2 γ)]

(
∂ρα
∂α

)2 ]
+KS

[
cos−1

(
1− ρ2

α

1/2 cos2 γ

)
− π + 2γ

]2}
dA

(47)

which depends on the placement function χ only. Notice that, besides the term
(
∂χ
∂α

)
⊥
· ∂

2χ
∂α2 being related to the

material α-curvature ∂ϑα
∂α by means of (35), also the term ∂χ

∂α ·
∂2χ
∂α2 appears which in turn is related to the α-stretch

α-derivative ∂ρα
∂α given by equation (35).

A detailed derivation of Euler-Lagrange equations, essential and natural boundary conditions (BC's) as deduced
from stationarity condition for energy functionals of the form

∫
Ω
W (∇χ,∇∇χ)dA � as that in (47) � is beyond the

scope of this paper, and the reader is referred to [46]. However, it is worth recalling that in such a case non-classical
essential normal placement gradient BC's � i.e. prescribing ∇χ(x, y) · n(x, y) = f(x, y) � can be given at boundaries
∂Ωk's � n being the outwards pointing unit normal � and essential placement BC's � i.e. prescribing χ(x, y) = g(x, y)
� can be given at vertices belonging to [∂∂Ω], in addition to classical essential placement BC's at boundaries ∂Ωk.

2.5. Bi-pantographic fabrics � linearisation of deformation energy

Let the vector valued displacement �eld u be de�ned by u(x, y) = χ(x, y)−xex−yey. Then by the Piola's identi�cation
(36) and by the de�nition of nodal displacements ui,j we have u(xi, yj) = ui,j . From Taylor expansions it follows that

ϑx = tan−1

[
∂u

∂x
· ey
/(

1 +
∂u

∂x
· ex
)]

=
∂u

∂x
· ey + o

(∥∥∥∥∂u∂x
∥∥∥∥) = o

(∥∥∥∥∂u∂x
∥∥∥∥0
)
,

ϑy = tan−1

[
∂u

∂y
· ex
/(

1 +
∂u

∂y
· ey
)]

=
∂u

∂y
· ex + o

(∥∥∥∥∂u∂y
∥∥∥∥) = o

(∥∥∥∥∂u∂y
∥∥∥∥0
)
,

(48)

and therefore

∂ϑx
∂x

=
∂2u

∂x2
· ey + o

(∥∥∥∥∂u∂x
∥∥∥∥0
)
,

∂ϑy
∂y

=
∂2u

∂y2
· ex + o

(∥∥∥∥∂u∂y
∥∥∥∥0
)
. (49)

Moreover,

ρx =

[(
1 +

∂u

∂x
· ex
)2

+

(
∂u

∂x
· ey
)2
] 1

2

= 1 +
∂u

∂x
· ex + o

(∥∥∥∥∂u∂x
∥∥∥∥) = 1 + o

(∥∥∥∥∂u∂x
∥∥∥∥0
)
,

ρy =

[(
1 +

∂u

∂y
· ey
)2

+

(
∂u

∂y
· ex
)2
] 1

2

= 1 +
∂u

∂y
· ey + o

(∥∥∥∥∂u∂y
∥∥∥∥) = 1 + o

(∥∥∥∥∂u∂y
∥∥∥∥0
)
,

(50)

and thus

∂ρα
∂α

=
∂2u

∂α2
· eα + o

(∥∥∥∥∂u∂α
∥∥∥∥0
)
. (51)

Hence, the energy (47) rewrites as (see equation (85) in App. A)

E =

∫
Ω

{[
KEKF cos2 γ

(1− cos2 γ) [8KF +KE − 8KF cos2 γ]

] [(
∂2u

∂x2
· ex
)2

+

(
∂2u

∂y2
· ey
)2
]}

dA

+

∫
Ω

{[
KEKF (cos2 γ − 1)

cos2 γ(KE − 8KF cos2 γ)−KE

] [(
∂2u

∂x2
· ey
)2

+

(
∂2u

∂y2
· ex
)2
]}

dA

+

∫
Ω

{∑
α

[4KS cot γ]

(
∂u

∂α
· eα
)2

+ o

(∥∥∥∥∂u∂α
∥∥∥∥2
)}

dA .

(52)

For small strain hypothesis the remainder o(‖∂u/∂α‖2) in equation (52) can be neglected.
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3. Computational aspects

In this section, the problem to be solved is introduced and solution methodologies employed for the macro- and
micro-model are brie�y recalled.

3.1. Boundary value problem (non-standard bias extension test)

A rectangular specimen, i.e. NΩ = 4, with sides L =187 mm × ` =119 mm and ε=12.02 mm is considered, see
Fig. 3. The geometric parameter γ is assumed to be equal to π/6. The following essential boundary conditions are
considered

u(x, y) = 0 at (x, y) ∈ ∂Ω1 , u(x, y) = ūeζ at (x, y) ∈ ∂Ω3, ū ∈ R
[∇u(x, y)]n(x, y) = 0 at (x, y) ∈ ∂Ω1 , [∇u(x, y)]n(x, y) = 0 at (x, y) ∈ ∂Ω3

(53)

which do not entail a �oppy deformation mode. As the displacement �eld u(x, y) is enforced to be constant along
the boundaries ∂Ω1 and ∂Ω3, then [∇u(x, y)]n⊥(x, y) is also vanishing along those boundaries. This, together with
(53)2, implies that

∇u(x, y) = 0 at (x, y) ∈ ∂Ω1 ∪ ∂Ω3 . (54)

Equation (54) is equivalent to

ρα(x, y) = 1 at (x, y) ∈ ∂Ω1 ∪ ∂Ω3 , ϑα(x, y) = 0 at (x, y) ∈ ∂Ω1 ∪ ∂Ω3. (55)

Figure 3. Schematic drawing of the reference domain Ω considered in the boundary value problem
for the macro-model.

To compare the micro- and macro-model, beyond the micro-macro identi�cation (12), the following micro-macro
correspondences � based on neglecting non-leading ε-terms in Taylor expansions of continuum quantities evaluated
at discrete points � shall be taken into account. For stretches and orientations of pantographic beams

ρx (xi, yi)↔
‖pi+1,j − pi,j‖

ε
, ϑx (xi, yj)↔ ϑi,j = tan−1

[
(pi,j − pi−1,j) · ey
(pi,j − pi−1,j) · ex

]
ρy (xi, yj)↔

‖pi,j+1 − pi,j‖
ε

, ϑy (xi, yj)↔ ϑi,j = tan−1

[
(pi,j − pi,j−1) · ex
(pi,j − pi,j−1) · ey

]
.

(56)

In addition, the micro-strains l̃µνα are related by

l̃µνα (xi, yj)↔
lµν(i,j),α

ε
. (57)

The deformation energy density Ψ(x, y), which is the integrand of (47), is compared by the following relation

Ψ(xi, yj)↔ Ψi,j . (58)

The shear angle is compared by the following relation[
π/2− arccos

(
∇χ ex · ∇χ ey
‖∇χ ex‖‖∇χ ey‖

)]
(x,y)=(xi,yj)

↔ π/2− arccos

[
(pi+1,j − pi,j) · (pi,j+1 − pi,j)
‖pi+1,j − pi,j‖‖pi,j+1 − pi,j‖

]
. (59)
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micro-model macro-model

ui,j = 0 for all (i, j) s.t. (xi, yj) ∈ ∂Ω1 u(x, y) = 0 for all (x, y) ∈ ∂Ω1

ui,j = ūeζ for all (i, j) s.t. (xi, yj) ∈ ∂Ω3 u(x, y) = ūeζ for all (x, y) ∈ ∂Ω3

ui+1,j = ui,j for all (i, j) s.t. (xi, yj) ∈ ∂Ω1 [∇u(x, y)]n(x, y) = 0 for all (x, y) ∈ ∂Ω1 ∪ Ω3

ui,j+1 = ui,j for all (i, j) s.t. (xi, yj) ∈ ∂Ω1

ui−1,j = ui,j for all (i, j) s.t. (xi, yj) ∈ ∂Ω3

ui,j−1 = ui,j for all (i, j) s.t. (xi, yj) ∈ ∂Ω3

Table 1. Boundary conditions for micro- and macro-model.

Last, in an analogous fashion the following micro-macro correspondences are de�ned on boundaries

∂u

∂x
(xi, yj)↔

ui+1,j − ui,j
ε

and
∂u

∂y
(xi, yj)↔

ui,j+1 − ui,j
ε

for all (xi, yj) ∈ ∂Ω1

∂u

∂x
(xi, yj)↔

ui,j − ui−1,j

ε
and

∂u

∂y
(xi, yj)↔

ui,j − ui,j−1

ε
for all (xi, yj) ∈ ∂Ω3

(60)

which, together with Piola's micro-macro identi�cation (36), are used to establish a correspondence between boundary
conditions (53) for the continuum model and those for the discrete one. Such a correspondence is reported in Tab. 1.

3.2. Macro-model � Finite Element formulation

A mixed �nite element formulation is adopted for the solution of the macro-model. Let us de�ne the following
augmented energy functional

Ẽ =

NΩ∑
k=1

∫
∂Ωk

∑
α

{
µα · [(∇u−M)n⊥]

}
dA+

∫
Ω

∑
α

{
λα ·

(
Meα −

∂u

∂α

)
+KEKF

[
(ρ2
α cos2 γ − 1)[κα(M)]2

ρ2
α cos2 γ (KE − 8KF cos2 γ)−KE

+
(ρ2
α cos2 γ)[ια(M)]

(1− ρ2
α cos2 γ) [8KF + ρ2

α (KE − 8KF cos2 γ)]

]
+KS

[
cos−1

(
1− ρ2

α

1/2 cos2 γ

)
− π + 2γ

]2}
dA

+

∫
∂Ω1∪∂Ω3

(η · [∇u]n)dl +

∫
∂Ω1

(γ · u) dl +

∫
∂Ω3

[υ · (u− ūeζ)] dl .

(61)
where M is an independent auxiliary �eld that is weakly enforced by Lagrange multipliers µα and λα to be equal to
∇u [47], and

κx(M) =
∂(Mex)
∂x · [(1 + ∂u

∂x · ex,
∂u
∂x · ey)T]⊥

‖(1 + ∂u
∂x · ex,

∂u
∂x · ey)T‖2

, ιx(M) =
∂(Mex)
∂x · (1 + ∂u

∂x · ex,
∂u
∂x · ey)T

‖(1 + ∂u
∂x · ex,

∂u
∂x · ey)T‖

κy(M) =

∂(Mey)
∂y · [(1 + ∂u

∂y · ey,
∂u
∂y · ex)T]⊥

‖(1 + ∂u
∂y · ey,

∂u
∂y · ex)T‖2

, ιy(M) =

∂(Mey)
∂y · (1 + ∂u

∂y · ey,
∂u
∂y · ex)T

‖(1 + ∂u
∂y · ey,

∂u
∂y · ex)T‖

(62)

are α-curvature (κα) and α-stretch α-derivative (ια) expressed in terms of only �rst spatial derivatives of the inde-
pendent �elds u and M . In such a way, the deformation energy (47) can be transformed into an augmented energy
functional written in terms of �rst spatial derivatives of the independent kinematic quantities. The discretisation of
these quantities by the �nite element method to solve the stationarity condition of such augmented energy functional
does not require C1-continuous shape functions like those needed to solve the stationarity condition for the energy
(47) in terms of the only unknown �eld u. Let Ψ̃ be the argument of integration over Ω in (61). Let Ψ̃k be the
argument of integration over ∂Ωk in (61). From the stationarity condition for the energy (61) is determined the weak
form

0 =
∑
α

NΩ∑
k=1

∫
∂Ωk

[
∂Ψ̃k

∂ (∂u/∂α)
· δ
(
∂u

∂α

)
+

Ψ̃k

∂(Meα)
· δ(Meα) +

∂Ψ̃k

∂µα
· δµα

]
dl

+
∑
α

∫
Ω

[
∂Ψ̃

∂ (∂u/∂α)
· δ
(
∂u

∂α

)
+

∂Ψ̃

∂(Meα)
· δ(Meα) +

∂Ψ̃

∂λα
· δλα

]
dA+

NΩ∑
k=1

∫
∂Ωk

[
∂Ψ̃k

∂η
· δη +

∂Ψ̃k

∂γ
· δγ +

∂Ψ̃k

∂υ
· δυ

]
dl

(63)
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where δ(·) denotes the kinematically admissible variation of (·), which can then be solved numerically by a �nite
element code. The weak form package of the software COMSOL Multiphysics, which implements standard �nite ele-
ment techniques [48, 49], was used for the discretisation and the subsequent solution procedure. Essential boundary
conditions in equation (53) were not encoded within the basis functions but enforced by additional Lagrange multi-
pliers (i.e. ηα, γ and υ in equation (61)). In such a mixed formulation, normal displacement gradient line-boundary
conditions (53)2 are enforced in terms of the auxiliary �eld M , while displacement line-boundary conditions (53)1
are enforced in terms of the �eld u. Quadratic Lagrangian polynomials were used as basis functions for the �elds
χ and M . All Lagrange multiplier �elds were discretised by linear Lagrange polynomials. The mesh was Delaunay
tessellated with maximum diameter size equal to 8.45 mm (see Fig. 3). Energy convergence of the solutions was
successfully checked for the mesh-size tending to 0. Solution of each step � i.e. for each ū � was initialized by the
solution of the previous one, considering for ū a constant step-size ∆ū equal to 1 mm.

4. Materials and methods

4.1. Manufacturing

Specimens were 3D-printed using a Selective Laser Sintering (SLS) procedure. Polyamide powder was used as raw
material. Possible use of metallic powders is to be investigated [50, 51, 52]. A picture obtained by optical microscopy
showing the granularity of the printed Polyamide is presented in Fig. 4. Modelling at lower scales taking into account
such a granular structure [53, 54, 55, 56] might be considered in future investigations.

Figure 4. Micrograph of a monolithic slender element of the prototype showing granularity of
printed Polyamide.

All specimens were designed in SolidWorks Computer Aided Design (CAD) software by sketching 2D pro�les
and then using methods like extruding and lofting in order to produce solid shapes, see the technical drawings in Figs.
5, 6 and 10 (right). A full top-view of the manufactured specimen is shown in Fig. 7. The blue/red rotational springs
in Fig. 2(c) and the adjacent extensional ones are fabricated as a whole by means of monolithic slender elements
that are meant to predominantly bend (rotational spring) and (to a lesser extent) extend (extensional springs) in
plane. Such elements are combined at extreme points by cylinders, which are meant to reproduce the green rotational
springs of Fig. 2(c) by mainly twisting, and at middle points by hinge connections. They are shown in Fig. 8 (actual
manufacturing on the left � A � and CAD modelling on the right � B). As assumed above, the angle γ is equal to
π/6, see Fig. 10 (right).

Each pantographic beam is made of two families of monolithic slender elements forming an angle 2γ and lying
onto two di�erent parallel planes. The two families of pantographic beams (whose centrelines form an angle of 90◦)
lying onto two di�erent planes are hinge connected at intersection points, which is at the mid-point of the monolithic
slender elements. The structure is then doubled in the out-of-plane direction by re�ection to avoid noticeable out-
of-plane movements, making it symmetric with respect to its middle plane, see Fig. 5 (bottom). Hinge axes are
monolithic elements running through the full out-of-plane length of the structure.

Hard-device conditions given in row three and six of Tab. 1 are obtained by connecting the adjacent hinge axes
in proximity of the gripping areas, see Fig. 9, with stocky rhomboidal elements, meant to be rigid with respect to
other elements of the specimen for the considered load range.

4.2. Testing and data acquisition

An MTS Tytron 250 testing-device was used for the experiments. The total reaction-force was measured by a device-
own load cell, which is able to record axial forces in a range of ±250 N with an accuracy of 0.2 percent. Increasing
displacements were prescribed horizontally on the right side of the specimen with a loading rate of 15 mm/min. The
cross-head displacement was measured and monitored by a device-own encoder unit. Almost frictionless movement of
the machine shaft was achieved by using an air-�lm-bearing. External vibrations were avoided by placing the system
on a massive concrete-substructure. Pictures of the surface during deformations were taken (0.5 pictures/second) by
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Figure 5. Technical drawing of the designed bi-pantographic prototypes. Top-view (top) and pro�le
view (bottom). All lengths are expressed in mm.

Figure 6. Section A-A indicated in Fig. 5 (bottom). All lengths are expresses in mm.

means of a Canon EOS 600D camera with a de�nition of 4272×2848 pixels. Each picture was synchronized with
the recorded force-displacement data in real time. Regarding frictional dissipation due to PA2200 powder stuck in
hinges, four loading-unloading cycles were performed for maximum prescribed displacements equal to 10 mm, 20
mm, 30 mm, 40 mm, and 50 mm, respectively. No out-of-plane movements of the specimen was observed. For all
cycles, residual (negative compression) total reaction force following unloading was less than two percent of the total
reaction force peak. Fig. 10(A) shows a picture of the deformed specimen.

4.3. Digital Image Correlation

The kinematic results described in the sequel were obtained via Digital Image Correlation (DIC). Digital Image
Correlation consists in measuring displacement �elds by registering pictures acquired during mechanical tests [57,
58, 59]. Various approaches have been introduced, namely, local (i.e. subset-based) analyses [60, 61, 62], and global
(e.g. �nite element based) techniques [63, 64, 65]. When dealing with pantographic structures, �nite element based
analyses have recently been performed at macroscopic [66] and mesoscopic scales [67]. In the present case, the sought
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Figure 7. Full top-view of bi-pantographic prototype manufactured according to the technical
drawings in Figs. 5, 6 and 10 (right).

(a) (b)

Figure 8. Manufactured specimen (A) and CAD design (B). Zoomed view of 1. monolithic slender
elements corresponding � by means of bending and extension � to blue/red rotational springs and to
the adjacent extensional springs of Fig. 2(c) (black arrows), 2. cylinders materialising � by means of
torsion � the green rotational springs of Fig. 2(c) (green arrow), and 3. hinges connecting monolithic
slender elements at middle points (red arrow).

kinematics corresponds to the in-plane displacements of the hinges at positions pi,j of the bi-pantographic structure.
The analysis of the displacement of these discrete points is performed via local DIC, i.e. using zones of interest or
ZOIs [68] centred on each hinge. The simplest approach seeks the rigid body translation of each considered ZOI, as
originally performed in particle image velocimetry [69, 70, 71, 72, 73]. Let f and g be the initial and current gray
level images, respectively. For each ZOI, the correlation product

T (u) = Argmaxυ
∑
ZOI

f(x, y)g(x+ υ · ex, y + υ · ey) (64)

is maximized with respect to the rigid body translations υ ∈ R2. The computation of the correlation product can
be performed in Fourier space (thanks to the shift/modulation property) via FFTs to speed up the calculations [74].
No subpixel resolution [68] was sought in the present case since the expected displacements were very large when
expressed in terms of pixels. Further, to account for the local angular variations between the beams connected by
the hinges, the DIC calculations were performed incrementally, namely, for a series of pictures, the deformed picture
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(a) (b)

Figure 9. Realization of boundary conditions listed in Tab. 1. Manufactured specimen (A) and
zoomed view of its CAD design (B).

(a) (b)

Figure 10. Deformed specimen (A) and zoomed view (B) of the top-left corner of Fig. 5 (top).

of the n-th registration step becomes the reference picture of the n+ 1-th step, and the corresponding displacement
increment is cumulated with the previous ones to provide a Lagrangian estimation of the hinge displacements. Last,
for each analysis, two passes were performed. The �rst one used a rather large ZOI size (i.e. 100×100 pixels) to get
a robust �rst estimate. The second one utilised a smaller size (i.e. 50×50 pixels) to focus on the kinematic analysis
about each hinge.

5. Results

The focus of this section is to present results obtained by the continuum model, and discuss how much they deviate
from the experimental data. Owing to symmetry arguments (i.e. D4 [3] symmetry with respect to pantographic beam
directions, symmetry of the specimen and boundary conditions with respect to specimen's axes) it is concluded that
the following symmetries should be ful�lled by the continuum solution (analogous statements can be done for the
discrete one) with the notation g(ζ, ς) standing for g[x(ζ, ς), y(ζ, ς)]

ϑy(ζ, ς) = ϑx(ζ, `− ς), ρy(ζ, ς) = ρx(L− ζ, ς)
ρy(ζ, ς) = ρx(ζ, `− ς), ϑy(ζ, ς) = ϑx(L− ζ, ς)

(65)

and

ϑy(ζ, ς) = ϑy(L− ζ, `− ς), ρy(ζ, ς) = ϑy(L− ζ, `− ς) . (66)
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As in the considered problem either 0 < ϑx(x, y) < π/2 and −π/2 < ϑy(x, y) < 0 or 0 < ϑy(x, y) < π/2 and
−π/2 < ϑx(x, y) < 0 � this can be seen a posteriori by looking at Fig. 14) � then the shear angle, which is null in the
undeformed con�guration and objective, is written in an easier way as π/2 − |ϑx| − |ϑy|. An analogous observation
holds for the micro-model.

The maximum prescribed displacement ū directed along ζ is equal to 50 mm. Parameters for the continuum
(KF , KE and KS) were found by �tting three-curves (see Fig. 11 and cf. also [11] where the same quantities �
although de�ned for pantographic fabrics � were used for �tting). The �rst one (Fig. 11 (left)) is the total reaction
force along the direction ζ (determined by the load cell of the testing machine) vs ū (determined by the machine
encoder unit). The second one (Fig. 11 (centre)) is the shear angle at pt. A (determined by DIC, see Fig. 3) vs ū.
Finally, the third one (Fig. 11 (right)) is the shear angle at pt. B (determined by DIC, see Fig. 3) vs ū. The total
reaction force acting on Ω3 has been found for the continuum model by means of Castigliano's Theorem.

In order to check that computed Lagrange multipliers were consistent with the reaction force found by such
a theorem, i.e. with energy conservation, one can compute the total reaction force acting on Ω3 with the Lagrange
multipliers as

−
∫

Ω3

υ · ζ dl. (67)

This fact holds true for the numerical solution. Figure 12 compares the total reaction force along the direction ζ � as
computed by the continuum model using Lagrange multipliers and Castigliano's theorem � vs ū. The forward �nite
di�erence approximation of ∂E/∂ū was computed with a step size for ū equal to ∆ū =1 mm. It is concluded that,
up to �nite di�erence discretization errors, the results obtained with the two methodologies are consistent. Owing
to symmetry arguments, the total reaction force along the direction ς as computed with Lagrange multipliers should
be cancelling out. Also this fact holds true for the numerical solution.
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Figure 11. Total reaction force along the direction ζ with changed sign (N) vs prescribed displace-
ment ū (mm) along the direction eζ (left), shear angle at pt. A (◦) vs prescribed displacement ū
(mm) along the direction eζ (centre), and shear angle (◦) at pt. B vs prescribed displacement ū
(mm) along the direction eζ (right).

The �tted values of the parameters for the continuum model are KF = 0.9 J, KE = 0.33 J, KS = 34 N·m−1.
Hence, the continuum model is capable to describe the considered experimental curves with only three constitutive
parameters. The computed deformed con�guration, i.e. χ(xi, yj), is compared for di�erent prescribed ū levels with
experimentally measured data in Fig. 13. It is seen that experimental measurements by DIC and the continuum
model agree very well. Experimental data, unlike the continuum model, exhibit a non-symmetry which is especially
evident for ū = 40 mm and ū = 50 mm on the left. It is worth noting that only the use of homogenisation starting
from a discrete model � with a target model not chosen a priori � allows such complex deformation energy to be
recovered. The underlying family of discrete systems does not only lead to the deformation energy but also allows
for a clear interpretation of non-standard boundary conditions that appear in this formulation.

Contour plots of the y-stretch ρy are shown in Fig. 14 for the continuum model. Figure 14 shows that the stretch is
remarkably non-localized. This is due to pantographic beams being complete second gradient continua.

Let us quantify the sensitivity of the numerical simulation with respect to the application of non-standard zero
normal displacement gradient boundary condition [∇u(x, y)]n(x, y) = 0 on Ω1 ∪Ω3. In Fig. 15, the quantities ρy and
ϑy are plotted as functions of the local abscissa Φ of the boundary Ω1 for the continuum model in both cases when
zero normal displacement gradient boundary conditions are enforced and when they are not (ū = 50 mm). Especially



Large in plane elastic deformations of bi-pantographic fabrics 19

0 10 20 30 40 50
displacement

0

5

10

15

20

25

re
a
ct

io
n

fo
rc

e

Lagrange Castigliano

Figure 12. Total reaction force along the direction ζ with changed sign (N) vs ū (mm) as computed
by the continuum model using Lagrange multipliers and Castigliano's theorem. The forward �nite
di�erence approximation of ∂E/∂ū has been computed with a step size for ū equal to ∆ū =1 mm.
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Figure 13. The deformed con�guration as computed by the continuum model, i.e. χ(xi, yj), is com-
pared for di�erent applied ū with experimental measurements. Abscissas and ordinates are expressed
in mm.

in the vicinity of vertices of the domain Ω, the solution is strongly sensitive to the application of non-standard
boundary conditions.
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(a) (b)

Figure 14. y-stretch ρy as computed by the continuum model. Abscissas and ordinates are ex-
pressed in mm.
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Figure 15. Plots of ρy (left) and of ϑy (◦, right) vs the local abscissa Φ (m) of the boundary Ω1

for continuum modelling when ū = 50 mm. The (arc-length) abscissa Φ is introduced in Fig. 3.

6. Conclusion and outlook

Bi-pantographic fabrics proved to have an extremely wide elastic range. This is possible because in such structures
the total deformation is much greater than single-elastic-element deformations. Compatibly with boundary conditions
and internal connection constraints, the elements arrange so as to minimize the total deformation energy by mimicking
the wide variety of mechanisms corresponding to �oppy modes.

Some future outlooks of the present work are

• designing, experimenting and analysing a bi-pantographic system obeying the discrete model with kS = 0, which
would mean that all cylinders connecting slender monolithic elements would be replaced by hinges, giving a
purely second gradient material at macro-scale
• studying the dynamics of bi-pantographic fabrics, which could be done by exploiting the results already obtained
for pantographic beams [75]
• studying out-of-plane deformations [76] of such metamaterials.

Acknowledgements. Authors thank P. Seppecher, G. Ganzosch and T. Lekszycki for stimulating discussions.

Appendix A

The terms θi and ϕ
µS
i − ϕ

µD
i are expanded up to �rst order by using the de�nitions (1) and (3) together with the

expansions (13) and (14). According to (12) and (13) the vectors between two adjacent points pi are

pi+1 − pi = ε
[
χ′(si) +

ε

2
χ′′(si) + o(ε)

]
, pi − pi−1 = ε

[
χ′(si)−

ε

2
χ′′(si) + o(ε)

]
. (68)



Large in plane elastic deformations of bi-pantographic fabrics 21

The arguments of tan−1 in (3) are written as functions of ε

hi+1(ε) =
(pi+1 − pi) · ey
(pi+1 − pi) · ex

(68)1=
χ′(si) · ey + ε

2χ
′′(si) · ey + o(ε)

χ′(si) · ex + ε
2χ
′′(si) · ex + o(ε)

,

hi(ε) =
(pi − pi−1) · ey
(pi − pi−1) · ex

(68)2=
χ′(si) · ey − ε

2χ
′′(si) · ey + o(ε)

χ′(si) · ex − ε
2χ
′′(si) · ex + o(ε)

.

(69)

It is noted that hi(0) = hi+1(0) = [χ′(si) · ey] / [χ′(si) · ex]. Moreover

h′i+1(0) = −h′i(0) =
1

2[χ′ · ex]2
[(χ′′ · ey)(χ′ · ex)− (χ′′ · ex)(χ′ · ey)]

∣∣∣∣
s=si

=
1

2[χ′ · ex]2
χ′′ · (ey ⊗ ex − ex ⊗ ey) · χ′

∣∣∣∣
s=si

=
χ′′(si) · χ′⊥(si)

2 [χ′(si) · ex]
2 .

(70)

For a real valued function h(ε), tan−1(h(ε)) = tan−1(h(0)) + h′(0)
1+h(0)2 ε + o(ε). Since hi(0) = hi+1(0), the �rst terms

in the Taylor series of both tan−1 expressions in (3) coincide

θi =

[
1

1 + hi+1(0)2
h′i+1(0)− 1

1 + hi(0)2
h′i(0)

]
ε+ o(ε)

(70)
=

1

1 +
[
χ′(si)·ey
χ′(si)·ex

]2 χ′′(si) · χ′⊥(si)

[χ′(si) · ex]
2 ε+ o(ε)

=
χ′′(si) · χ′⊥(si)

‖χ′(si)‖2
ε+ o(ε)

(11)
= ϑ′(si)ε+ o(ε) .

(71)

For the expansion (1), it is required to perform the expansion of the norm of a vector valued function a(ε), i.e.

‖a(ε)‖ = ‖a(0)‖+ a(0)·a′(0)
‖a(0)‖ ε+ o(ε). Taking a(ε) to be the expansions appearing in the squared brackets of (68) and

considering that ρ(s) = ‖χ′(s)‖,

‖pi±1 − pi‖ = ε

[
‖χ′(si)‖ ±

χ′(si) · χ′′(si)
‖χ′(si)‖

ε

2
+ o(ε)

]
= ε

[
ρ(si)± ρ′(si)

ε

2
+ o(ε)

]
. (72)

Consequently, the expansion of the squared expression of (72) reads

‖pi±1 − pi‖2 = ε2
[
‖χ′‖2 ± (χ′ · χ′′)ε+ o(ε)

]
s=si

= ε2
[
ρ2 ± ρρ′ε+ o(ε)

]
s=si

. (73)

Using (14), (72) and (73) in the argument of cos−1 of (1)1,2,

h1D(S)(ε) =
ε2
[
ρ2 − ρρ′ε+ ε(1/cos γ)(l̃1D(S) − l̃2S(D)) + o(ε)

]
2ε2
[

1/2 cos γ + l̃1D(S)ε+ o(ε)
] [
ρ− ρ′ ε2 + o(ε)

]
∣∣∣∣∣∣
s=si

=
ρ2 + ε

[
(1/cos γ)(l̃1D(S) − l̃2S(D))− ρρ′

]
+ o(ε)

(1/cos γ)ρ+ ε
[
2l̃1D(S)ρ− (1/2 cos γ)ρ′

]
+ o(ε)

∣∣∣∣∣∣
s=si

.

(74)

Similarly, the expansions of the arguments of cos−1 appearing in (1)3,4 read

h2S(D)(ε) =
ρ2 + ε

[
(1/cos γ)(l̃2S(D) − l̃1D(S))− ρρ′

]
+ o(ε)

(1/cos γ)ρ+ ε
[
2l̃2S(D)ρ− (1/2 cos γ)ρ′

]
+ o(ε)

∣∣∣∣∣∣
s=si

. (75)

All functions are of the form hµν(ε) = [a+ εbµν + o(ε)] / [c+ εdµν + o(ε)] with hµν(0) = a/c and (hµν)′(0) =
(bµνc− dµνa)/c2. The angles ϕµνi are thus expanded as

ϕµνi = cos−1 [hµν(0)]− ε√
1− hµν(0)2

(hµν)′(0) + o(ε) . (76)
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Expanding ϕµSi − ϕ
µD
i with the help of (76), the �rst term thereof cancels. Inserting the derivative with respect to

ε evaluated at ε = 0 of (74) and (75)1,

ϕ1S
i − ϕ1D

i =
ρ2(l̃1S − l̃1D) + (1/2 cos γ)ρρ′ − (1/2 cos2 γ)(l̃1S − l̃1D + l̃2S − l̃2D)

ρ(1/2 cos γ)
√

2
√

(1/cos2 γ)−ρ2

2

∣∣∣∣∣∣
s=si

ε+ o(ε)

=
ρ[ρ2 − (1/2 cos2 γ)](l̃1S − l̃1D) + (1/2 cos γ)ρ2ρ′ + ρ(1/2 cos2 γ)(l̃2D − l̃2S)

ρ2(1/2 cos γ)
√

2
√

(1/cos2 γ)−ρ2

2

∣∣∣∣∣∣
s=si

ε+ o(ε) . (77)

In the same manner the expansion for the di�erence in angles of the oblique springs indexed by µ = 2 is obtained.
Moreover, the previous expressions are simpli�ed to give

ϕ
1(2)S
i − ϕ1(2)D

i =
4[ρ2 − (1/2 cos2 γ)](l̃1(2)S − l̃1(2)D) + (1/cos γ)(ρ2)′ + (2/cos2 γ)(l̃2(1)D − l̃2(1)S)

4ρ(1/2 cos γ)
√

(1/cos2 γ)− ρ2

∣∣∣∣∣
s=si

ε+ o(ε) (78)

which, for γ = π/6, becomes

ϕ
1(2)S
i − ϕ1(2)D

i =

√
3(ρ2 − 2/3)(l̃1(2)S − l̃1(2)D) + ρρ′ + 2/

√
3(l̃2(1)D − l̃2(1)S)

ρ
√

4/3− ρ2

∣∣∣∣∣
s=si

ε+ o(ε) . (79)

Using (14), (72) and (73) in the argument of cos−1 of (2), we can compute

h1(2)(ε) =

(
l
1(2)D
i

)2
+
(
l
2(1)S
i+1

)2 − ‖pi+1 − pi‖2

2l
1(2)D
i l

2(1)S
i+1

=
ε2
[

1/2 cos2 γ − ρ2 + ρρ′ε+ ε(1/cos γ)(l̃1(2)D + l̃2(1)S) + o(ε)
]

2ε2
[

1/2 cos γ + l̃1(2)Dε+ o(ε)
] [

1/2 cos γ + l̃2(1)Sε+ o(ε)
]
∣∣∣∣∣∣
s=si

=
1/2 cos2 γ − ρ2 + ε

[
ρρ′ + (1/cos γ)(l̃1(2)D + l̃2(1)S)

]
+ o(ε)

1/2 cos2 γ + ε(1/cos γ)(l̃1(2)D + l̃2(1)S) + o(ε)

∣∣∣∣∣∣
s=si

.

(80)

The angles ξ1 and ξ2 are thus expanded as

ξµi = cos−1 [hµ(0)] + o(ε0) = cos−1

(
1− ρ2

1/2 cos2 γ

)∣∣∣∣
s=si

+ o(ε0) . (81)

Thus, for γ = π/6,

ξµi = cos−1

(
1− 3

2
ρ2

)∣∣∣∣
s=si

+ o(ε0) . (82)

For the expansion of

KS

[
cos−1

(
1− ρ2

α

1/2 cos2 γ

)
− π + 2γ

]2

(83)

in (47) with respect to ∇u required to get equation (52), equation (50) is inserted into the following

a

{
cos−1

[
1− (x+ 1)2

1/2 cos2 b

]
+ 2b− π

}2

= [4a cot b]x2 + o(x2) (84)

with a, b ∈ R to get

KS

[
cos−1

(
1− ρ2

α

1/2 cos2 γ

)
− π + 2γ

]2

= [4KS cot γ]

(
∂u

∂α
· eα
)2

+ o

(∥∥∥∥∂u∂α
∥∥∥∥2
)
. (85)
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