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White-box cryptography (WBC) for secure pseudorandom permutations (block ciphers) is known as an unsolved long-standing open problem in the cryptographic community, with tremendous real world applications. The most fundamental security notion in WBC is unbreakability (UBK), which guarantees hardness in extracting the embedded secret keys from software implementations of cryptographic primitives running in untrusted environments. In this work we build a compiler, taking a secret key for the block cipher as input, and outputting an UBK-secure implementation. Our starting point explores the ways of attaining such implementations from decomposable functional encryption. Our final construction relies solely on representing functions as branching programs and then post-processing them through randomized encodings. We stress that decomposability plays a fundamental role in ensuring that the block cipher can be evaluated in any specific input. The cost associated to decomposability is reflected in a more convoluted security argument. The one proposed herein relies on the presumed hardness of solving systems of multivariate polynomial equations over finite fields (GF(2)). To the best of our knowledge, such a problem is not known to be tackled by any practical or theoretical, classical or quantum adversaries.

Introduction

White-Box Cryptography. A significant gap exists between the black-box model in which cryptographic constructions are proved and the level of security they achieve when deployed "in the wild" [Koc96,KJJ99]. Far away from the "marsupial pouch" offered by the black-box model, a scheme can be investigated via side-channel attacks, where an attacker closely inspects the internal states of the algorithm. Most of the time, such techniques have dreadful consequences. In the worst case, an adversary fully controls the execution environment, making the implementation the last line of defense. White-box cryptography, firstly proposed in [CEJv03] is then suggested to resolve this practical threat. However, the cryptographic community has failed to work a decent solution out. In other words, considering the reference standard in the field of block-ciphers -the AES -no white-box implementation is known. Similar techniques of tracing the power consumption or inspecting how the internal states of an algorithm evolve, can be mounted against other primitives such as signature schemes or public-key decryption. This bolsters the view that white-box security is a must-have feature for applications using sensitive information.

In our work, we target the notion of unbreakability (UBK), formalized in [DLPR14], as the prime notion that captures the ability of an adversary to extract a secret key given physical access to an implementation.

Functional Encryption. Functional encryption (FE) [O'N10,BSW11

] is one of the most appealing cryptographic primitives, as it offers "surgical" access over encrypted data. Traditionally, cryptographic schemes have been constructed in the "all-or-nothing" paradigm -the decryption either recovers the entire plaintext or returns nothing. This view is challenged in the functional encryption setting: a datum M is encrypted under a master key1 , while functional keys sk f are issued for f in some supported class of functions F λ . The possessor of sk f learns f (M) from the encryption of M , and (ideally) nothing else on M. Originally proposed in the public-key setting, FE generalizes on a beautiful sequence of primitives, starting with public-key cryptography itself [DH76], continuing to identity-based encryption2 [Sha84] and ending up with more advances primitives such as attribute-based encryption [GPSW06].

With respect to the encryption setting, we distinguish between: (1) FE schemes in the public-key paradigm, where everybody can encipher his/her data and (2) FE schemes in the private-key setting, where the data are encrypted by the authority in charge of the master secret key msk. In terms of the number of supported inputs, we classify FE as being (1) single input (as originally specified [BSW11,O'N10]) or (2) multi-input [GGG + 14], where functions of the form f (M 1 , . . . , M n ) are supported. Regarding the ability of hiding the functions, FE can be further classified as (1) function revealing (see for instance the particular case of inner-product FE in [BBL17]) or (2) function-hiding, where sk f should not leak information about f [BS15].

The current status-quo on building FE is split on two major streams: on one hand, there are works that focus on building FE for general classes of circuits [GKP + 13,Agr17,AR17] but relying on a heavy cryptographic machinery, ending up with highly impractical schemes; on the other hand, efficient constructions have been proposed for simple primitives, such as the inner-product [ALS16] or quadratic [Lin17,AR17] functions.

The range of applications of FE is unmatched by any other existing cryptographic primitive. We highlight how to use FE to provide solutions to the following problems, exhibiting both practical and theoretical significance:

• Searching over encrypted data -allows a user to deploy its documents on a storage cloud in an encrypted format and retain his/her ability to check if some keywords belong to an encrypted document. This technique has a powerful impact in reducing the trust in third-parties (i.e. the cloud service provider). As one can easily remark, functional encryption can be employed in performing such searches by issuing functional keys for circuits implementing a search procedure over plaintexts. • Achieving i O . Certain types of functional encryption are known to imply indistinguishability obfuscation (i O )

[BGI + 01]. For instance, building a multi-input functional encryption scheme in the public key setting is known to imply i O [GGG + 14] as well as building an FE scheme with compact ciphertexts [AJ15,BV15]. On the other hand, i O itself is known to imply functional encryption, as stated in the seminal paper of Garg et al. [GGH + 13b].

Our Result and the Techniques Employed

The bulk of our paper consists in achieving unbreakability for block ciphers through the means of branching programs. We first investigate if UBK can be achieved from existing, stable primitives, such as functional encryption for general circuits. The crux point is to take advantage of the features enabled by FE: (1) an adversary is given a ciphertext and a functional key; (2) from the security of functional encryption, we expect an adversary to perform both theoretical and practical attacks on the data (bit-strings) it receives;

(3) FE uses a public decryption algorithm in order to determine the value of function f on the plaintext. A core idea is to use an FE scheme supporting general circuits while replacing f with the circuit of the desired permutation (block-cipher). We give an overview of the techniques employed to achieve our result in what follows.

Decomposable Functional Encryption. Several instantiations of functional encryption schemes exhibit an extra property, dubbed decomposability. Imagine that the plaintext M is split into n bits3 . If the encryption algorithm obtains a ciphertext C = {C 1 , . . . , C n } where each C i encrypts a single bit M i of plaintext, in isolation from all M j =i , we say that the ciphertext is decomposable. Such a construction, -we are only interested in the simper version targeting NC 1 circuits -has been put forward in the work of Agrawal and Rosen [AR17] (herein named as AR17)

assuming the hardness of the decisional RLWE problem [LPR13]. Their construction resembles a levelled fullyhomomorphic encryption scheme (FHE) [BV11] and encrypts each bit of the plaintext, independently, as follows:

• first multiplication level -the ciphertext consists of:

C 1 i ← a • s + p 0 • e + M i ∈ R p 1
where M i ∈ R p 0 and s ←$ R p 1 while e ←χ R p 1 ; a ∈ R p 1 is provided through public parameters.

• for the second multiplication level, two ciphertexts are obtained

a • s + p 1 • e +C 1 ∈ R p 2 and a • s + p 1 • e + (C 1 • s) ∈ R p 2 .
The computational pattern is repeated recursively up to d multiplication levels (d is the depth of the circuit representing f ), and then for every bit of the input.

• between any two multiplication layers C i and C i +1 , an addition layer is interleaved: it "duplicates" the ciphertexts in C i and uses its modulus p i .

• the public key (the "a"s) corresponding to the last layer are also the master public key mpk of a linear functional encryption scheme Lin-FE.

• the decryptor will compute f obliviously over the ciphertext, layer by layer, finally obtaining:

C f (x) = f (x) + noise + (sk f -dependent term)
and use its functional key sk f to recover f (x) (after removing the noise).

The First Attempt -A Direct Compiler from Decomposable FE. As it can be easily observed (and also stated in AR17), such a scheme achieves decomposability. A natural compiler would produce implementations consisting of: (1) ciphertexts corresponding to k;

(2) ciphertexts corresponding to pairs (0, 1) obtained under the same terms a, which can simulate the message space. A simple description is provided in Figure 1.

k: 1 2 • • • 127 128 1 0 • • • 1 0 M : 1 2 • • • 127 128 0 0 • • • 0 0 1 1 • • • 1 1
Fig. 1. Ciphertexts are provided for the bits of the key k, as well as for each of the bits in the binary decomposition of the message.

For ease of exposition, we assume both the key and the message are 128-bits long, with M = (0, 1, . . . , 0, 0).

Evaluating f (k, M) in this setting consist of selecting the correct ciphertexts and running the decryption procedure on the ciphertexts corresponding to k and M. The fact that the randomness terms a are re-used entails the use of a single functional key. Unfortunately, as explained in Section 5, we cannot obtain a natural compiler directly on top of such an FE scheme, as it leads to key-extraction attacks. This is caused by the structure of ciphertext in AR17. We still present the idea of our natural compiler in detail, and point out that several other candidates, such as the SHE in [JLS19] may provide an alternative ( and thus a compiler with smaller size than our final candidate).

The Second Attempt -Randomized Encodings for Branching Programs. Still, we intend to use decomposability in conjunction with branching programs. Roughly speaking, we slightly post-process the adjacency matrix G M of a branching program BP and left-right multiply it with random matrices such that d et

(L • G M • R) = BP(M). The crux idea is to decompose each entry of L•G M •R into sums of M i -
dependent monomials, and encrypt these sums under a decomposable FE scheme. Based on this observation, we now state the following result:

Theorem 1 (Informal). Assuming the hardness of particular systems of multivariate degree-3 polynomials, then there exists an UBK-secure compiler for the class of pseudorandom permutations represented by circuits in NC 1 .

Our compiler concerns classes of block ciphers (modelled as pseudorandom permutations) f : K × M → C . Assume a scheme supports functionalities of log 2 |K | + log 2 |M | bits. The compiler C.Setup takes a key k ∈ K , a randomness r and produces a program C.Eval r k . The latter essentially works in two phases. We first present the natural construction following from FE for general circuits and then a simplified construction, which avoids using

FE.

Intuition. In a first step, the evaluation program emulates the decryption procedure for the FE scheme using the following data: (1) the mpk of the FE scheme; (2) a functional-key related value -sk f -allowing to compute f (k, M);

(3) the encryption of k-dependent monomial terms -say T k ; (4) for each position i corresponding to M i , it contains ciphertexts corresponding to monomials depending on 0 and 1. The decryptor feeds FE.Dec with a ciphertext C T k corresponding to T k and with the encrypted monomial sums corresponding to 0 or 1 in the binary decomposition of M. Also, using the functional key, FE.Dec recovers a value T corresponding to some position (u, v). In the second step, using the values recovered in Step 1 for any position (u, v) the matrix T is fully recovered. Then, the evaluation program computes the determinant of T and recovers one bit in the output of f . This step is repeated for every output bit of f . We stress that

T ← L • G i M • R, and its determinant is in fact f i (M) ( f 's i -th bit)
where G is "close to" the adjacency matrix of BP.

Simplification. Somehow ironically, even if we follow ad literam the recipe for obtaining an FE for general circuits, we can get rid of the step that uses FE to encode the monomials. The reason is that a user can always recover: (1) the matrix T corresponding to some fixed input -say the k||0 -and (2) the difference of monomial sums depending on 1 and 0 in position i T 1 i -T 0 i . The latter differences can be recovered due the randomness reuse step.

The difficulty arises while proving the UBK security of our implementation. Our general ideas for deriving a proof are:

• the simulation-security of the randomized encoding scheme provides an UBK compiler for a single messagesay f (k, 0) -in a straightforward way.

• we interpret the previous fact in an algebraic manner, by viewing the ciphertexts as a system of degree-three polynomial equations. Combined with the previous step, this guarantees hardness in extracting k in probabilistic polynomial time by any computationally bounded adversary.

• next, we add the equations that enable to simulate any input (henceforth bits can be set to 1), and we argue that the augmented system cannot be solved by any probabilistic adversary running in polynomial time. To this end, we reduce the problem of solving such a system to the one of solving an equivalent system consisting of multivariate equations. Thus, any adversary does not learn more information than it learns from the original system.

• along the way, we ensure an adversary cannot partially solve the system and recover k without fully solving the system. In doing so, we observe that having knowledge of L•G M •R for any choice of M enables an adversary to recover L and R straightforwardly.

Previous Works

The existing landscape of provably secure white-box implementations of PRPs is relatively sparse. Some few attempts focus on obtaining particular white-box implementations, such as the work of Bogdanov and Isobe [BI15], which relies on the notion of space-hardness; this measures the difficulty of compressing a white-box implementation. Fouque et al.

[FKKM16] put forth several candidates designed to admit white-box implementations via their incompressibility properties. More recently, Alpirez-Bock et al. [BAB + 19] gave schemes of incompressible PRFs starting from the Goldreich-Goldwasser-Micali construction. In some sense, their idea is natural, and show that applying a hash function over a key loses information on k, given the hash's output distribution is statistically close to the uniform distribution, and assuming the keys are sampled from some distribution with sufficient min-entropy.

A different thread employs techniques such as program obfuscation.

[CMR17] relies on a specific construction of multi-input functional encryption to build a program obfuscator supporting arithmetic circuits. Then, the obfuscator is used to obtain white-box implementations. However, instantiating the multi-input functional encryption scheme is done by referring to multilinear maps [GGH13a,CLT13], and not much can therefore be guaranteed with respect to their security.

Finally, the picture is completed with plenty of heuristic proposals, which are usually deployed in the wild. We do not review any of them as they play no role in our work.

Paper Organization. Section 1.2 provides a concise overview over the existing works in the area. In Section 2 we introduce the main notations, concepts and computational assumptions to be used in the forthcoming sections. In Section 3 we show that public-key functional encryption achieving one-wayness can be used to construct a UBK compiler for a single input, while in Sections 4 to 6 we provide an overview of the decomposable FE scheme in [AR17] and look into how to use FE in conjunction with randomized encodings to build a compiler for PRPs. Interested readers may skip sections Sections 3 to 5, but we point out that such a path may give rise to a practical compiler. In Appendix E we show how to use the previous techniques in proposing a simple i O candidate.

Preliminaries

Notations. We denote the security parameter by λ ∈ N * and we assume it is implicitly given to all algorithms in the unary representation 1 λ . An algorithm is equivalent to a Turing machine. Algorithms are assumed to be randomized unless stated otherwise; PPT stands for "probabilistic polynomial-time" in the security parameter (rather than the total length of its inputs). Given a randomized algorithm A we denote the action of running A on input(s) (1 λ , x 1 , . . . ) with uniform random coins r and assigning the output(s) to (y 1 , . . . ) by (y 1 , . . . ) ← A (1 λ , x 1 , . . . ; r ). When A is given oracle access to some procedure O , we write A O . For a finite set S, we denote its cardinality by |S| and the action of sampling an element x uniformly at random from S by x ←$ S. When another, non-uniform distribution χ is used we write x ←χ S.

For an integer q ≥ 2, we denote by Z/qZ the ring of integers modulo q and we represent its elements in the interval (-q/2, q/2]. Usually, we work with q prime and therefore Z/qZ = F q will be a field. For k ∈ N * , we set

[k] := {1, . . . , k}. A real-valued function negl (λ) is negligible if negl (λ) ∈ O (λ -ω(1)
). We state that an event occurs with overwhelming probability if its probability is 1 -negl (λ). We denote the set of all negligible functions by negl (λ). We denote an ordered list of n elements by (a 1 , . . . , a n ). For completeness, we recall the definitions for several standard cryptographic concepts to be used.

Block Ciphers

Definition 1 (Block Ciphers). A block cipher E consists of a triple of algorithms (Setup, Enc,Dec) such that:

• A randomized key generation algorithm k ←$ Setup(1 λ ) takes as input the security parameter in unary (1 λ ) and outputs a key k; • The encryption algorithm Enc(•,•) : {0, 1} k × {0, 1} m → {0, 1} m takes as input a secret key k and a message M and outputs a ciphertext C with the same length as M.

• The decryption algorithm Dec(•,•) : {0, 1} k × {0, 1} m → {0, 1} m takes as input a secret key k and a ciphertext C, and outputs a plaintext M.

White-Box Implementations. In real scenarios, algorithms are deployed as implementations written in some programming language. In what follows, we refer to a compiler as the algorithm that (1) takes as input a description (in some language) of a cryptographic scheme and (at least) a key, and (2) outputs (depending on the need) an "implementation" -a program implementing the abstract encryption (or decryption) specification, embedded with the provided key. For simplicity, in this work we only consider compilers for the encryption procedure. We define this notion below: Definition 2 (Compiler for Block Ciphers). A compiler for a block cipher described in some language as E , consists of a tuple of implemented algorithms C.Setup,C.Eval,C -1 .Eval described as follows: -through any theoretical or practical means -assuming the adversary is provided with an implementation of the primitive. Thus, one can consider UBK as the prime security notion for white-box compilers.

• C.Eval r k , C -1 .Eval r k ←$ C.Setup(E ,

Definition 3 (Unbreakability [DLPR14]

). Let E be a block cipher and C E a white-box compiler for E . We say that C E is unbreakable if

Adv UBK A ,C E (λ) := Pr[UBK A C E (λ) = 1] ∈ negl (λ) ,
where the security experiment UBK is defined in Figure 2.

In [DLPR14], the authors formalize the notion of one-wayness, essentially stating that encryption performed with the white-box program should be a one-way procedure in the absence of the symmetric key. We strongly believe that such a requirement is natural for any classical encryption scheme. In Section 3 we elaborate more in the context of FE.

Definition 4 (One-wayness [DLPR14]). Let E be a block cipher and C

E a white-box compiler for E . We say that C E is one-way if Adv OW A ,C E (λ) := Pr[OW A C E (λ) = 1] ∈ negl (λ) ,
where the security experiment OW is defined in Figure 2. 

UBK A C E (λ): 1 : r ←$ R(1 λ ) 2 : k ←$ K(1 λ ) 3 : C E .Eval ← C E .Setup(k; r ) 4 : k ←$ A (C E .Eval) 5 : return k = k OW A C E (λ): 1 : r ←$ R(1 λ ) 2 : k ←$ K(1 λ ) 3 : C E .Eval ← C E .Setup(k, r ) 4 : m ←$ M 5 : c ← E (k, m) 6 : m ←$ A (C E .Eval, c) 7 : return m = m FULL-SIM-FE A FE (λ): 1 : b ←$ {0, 1} 2 : (msk, mpk) ← Setup(1 λ ) 3 : f ← A (mpk) 4 : sk f ← KeyGen(msk, f ) 5 : M ← A (mpk, sk f ) 6 : if b = 0 : 7 : C 0 ←$ Enc(mpk,M) 8 : else : 9 : C 1 ←$ S (mpk, sk f , f , f (M), 1 |M| ) 10 : b ←$ A (C

Functional Encryption

As one of the most general and abstract encryption paradigms, functional encryption (FE) can be defined in multiple scenarios: for instance, the encryption key can be made public or kept private. Below, we define the notion in its original public-key and single-input setting.

Definition 5 (Functional Encryption [GGG + 14]). Let F = {F λ } λ∈N be an ensemble, where F λ is a finite collections of functions f : X λ → Y λ . A public-key functional encryption scheme FE for F consists of four algorithms (Setup, KeyGen,Enc,Dec):

• The setup algorithm msk,mpk ←$ Setup(1 λ ) takes the security parameter λ and outputs a master secret key msk and a (master) encryption key mpk; • The encryption algorithm C ←$ Enc(mpk,M) takes as input an encryption key mpk and a message M ∈ X λ , and outputs a ciphertext C;

• The functional key derivation algorithm sk f ←$ KeyGen(msk, f ) takes as input the description of a function f ∈ F λ and outputs the corresponding functional key sk f ; • The decryption algorithm f (M) ← Dec(sk f , C) is a deterministic algorithm that takes as input a functional key sk f and a ciphertext C and outputs some y ∈ Y λ or a special error symbol ⊥ if decryption fails.

A FE scheme is required to satisfy the following properties:

• Correctness. For any f ∈ F λ and M ∈ M we must have:

Pr Dec sk f , Enc(mpk,M) = f (M) (msk, mpk) ←$ Setup(1 λ ) ∧ sk f ←$ KeyGen(msk, f )
is negligibly close to 1.

• FULL-SIM-FE Security. For the particular case of single input functional encryption schemes, we recall simulation based security as introduced in [GKP + 13]. A public-key functional encryption scheme FE is semantically secure if there exists a stateful PPT simulator S such that for any PPT adversary A ,

Adv FULL-SIM-FE A ,FE (λ) := Pr[FULL-SIM-FE A FE (λ) = 1] - 1 2 ∈ negl (λ) ,
where the FULL-SIM-FE experiment is described in Figure 2.

Decomposable Functional Encryption. Up to this point, the existing proposals for building FE schemes for general circuits depend on expensive encryption algorithms. Agrawal and Singh in [AS17] put forward the notion of decomposable functional encryption wherein chunks of the plaintext are encrypted independently. Such a technique is suitable for parallelization, as well as for online/offline encryption. Agrawal and Singh show that the scheme by Sahai and Seyalioglu [SS10], as well as the FE constructions for general circuits in [GKP + 13] (when instantiated with the ABEs non-monotonic circuits) achieve decomposability. In a follow-up work, Agrawal and Rosen [AR17] proposed a decomposable construction for arithmetic circuits that will prove instrumental for this work.

Computational Hardness Assumptions

Learning with Errors. The (search) Learning With Errors (LWE) problem [Reg05] asks for the secret vector s over Z n q given a polynomial-sized noisy set vector of the form A • s + e, where A denotes a randomly sampled matrix over Z n×m q , while e is a small error term sampled through an appropriate distribution χ defined over Z m q . Roughly speaking, the decision version of the problem, asks to distinguish between the distribution of the LWE problem as opposed to the uniform distribution. Later, Lyubashevsky et al. [LPR10] proposed a version over quotient rings (of polynomial rings). Let R := Z[X ]/(X n + 1) for n a power of 2, while R q := R/qR for a safe prime q satisfying q ≡ 1 mod 2n.

Definition 6 (Learning with Errors). For an integer q = q(λ) ≥ 2 and an error distribution χ = χ(λ) over Z q , the decision learning with errors problems is to distinguish between the following pairs of distributions:

{(A, A • s + e)} and {(A, u)} where A ←$ Z n×m q , s ←$ Z n q , e ←χ Z m q , u ←$ Z m q .
Definition 7 (Ring LWE). For s ←$ R q , given a polynomial number of samples that are either: (1) all of the form (a, a • s + e) for some a ←$ R q and e ←χ R q or (2) all uniformly sampled over R 2 q ; the (decision) RLWE q,φ,χ states that a PPT-bounded adversary can distinguish between the two settings only with negligible advantage.

Systms of Multivariate Equations.

In general, solving a set of high-degree equations over a finite field is considered as a hard problem, in front of classical or quantum adversaries. Interestingly, this holds even if the system of polynomial equations is composed only of degree 2 polynomials. Patarin and others [Pat96,PG97] proposed new instantiation of cryptosystems based on the aforementioned problem.

Definition 8 (Multivariate Polynomial Equations). Let P 1 (X 1 , . . . , X n ), P 2 (X 1 , . . . , X n ), . . ., P m (X 1 , . . . , X n ) be a set of polynomials over a finite field F q for q a prime integer. Let d eg (P i ) ≥ 2 for any i ∈ [m]. Then, the advantage of any PPT adversary A against solving the system of equations induced by P 1 , . . . , P m is negligible.

Since their introduction, multivariate quadratic public key encryption schemes and signatures schemes suffered from several cryptanalytic attacks [KPG99,KS99]. However, things became stable in the last decade, such that we can assess their security by considering the following cases [CKPS00]:

• when the number of unknowns is small (≤ 15), Grobner base techniques can be applied. • if the system is overdefined (m > n), we expect relinearization techniques to run in n O (1/ ) , where 0 < ≤ 0.5 such that m ≥ • n 2 .

One-Wayness for Functional Encryption

As stated in Section 2, one-wayness for block ciphers asks that no adversary is able to recover a message from its encryption when the symmetric key is unknown. The case for functional encryption is somewhat more complex from the point of view of syntax, as it should allow to take into consideration functional keys, but also in a semantic way; our first observation comes with the sense and number of supported functions. If the adversary gets no functional keys, things stay safe, but they also cut from the power of this concept; therefore such a setting is not very intriguing. Thus, our definition should encompass the case where at least a functional key is released. Next, we ask what happens if the adversary is given sk f , where f stands for the identity function. In such a situation, there is a trivial way of winning a one-wayness game. This suggests further restrictions on f . If f itself is a (candidate) oneway function, then it is hard to recover the input given a single functional key. Therefore, we define one-wayness for classes of candidate one-way functions.

Next, we point out that if an adversary is allowed to query some number of functional keys, it may be the case he/she wins the game even if the queried functions are, independently, one-way. For example, if f 1 returns the left part of the input, while f 2 the right half, each of them may be one-way (assuming the input is sufficiently large), but learning both of them enables learning the input in its entirety. Hence, we tailor our definition for the cases where an adversary is allowed to make a sole functional-key query. Definition 9 (One-Wayness for FE). Let FE be a single-input functional encryption scheme in the public (private, respectively) key setting. We say that a public-key (private-key) FE scheme is OW-FE secure with respect to a class of one-way functions F λ , if the advantage of any PPT adversary A against the one-wayness of FE, defined as:

OW-FE

A FE (λ) // Public-Key FE: 1 : (msk, mpk) ←$ Setup(1 λ ) 2 : M ←$ P 3 : f ←$ A (1 λ ) 4 : sk f ←$ FE.KeyGen(msk, f ) 5 : C ←$ FE.Enc(mpk,M) 6 : N ←$ A (sk f , mpk,C) 7 : return M = N OW-FE A FE (λ) // Private-Key FE: 1 : msk ←$ Setup(1 λ ) 2 : M ←$ P 3 : f ←$ A (1 λ ) 4 : sk f ←$ FE.KeyGen(msk, f ) 5 : C ←$ FE.Enc(msk,M) 6 : N ←$ A FE.Enc(msk,•) (sk f , C) 7 : return M = N
Adv OW-FE A ,FE (λ) := Pr[OW-FE A FE (λ) = 1]
is negligible, where the security experiment OW-FE A FE (λ) is defined in Figure 3.

Naturally, we expect that any simulation-secure functional encryption to be implicitly one-way. Otherwise, an adversary would learn M, a blatant security breach in the simulation security game. We prove it formally through the means of the following lemma:

From FULL-SIM-FE to OW-FE

Lemma 1 (FULL-SIM-FE to OW-FE). Let FE be a functional encryption scheme for circuits in NC 1 . If FE achieves FULL-SIM-FE security (Definition 5), then it is also OW-FE secure w.r.t. some one-way permutation f under the following advantage:

Adv ow-fe A,FE (λ) ≤ 2 • Adv full-sim-fe R,FE (λ) + Adv owp A, f (λ) .
Proof (Lemma 1). Informally, FULL-SIM-FE guarantees the decryptor does not learn more information on M than what f (M) reveals. Suppose there exists an adversary A against the one-wayness of the FE scheme. We build a PPT algorithm R (the "reduction") that runs A and wins the FULL-SIM-FE game. Assuming the existence of a simulator S , the FULL-SIM-FE game proceeds by sampling (msk, mpk), and then receiving (M, f ) from R. Depending on the setting, the challenger replies with sk f and a ciphertext C which is either correctly generated or is obtained from 

S .
-1/2 • Adv ow-fe A,FE (λ) -1/2 • Adv owp A, f (λ). Now, if
Adv ow-fe A,FE (λ) ∈ negl (λ) then R breaks FULL-SIM-FE and thus

Adv ow-fe A,FE (λ) ≤ 2 • Adv full-sim-fe R,FE (λ) + Adv owp A, f (λ)
as claimed.

Decomposable Functional Encryption

Overview. This section investigates a construction of functional encryption supporting circuits of a bounded depth d , a bounded width w (in direct relation to their size), and representing functions believed to be one-way. We begin by introducing the simple concept of linear functional encryption. Next, we closely look into a specific decomposable FE scheme for NC 1 circuits4 , namely the one introduced by Agrawal and Rosen in [AR17], due to the succinctness in the size of its output and the simplicity of the ciphertext structure. In the next section, we provide a intuition behind converting their FE construction into a natural UBK compiler for the class of pseudorandom permutations, point out its issues but also new perspectives.

The [AR17] Construction for NC 1 . In [AR17], Agrawal and Rosen introduced a novel construction for functional encryption supporting general classes of functionalities, thus building up on the works of [GKP + 13,Agr17]. As a prime element of novelty, the supported class of functions are now described by arithmetic, rather than Boolean circuits5 . Second, the size of the ciphertexts in their construction is succinct, growing with the depth of the circuit, rather than its size. Third, and most importantly for the problem at hand, the ciphertext is decomposable: assuming a plaintext is represented as a vector of dimension w, each of the w elements is encrypted independently. Therefore, replacing bits in the plaintext requires partial changes in the ciphertext. We will come back to this remark while investigating how to use such a scheme in constructing the UBK compiler.

Roadmap. The FE scheme for NC 1 circuits in [AR17] depends on functional encryption for inner products in a semi-generic fashion. The ciphertext structure needs to compute nested "Regev encodings", having the required nesting level corresponding to the multiplicative depth of the circuit. To keep things comprehensible: we first describe the interface of a decomposable Lin-FE scheme, and then we introduce the scheme for circuits in NC 1 .

Warm-Up: Decomposable Linear Functional Encryption

Functional encryption schemes for linear functionalities (or inner products) encrypt vectors x and return functional keys for vectors y. The decryption procedure recovers the inner-product 〈x, y〉.

• Lin-FE.Setup(1 λ ) : assume the message space contains elements represented by vectors x = (x 1 , . . . , x w ) of dimension n defined over R w p , where the algebraic ring R p is defined modulo a large p -a prime in our case. To keep notation compact, we work with row-vectors, rather than the standard column vectors. The master public key is of the form mpk ← pk 1 , . . . , pk w , pk IND , where pk i stands for the public-key of a PKE scheme. The msk consists of the corresponding secret keys. Lin-FE.Setup(1 λ ) returns the two master keys.

• Lin-FE.Enc(mpk,x): a sufficiently large random tape R is used; then, for each message x i , a ciphertext is computed as • Lin-FE.KeyGen(mpk,msk,y) : given a vector y, the key generation algorithm does the following: 1. Compute pk y ←$ Eval P K (pk 1 , . . . , pk w , y). The pk y should be regarded as a "functional public-key component". Eval P K is a publicly available procedure. 2. Set k y ←$ GenKey(mpk, msk,pk y ). GenKey is the procedure responsible for generating the functional key, based on mpk,msk and pk y . The functional key sk f = k y is returned.

C i ←$ PKE.Enc(pk i , x i ; R) .
• Lin-FE.Dec(sk f , C) : the decryption first computes a "functional ciphertext" through a public procedure Eval C T :

C 〈y,x〉 ←$ Eval C T (C 1 , . . . , C w ), y The procedure returns Decode(k y , C 〈y,x〉 , C IND ).
Correctness, in layman terms, should guarantee that the output corresponds to 〈y, x〉 assuming correctly generated ciphertexts and functional keys.

Structural properties of the ciphertext.

From a high level point of view, we require that such a scheme attains the following structural requirements:

1. Malleability: for any x i , x j in the message space and for any valid C x i it holds that:

C x i + x j = C x i +x j .
2. Succinctness: the size of the ciphertext is bounded by a polynomial in security parameter and input length:

|C x | ∈ O (pol y(λ), |x|).
3. Decomposability: informally, for an FE scheme supporting messages of length w, its ciphertexts and publickey can be decomposed into w +1 components such that each component corresponds to a single message in the plaintext vector. That is, the ciphertext and the master public-key can be parsed as:

C x ← C 1 , . . . , C w , C IND mpk ← pk 1 , . . . , pk w , pk IND
Additionally, one may write that:

C i ←$ PKE.Enc(pk i , x i ; R)

Regev Encodings

First, we informally recall the simple symmetric encryption scheme presented in [BV11]. Here, "s" stands for a RLWE secret acting as a secret key, while a and r are the random mask and noise:

c 1 ← a ∈ R p c 2 ← a • s + 2 • r + x ∈ R p (1)
Recovering the plaintext bit x is done by subtracting c 1 • s from c 2 and reducing modulo 2. Such a simple scheme exhibits powerful homomorphic properties, that are speculated in [AR17]. From now on, we call "Regev encoding" the mapping between rings E i : R p i -1 → R p i such that

E i (x) = a i • s + p i -1 • e i + x ∈ R p i .
(2)

FE for NC 1

We provide an overview of the construction in [AR17] for NC 1 circuits. We refer the reader to its original description for complete details.

• Encryption. The encryption algorithm starts by sampling a RLWE secret s, and "encoding" each input

x i ∈ R p 0 independently. The result is {E 1 (x i )|x i ∈ R p 0 ∧ i ∈ [n]} ,
where E 1 is the map E 1 : R p 0 → R p 1 defined in Equation (2). This represents the "Level 1" encoding of x i .

Next, the construction proceeds recursively; the encoding of x i at "Level 2", takes the parent node P (in this case P is E 1 (x i )), and obtains for the left branch:

E 2 (P ) = E 2 (E 1 (x i )) = a 2 1,i • s + p 1 • e 2 1,i + (a 1 1,i • s + p 0 • e 1 1,i + x i ) ∈ R p 2 (3)
and for the right branch:

E 2 (P • s) = E 2 (E 1 (x i ) • s) = a 2 2,i • s + p 1 • e 2 2,i + (a 1 1,i • s + p 0 • e 1 1,i + x i ) • s ∈ R p 2 (4)
for some (a 2 1,i , a 2 2,i ) ←$ R 2 p 1 and noise terms (e 2 1,i , e 2 2,i ) ←χ R p 2 . As a general rule, we will write as an upperscript of a variable the level to which it has been associated. The procedure repeats recursively up to a number of levels d , as depicted in Figure 4.

x i E 1 (•) E 2 (•) E 3 (•) . . . . . . × s E 3 (•) . . . . . . × s × s E 2 (•) E 3 (•) . . . . . . × s E 3 (•) . . . . . . × s × s × s
Fig. 4. The tree obtained from encoding x i in a recursive manner.

We also mention that between any two successive (multiplication) layers, there is an addition layer, which replicates the ciphertext in the precedent multiplication layer (and uses its modulus). As it brings no new information, we ignore additive layers from our overview. 

• • •

Fig. 5.

A high level view of the encodings: each input x i is recursively encrypted, the resulting ciphertext having a "tree-like" structure. Circular encryptions of s are also provided. The "additive" layers are excluded from the picture.

• Still, as we are in the FE setting (as opposed to an FHE setting), the ciphertext also contains additional information on s, through the use of a linear functional encryption scheme Lin-FE. Namely, an extra component of the form:

d ← w • s + p d -1 • η (5)
is provided as C IND , where η ←χ R p d denotes a noisy term and w is part of mpk.

• The master secret key consists of the Lin-FE.msk. The master public key consists of the Lin-FE.mpk (the vector w and the vector a d ) as well as of the set of vectors a 1 , a 2 , . . . , a d -1 that will be used by each E i . Once again, we stress that the vector a d from Lin-FE.mpk coincides with the public labeling used by the mapping E d . It can be immediately shown that the size of a i +1 is given by a first order recurrence:

L i +1 = |a i +1 | = 2 • |a i | + 1 (6)
with the initial term (the length of a 1 ) set to the length of the input. The extra term 1 added per each layer is generated by the extra encodings of the key-dependent messages E 1 (s), E 2 (s 2 ), . . . , E d (s 2 ) .

• The functional-key sk f is issued via the Lin-FE algorithm as follows: first, based on the circuit representing f and on the public set of a 1 , a 2 , . . . , a d , a public value P K f ← Eval P K (mpk, f ) is computed (by performing f -dependent arithmetic combinations of the values in a 1 , a 2 , . . . , a d ). Then, a functional key sk f is issued for

P K f .
• The Eval P K (mpk, f ) procedure uses mpk to compute P K f . In a similar way, Eval C T (mpk, C, f ) computes the value of the function f obliviously on the ciphertext. We refer the reader to [AR17] for complete explanations but provide a short overview of these procedures in Appendix B.

• Decryption is done by computing the circuit for f (known in plain by the decryptor) over the encodings. At level d , the ciphertext will have the following structure:

C f (x) ← P K f • s + d -1 i =0 p i • η i +1 + f (x) . (7) 
Next, based on the independent ciphertext d ← w• s + p d -1 •η and on the functional key, the decryptor recovers

P K f • s + p d -1 • η . (8) 
Finally, f (x) is obtained by subtracting ( 8) from ( 7) and repeatedly applying the mod operator to eliminate the noise: ( mod p d -1 ) . . . ( mod p 0 ).

A more compact description is given in Appendix A.

Ciphertext and Public-Key Structure

In the ePrint version of [AR17, Theorem 5.2], the authors show that the ciphertext exhibits a particular structure of the form:

C f (x) = P f (C 1 , . . . C d -1 ) + Lin f (C d ) . ( 9 
)
where P f is a high degree multivariate polynomial in the given encodings C 1 ,. . . , C d -1 , plus a linear combination of the top level encodings.

The Natural Attempt and Its Issues

An UBK Compiler Based on the AR17 Scheme

A natural construction. Our first proposal will slightly tweak the FE scheme while attempting to achieve an UBK implementation for circuits of bounded depth d . The main idea is depicted in Figure 1. The compiler would sample a RLWE secret s ←$ R p d and pre-compute the ciphertext part corresponding to the symmetric key k (the positions 1 → |k|) as well as the ciphertexts corresponding to both 0 and 1, for each of the positions |k| + 1 → |k| + |M|. Put differently, one will assume the existence of an FE scheme for some circuit of depth d computing f on |k| + |M| input bits. By providing the encryptions of the key bits, as well as of 0s and 1s, we allow the user to produce ciphertexts corresponding to any message M ∈ {0, 1} |M| of its choice, by choosing the M-dependent combinations from encryptions of 0s and 1s.

To make sure that f (k||M) can be retrieved, a sole functional key sk f , that computes f , has to be issued. For the decryption algorithm to work properly, one would need to ensure that the public parts (i.e the "a"s) in all the corresponding ciphertexts of each pair of 0s and 1s are the same. This choice is enforced by Equation ( 7): the ciphertext will contain PK f , which depends on a. Put differently: if the public parameters are different for each 0 and 1, the number of available PK f will grow exponentially, and so does the number of functional keys needed by the decryption procedure. To prevent such a phenomenon, we have to reuse the randomness terms. However, as explained in Section 5.2, this trick is potentially dangerous.

A Natural Attack

When it comes to security, we stress that our construction needs to provide one-wayness w.r.t. the bits in k while enforcing randomness reuse for the "second part" of the ciphertext (corresponding to M). The picture is complicated furthermore by the fact that ciphertexts corresponding to 0s and 1s in position i and level l rely on the same random term a, while globally all ciphertexts depend on the RLWE secret value s. We show the natural implementation described above, that encrypts 0s and 1s using the same "a" may enable natural attacks. To this end, it is sufficient to consider only the first two levels, and obtain:

L 1: E 1 (0 i ) = a 1 1,i • s + p 0 • e 1 1,i + 0 E 1 (1 i ) = a 1 1,i • s + p 0 • d 1 1,i + 1 L 2:                                  E 2 (E 1 (0 i )) = a 2 1,i • s + p 1 • e 2 1,i + (a 1 1,i • s + p 0 • e 1 1,i + 0) E 2 (E 1 (1 i )) = a 2 1,i • s + p 1 • d 2 1,i + (a 1 1,i • s + p 0 • d 1 1,i + 1) E 2 (E 1 (0 i ) • s) = a 2 2,i • s + p 1 • e 2 2,i + ((a 1 1,i • s + p 0 • e 1 1,i + 0) • s) E 2 (E 1 (1 i ) • s) = a 2 2,i • s + p 1 • d 2 2,i + ((a 1 1,i • s + p 0 • d 1 1,i + 1) • s) (10)
An attacker may simply subtract the encodings at Level 1 from (10) and learn

E 1 (1 i ) -E 1 (0 i ) = p 0 • (d 1 1,i -e 1 1,i ) ,
while from Level 2 it can learn the value of

E 2 (E 1 (0 i ) • s) -E 2 (E 1 (1 i ) • s) as: p 1 • (d 2 2,i -e 2 2,i ) + s • (E 1 (1 i ) -E 1 (0 i ) + 1) .
By removing the outer noise term p 1 • (d 2 2,ie 2 2,i ) via the mod p 1 operator, the attacker now learns s

• (E 1 (1 i ) - E 1 (0 i )+1
). Thus, the adversary may recover the representation of s w.r.t. Level 1 (and then the bits in k ⇐⇒ extract k).

Potential Heuristic Countermeasures

The lesson learnt from the previous part: the RLWE-randomness terms that are reused play no role in guaranteeing security for the case of a levelled construction, as they can be eliminated, and the adversary can learn a known multiple of s and then recover s by cancelling out the known multiplicative factor. We sketch two potential approaches to circumvent this problem: the first one would investigate the case where the known multiple of s is not invertible, and therefore it will be hard to cancel it out. The second, unrelated approach, is more general, and would attempt to randomize the equations in the spirit of Kilian's proposal [Kil88].

Augmenting RLWE. Let R q denote the quotient ring (Z/qZ[X ])/(X n + 1). The search RLWE problem states:

Given (a i , a i • s + e i ) i ∈pol y(λ) , where a i and s are sampled uniformly at random over R q , while e i comes form a noise distribution χ, find s.

A computational hardness assumption corresponding to RLWE augmented with an additional set of linear equations could be stated as follows:

Given (a i , a i • s + e i ) i ∈pol y(λ) , where a i and s are sampled uniformly at random over R q , while e i comes form a noise distribution χ. In addition, release (α i , α i • s) i ∈pol y(λ) , where α i is not invertible and for any pair (α i , α j ) we have gcd(α i , α j ) = h

where deg(h) = n -1 and h|(X n + 1). Find s.

Hardness of the new assumption (informal):

Through classical algebra, we deduce that if {I 1 , . . . , I n } ⊆ R q form a set of co-prime ideals and I := ∩ n k=1 I k , then R/I is isomorphic with the product of R/ideals via the Chinese Remainder Theorem. Stated differently, the ring R/I is isomorphic with the direct product:

R/I 1 × . . . × R/I n .
Thus, we end up with a CRT embedding for the RLWE problem: given (a i , s) over R q , via the CRT embedding we will have a i = (a i ,1 , . . . , a i ,n ) and s = (s 1 , . . . , s n ), and the multiplication of

a i • s = (a i ,1 • s 1 , . . . , a i ,n • s n ) is carried out component-wise.
Mind the fact that the noise will not be small with respect to this CRT embedding. On the other hand, for the non-invertible elements (given that they share a common factor h of degree n-1), the CRT representation states that n-1 coordinates are 0. That is, α i = (0, 0, . . . , 0, α i ,n ) and thus the product

α i • s w.r.t. the CRT embedding reveals α i • s = (0 • s 1 , . . . , 0 • s n-1 , α i ,n • s n ) = (0, . . . , 0, α i ,n • s n ).
The original RLWE is believed to be a computationally difficult problem. The problem we are asked to solve is if by adding such linear equations, one can reduce the dimension of the original RLWE problem with 1. For a large n, the hope is that it still remains a difficult computational challenge.

An UBK-secure Implementation for PRPs

This section exploits the representation of a binary function via a branching program, and adapts the AR17 scheme for such branching programs. First, we recap the representation of a function f : {0, 1} n → {0, 1} as a branching program, and remind that f (x) can be evaluated by a degree three polynomial6 . Second, we review how such a constant-degree polynomial representation of f is instrumental in obtaining FE for general circuits. In the final part we present our compiler and prove its UBK security.

Randomized Encodings via Branching Programs

A branching program corresponds to a sequential evaluation of a program, each input bit asking to follow a branch of the program. Any function f : {0, 1} n → {0, 1} in P admits a branching program representation. As an immediate consequence, any function g : {0, 1} n → {0, 1} n can be represented as n branching programs by simply concatenating the n output bits. In a surprising result, Barrington [Bar89] showed that the shorter the depth of the circuit representation of f , the shorter the length of the branching program. Ben-Or and Cleve independently gave a matrix-based version of Barrington's proof where the length of the branching program is O(1) d , but using a larger width.

In our work, we consider G x to be the adjacency matrix corresponding to the branching program of some f : {0, 1} n → {0, 1}. For technical reasons, the main diagonal is populated with 1s, while each row will contain at most one extra 1, apart from the 1 occurring on the main diagonal. Let G x be the matrix obtained by removing the first column and the last row. As shown in [Ish10], f (x) = det(G x ). Moreover, there exist two matrices R l and R r of a designated form, such that the product

R l • G x • R r =         0 0 . . . 0 f (x) 1 0 . . . 0 0 0 1 . . . 0 0 . . . . . . . . . . . . 0 0 . . . 1 0         = G f (x)
The aforementioned representation of f (x) as a product of fixed matrices R l and R r plays a role in the simulation security of the randomized encoding, where the value f (x) is given to the simulator, which in turn is able to simulate a product of full rank matrices or of rank m -1, depending on the value of f (x). Thus, such a representation gives a natural randomized encoding. In general, the decoder of the encoding is asked to compute the determinant of R l • G x • R r and recover the value of f (x), given that R l , R r are full ranked matrices.

Particularly, R l and R r ∈∈ GF(2) m×m have the following form:

R l ←       1 $ $ . . . $ 0 1 $ . . . $ . . . . . . . . . . . . 0 0 0 . . . 1       R r ←       1 0 0 . . . $ 0 1 0 . . . $ . . . . . . . . . . . . 0 0 0 . . . 1      
where $ represents an element sampled uniformly at random over GF(2). We can generalize the previous observation: let L and R be two matrices sampled uniformly at random over GF(2) m×m . With non-negligible probability (see Appendix C), both L and R are full-rank matrices. One can express

L = L • R l and R = R r • R .
Given that:

L • G x • R = (L • R l ) • G x • (R r • R) = L • (R l • G x • R r ) • R = L • G f (x) • R (11) 
Clearly, if L and R are full-rank matrices, then the determinant of L • G x • R will equate f (x). On a different one, we can observe that each of the m × m entries of the resulting matrix

T = L • G x • R,
can be expressed as a sum of monomials of degree three. As explained in [Ish10], each monomial occurring inside T i , j depends on a single input bit of x and includes one component from each of L and R. Put differently, each monomial contains a sole entry from G x , which is depends on x. We will come back to such a representation while reaching the proof of our construction.

Regarding the efficiency of the transform, [BGI16, p.3] states that any branching program of size S (number of nodes) can simulate a boolean circuit of depth log 2 (S) or any boolean formula of size S.

Such a representation constitutes the backbone of the scheme by Agrawal et al., who obtain functional encryption for general circuits on top of this representation. We cover their result in brief, below, and then adapt it to the setting of the problem we study.

The AR17 Scheme for General Circuits in P

This part summarizes the construction of functional encryption for general circuits with succinct ciphertexts, as presented in [AR17]. The high level idea steps through representing (one-bit) circuits7 via degree-3 polynomials. Applebaum,Ishai and Kushilevitz [AIK04] show that any circuit C with its input x can be represented as a randomized encoding

G C ,∆ (x, R 1 , . . . , R S ) = P 1 (x, R 1 , . . . , R S )|| . . . ||P (x, R 1 , . . . , R S )
As G C ,∆ can be computed as a concatenation of ∈ pol y(λ) degree-three polynomials, where the output of each polynomial is one bit. The real output C (x) can be then recovered by applying the decoder for the randomized encoding scheme.

The idea for obtaining functional encryption for general circuits consists in encrypting both the input and the randomness -that is FE.Enc(mpk, x||R 1 || . . . ||R S ). Then, functional keys are issued for each polynomial P i ∈pol y(d

)
that can (all together) reconstruct an encoding. The decryption procedure obtains the reconstructed decoding (for instance the matrix R•G M •L in Section 6.1); it then applies the decoding algorithm (i.e. computes the determinant of Section 6.1) and outputs the resulting value.

For the problem we study, things are simplified by the fact that f is known beforehand, and is unique. Moreover, as the depth of the evaluation circuit is at most 3, the construction can instantiated from the more standard LWE problem (Definition 6).

Our Compiler

In this part we describe our compiler that outputs UBK-secure implementations for PRPs in NC 1 , which follows naturally from Sections 6.1 and 6.2. The high level flow of our compiler is described as follows:

• Branching Program Representation:

-Obtain the branching program representation of each PRP i (the i -th output bit in PRP). For each i ∈ [n] execute the following steps.

(1) Compute the adjacency matrix G i k||0 and remove its first column and its last row. Let the result be G i k||0 . (2) Sample L i and R i from the GL(F m×m 2 ), and compute the symbolic product between the three matrices

L i • G i k||0
• R i with (k 1 , . . . , k n , 0 1 , . . . , 0 n ) representing the inputs (filling at most two entries per row in G i k||0 ). Let T i denote the resulting matrix.

(3) For each entry (u, v) in T i , associate a polynomial T i u,v , and split the terms of T i u,v into M j -dependent terms, and the remaining ones as a sum. Let T i u,v,M j denote the monomials in T i u,v "depending" on M j .

• Linear FE Encoding (using AR17):

(3.1) For each output bit i of the PRP, for each matrix T i , for each entry u, v in the matrix T i u,v , FE-encrypt for each position j ∈ [n] (the data dependent part) the following terms: T i u,v,1 j and T i u,v,0 j under the same randomness term a i u,v, j ; furthermore, FE-encrypt the sum of the remaining monomials (depending on k) as the data independent part. (3.2) Issue a functional key for the "sum" function, which recovers each matrix T i entry-wise, as a sum of monomials.

• Running the Implementation:

-To recover the i -th bit in f (k, M), one needs to compute det(T i ).

-To this end, the user chooses the FE ciphertexts corresponding to T i u,v [M j ] for some message M := || n j =1 M j and recovers T i entry-wise, via FE decryption.

Simplification -Linear FE-Encodings are Unnecessary. Although the previous idea follows closely from AR17, we point out a major simplification. Somewhat surprisingly, employing FE for this task makes no difference. Reasons -the UBK implementation will always reveal through FE-decryption:

• the matrices T i corresponding to the evaluation of f (k, •) in some fixed point -say 0 -as well as

• the difference terms: T i u,v,1 j -T i u,v,0 j 8 .
Therefore, we simplify our implementation to simply reveal a stand-alone matrix corresponding to the fixed input 0 as well as the terms that allow to simulate the entire input space.

A formal definition of our compiler as follows:

Definition 10 (Compiler from [AR17]). Let PRP: K × M → C be a pseudorandom permutation and let f be its circuit representation. Let k denote a key over the keyspace K := {0, 1} n . Let M ∈ M := {0, 1} n denote a binary message.

Let G i k||M denote the adjacency matrix of the branching program outputting the bit i of PRP and let G i k||M be obtained from G i k||M by removing its first column and last row. Let m ×m denote the size of G i k||M . Let L i and R i be two matrices sampled uniformly at random over the set of invertible matrices from

F m×m 2 . Let T i ← L i • G i k||M • R i .
We define the following compiler for PRP (Figure 6):

• C.Setup(1 λ , k, f ):
given a key k ∈ K, the randomized C.Setup proceeds as follows:

(1) for each input bit i , parse the (u, v) entry of T i as

T i u,v ← T i u,v,k + T i u,v,M 1 + . . . + T i u,v,M n ;
where T i u,v,M i includes the monomials depending on bit M i while T i u,v,k includes the monomials depending on k as well as all other monomials independent of M or k (if any);

(2) compute the following:

T i u,v,k||0 ← T i u,v,k + T i u,v,0 1 + . . . + T i u,v,0 n ;
which represents the entry corresponding to k||0.

(3) Compute the terms:

T i u,v,1 j -T i u,v,0 j
are also computed for each position j ∈ [n]:

∆ i u,v, j ← T i u,v,1 j -T i u,v,0 j
The compiler outputs a program C.Eval consisting of the following variables:

T i u,v,k||0 , ∆ i u,v, j , ∀ i ∈ [n],
for each entry (u, v) in the corresponding matrices T i u,v and for each input position j ∈ [n].

• C.Eval(M): running the program consists of selecting the terms encrypting 0 and 1 based on the binary decomposition of M = M 1 , . . . , M n and evaluating the polynomial T i u,v in the selected points:

T i u,v ← T i u,v,k||0 + n j =1 M j • ∆ i u,v, j
The i-th bit value of f (M) is recovered by computing d et (T i ).

This step is repeated for any bit i ∈ [n] of the output.

Proposition 1. The compiler C in Definition 10 enjoys correctness.

Proof (Proposition 1). It is easy to check that:

det T i u,v,k + n j =1 M j • ∆ i u,v, j = det L i • G i k||M • R i = f i (k, M) .

UBK-Security of Our Compiler

The proof we propose relies chiefly on the semantic security of the randomized encoding. Additional data of the form T i u,v,1 j -T i u,v,0 j are provided to enable the evaluation of the pseudorandom permutation at any desired point in the message space. The crux argument stands on the fact that providing such "leakage" will form -in the view of the adversary -a system of multivariate equations (Section 2.3). We argue that such a system represents a computationally hard problem by reducing it to a system of multivariate polynomial equations.

1. First, we consider a "singleton" compiler, that evaluates the function f in a fixed point, say M := 0, while relying on the one wayness of the PRP scheme, and on the semantic security of the randomized encodings. Equivalently stated, the adversary is given only a system of equations S 1 (corresponding to a simulated randomized encoding). The simulation security of randomized encoding ensures S 1 does not leak k.

2. Second, we add the additional equations corresponding to the terms of the form T i

1 j -T i 0 j
for each input bit j . Let the augmented system be called S 2 . We show that down to the multivariate polynomial assumption, the new system is secure, in the sense that extracting k is hard. We also show that extracting k is equivalent to solving the system completely.

Singleton Compiler. In the first step, we use the one-wayness of the randomized encoding (which is virtually identical to the OW-FE).

Lemma 2 (Hardness of extracting key from S 1 ). Let RE be a randomized encoding scheme. Let f denote a pseudorandom permutation f : K × 0 → C such that f i ∈ NC 1 . Let S 1 be the system of equations corresponding to the randomized encoding L • G k||0 • R for some k ←$ K . The advantage of any PPT adversary A in extracting k is negligible:

Adv ubk A ,S 1 (λ) ≤ 2 • Adv full-sim-re A 1 ,FE (λ) + Adv owp A 2 , f (λ) .
Proof (Lemma 2). The proof is virtually identical to the one in Lemma 1.

Once in the simulated setting, the view of the adversary consists of only the system of equations S 1 that describe the set of matrices of the form {T 1 , . . . , T n }.

We also know from Step 1 that the advantage of any adversary in extracting k from the real implementation is negligible, down to the one-wayness of the permutation. We can entail the same result with respect to S 1 .

Multiple Inputs. We provide the adversary with terms of the form T i u,v,1 j -T i u,v,0 j . These can be used in order to simulate the computation of the PRP on any input, by selecting the appropriate ciphertexts to be used. The adversarial goal remains the same, of extracting k.

Theorem 2 (Simulating the entire message space). Let PRP denote a pseudorandom permutation and let f : K × M → C denote its circuit representation. Let A denote a PPT adversary and let S 1 denote the system of equations obtained from Lemma 2. Let T i u,v denote the entry in position (u, v) of the matrix T i computing the i -th bit of f . Let S 2 be obtained from S 1 by adding the following terms:

T i u,v,1 j -T i u,v,0 j
. The advantage of any PPT adversary in recovering k from S 2 is negligible:

Adv ubk A ,S 2 (λ) ≤ Adv mv A 1 (λ).
Proof (Theorem 2). First, we argue that extracting k is equivalent to fully solving the system of equations. One implication is trivial. For the other case, suppose A recovers k with non-negligible advantage. If this is the case, then, there exists an algorithm (reduction) R such that R solves entirely the system of equations. Concretely, R pro- Then, we consider each T i independently, as the product of three matrices. Explicitly, this is:

ceeds by computing W = (L•G k||0 •R)•(L•G k||1 •R) -1 = (L•G k||0 •R)•(R -1 •G -1 k||1 •L -1 ) = (L•G k||0 •G -1 k||1 •L -1 ). Then, since L • G k||0 • G -1 k||1 = W • L,
T i ← L i • (G i k||M • R i ) .
Each of the m lines in G i k||M depends on either the key k or the message M. Moreover, each line of G i k||M contains at most one node that is set to 1 if and only if the corresponding bit of k or M is set to 1. For line j in G i k||M let x 1 j denote the node that is set to 1 and x 0 j the one set to 09 .

Considering the input bits of k||M, the outcome of

G i k||0 • R i is a matrix:            r i x 0 1 ,1 r i x 0 1 ,2 . . . r i x 0 1 ,m r i 1,1 + r i x 0 2 ,1 r i 1,2 + r i x 0 2 ,2 . . . r i 1,m + r i x 0 2 ,m r i 2,1 + r i x 0 3 ,1 r i 2,2 + r i x 0 3 ,2 . . . r i 2,m + r i x 0 3 ,m . . . . . . . . . r i m-1,1 + r i x 0 m ,1 r i m-1,2 + r i x 0 m ,2 . . . r i m-1,m + r i x 0 m ,m            (12) 
It can be easily observed that each line of G i k||0 • R i depends on a single input bit x i , which is set by either a bit of M (exclusive) or of k.

The next thing to notice concerns the multiplication with L i . It ensures the elements depending on k are multiplied with a specific set of elements in L i . That is, the entries in L can be split in two complementary sets: one used to multiply elements depending on k, the other used to multiply entries depending on M. Let L i be:

L i ←         l i 1,1 l i 1,2 . . . l i 1,m l i 2,1 l i 2,2 . . . l i 2,m l i 3,1 l i 3,2 . . . l i 3,m . . . . . . . . . l i m,1 l i m,2 . . . l i m,m        
When the multiplication is performed, the entry in position (u, v) can be written as:

T i u,v ← l i u,1 • r i x 0 1 ,v + m j =2 l i u, j • (r i j -1,v + r i x 0 j -1 ,v ) (13) 
Equation ( 13) ensures that we end up with a system of equations where the bits in k are multiplied with a fixed subset of entries L.

We now proceed and augment the system of equations S 1 obtained from the previous lemma, and end up with a new system S 2 . For each entry T i u,v , there are up to n new terms, each one depending on a different bit j of the message M:

T i u,v,M 1 j -T i u,v,M 0 j ← j ∈{M j } l i u, j • (r i x 1 j -1 ,v -r i x 0 j -1 ,v ) (14) 
The newly added variables are independent on the bits of k and the elements in L "depending" on k.

On the other, by the multivariate quadratic assumption, we know the problem of solving a system of equations is hard for the case where m > n 2 . Thus, based on the MV assumption any PPT-bounded adversary A will have a negligible advantage in retrieving the k.

Future Work: Average-Case Hardness of S 2

A series of recent works [AJS18, page 9], [Agr19, page 14], [JLS19, page 32] consider the usage of multivariate (MV) polynomials (not necessarily quadratic) in order to build i O . These works employ a stronger MV version, requiring pseudorandomness for the output of MV polynomials. We employ the weaker, computational version of this problem. We argue for hardness in solving S 2 (as a specific MV instance).

The matrix G i k||0 • R i in Equation ( 12) has each row depending on k or on some position j of input M (note that M j ← 0 in G i k||0 ). Consider the following matrix notation:

• let 〈G i k||0 • R i 〉 k be the matrix obtained from 〈G i k||0 • R i 〉 such that each row not depending on k is set to 0. • let 〈G i k||0 • R i 〉 j be the matrix obtained from 〈G i k||0 • R i 〉
such that each row not depending on the j -th bt of M is set to 0.

• using these notations, we have that:

G i k||0 • R i = 〈G i k||0 • R i 〉 k + 〈G i k||0 • R i 〉 1 + . . . + 〈G i k||0 • R i 〉 n
• similarly we have:

L i = 〈L i 〉 k + 〈L i 〉 1 + . . . + 〈L i 〉 n
Observe that the following pairs are orthogonal

〈L i 〉 k , 〈G i k||0 • R i 〉 j , 〈G i k||0 • R i 〉 k , 〈L i 〉 j and for any j = j 〈G i k||0 • R i 〉 j , 〈L i 〉 j .
Using these property we have:

L i • G i k||0 • R i = 〈L i 〉 k + n j =1 〈L i 〉 j • 〈G i k||0 • R i 〉 k + n j =1 〈G i k||0 • R i 〉 j = 〈L i 〉 k • 〈G i k||0 • R i 〉 k + n j =1 〈L i 〉 j • 〈G i k||0 • R i 〉 j (15) 
This matrix equation, repeated for every input bit i describes S 1 .

To build S 2 , our implementation contains the additional set:

〈L i 〉 j • 〈(G i k||1 -G i k||0 ) • R i 〉 j j ∈[n]
for each output bit i . Observe that the newly added set is independent of k, as 

G i k||1 -G i k||0 has 
• let w j represent 〈L i 〉 j • 〈(G i k||1 -G i k||1 ) • R i 〉 j in
some large enough basis. • choose a message M to act as the SSP secret => obtain a target sum t i = n j =1 w j • M j ; repeat this step for every output bit i .

• If there is an adversary A breaking UBK, then: (1) A recovers k; (2) A determines C i from the values t i ; (3) A gets PRP(k,C 1 || . . . ||C n ) = M; (4) A wins the multiple SSP game.

Further techniques can be employed in randomizing all matrices 〈L

i 〉 j •〈(G i k||1 -G i k||0 ) • R i 〉 j
as well as the matrix T i with the same binary invertible matrices A, B, such that determinant is preserved.

A A Compact Description for NC1 circuits

• (msk, mpk) ←$ FE.Setup(1 λ , 1 w , 1 d ): let d stand for the circuit depth, w stand for the length of the supported inputs and λ for the security parameter.

for k ← 1, . . . , (d -1) :

a k ←$ R L k p k (16)
Here {p k : k ← 1, . . . , d } stands for a set of d primes, while L k denotes the size of an encoding (we assume they are a priori known). Then, a Lin-FE scheme is instantiated: 

B Ciphertext and Public-Key Evaluation

The Eval PK (mpk, f ) procedure uses mpk to compute PK f . In a similar way, Eval CT (mpk, C, f ) computes the value of the function f obliviously on the ciphertext. Both the procedure are defined recursively, that is to compute PK k f and CT k f (x) at level k, PK k-1 f and C k-1 f (x) are needed. For a better understanding of the procedures, we will denote the encoding of f k (x) by c k , i.e. c k = E k ( f k (x)) and the public key or label of an encoding E k (•) by PK(E k (•)). Thus, formally, the two procedures are recursively defined as follow:

Eval PK (∪ t ∈[k] C t , ) computes the label for the t h wire in the k level circuit, from the i t h and j t h wires of k -1 level:

1. Addition Level:

10 Remember that w • k f = pk f .

• If k = 1 (base case): PK(c 1 ) ← PK i + PK j .

• Otherwise, u k-1 i

← Eval k-1 PK (∪ t ∈[k-1] C t , i ) and u k-1 j ← Eval k-1 PK (∪ t ∈[k-1] C t , j ). Compute PK(c k ) ← u k-1 i + u k-1 j .
2. Multiplication Level:

• If k = 2 (base case): PK(c 2 ) ← u 1 i u 1 j PK(E 2 (s 2 ))u 1 j PK(E 2 (c 1 i s))u 1 i PK(E 2 (c 1 j s)).

• Otherwise, u k-1 i

← Eval k-1 PK (∪ t ∈[k-1] C t , i ) and u k-1 j ← Eval k-1
PK (∪ t ∈[k-1] C t , j ). Compute:

PK(c k ) ← u k-1 i u k-1 j PK(E k (s 2 )) -u k-1 j PK(E k (c k-1 i s)) -u k-1 i PK(E k (c k-1 j s))
Eval CT (∪ t ∈[k] C t , ) computes the encoding of the t h wire in the k level circuit, from the i t h and j t h wires of k -1 level:

1. Addition Level:

• If k = 1 (base case): c 1 ← E 1 (x i ) + E 1 (x j ).

• Otherwise, let c k-

1 i ← Eval k-1 CT (∪ t ∈[k-1] C t , i ) and c k-1 j ← Eval k-1 CT (∪ t ∈[k-1] C t , j ). Compute CT k ← c k-1 i + c k-1 j .

Multiplication Level:

• If k = 2 (base case):

c 2 ← c 1 i c 1 j E 2 (s 2 ) -u 1 j E 2 (c 1 i s) -u 1 i E 2 (c 1 j s). • Otherwise, let c k-1 i ← Eval k-1 CT (∪ t ∈[k-1] C t , i ) and c k-1 j ← Eval k-1 CT (∪ t ∈[k-1] C t , j ). Compute CT k ← c k-1 i c k-1 j + u k-1 i u k-1 j E k (s 2 ) -u k-1 j E k (c k-1 i s) -u k-1 i E k (c k-1 j s)
Due to space constraints, we refer the reader to [AR17] for complete explanations.

C Invertible Matrix over F 2

In this part, we show that the probability of a matrix R, sampled uniformly at random over F m×m 2 to be invertible is roughly 0.288788 + (m), where is a negligible function.

The proof is relatively straightforward, and steps through the following parts: first, we can sample any "row" of dimension m with probability 1 over 2 m choices. For the second row, we have 2 m -1 choices, and so on and so forth.

Thus, we end up with the the following probability for m lines to be linearly independent:

Pr[∃R -1 : R ←$ F m×m 2 ] = m i =1 1 - 1 2 i .
As m tends to infinity, one can show via the Pentagonal number theorem that the limit of the previous sequence is 0.288788. . .

D An Algorithmic Description of Our Compiler

In Figure 6, we give an algorithmic description of our UBK compiler from Definition 10.

• i O .Setup(1 λ , f ): given a key k ∈ K, the randomized C.Setup proceeds as follows:

(1) compute the entry (u, v) of T as T u,v ← T u,v,k + T u,v,M 1 + . . . + T u,v,M n ;

where T i u,v,M i includes the monomials depending on bit M i while T i u,v,k includes the monomials depending on k as well as all other monomials independent of M or k (if any);

(2) compute the following: T u,v,k||0 ← T u,v,k + T u,v,0 1 + . . . + T u,v,0 n ; which represents the entry corresponding to k||0.

(3) Compute the terms T u,v,1 j -T u,v,0 j for each position j ∈ [n]:

∆ u,v, j ← T u,v,1 j -T u,v,0 j
Return as the obfuscated program the following set of variables:

T u,v,k||0 , ∆ u,v, j , ∀ j ∈ [n] and for each entry (u, v) in the corresponding matrices T u,v .

• i O .Eval(M): running the program consists of selecting the terms encrypting 0 and 1 based on the binary decomposition of M = M 1 , . . . , M n and evaluating the polynomial T i u,v in the selected points: Proof (Proposition 2). It is easy to check that:

T u,v ← T u,v,k||0 + n j =1 M j • ∆ u,v
det T u,v,k + n j =1 M j • ∆ u,v, j = det L • G k||M • R = U ct (k, M) = f (M) .

E.3 Future Work: Security

We employ the usage of an universal circuit parametrized by a SE ciphertext in order to prevent trivial distinguishing attacks. That is, assuming C 0 ≡ C 1 . Note that this holds as long as we restrict the evaluation of the circuits to a single point. The problems occur while releasing the additional data that are used to simulate the entire input. Unfortunately, the major distinction from Section 6.3 is that extracting k is insufficient. Even if we can argue that k is still difficult to extract, it must be hard to distinguish the two systems. To this end, one can use the technique proposed in [PGC98], which would reduce the indistinguishability of two systems to the problem of deciding whether two systems of equations are isomorphic.

Fig. 2 .

 2 Fig. 2. The unbreakability (top-left) and one-wayness (bottom-left) security games, as defined in [DLPR14]. The FULL-SIM-FE security experiment for public-key functional encryption schemes, as defined in [GKP + 13] (right).

Fig. 3 .

 3 Fig. 3. The game corresponding to a new security notion, one-wayness for FE is shown in the public/private settings.

  R forwards the ciphertext to A . If A replies with M, then R returns b = 0. If A replies with any other value M = M, then R returns b = 1. Analysis. If b = 0, then A returns M with Adv ow-fe A ,FE (λ), as it simulates perfectly the setting of the OW-FE game. On the other hand, when b = 1, then A receives a ciphertext that leaks M only through f (M), A 's probability of returning M essentially being bounded by Adv owp A , f (λ). With overwhelming probability, for this second case, the adversary will return M = M. Directly, R returns 1 with probability 1

Finally, C

 C IND ←$ Com(pk IND , R) is a commitment to the random coins used by the scheme. The following ciphertext is returned: C 1 , . . . , C w , C IND

  one can determine L by solving the linear system. The same can be done for R, and repeated for any i ∈ [n].

(

  pk, msk) ←$ Lin-FE.Setup(1 λ ) where pk ← (w, a d ). The following variables are returned: mpk ← (a 1 , . . . , a d , w) msk ← Lin-FE.msk (17)• FE.KeyGen(msk,M): given a function f represented as a circuit of depth d :P K f ←$ Eval P K (mpk, f )Invoke KeyGen to obtain k f 10 and return it:k f ←$ Lin-FE.KeyGen(msk,PK f )• FE.Enc(mpk,M = [x 1 , . . . , x w ]): first, for each x i , compute its encodings for all multiplicative levels 1 → d :C k i ←$ E k (x i ), ∀k ∈ [d ]Then, set d as follows:d ← w • s + µ Finally, set the ciphertext corresponding to M as C M ← {C k } k∈[d ] , d . • FE.Dec(sk f , C): compute C f (x) ← Eval C ({C k } k∈[d ] , f ) .Return Decode(k f , C f (x) ) .

  , j f (M) is recovered by computing d et (T i ). Proposition 2. The obfuscator i O in Definition 12 enjoys correctness.

  Delerablée et al. [DLPR14] introduced several security notions related to whitebox cryptography for symmetric primitives. In this paper, we are interested in showing the existence of implementations resistant to key extraction. Hence, we only consider the essential notions of unbreakability and onewayness introduced in [DLPR14]. Roughly speaking, unbreakability requires hardness in extracting the secret key k

	k): the compiler takes the description E , together with a secret-key k and a
	nonce r , and outputs a programs C.Eval r k . • C ← C.Eval r k M : the program C.Eval r k takes as input a message M and outputs a ciphertext corresponding to E .Enc(k, M). C -1 .Eval r

k is defined similarly with respect to decryption.

White-Box Security Notions.

  From a syntactical point of view, S 2 resembles Stepwise Triangular System [WP05, page 23]. Unfortunately one cannot rely on indistinguishability of S2 ≈ c (S1, $), as we compute the determinant to recover PRP i and the "det" is biased over F 2 . Proving the average case hardness is somewhat difficult. We propose reducing it to the Subset-Sum Problem (SSP), given the known hardness of SSP instances having density>0.94 [PZ11]. To this end, consider the multipleSSP version obtained from S 2 :

	Average case hardness.

the rows depending on k set to 0.

The master encryption key may be public or private, depending on the setting.

In IBE, public-keys are represented as memorable identifiers (e.g. phone numbers, email addresses).

In general, it may be split into chunks, but we consider digital bits for simplicity.

From now on, when referring to [AR17] we mean their NC 1 construction.

Any Boolean circuit can be simulated by an arithmetic circuit over GF(2).

The encoding procedure above applies for each x 1 , . . . , x n , obtaining a ciphertext resembling a "forest of trees" (Figure5). In addition, Level 1 also contains an encoding of s, i.e., E 1 (s), while Level i (for 2 ≤ i ≤ d ) also contains E i (s 2 ). Up to this point, the technique used by the scheme resembles the ones used in fully homomorphic encryption. The high level idea is to compute the function f obliviously with the help of the encodings. x 1 . . . . . . . . . . . . . . . . . . . . . . . . x 2 . . . . . . . . . . . . . . . . . . . . . . . .

In particular, each monomial will depend on a single bit of the input.

Circuits with multi-bit outputs are obtained by concatenation.

These terms are leaked while reusing randomness, as explained in Section 5.2.

We avoid writing the output bit i in x j to keep the notation clear.

This technique is inherited from [GKP+ 13]. We also assume that SE decryption ∈ NC 1 , as well as its composition with f ∈ NC 1 such that U ct ∈ NC 1 .

C.Setup(1 λ , k, f ) : E Towards an iO Obfuscator for NC 1

E.1 Indistinguishability Obfuscation

We use the formal definitions of i O for classes of uniform boolean circuits as the main computation model, following the works of Lin et al. in [Lin17,LT17].

Definition 11 (Indistinguishability Obfuscation (i O ) for a circuit class). An indistinguishability obfuscator i O for a family C λ of uniform circuits of depth d is a PPT algorithm satisfying:

• Correctness:

• Indistinguishability:

where D λ is the input domain of the circuit family {C } λ .

E.2 Candidate Construction

It can be trivially observed that the aforementioned techniques give rise to a simple candidate obfuscator. Given as input a circuit C implementing some function f (one bit of output for simplicity), the indistinguishability obfuscator candidate i O proceeds as follows:

• encrypts the description of C under some semantic-secure symmetric encryption scheme SE and obtains ct ← SE.Enc(k,C ||padding) .

• takes a depth-preserving universal circuit [CH85] U ct that receives as input (k, M) and proceeds as follows: (1) decrypts ct under k;

(2) outputs C (M) 11 .

• obtains the branching program BP of U ct and two random binary invertible matrices L and R.

• computes the symbolic product of L • G • R, which has k hardcoded and the M "free". Let this matrix be T.

• releases the "1-0" terms such that one is able to simulate the entire input.

• intuitively, finding k should be as hard as solving a multivariate polynomial equations, and so should be guessing which circuit has bee used to feed U ct .

A formal definition of our obfuscator follows: