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Introduction

The way time and mass is understood has accurately predicted most of the research that has been carried out over the last century. But there are still many uncertainties in the universe which lack sufficient understanding of these two variables, such as Dark Matter. The present paper is a review of Theoria Temporis (Viaña 2019), where an alternative mathematical perspective of the Lorentz Factor, is proposed. The resulting expressions of time and mass are applied to three different cases to provide a brief comparison between the current proven knowledge from Special and General Relativity and the present theory. Finally a fourth application is considered to benchmark the proposed formulation with the insights of photon production from WIMP annihilation into charged states via loop-level processes (𝜒𝜒 → 𝛾𝑋) [START_REF] Bertone | Particle Dark Matter: Observations, Models and Searches[END_REF][START_REF] Coogan | [END_REF].

Methodology

A particle of infinitesimal mass (𝑑𝑚) can be identified in space-time with the three position coordinates (𝑥, 𝑦, 𝑧) and its time (𝑡). This particle also contains a differential energy (𝑑𝐸), even though its mass is infinitely small. However, its specific energy (𝜀) is much higher,

𝜀 = 𝑑𝐸 𝑑𝑚 (1) 
Energy, position, time and even mass need a reference. Kinetic energy, for example, requires a zero-speed reference. Similarly, gravitational energy is associated with its corresponding null potential. Thus, the specific energy of a particle of infinitesimal mass, 𝐴, can be redefined by taking another particle, 𝐵, as a reference,

𝜀 𝐴 𝑟 𝐵 = 𝑑𝐸 𝐴 𝑟 𝐵 𝑑𝑚 𝐴 𝑟 𝐵 (2) 
Being 𝑑𝑚 𝐴 𝑟 𝐵 the mass, and 𝑑𝐸 𝐴 𝑟 𝐵 the energy of the particle 𝐴 that has 𝐵 as a reference. Let 𝑆 be considered a set of particles 𝐴.

∫ 𝜀 𝐴 𝑟 𝐵 𝑑𝑚 𝐴 𝑟 𝐵 = ∫ 𝑑𝐸 𝐴 𝑟 𝐵 (3) 
The total energy of the set 𝑆 (𝐸 𝑆 𝑟 𝐵 ) will be the integral of all the energetic contributions.

∫ 𝜀 𝐴 𝑟 𝐵 𝑑𝑚 𝐴 𝑟 𝐵 = 𝐸 𝑆 𝑟 𝐵 (4) 
The energy contribution made by each particle 𝐴 of the set can be the same regardless of the particle (condition ( 5)),

𝜀 𝐴 𝑟 𝐵 = 𝜀 𝑆 𝑟 𝐵 (5) 
If so, 𝜀 𝐴 𝑟 𝐵 is constant throughout the mass of the set and therefore can be extracted from the integral.

𝜀 𝑆 𝑟 𝐵

∫ 𝑑𝑚 𝐴 𝑟 𝐵 = 𝐸 𝑇𝑜𝑡 𝑟 𝐵 (6) On the other hand, the mass of the set will be the sum of all the differential masses that compose it,

𝑚 𝑆 𝑟 𝐵 = ∫ 𝑑𝑚 𝐴 𝑟 𝐵 (7) 
Thus,

𝜀 𝑆 𝑟 𝐵 = 𝐸 𝑆 𝑟 𝐵 𝑚 𝑆 𝑟 𝐵 ( 8 
)
If it is necessary to apply the formulas described below for a non-differential mass set, condition (5) has to be verified. Otherwise, portions of the subject matter where said condition holds should be considered.

Let 𝐴 and 𝐵 be two particles of infinitesimal mass, 𝑑𝑚 𝐴 and 𝑑𝑚 𝐵 respectively, whose energy states are different.

If the specific energy of particle 𝐴 taking 𝐵 as a reference is

𝜀 𝐴 𝑟 𝐵 = 𝜀 (9) 
by reciprocity, the specific energy of particle 𝐵 taking 𝐴 as a reference is

𝜀 𝐵 𝑟 𝐴 = 𝜀 (10) 
Additionally, a particle 𝐷 of infinitesimal mass is considered, whose specific energy is 𝑐 2 2 ⁄ .

In this theory, the following will be assumed; if the specific energy of a particle is 𝑐 2 2 ⁄ as seen from a given reference, then for all the references the specific energy of such particle will be the same. This is a mathematical hypothesis that in a later point of the theory will be compared with the current knowledge. Therefore,

𝜀 𝐷 𝑟 𝐴 = 𝑐 2 2 (11) 𝜀 𝐷 𝑟 𝐵 = 𝑐 2 2 (12)
Figure 1. Specific energy differences of the particles and their associated reference frames

The particles of Fig. 1 can be infinitely close in threedimensional space. In fact, they both could be in the exact same point of the universe. Since the derivative is considered over the mass, not over the volume, they would still be different particles, even in such an extreme condition.

However, despite their proximity, they are not the same particles, their specific energy differentiates them. Therefore, in order to distinguish the energy states of each particle, the 𝑥, 𝑦, 𝑧 position is not enough. In other words, the universe characterized by 𝑥, 𝑦, 𝑧, 𝑡 is not adequate to make the comparison of the energies discussed in the present study.

Instead, an equivalent two-dimensional universe is used. This universe is defined by two variables Ω and 𝑡. Ω is the equivalent spatial separation of the particles due to their specific energy, and 𝑡 the time of the particle. Said spatial separation is defined below as the product of the time and the equivalent velocity (𝑣 𝑒𝑞 ).

Ω = 𝑡 𝑣 𝑒𝑞 (13)
The equivalent velocity is understood as the velocity that the particle would need such that its specific energy is entirely kinetic. The kinetic energy is defined as,

𝐸 𝑘𝑖𝑛 = 1 2 𝑚 𝑣 2 (14)
𝑣 and 𝑚 are the velocity and mass of the particle respectively. Using expression (1) to get the specific kinetic energy and replacing 𝑣 by 𝑣 𝑒𝑞 , the following is obtained,

𝜀 𝑘𝑖𝑛 = 𝑣 𝑒𝑞 2 2 (15) 
Thus, the equivalent velocity of 𝐴 (based on reference 𝐵) is,

𝑣 𝑒𝑞 𝐴 𝑟 𝐵 = √ 2 𝜀 𝐴 𝑟 𝐵 (16)
Therefore, the equivalent separation between particles 𝐴 and 𝐵 seen from 𝐵 is,

Ω 𝐴 𝑟 𝐵 = 𝑡 𝐵 √ 2 𝜀 𝐴 𝑟 𝐵 (17) 
It should be noted that the time of the particles is not the same. Since 𝑣 𝑒𝑞 𝐴 𝑟 𝐵 is the equivalent velocity of the particle 𝐴 observed from 𝐵, it is necessary to use the time of the observer, which in this case is 𝐵. This transformation is carried out for each specific energy of Fig. 1, obtaining Fig. 2.

Figure 2. Equivalent distances between the particles and their associated reference frames

These equivalent distances (defined by 𝑑𝑖𝑠𝑡) are related to each other. However, they differ according to the reference from which they are observed.

𝑑𝑖𝑠𝑡(𝐴, 𝐷) 𝑟 𝐴 ≠ 𝑑𝑖𝑠𝑡(𝐴, 𝐷) 𝑟 𝐵 (18) 𝑑𝑖𝑠𝑡(𝐵, 𝐷) 𝑟 𝐵 ≠ 𝑑𝑖𝑠𝑡(𝐵, 𝐷) 𝑟 𝐴 (19) 
To compare ( 18) and ( 19) the factor 𝑘 is used as seen in ( 20) and ( 21),

𝑑𝑖𝑠𝑡(𝐴, 𝐷) 𝑟 𝐴 = 𝑘 ( 𝑑𝑖𝑠𝑡(𝐴, 𝐷) 𝑟 𝐵 ) (20) 𝑑𝑖𝑠𝑡(𝐵, 𝐷) 𝑟 𝐵 = 𝑘 ( 𝑑𝑖𝑠𝑡(𝐵, 𝐷) 𝑟 𝐴 ) (21) 
Then,

Ω 𝐷 𝑟 𝐴 = 𝑘 ( Ω 𝐷 𝑟 𝐵 + Ω 𝐴 𝑟 𝐵 ) (22) 
Ω 𝐷 𝑟 𝐵 = 𝑘 ( Ω 𝐷 𝑟 𝐴 -Ω 𝐵 𝑟 𝐴 ) (23) 
Substituting the values of the equivalent distances,

𝜀 𝐷 𝑟 𝐴 = 𝑐 2 2 ⁄ 𝜀 𝐴 𝑟 𝐵 = 𝜀 𝜀 𝐵 𝑟 𝐴 = 𝜀 𝜀 𝐷 𝑟 𝐵 = 𝑐 2 2 ⁄ 𝐴 𝐵 𝐷 Ω 𝐴 𝑟 𝐵 = 𝑡 𝐵 2 𝜀 𝐴 𝐵 𝐷 Ω 𝐵 𝑟 𝐴 = 𝑡 𝐴 2 𝜀 Ω 𝐷 𝑟 𝐴 = 𝑡 𝐴 𝑐 Ω 𝐷 𝑟 𝐵 = 𝑡 𝐵 𝑐 𝑐 𝑡 𝐴 = 𝑘 ( 𝑡 𝐵 𝑐 + 𝑡 𝐵 √ 2 𝜀 ) (24) 𝑐 𝑡 𝐵 = 𝑘 ( 𝑡 𝐴 𝑐 -𝑡 𝐴 √ 2 𝜀 ) (25) 
Considering the common factor, 𝑐 𝑡 𝐴 = 𝑘 𝑡 𝐵 ( 𝑐 + √ 2 𝜀 ) (26)

𝑐 𝑡 𝐵 = 𝑘 𝑡 𝐴 ( 𝑐 -√ 2 𝜀 ) (27) 
Due to the symmetry of the problem, it is not possible to solve 𝑘 using the information from a single equation. It is necessary to incorporate the information of both to obtain the parameter 𝑘. Therefore ( 26) and ( 27) must be multiplied, obtaining (28).

𝑐 2 𝑡 𝐴 𝑡 𝐵 = 𝑘 2 𝑡 𝐴 𝑡 𝐵 ( 𝑐 2 -2 𝜀 ) (28) 
Simplifying,

𝑘 = 1 √ 1 - 𝜀 𝑐 2 2 ⁄ (29)
The factor obtained in (29) allows one to relate the variables of two reference systems whose specific energies differ.

The last part of the development is analogous to the one made to get the Lorentz Factor (30) (Einstein 1905;Einstein 1915;Cenko et al. 2015).

𝛾 = 1 √ 1 - 𝑣 2 𝑐 2 (30) 
Indeed, the mathematical form of both factors ( 29) and ( 30) is very similar. However, due to the initial transformations, the result is different. In the next section, (29) will be applied to different cases to observe the distinction between the current theories and the one developed in this study.

Applications

Velocity effect in time

As it can be seen in ( 30), the Lorentz Factor depends on both the velocity (𝑣) and the speed of light (𝑐). This parameter (𝛾), defines the time dilation due to the velocity of a particle [START_REF] Einstein | Relativity: The Special and General Theory[END_REF][START_REF] Francis | Proc. 34th PTTI Systems and Applications Meeting[END_REF],

𝑇 ′ = 𝑇 1 √ 1 - 𝑣 2 𝑐 2 (31) 
The relativistic time (𝑇 ′ ) can be understood as the time of a certain particle 𝐴 whose velocity with respect to a reference 𝐵 is 𝑣. Should the parameter suggested in (29) be used, the previous expression becomes,

𝑇 ′ = 𝑇 1 √ 1 - 𝜀 𝑐 2 2 ⁄ (32)
The specific energy of the particle 𝐴 with respect to particle 𝐵 is entirely kinetic. Thus,

𝜀 = 𝜀 𝐴 𝑟 𝐵 = 𝐸 𝐴 𝑟 𝐵 𝑚 𝐴 = 1 2 𝑚 𝐴 ( 𝑣 𝐴 𝑟 𝐵 ) 2 𝑚 𝐴 = 1 2 𝑚 𝐴 𝑣 2 𝑚 𝐴 = 𝑣 2 2
(33)

If this value (33) of the specific energy is substituted in (32), then it can be seen how the relation that arises is exactly the one defined by (31).

Gravitational effect in time

(34) is the formula that defines time dilation due to gravitational effect [START_REF] Chou | [END_REF],

𝑇 ′ = 𝑇 1 √1 - 2𝐺𝑀 𝑅 𝑐 2 (34) 
The previous expression could also be rewritten as (32) where the particle considered is only submitted to the effect of gravity, and thus its specific energy is only gravitational,

𝜀 = 𝜀 𝐴 𝑟 𝐵 = 𝐸 𝐴 𝑟 𝐵 𝑚 𝐴 = 𝑚 𝐴 𝑔 𝑅 𝑚 𝐴 = 𝑔 𝑅 = 𝐺𝑀 𝑅 2 𝑅 = 𝐺𝑀 𝑅 (35) 
It is curious that both equations ( 31) and ( 34) have (32) as a common ancestor.

Mass and energy relation

In ( 36) is expressed the equation that relates the relativistic mass or total mass (𝑚 𝑇𝑜𝑡 ) with the rest mass (𝑚 0 ) and the Lorentz Factor (Roche 2005),

𝑚 𝑇𝑜𝑡 = 𝑚 0 √ 1 - 𝑣 2 𝑐 2 (36) 
Equation ( 37) relates 𝑚 𝑇𝑜𝑡 and 𝑚 0 if the proposed factor (29) is considered.

𝑚 𝑇𝑜𝑡 = 𝑚 0 √ 1 - 𝜀 𝑐 2 2 ⁄ (37) 
Equation ( 37) is an equation that relates the rest mass, the relativistic mass, and the total specific energy of a certain particle. But the famous equation ( 38) already relates those variables (Rainville, Thompson, Myers et al. 2005).

𝐸 = 𝑚 𝑒𝑥𝑡𝑟𝑎 𝑐 2 (38) 
Where the extra mass (𝑚 𝑒𝑥𝑡𝑟𝑎 ) is the difference between the total mass (𝑚 𝑇𝑜𝑡 ) and the rest mass (𝑚 0 ), that is, Equations ( 42) and ( 38) are the same, but it would be truly remarkable if this last equation ( 42) is exactly equal to equation ( 37), which is proposed in this research.

𝑚 𝑇𝑜𝑡 = 𝑚 0 + 𝑚 𝑒𝑥𝑡𝑟𝑎 ( 
Let equations ( 37) and ( 42) be compared. To do so, equation (37) will be rewritten as,

𝑚 𝑇𝑜𝑡 𝑚 0 = 1 √ 1 - 𝜀 𝑐 2 2 ⁄ (43) 
Now (42) will be substituted in ( 43) and if both are the same, the resulting combined equation should lead to an identity,

𝑚 𝑇𝑜𝑡 𝑚 0 = 1 √2 𝑚 0 𝑚 𝑇𝑜𝑡 -1 (44) 
Calling 𝑦 the quotient of

𝑚 0 𝑚 𝑇𝑜𝑡 , 1 𝑦 = 1 √2 𝑦 -1 (45) 
Simplifications end in two functions, one on the left of the equality and one on the right,

𝑓 1 = 1 𝑦 (46) 𝑓 2 = 1 √2 𝑦 -1 (47) 
The functions defined by 𝑓 1 and 𝑓 2 are not the same. Thus, equations ( 37) and ( 42) are not the identical. To see how big the difference is, in Fig. 3 both are plotted together having 𝑦 as the independent variable. The resulting plot is of interest, since both functions are actually tangent at the point where 𝑦 is equal 1 (Fig 3 .). It is thus observed that for those values close to 1, the error incurred is very small, while when being far from 1, the error can be very high.

In other words, when 𝑚 𝑇𝑜𝑡 and 𝑚 0 are similar (usual in small particles, where 𝜀 is often small), both formulas are applicable; (37) and ( 42). In fact, for the low-mass experiments carried out on Earth (small values of 𝑚 𝑒𝑥𝑡𝑟𝑎 ), if (42) was correct, no significant difference between (37) and ( 42) would be appreciated in the measurements.

Both formulas are very similar, and that is remarkable given the fact that their origins are completely different.

Each one understands the mass in its own way, and perhaps this is indeed the most interesting point to think about. Equation ( 38) says that mass is a linear property; that can be calculated adding up their parts simply with a sum. Indeed, ( 38) and ( 39) together form a system of two equations. Formula ( 38) without ( 39) is meaningless. But equation ( 37) is suggesting that mass depends on its energy, and that the sum of the parts (𝑚 0 + 𝑚 𝑒𝑥𝑡𝑟𝑎 ) is not the same as the whole (𝑚 𝑇𝑜𝑡 ).

To see more in detail the relation between these two versions of the theory, ( 37) and ( 42) will be compared using 𝐸 instead of 𝜀. To do so, (43) will be transformed as follows,

𝑚 𝑇𝑜𝑡 𝑚 0 = 1 √ 1 - 𝐸 𝑚 𝑇𝑜𝑡 𝑐 2 2 ⁄ (48) 1 - 𝐸 𝑚 𝑇𝑜𝑡 𝑐 2 2 ⁄ = ( 𝑚 0 𝑚 𝑇𝑜𝑡 ) 2 (49) 𝐸 = 𝑚 𝑇𝑜𝑡 𝑐 2 2 (1 -( 𝑚 0 𝑚 𝑇𝑜𝑡 ) 2 ) (50) 𝐸 = 𝑐 2 2 ( 𝑚 𝑇𝑜𝑡 - 𝑚 0 2 𝑚 𝑇𝑜𝑡 ) (51)
Equation ( 51) is exactly the same as ( 37), but allows the calculation of the bonding energy, if 𝑚 0 and 𝑚 𝑇𝑜𝑡 are known. Fig. 4 and Fig 5 . show the difference between ( 40) and ( 51) in a three-dimensional space if 𝑚 0 and 𝑚 𝑇𝑜𝑡 are the independent variables. Both equations provide the same value of the energy when 𝑚 0 and 𝑚 𝑇𝑜𝑡 are equal, and therefore 𝐸 is zero. In the immediate vicinity of this line, ( 51) is a good approximation of (40). But when leaving the adjoining margin, the errors become much more noticeable, even reaching infinitely different values.

Interestingly, the plane defined by ( 40) is tangent to the curved surface (51). In fact, it is tangent along the entire line 𝐸 = . This is an uncommon feature between two threedimensional functions.

Both surfaces predict a negative energy in case 𝑚 0 > 𝑚 𝑇𝑜𝑡 , positive when 𝑚 0 < 𝑚 𝑇𝑜𝑡 , and null in case the masses are equal.

The following development shows how the plane is tangent, across the straight line, to the curved surface.

The equation of the plane tangent to a given point 𝑃 of a function 𝐹 is given by,

𝐹 𝑥 | 𝑃 (𝑥 -𝑥 𝑃 ) + 𝐹 𝑦 | 𝑃 (𝑦 -𝑦 𝑃 ) + 𝐹 𝑧 | 𝑃 (𝑧 -𝑧 ) = (52) 
Being 𝐹,

𝐹 = 𝐸 - 𝑐 2 2 ( 𝑚 𝑇𝑜𝑡 - 𝑚 0 2 𝑚 𝑇𝑜𝑡 ) = (53) 
Renaming with 𝑥, 𝑦, 𝑧,

𝐹 = 𝑧 - 𝑐 2 2 (𝑦 - 𝑥 2 𝑦 ) = (54) 
Being the point 𝑃 any point belonging to the line 𝑚 0 = 𝑚 𝑇𝑜𝑡 , thus 𝑃(𝑚, 𝑚, ). Calculating the partial derivatives,

𝐹 𝑥 = - 𝑐 2 2 (- 2 𝑥 𝑦 ) (55) 
𝐹 𝑦 = - 𝑐 2 2 (1 + 𝑥 2 𝑦 2 ) ( 56 
)
𝐹 𝑥 = 1 (57) Substituting 𝑃, 𝐹 𝑥 | 𝑃 = - 𝑐 2 2 (- 2 𝑚 𝑚 ) = 𝑐 2 (58) 𝐹 𝑦 | 𝑃 = - 𝑐 2 2 (1 + 𝑚 2 𝑚 2 ) = -𝑐 2 (59) 𝐹 𝑧 | 𝑃 = 1 (60) Finally, 𝑐 2 ( 𝑚 0 -𝑚) -𝑐 2 (𝑚 𝑇𝑜𝑡 -𝑚) + (𝐸 -) = (61) 𝐸 = 𝑐 2 (𝑚 𝑇𝑜𝑡 -𝑚) -𝑐 2 ( 𝑚 0 -𝑚) (62) 𝐸 = (𝑚 𝑇𝑜𝑡 -𝑚 0 ) 𝑐 2 = 𝑚 𝑒𝑥𝑡𝑟𝑎 𝑐 2 (63)
Thus, proving that the plane is indeed tangent to the curved surface.

But still, there is some hidden relation between equations ( 40) and (51) that has not been covered. In order to see it, the variable 𝑚 𝑇𝑜𝑡 will be extracted from equation ( 51 

In such a way that the equation ( 40) could be understood as an approximation of (51), if

𝐸 2 𝑐 4 is much smaller than 𝑚 0 2 .
On the other hand, it should be remembered that 𝐸 = 𝑚 𝑐 2 is actually a specific case in which the particle considered has no velocity according to the reference. If it has velocity, the expression becomes (Okun 2009),

𝐸 2 = (𝑚 𝑐 2 ) 2 + (𝑝𝑐) 2 (69) 
𝑝 is the linear momentum of the study particle. However, this generalization is not necessary with the proposed equation ( 51), since it already considers all the specific energy according to the desired reference.

If the previous holds, it would imply that the energy cannot be converted into matter nor vice versa, but rather the energy affects the weight of matter. 

WIMP annihilation via loop-level processes

Many are the challenges that yet have not been solved with the current understanding of mass. Dark Matter is indeed one of those challenges (Evrard, Metzler, Navarro 1996;Merritt 2006;Navarro, Frenk, White 1997;de Blok et al. 2001;Wang et al. 2016). There are indisputable differences between predictions and observations related to certain gravitational effects in the universe, and in order to use current theories of gravitation, it would be necessary to have more mass than what is observed. Indeed, that is the origin of Dark Matter. Dark Matter should exist to reconcile both observations and theories. But its nature is so complex that its existence has never been proved. The so-called weakly-interacting massive particles, or WIMPs, are studied for being a potential candidate to explain the nature of Dark Matter (Sanders 1990;Borriello, Salucci 2001;Zaharijas, Hooper 2006;Gnedin et al. 2004). WIMP annihilation into charged states produces photons via loop-level processes. When two WIMP particles 𝜒𝜒 annihilate each other at close to zero relative velocity into 𝛾𝑋, an energy of 𝐸 𝛾 is released (Abdo et al. 2010;Goodman Ibe, et al. 2010), as it is given by (70).

𝐸 𝛾 = 𝑚 𝜒 (1 - 𝑚 𝑋 2 4 𝑚 𝜒 2 ) (70) 
𝑚 𝜒 refers to the mass of a single WIMP particle 𝜒 and 𝑚 𝑋 refers to the remaining mass after the annihilation, both masses measured in energy units. Thus, the total mass of Dark Matter before and after the annihilation can be expressed as 𝑚 𝑇𝑜𝑡 and 𝑚 0 respectively ((71) and ( 72)), where 𝑚 𝑇𝑜𝑡 is twice the 𝑚 𝜒 (since there are two WIMP particles). Applying the transformation to get 𝑚 𝑇𝑜𝑡 and 𝑚 0 in mass units instead of energy units, the resulting masses are, 

𝑚 𝑇𝑜𝑡 = 2 𝑚 𝜒 𝑐 2 ( 
Equation ( 73) is exactly the same equation as the one predicted in this theory (51). Equation ( 51) has been obtained from a mathematical development that understands mass as a dependent variable of the specific energy. But equation ( 70) is a well-known relation developed from energy conservation laws, used to seek explanations for the observed data of Dark Matter presence in nearby halos.

The fact that they are both the same is very interesting and reopens a fundamental question; how necessary would be Dark Matter, if the mass is greater than what it was believed?

Conclusions

This development studies from a mathematical perspective the possible influence of the specific energy in the Lorentz Factor and its implication in the definition of time and mass. The major differences between the Theory of Relativity and the one proposed are shown in Table I. This ultimately summarizes that both formulas in the right column are the same equation, but ordered in two different ways, while the two on the left are different formulas. Going back to Fig. 4 and Fig. 5, it can be seen that there is a very important difference between both solutions. Although in the small world of the experiments carried out on Earth both theories predict similar results, in the vastness of outer space, they lead to completely different predictions. 

Figure 3 .

 3 Figure 3. Tangency of functions 𝑓 1 y 2The resulting plot is of interest, since both functions are actually tangent at the point where 𝑦 is equal 1 (Fig 3.). It is thus observed that for those values close to 1, the error incurred is very small, while when being far from 1, the

Figure 4 .

 4 Figure 4. Differences between equations (40) and (51)

Figure 5 .

 5 Figure 5. Differences between equations (40) and (51) These representations (Fig. 4 and Fig 5.) are of vital importance. The plane represents equation (40) while the curved surface refers to equation (51).Both equations provide the same value of the energy when 𝑚 0 and 𝑚 𝑇𝑜𝑡 are equal, and therefore 𝐸 is zero. In the immediate vicinity of this line, (51) is a good approximation of (40). But when leaving the adjoining margin, the errors become much more noticeable, even reaching infinitely different values. Interestingly, the plane defined by (40) is tangent to the curved surface (51). In fact, it is tangent along the entire line 𝐸 = . This is an uncommon feature between two threedimensional functions. Both surfaces predict a negative energy in case 𝑚 0 > 𝑚 𝑇𝑜𝑡 , positive when 𝑚 0 < 𝑚 𝑇𝑜𝑡 , and null in case the masses are equal. The following development shows how the plane is tangent, across the straight line, to the curved surface. The equation of the plane tangent to a given point 𝑃 of a function 𝐹 is given by,

Table I .

 I Differences between theories

	Theory of Relativity		Theory proposed
	𝑚 𝑇𝑜𝑡 =	𝑚 0 √ 1 -	𝑣 2 𝑐 2	𝑚 𝑇𝑜𝑡 =	𝑚 0 √ 1 -𝑐 2 𝜀 ⁄ 2
	𝐸 = ( 𝑚 𝑇𝑜𝑡𝑎𝑙 -𝑚 0 ) 𝑐 2	𝐸 =	𝑐 2 2	( 𝑚 𝑇𝑜𝑡 -	2 𝑚 𝑇𝑜𝑡 𝑚 0	)