
Proving the safety of highly-available distributed
objects

Sreeja S Nair1 , Gustavo Petri2 , and Marc Shapiro1

1 Sorbonne Université—LIP6 & Inria, Paris, France
2 ARM Research, Cambridge, UK

Abstract. To provide high availability in distributed systems, object
replicas allow concurrent updates. Although replicas eventually converge,
they may diverge temporarily, for instance when the network fails. This
makes it difficult for the developer to reason about the object’s prop-
erties, and in particular, to prove invariants over its state. For the sub-
class of state-based distributed systems, we propose a proof methodology
for establishing that a given object maintains a given invariant, taking
into account any concurrency control. Our approach allows reasoning
about individual operations separately. We demonstrate that our rules
are sound, and we illustrate their use with some representative examples.
We automate the rule using Boogie, an SMT-based tool.

Keywords: Replicated objects · Consistency · Automatic verification ·
Distributed application design · Tool support

1 Introduction

Many modern applications serve users accessing shared data in different ge-
ographical regions. Examples include social networks, multi-user games, co-
operative engineering, collaborative editors, source-control repositories, or dis-
tributed file systems. One approach would be to store the application’s data
(which we call object) in a single central location, accessed remotely. However,
users far from the central location would suffer long delays and outages.

Instead, the object is replicated to several locations. A user accesses the
closest available replica. To ensure availability, an update must not synchronise
across replicas; otherwise, when a network partition occurs, the system would
block. Thus, a replica executes both queries and updates locally, and propagates
its updates to other replicas asynchronously.

Updates at different locations are concurrent; this may cause replicas to
diverge, at least temporarily. Replicas may diverge, but if the system ensures
Strong Eventual Consistency (SEC), this ensures that replicas that have received
the same set of updates have the same state [25], simplifying the reasoning.

The replicated object may also require to maintain some (application-specific)
invariant, an assertion about the object. We say a state is safe if the invariant
is true in that state; the system is safe if every reachable state is safe. In a se-
quential system, this is straightforward (in principle): if the initial state is safe,

http://orcid.org/0000-0001-7834-8881
http://orcid.org/0000-0003-3289-4574
http://orcid.org/0000-0002-8953-9322

2 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

and the final state of every update individually is safe, then the system is safe.
However, these conditions are not sufficient in the replicated case, because con-
current updates at different replicas may interfere with one another. This can be
fixed by synchronising between some or all types of updates. To maximise avail-
ability and latency, such synchronisation should be minimised. In this paper, we
propose a proof methodology to ensure that a given object is system-safe, for a
given invariant and a given amount of concurrency control. In contrast to pre-
vious works, we consider state-based objects.1 Indeed, the specific properties of
state-based propagation enable simple modular reasoning despite concurrency,
thanks to the concept of concurrency invariant. Our proof methodology derives
the concurrency invariant automatically from the sequential specification. Now,
if the initial state is safe, and every update maintains both the application in-
variant and the concurrency invariant, then every reachable state is safe, even
in concurrent executions, regardless of network partitions. We have developed
a tool named Soteria, to automate our proof methodology. Soteria analyses the
specification to detect concurrency bugs and provides counterexamples.

The contributions of this paper are as follows:
– We propose a novel proof system specialised to proving the safety of avail-

able objects that converge by propagating state. This specialisation supports
modular reasoning, and thus it enables automation.

– We demonstrate that this proof system is sound. Moreover, we provide a sim-
ple semantics for state-propagating systems that allows us to ignore network
messages altogether.

– We present Soteria, to the best of our knowledge the first tool support-
ing the verification of program invariants for state-based replicated objects.
When Soteria succeeds it ensures that every execution, whether replicas are
partitioned or concurrent, is safe.

– We present a number of representative case studies, which we run through
Soteria.

2 Background

As a running example, consider a simple auction system (for simplicity, we con-
sider a single auction). An auction object is composed of the following parts:

– Its Status, that can move from initial state INVALID (under preparation) to
ACTIVE (can receive bids) and then to CLOSED (no more bids accepted).

– The Winner of the auction, that is initially ⊥ and can become the bid taking
the highest amount. In case of ties, the bid with the lowest id wins.

– The set of Bids placed, that is initially empty. A bid is a tuple composed of

• BidId: A unique identifier
• Placed: A boolean flag to indicate whether the bid has been placed or

not. Initially, it is FALSE. Once placed, a bid cannot be withdrawn.
• The monetary Amount of the bid; this cannot be modified once the bid

is created.

Proving the safety of highly-available distributed objects 3

Fig. 1: Evolution of state of an auction object

Figure 1 illustrates how the auction state evolves over time. The state of the
object is geo-replicated at data centers in Adelaide, Brussels, and Calgary. Users
at different locations can start an auction, place bids, close the auction, declare
a winner, inspect the local replica, and observe if a winner is declared and who
it is. The updates are propagated asynchronously to other replicas. All replicas
will eventually agree on the same auction status, the same set of bids and the
same winner.

There are two basic approaches to propagating updates. The operation-based
approach applies an update to some origin replica, then transmits the operation
itself to be replayed at other replicas. If messages are delivered in causal order,
exactly once, and concurrent operations are commutative, then two replicas that
received the same updates reach the same state (this is the Strong Eventual
Consistency guarantee, or SEC) [25].

The state-based approach applies an update to some origin replica. Occasion-
ally, a replica sends its full state to some other replica, which merges the received
state into its own. If the state space forms a monotonic semi-lattice, an update
is an inflation (its output state is not lesser than the input state), and merge
computes the least-upper-bound of the local and received states, then SEC is
guaranteed [25]. As long as every update eventually reaches every replica, mes-
sages may be dropped, re-ordered or duplicated, and the set of replicas may be
unknown. Due to these relaxed requirements, state-based propagation is widely
used in industry. Figure 1 shows the state-based approach with local operations
and merges. Alternatives exist where only a delta of the state —that is, the
portion of the state not known to be part of the other replicas— is sent as a
message [1]; since this is an optimisation, it is of no consequence to the results
of this paper.

1 As opposed to operation-based. These terms are defined in Section 2.

4 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

Looking back to Figure 1, we can see that replicas diverge temporarily. This
temporary divergence can lead to an unsafe state, in this case declaring a wrong
winner. This correctness problem has been addressed before; however, previous
works mostly consider the operation-based propagation approach [11, 13, 19, 24].

3 System Model

In this section, we first introduce the object components, explain the underlying
system model informally, and then formalise the operational semantics.

3.1 General Principles

An object consists of a state, a set of operations, a merge function and an in-
variant. Figure 1 illustrates three replicas of an auction object, at three different
locations, represented by the horizontal lines. The object evolves through a set of
states. Each line depicts the evolution of the state of the corresponding replica;
time flows from left to right.

State. A distributed system consists of a number of servers, with disjoint memory
and processing capabilities. The servers might be distributed over geographical
regions. A set of servers at a single location stores the state of the object. This is
called a single replica. The object is replicated at different geographical locations,
each location having a full copy of the state. In the simplest case (for instance at
initialisation) the state at all replicas will be identical. The state of each replica
is called a local state. The global view, comprising all local states is called the
global state.

Operations. Each replica may perform the operations defined for the object.
To support availability, an operation modifies the local state at some arbitrary
replica, the origin replica for that operation, without synchronising with other
replicas (the cost of synchronisation being significant at scale). An operation
might consist of several changes; these are applied to the replica as a single
atomic unit.

Executing an operation on its origin replica has an immediate effect. However,
the state of the other replicas, called remote replicas, remains unaltered at this
point. The remote replicas get updated when the state is eventually propagated.
An immediate consequence of this execution model is that in the presence of
concurrent operations, replicas can reach different states, i.e. they diverge.

Let us illustrate this with our example in Figure 1. Initially, the auction
is yet to start, the winner is not declared and no bids are placed. By de-
fault, a replica can execute any operation - start auction, place bid, and
close auction - locally without synchronising with other replicas. We see that
the local states of replicas occasionally diverge. For example at the point where
operation close auction completes at the Adelaide replica, the Adelaide replica
is aware of only a $100 bid, the Brussels replica has two bids, and the Calgary
replica observes only one bid for $105.

Proving the safety of highly-available distributed objects 5

State Propagation. A replica occasionally propagates its state to other replicas
in the system and a replica receiving a remote state merges it into its own.

In Figure 1, the arrows crossing between replicas represent the delivery of a
message containing the state of the source replica, to be merged into the target
replica. A message is labelled with the state propagated. For instance, the first
message delivery at the Brussels replica represents the result of updating the
local state (setting auction status to ACTIVE), with the state originating in the
replica at Adelaide (auction started).

Similar to the operations, a merge is atomic. In Figure 1, Alice closes the
auction at the Adelaide replica. This atomically sets the status of the auction
to CLOSED and declares a winner from the set of bids it is aware of. The up-
dated auction state and winner are transmitted together. Merging is performed
atomically by the Brussels replica.2

We now specify the merge operation for an auction. The receiving replica’s
local state is denoted σ = (status, winner, Bids), the received state is denoted
σ′ = (status′, winner′, Bids′) and the result of merge is denoted as σnew =
(statusnew, winnernew, Bidsnew).

merge((status ,winner ,Bids),(status′,winner′,Bids′)) :

statusnew := max(status ,status′)

winnernew := winner′ 6= ⊥ ? winner′ : winner

for (b in Bids ∪ Bids′)

Bidsnew.b.placed := Bids.b.placed ∨ Bids′.b.placed

Bidsnew.b.amount := max(Bids.b.amount , Bids′.b.amount)

Furthermore, we require the operations and merge to be defined in a way that
ensures convergence. We discuss the relevant properties later in Section 6.1.

Invariants. An invariant is an assertion that must evaluate to true in every local
state of every replica. Although evaluated locally at each replica, the invariant
is in effect global, since it must be true at all replicas, and replicas eventually
converge. For our running example, the invariant can be stated as follows:

– Only an active auction can receive bids, and
– the highest unique bid wins when the auction closes (breaking ties using bid

identifiers).

This condition must hold true in all possible executions of the object.

3.2 Notations and Assumptions

First, we introduce some notations and assumptions:

– We assume a fixed set of replicas, ranged over with the meta-variable r ∈ R

sampled from the domain of unique replica names R.
– We denote a local state with the meta-variable σ ∈ Σ ranged over the domain

of states of the object Σ.

2 We see that this leads to an unsafe state, we discuss this in detail in Section 4.2

6 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

– The local semantic function JK takes an operation and a state, and returns the
state after applying the operation. We write JopK(σ) = σnew for executing
operation op on state σ resulting in a new state σnew.

– Ω denotes a partial function returning the current state of a replica. For
instance Ω(r) = σ means that in global state Ω, replica r is in local state
σ. We will use the notation Ω[r ← σ] to denote the global state resulting
from replacing the local state of replica r with σ. The local state of all other
replicas remains unchanged in the resulting global state.3

– A message propagating states between replicas is denoted 〈 r σ−→ r′ 〉. This
represents the fact that replica r has sent a message (possibly not yet re-
ceived) to replica r′, with the state σ as its payload. The meta-variable M

denotes the messages in transit in the network.

– In the following sub-section, we will utilise a set of states to record the history
of the execution. The set of past states will be ranged over with the variable
S ∈ P(Σ).

– All replicas are assumed to start in the same initial state σi. Formally, for
each replica r ∈ dom(Ωi) we have Ωi(r) = σi.

3.3 Operational Semantics

In this and the following subsections we will present two semantics for systems
propagating states. Importantly, while the first semantics takes into account
the effects of the network on the propagation of the states, and is hence an
accurate representation of the execution of systems with state propagation, we
will show in the next subsection that reasoning about the network is unnecessary
in this kind of system. We will demonstrate this claim by presenting a much
simpler semantics in which the network is abstracted away. The importance
of this reduction is that the number of events to be considered, both when
conducting proofs and when reasoning about applications, is greatly reduced.
As informal evidence of this claim, we point at the difference in complexity
between the semantic rules presented in Figure 2 and Figure 3. We postpone the
equivalence argument to Theorem 1.

Figure 2 presents the semantic rules describing what we shall call the precise
semantics (we will later present a more abstract version) defining the transition
relations describing how the state of the object evolves.

The figure defines a semantic judgement of the form (Ω, M) −→ (Ωnew, Mnew)
where (Ω, M) is a configuration where the replica states are given by Ω as shown
above, and M is a set of messages that have been transmitted by different replicas
and are pending to be received by their target replicas.

Rule Operation presents the state transition resulting from a replica r

executing an operation op. The operation queries the state of replica r, evaluates
the semantic function for operation op and updates its state with the result. The

3 This notation of a global state is used only to explain and prove our proof rule. In
fact, the rule is based only on the local state of each replica.

Proving the safety of highly-available distributed objects 7

Operation
Ω(r) = σ JopK(σ) = σnew Ωnew = Ω[r← σnew]

(Ω, M) −→ (Ωnew, M)

Send
Ω(r) = σ r

′ ∈ dom(Ω) \ {r} Mnew = M ∪ {〈 r σ−→ r
′ 〉}

(Ω, M) −→ (Ω, Mnew)
Merge

Ω(r) = σ

Mnew = M \ {〈 r′ σ′
−→ r 〉} JmergeK(σ, σ′) = σnew Ωnew = Ω[r← σnew]

(Ω, M) −→ (Ωnew, Mnew)

Op & Broadcast
Ω(r) = σ JopK(σ) = σnew Ωnew = Ω[r← σnew]

Mnew = M ∪ { 〈 r σnew−−−→ r
′ 〉 | r′ ∈ dom(Ω) \ {r} }

(Ω, M) −→ (Ωnew, Mnew)

Merge & Broadcast
Ω(r) = σ

Mnew = M \ {〈 r′ σ′
−→ r 〉} JmergeK(σ, σ′) = σnew Ωnew = Ω[r← σnew]

Mnew′ = Mnew ∪ { 〈 r
σnew−−−→ r

′′ 〉 | r′′ ∈ dom(Ω) \ {r} }
(Ω, M) −→ (Ωnew, Mnew′)

Fig. 2: Precise Operational Semantics: Messages

set of messages M does not change. The second rule, Send, represents the non-
deterministic sending of the state of replica r to replica r′. The rule has no other
effect than to add a message to the set of pending messages M. The Merge rule

picks any message, 〈 r′ σ
′

−→ r 〉, in the set of pending messages M, and applies the
merge function to the destination replica with the state in the payload of the

message, removing 〈 r′ σ
′

−→ r 〉 from M.

The final two rules, Op & Broadcast and Merge & Broadcast represent
the specific case when the states are immediately sent to all replicas. These rules
are not strictly necessary since they are subsumed by the application of either
Operation or Merge followed by one Send per replica. We will, however, use
them to simplify a simulation argument in what follows.

We remark at this point that no assumptions are made about the duplication
of messages or the order in which messages are delivered. This is in contrast to
other works on the verification of properties of replicated objects [11, 13]. The
reason why this assumption is not a problem in our case is that the least-upper-
bound assumption of the merge function, as well as the inflation assumptions on
the states considered in Item 2 (Section 6.1) mean that delayed messages have
no effect when they are merged.

8 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

Operation
Ω(r) = σ JopK(σ) = σnew Ωnew = Ω[r← σnew]

(Ω, S) −→ (Ωnew, S ∪ {σnew})

Merge
Ω(r) = σ σ′ ∈ S JmergeK(σ, σ′) = σnew Ωnew = Ω[r← σnew]

(Ω, σ) −→ (Ωnew, S ∪ {σnew})

Fig. 3: Semantic Rules with a History of States

As customary we will denote with (Ω, M)
∗−→ (Ωnew, Mnew) the repeated appli-

cation of the semantic rules zero or more times, from the state (Ω, M) resulting
in the state (Ωnew, Mnew).

It is easy to see how the example in Figure 1 proceeds according to these
rules for the auction.

The following lemma,4 to be used later, establishes that whenever we use
only the broadcast rules, for any intermediate state in the execution, and for
any replica, when considering the final state of the trace, either the replica
has already observed a fresher version of the state in the execution, or there
is a message pending for it with that state. This is an obvious consequence of
broadcasting.

Lemma 1. If we consider a restriction to the semantics of Figure 2 where in-
stead of applying the Operation rule of Figure 2 we apply the Op & Broad-
cast rule always, and instead of applying the Merge rule we apply Merge &
Broadcast always, we can conclude that given an execution starting from an
initial global state Ωi with

(Ωi, ∅) ∗−→ (Ω, M)
∗−→ (Ωnew, Mnew)

for any two replicas r and r′ and a state σ such that Ω(r) = σ, then either:

– Ωnew(r′) ≥ σ, or

– 〈 r σ−→ r′ 〉 ∈ Mnew.

3.4 Operational Semantics with State History

We now turn our attention to a simpler semantics where we omit messages from
configurations, but instead, we record in a separate set all the states occurring
in any replica throughout the execution.

The semantics in Figure 3 presents a judgement of the form (Ω, S) −→ (Ωnew, Snew)
between configurations of the form (Ω, S) as before, but where the set of messages
is replaced by a set of states denoted with the meta-variable S ∈ P(Σ).

4 The proofs for the lemmas are included in the extended version[23].

Proving the safety of highly-available distributed objects 9

The rules are simple. Operation executes an operation as before, and it
adds the resulting new state to the set of observed states. The rule Merge
non-deterministically selects a state in the set of states and it merges a non-
deterministically chosen replica with it. The resulting state is also added to the
set of observed states.

Lemma 2. Consider a state (Ω, S) reachable from an initial global state Ωi with

the semantics of Figure 3. Formally: (Ωi, {σi}) ∗−→ (Ω, S). We can conclude that
the set of recorded states in the final configuration S includes all of the states
present in any of the replicas(⋃

r∈dom(Ω)

{Ω(r)}
)
⊆ S

3.5 Correspondence between the semantics

In this section, we show that removing the messages from the semantics, and
choosing to record states instead renders the same executions. To that end, we
will define the following relation between configurations of the two semantics
which will be later shown to be a bisimulation.

Definition 1 (Bisimulation Relation). We define the relation RΩi
between

a configuration (Ω, M) of the semantics of Figure 2 and a configuration (Ω, S) of
the semantics of Figure 3 parameterized by an initial global state Ωi and denoted
by

(Ω, M) RΩi (Ω, S)

when the following conditions are met:

1. (Ωi, ∅) ∗−→ (Ω, M), and

2. (Ωi, {σi}) ∗−→ (Ω, S), and

3. { σ | 〈 r σ−→ r′ 〉 ∈ M } ⊆ S

In other words, two states represented in the two configurations are related
if both are reachable from an initial global state and all the states transmitted
by the messages (M) is present in the history (S).

We can now show that this relation is indeed a bisimulation. We first show
that the semantics of Figure 3 simulates that of Figure 2. That is, all behaviours
produced by the precise semantics with messages can also be produced by the
semantics with history states. This is illustrated in the commutative diagram
of Figure 4a and Figure 4b, where the dashed arrows represent existentially
quantified components that are proven to exist in the theorem.

Lemma 3 (State-semantics simulates Messages-semantics). Consider a
reachable state (Ω, M) from the initial state Ωi in the semantics of Figure 2.
Consider moreover that according to that semantics there exists a transition of
the form

(Ω, M) −→ (Ωnew, Mnew)

10 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

(Ωi, ∅) (Ω, M) (Ωnew, Mnew)

(Ωi, {σi}) (Ω, S) (Ωnew, Snew)

∗

RΩi
RΩi

∗

(a) Precise to History-preserving
Simulation

(Ωi, {σi}) (Ω, S) (Ωnew, Snew)

(Ωi, ∅) (Ω, M) (Ωnew, Mnew)

∗

RΩi
RΩi

∗

(b) History-preserving to Precise
Simulation

Fig. 4: Simulation Schema

and consider that there exists a state (Ω, S) of the history preserving semantics
of Figure 3 such that they are related by the simulation relation

(Ω, M) RΩi
(Ω, S)

We can conclude that, as illustrated in Figure 4a, there exists a state (Ωnew, Snew)
such that

(Ω, S) −→ (Ωnew, Snew) and (Ωnew, Mnew) RΩi
(Ωnew, Snew)

We will now consider the lemma showing the inverse relation. To that end we
will consider a special case of the semantics of Figure 2 where instead of apply-
ing the Operation rule, we will always apply the Op & Broadcast rule, and
instead of the Merge rule, we will apply Merge & Broadcast. As we men-
tioned before, this is equivalent to the application of the Operation/Merge
rule, followed by a sequence of applications of Send. The reason we will do this
is that we are interested in showing that for any execution of the semantics in
Figure 3 there is an equivalent (simulated) execution of the semantics of Fig-
ure 2. Since all states can be merged in the semantics of Figure 3 we have to
assume that in the semantics of Figure 2 the states have been sent with messages.
Fortunately, we can choose how to instantiate the existential send messages to
apply the rules as necessary, and that justifies this choice.

Lemma 4 (Messages-semantics simulates State-semantics). Consider a
reachable state (Ω, S) from the initial state Ωi in the semantics of Figure 3.
Consider moreover that according to that semantics there exists a transition of
the form

(Ω, S) −→ (Ωnew, Snew)

and consider that there exists a state (Ω, M) of the state-preserving semantics of
Figure 3 such that they are related by the simulates relation

(Ω, M) RΩi
(Ω, S)

We can conclude that there exists a state (Ωnew, Mnew) such that

(Ω, M) −→ (Ωnew, Mnew) and (Ωnew, Mnew) RΩi
(Ωnew, Snew)

Proving the safety of highly-available distributed objects 11

As before, an illustration of this lemma is presented in Figure 4b.
We can now conclude that the two semantics are bisimilar:

Theorem 1 (Bisimulation). The semantics of Figure 2 and Figure 3 are
bisimilar as established by the relation defined in Definition 1.

The theorem above justifies carrying out our proofs with respect to the se-
mantics of Figure 3, which has fewer rules and it better aligns with our proof
methodology. This is also justifies that when reasoning semantically about state-
propagating object systems we can generally ignore the effects of network delays
and messages.

From the standpoint of concurrency, the system model allows the execution of
asynchronous concurrent operations, where each operation is executed atomically
in each replica, and the aggregation of results of different operations is performed
lazily as replicas exchange their state. At this point, we assume the set of states,
along with the operations and merge, forms a monotonic semi-lattice. This is a
sufficient condition for Strong Eventual Consistency [3, 4, 25].

We have seen that even though we achieve convergence later, there can be
instances or even long periods of time during which replicas might diverge. We
need to ensure that the concurrent executions are still safe. In the next section,
we discuss how to ensure safety of distributed objects built on top of the system
model we described.

4 Proving Invariants

In this section, we report our invariant verification strategy. Specifically, we con-
sider the problem of verifying invariants of highly-available distributed objects.

To support the verification of invariants we will consider a syntactic-driven
approach based on program logic. Bailis et al.[2] identifies necessary and sufficient
run-time conditions to establish the security of application invariants for highly-
available distributed databases in a criterion dubbed I-confluence. Moreover,
they consider the validity of a number of typical invariants and applications.
Our work improves on the I-confluence criterion defined in [2] by providing a
static, syntax-driven, and mostly-automatic mechanism to verify the correctness
of an invariant for an application. We will address the specific differences in
Section 7, the related work.

An important consequence of our verification strategy is that while we are
proving invariants about a concurrent highly-distributed system, our verification
conditions are modular (on the number of API operations), and can be carried
out using standard sequential Hoare-style reasoning. These verification condi-
tions in turn entail stability of the assertions as one would have in a logic like
Rely/Guarantee.

Let us start by assuming that a given initial state for the object is denoted
σi. Initially, all replicas have σi as their local state. As explained earlier, each
replica executes a sequence of state transitions, due either to a local update or
to a merge incorporating remote updates.

12 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

Let us call safe state a replica state that satisfies the invariant. Assuming
the current state is safe, any update (local or merge) must result in a safe state.
To ensure this, every update is equipped with a precondition that disallows any
unsafe execution.5 Thus, a local update executes only when, at the origin replica,
the current state is safe and its precondition currently holds.

Formally, an update u (an operation or a merge), mutates the local state σ, to
a new state σnew = u(σ). To preserve the invariant, Inv, we require that the local
state respects the precondition of the update, Preu: σ ∈ Preu =⇒ u(σ) ∈ Inv

To illustrate local preconditions, consider an operation close auction(w:

BidId), which sets auction status to CLOSED and the winner to w (of type BidId).
The developer may have written a precondition such as status = ACTIVE be-
cause closing an auction doesn’t make sense otherwise. In order to ensure the
invariant that the winner has the highest amount, one needs to strengthen it
with the clause is highest(Bids, w), defined as

∀ b ∈ Bids , b.placed =⇒ b.Amount ≤ w.Amount

Similarly, merge also needs to be safe. To illustrate merge precondition, let
us use our running example. We wish to maintain the invariant that the highest
bid is the winner. Assume a scenario where the local replica declared a winner
and closed the auction. An incoming state from a remote replica contains a bid
with a higher amount. When the two states are merged, we see that the resulting
state is unsafe. So we must strengthen the merge operation with a precondition.
The strengthened precondition looks like this:

status = CLOSED =⇒ ∀ Bids ∈ P(Bids), is_highest(Bids , w)

∧ status′ = CLOSED =⇒ ∀ Bids ∈ P(Bids), is_highest(Bids , w′)

This means that if the status is CLOSED in either of the two states, the winner
should be the highest bid in any state. This condition ensures that when a winner
is declared, it is the highest bid among the set of bids in any state at any replica.

Since merge can happen at any time, it must be the case that its precondition
is always true, i.e., it constitutes an additional invariant. We call this as the
concurrency invariant. Now our global invariant consists of two parts: first, the
invariant (Inv), and second, the concurrency invariant(Invconc).

4.1 Invariance Conditions

The verification conditions in Figure 5 ensure that for any reachable local state
of a replica, the global invariant Inv ∧ Invconc, is a valid assertion. We assume
the invariant to be a Hoare-logic style assertion over the state of the object.
In a nutshell, all of these conditions check (i) the precondition of each of the
operations, and that of the merge operation uphold the global invariant, and
(ii) the global invariant of the object consists of the invariant and the concurrency
invariant (precondition of merge).

We will develop this intuition in what follows. Let us now consider each of
the rules:
5 Technically, this is at least the weakest-precondition of the update for safety. It

strengthens any a priori precondition that the developer may have set.

Proving the safety of highly-available distributed objects 13

σi � Inv (1)

∀ op, σ, σnew,

 σ � Preop ∧
σ � Inv ∧

JopK(σ) = σnew

⇒ σnew � Inv (2)

∀ σ, σ′, σnew,

(σ, σ′) � Premerge ∧

σ � Inv ∧
σ′ � Inv ∧

JmergeK(σ, σ′) = σnew

⇒ σnew � Inv (3)

(σi, σi) � Invconc (4)

∀ op, σ, σ′, σnew,

 σ � Preop ∧
(σ, σ′) � Invconc ∧
JopK(σ) = σnew

⇒ (σnew, σ
′) � Invconc (5)

∀ σ, σ′, σnew,

 (σ, σ′) � Premerge ∧
(σ, σ′) � Invconc ∧

JmergeK(σ, σ′) = σnew

⇒ (σnew, σ
′) � Invconc (6)

Fig. 5: Invariant Conditions

– Clearly, the initial state of the object must satisfy the global invariant, this
is checked by conditions (1) and (4).

The rest of the rules perform a kind of inductive reasoning. Assuming that we
start in a state that satisfies the global invariant, we need to check that any
state update preserves the validity of said invariant. Importantly, this reasoning
is not circular, since the initial state is known by the rule above to be safe.6

– Condition (2) checks that each of the operations, when executed starting
in a state satisfying its precondition and the invariant, is safe. Notice that
we require that the precondition of the operation be satisfied in the start-
ing state. This is the core of the inductive argument alluded to above, all
operations – which as we mentioned in Section 3 execute atomically w.r.t.
concurrency – preserve the invariant Inv.

Other than the execution of operations, the other source of local state changes
is the execution of the merge function in a replica. It is not true in general that
for any two given states of an object, the merge should compute a safe state.
In particular, it could be the case that the merge function needs a precondition
that is stronger than the conjunction of the invariants in the two states to be
merged. The following rules deal with these cases.

– We require the merge function to be annotated with a precondition strong
enough to guarantee that merge will result in a safe state. Generally, this

6 Indeed, the proof of soundness of program logics such as Rely/Guarantee are typi-
cally inductive arguments of this nature.

14 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

precondition can be obtained by calculating the weakest precondition [9] of
merge w.r.t. the desired invariant. Since merge is the only operation that
requires two states as input, the precondition of merge has two states. We
can then verify that merging two states is safe. This is the purpose of rule (3).

As per the program model of Section 3, any two replicas can exchange their states
at any given point of time and trigger the execution of a merge operation. Thus,
it must be the case that the precondition of the merge function is enabled at all
times between any two replica local states. Since merge is the only point where
a local replica can observe the result of concurrent operations in other replicas,
we call this a concurrency invariant (Invconc). In other words: the concurrency
invariant is part of the global invariant of the object. This is the main insight
that allows us to reduce the proof of the distributed object to checking that both
the invariant Inv and the concurrency invariant Invconv are global invariants. In
particular, the latter implies the former, but for exposition purposes we shall
preserve the invariant Inv in the rules.

– Just as we did with the operations above, we now need to check that when-
ever we have a pair of states that satisfy the concurrency invariant, if one
of these states changes, the resulting pair still satisfies the concurrency in-
variant. This is exactly the purpose of rule (5) in the case where the state
change originates from an operation execution in one of the replicas of the
pair. This rule is similar to rule (2) above, where the invariant Inv has been
replaced by Invconc, and consequently we have a pair of states.

– Finally, as we did with rule (3), we need to check the case where one of the
states of a pair of states satisfying Invconc is updated because of yet another
merge happening (w.r.t. yet another replica) in one of these states. This is
the purpose of rule (6) which is similar to rule (3), with Inv replaced for
Invconc.

As anticipated at the beginning of this section, the reasoning about the con-
currency is performed in a completely local manner, by carefully choosing the
verification conditions, and it avoids the stability blow-up commonly found in
concurrent program logics. The program model, and the verification conditions
allow us to effectively reduce the problem of verifying safety of an asynchronous
concurrent distributed system, to the modular verification of the global invariant
(Inv ∧ Invconc) as pre and post conditions of all operations and merge.

Proposition 1 (Soundness). The proof rules in equations (1)-(6) guarantee
that the implementation is safe.

To conduct an inductive proof of this lemma we need to strengthen the
argument to include the set of observed states as given by the semantics of
Figure 3.

Lemma 5 (Strengthening of Soundness). Assuming that the equations (1)-
(6) hold for an implementation of a replicated object with initial state Ωi. For

any state (Ω, S) reachable from (Ωi, {σi}), that is (Ωi, {σi}) ∗−→ (Ω, S), we have
that:

Proving the safety of highly-available distributed objects 15

1. for all states σ, σ′ ∈ S, (σ, σ′) � Invconc, and

2. for any state σ ∈ S, σ � Inv.

Corollary 1. The soundness proposition (1) is a direct consequence of Lemma 5.

We remark at this point that there are numerous program logic approaches
to proving invariants of shared-memory concurrent programs, with Rely/Guar-
antee [15] and concurrent separation logic [6] underlying many of them. While
these approaches could be adapted to our use case (propagating-state distributed
systems), this adaptation is not evident. As an indication of this complexity: one
would have to predicate about the different states of the different replicas, re-
state the invariant to talk about these different versions of the state, encode the
non-deterministic behaviour of merge, etc. Instead, we argue that our specialised
rules are much simpler, allowing for a purely sequential and modular verification
that we can mechanise and automate. This reduction in complexity is the main
theoretical contribution of this paper.

4.2 Applying the proof rule

Let us apply the proof methodology to the auction object. Its invariant is the
following conjunction:

1. Only an ACTIVE auction can receive bids, and

2. the highest bid, also unique, wins when the auction is CLOSED.

Computing the weakest precondition of each update operation, for this invariant
is obvious. For instance, as discussed earlier, close auction(w) gets precondi-
tion is highest(Bids, w), because of Invariant Item 2 above.

Despite local updates to each replica respecting the invariant Inv, Figure 1
showed that it is susceptible of being violated by merging. This is the case if Bob’s
$100 bid in Brussels wins, even though Charles concurrently placed a $105 bid
in Calgary; this occurred because status became CLOSED in Brussels while still
ACTIVE in Calgary. The weakest precondition of merge for safety expresses that,
if status in either state is CLOSED, the winner should be the bid with the highest
amount in both the states. This merge precondition, now called the concurrency
invariant, strengthens the global invariant to be safe in concurrent executions.

Let us now consider how this strengthening impacts the local update opera-
tions. Since starting the auction doesn’t modify any bids, the operation trivially
preserves it. Placing a bid might violate Invconc if the auction is concurrently
closed in some other replica; conversely, closing the auction could also violate
Invconc, if a higher bid is concurrently placed in a remote replica. Thus, the auc-
tion object is safe when executed sequentially, but it is unsafe when updates are
concurrent. This indicates the specification has a bug, which we now proceed to
fix.

16 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

4.3 Concurrency Control for Invariant Preservation

As we discussed earlier, the preconditions of operations and merge are strength-
ened in order to be sequentially safe. An object must also preserve the con-
currency invariant in order to ensure concurrent safety. Violating this indicates
the presence of a concurrency bug in the specification. In that case, the opera-
tions that fail to preserve the concurrency invariant might need to synchronise.
The developer adds the required concurrency control mechanisms as part of the
state in our model. The modified state is now composed of the state and the
concurrency control mechanism.

Recall that in the auction example, placing bids and closing the auction did
not preserve the precondition of merge. This requires strengthening the specifi-
cation by adding a concurrency control mechanism to restrict these operations.
We can enforce them to be strictly sequential, thereby avoiding any concurrency
at all. But this will affect the availability of the object.

A concurrency control can be better designed with the workload character-
istics in mind. For this particular use case, we know that placing bids are much
more frequent operations than closing an auction. Hence we try to formulate a
concurrency control like a readers-writer lock. In order to realise this we dis-
tribute tokens to each replica. As long as a replica has the token, it can allow
placing bids. Closing the auction requires recalling the tokens from all replicas.
This ensures that there are no concurrent bids placed and thus a winner can
be declared, respecting the invariant. The addition of this concurrency control
also updates the Invconc. Clearly, all operations must respect this modification
for the specification to be considered safe.

Note that the token model described here restricts availability in order to
ensure safety. Adding efficient synchronization is not a problem to be solved
only with application specification in hand, it rather requires the knowledge of
the application dynamics such as the workload characteristics and is part of our
future work.

Figure 6 shows the evolution of the modified auction object with concur-
rency control. The keys shown are the tokens distributed to each replica. When
a replica wants to close the auction, it can request tokens from other replicas.
When a replica releases its token, it is indicated by a cross mark on the key. This
concurrency control mechanism makes sure that the object is safe during con-
current executions as well. The specification including the concurrency control
is given in the extended version[23].

To summarize, all updates (operations and merge) have to respect the global
invariant (Inv∧ Invconc). If an update violates Inv, the developer must strengthen
its precondition. If an update violates Invconc, the developer must add concur-
rency control mechanisms.

5 Case Studies

This section presents three representative examples of different consistency re-
quirements of several distributed applications. The consensus object is an ex-

Proving the safety of highly-available distributed objects 17

Fig. 6: Evolution of state in an auction object with concurrency control

ample of a coordination-free design, illustrating a safe object with just eventual
consistency. The next example of a distributed lock shows a design that main-
tains a total order, illustrating strong consistency. And the final example of
courseware shows a mix of concurrent operations and operations with restrained
concurrency. This example, similar to our auction example, illustrates applica-
tions that might require coordination for some operations to ensure safety.

For each case study, we give an overview of the operational semantics infor-
mally. We then discuss how the design preserves the safety conditions discussed
in Section 4. We also provide pseudocode for better comprehension.

5.1 Consensus application

Consensus is required in distributed systems when all replicas have to agree
upon a single value. We consider the specification of a consensus object with a
fixed number of replicas. We assume that replica failures are solved locally by
redundancy or other means, and all replicas participate.

The state consists of a boolean flag indicating the result of consensus, and
a boolean array indicating the votes from replicas. Each replica agrees on a
proposal by setting its dedicated entry in the boolean array. A replica cannot
withdraw its agreement. A replica sets the consensus flag when it sees all entries
of the boolean array set.

The consistency between the values of agree flag and the boolean array is
ensured by the invariant. The merge function is the disjunction of the individual
components. In this case study, we can see that the merge ensures safety without
any additional precondition. This means that the object is trivially safe under
concurrent executions.

18 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

Initial state:

¬B ∧ ¬flag

Invariant:

flag =⇒ B

{Premerge: True}

no precondition

merge(B, flag , B0, flag0):

B := B ∨ B0

flag := flag ∨ flag0

Comparison function:

flag ∨ (¬flag0 ∧ (B ∨ ¬B0))

{Premark: True}

no precondition

mark ():

B.me := true

{Preagree: B}

agree ():

flag := true

Fig. 7: Pseudocode for consensus

Initial state:

∃ r, V.r ∧ t = 0

{Pretransfer: V.me}

transfer(ro):

t = t+1

V.me := false

V.r0 := true

Comparison function:

t > t0

∨ (t = t0 ∧ V = V0)

{Premerge :

(t = t0 =⇒ V = V0)

∧ (V.me =⇒ t ≥ t0)}

merge((t,V),(t0,V0)):

t = max(t,t0)

v = (t0<t)?V:V0

Invariant:

∃ r, V.r ∧ ∀ r, r0, (V.r ∧ V.r0) =⇒ r = r0

Fig. 8: Specification of a distributed lock

The pseudo code of the consensus example is shown in Figure 7. The design
for consensus can be relaxed, requiring only the majority of replicas to mark
their boxes. The extension for that is trivial.

5.2 A replicated concurrency control

We now discuss an object, a distributed lock, that ensures mutual exclusion. We
use an array of boolean values, one entry per replica, to model a lock. If a replica
owns the lock, the corresponding array entry is set to true. The lock is transferred
to any other replica by using the transfer function. The full specification is shown
in Figure 8.

We need to ensure that the lock is owned by exactly one replica at any given
point in time, which is the invariant here. For simplicity, we are not considering
failures. In order to preserve safety, we need to enforce a precondition on the
transfer operation such that the operation can only transfer the ownership of

Proving the safety of highly-available distributed objects 19

its origin replica. For state inflation, a timestamp associated with the lock is
incremented during each transfer.

A merge of two states of this distributed lock will preserve the state with
the highest timestamp. In order for the merge function to be the least upper
bound, we must specify that if the timestamps of the two states are equal, their
corresponding boolean arrays are also equal. Also if the origin replica owns the
lock, it has the highest timestamp. The conjunction of these two restrictions
which form the precondition of merge, Premerge, is the concurrency invariant,
Invconc.

Consider the case of three replicas r1, r2 and r3 sharing a distributed lock.
Assume that initially replica r1 owns the lock. Replicas r2 and r3 concurrently
place a request for the lock. The current owner r1, has to make a decision on the
priority of the requests based on the business logic. r1 calculates a higher priority
for r3 and transfers the lock to r3. Since r1 no longer has the lock, it cannot issue
any further transfer operations. We see here clearly that the transfer operation is
safe. In the new state, r3 is the only replica that can perform a transfer operation.
We can also note that this prevents any concurrent transfer operations. This can
guarantee mutual exclusion and hence ensures safety in a concurrent execution
environment.

An interesting property we can observe from this example is total order. Due
to the preconditions imposed in order to be safe, we see that the states progress
through a total order, ordered by the timestamp. The transfer function increases
the timestamp and merge function preserves the highest timestamp.

5.3 Courseware

We now look at an application that allows students to register and enroll in a
course. For space reasons, we elide the pseudocode which can be found in the
extended version[23]. The state consists of a set of students, a set of courses and
enrollments of students for different courses. Students can register and deregister,
courses can be created and deleted, and a student can enroll for a course. The
invariant requires enrolled students and courses to be registered and created
respectively.

The set of students and courses consists of two sets - one to track registrations
or creations and another to track deregistrations or deletions. Registration or cre-
ation monotonically adds the student or course to the registered sets respectively
and deregistration or deletion monotonically adds them to the unregistered sets.
The semantics currently doesn’t support re-registration, but that can be fixed
by using a slightly modified data structure that counts the number of times the
student has been registered/unregistered and decides on the status of registra-
tion. Enrollment adds the student-course pair to the set. Currently, we do not
consider canceling an enrollment, but it is a trivial extension. Merging two states
takes the union of the sets.

Let us consider the safety of each operation. The operations to register a
student and create a course are safe without any restrictions. Therefore they do
not need any precondition. The remaining three operations might violate the

20 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

invariant in some cases. This leads to strengthening their preconditions. The
precondition of the operation for deregistering a student and deleting a course
requires no existing enrollments for them. For enrollment, both the student and
the course should be registered/created and not unregistered/deleted.

Merge also requires strengthening of its precondition. It requires the set of
enrolled students and courses to be registered and not unregistered in all the
remote states as well. This is the concurrent invariant (Invconc) for this object.

Running this specification through our tool which we describe in Section 6
reveals concurrency issues for deregistering a student, deleting a course and
enrollment. This means that we need to add concurrency control to the state.

For this use case, we know that enrolling will be more frequent than dereg-
istering a student or deleting a course. So, we model a concurrency control
mechanism as in the case of the auction object discussed earlier. We assign a
token to each replica for each student and course, called a student token and
course token respectively. A replica will have a set of student tokens indicating
the registered students and course tokens indicating the created courses. In order
to deregister a student or delete a course, all replicas must have released their
tokens for that particular student/course. Enroll operations can progress as long
as the student token and course token are available at the local replica for the
student and course for that particular enrollment.

This concurrency control mechanism now forms part of the state. The precon-
ditions of operations and merge are recomputed and the concurrency invariant
is updated. The edited specification passes all checks and is deemed safe.

6 Automation

In this section, we present a tool to automate the verification of invariants as
discussed in the previous sections. Our tool, called Soteria is based on the Boogie
[5] verification framework. The input to Soteria is a specification of the object
written as Boogie procedures, augmented with a number of domain-specific an-
notations needed to check the properties described in Section 4.

Let us now consider how a distributed object is specified in Soteria.:

– State: We require the programmer to provide a declaration of the state
using the global variables in Boogie. The data types can be either built-in
or user defined.

– Comparison function: Next we require the programmer to provide a com-
parison function. This function determines the partial order on states. Again,
we shall use this comparison function as a basis to check the lattice condi-
tions, and whether each operation is an inflation on the lattice. We use the
keyword @gteq to annotate the comparison function in the tool. This com-
parison function returns true when all the components of the first state are
greater than or equal to the corresponding components in the other state. It
is encoded as a function in Boogie.

– Operations: We require the programmer to provide the implementation of
the operations of the object. Moreover, for each operation op we require the

Proving the safety of highly-available distributed objects 21

programmer to provide the precondition Preop. In general, operations are
encoded as Boogie procedures. Alternatively, we could just require only a
post-condition describing how the state transitions from the precondition to
the post-condition. Notice that since in our program model operations are
atomic, this is an unambiguous encoding of the operations.
A few things are important in this code. The specification declares opera-
tions that can modify the contents of the global variables as declared in the
modifies clause. Preconditions are annotated with the requires clauses,
and the postcondition is specified by the ensures clauses. The semantics of
multiple requires and ensures clauses is conjunction.

– Merge function: We require the special merge operation to be distin-
guished from other operations. To that end, we use the annotation @merge.
While, as mentioned before, the precondition of merge can be obtained by
calculating the weakest precondition to ensure safety. The current version of
Soteria does not perform this step automatically, it relies on the developer to
provide the preconditions. Notice that, as we argued in Section 4.1, Soteria
will consider this as the concurrency invariant (Invconc).
While in Section 3 we mentioned that the merge procedure takes two states
as arguments, in the specification input to Soteria, the procedure merge takes
only one state as the argument. This is because this procedure assumes that
the merge is being applied in a replica, and therefore, the local state of the
replica is captured by the global variables.

– Invariant: Clearly, we require the programmer to provide the invariant to
be verified by the tool. This invariant is simply provided as a Boogie asser-
tion over the state of the object. Once more, we require the invariant to be
annotated with the special keyword @invariant.

While these are the components required by Soteria to check the safety, often
Boogie requires additional information to verify the procedures. Some of these
components are:

– User-defined data types,
– Constants to declare special objects such as the origin replica me, or to

bound the quantifiers,
– We sometimes make recourse to inductively-defined functions over aggregate

data structures, for instance, to obtain the maximum in a set of values. Since
we would like to use these functions in the specifications, we axiomatise their
semantics to enable the SMT solver used by Boogie to discharge our proof
obligations. This is particularly important for list comprehensions, and array
operations. We follow the approach of Leino et al.[18].

– When we iterate over lists, arrays or matrices, we need to provide Boogie
with loop invariants. Loops are part of the programs, and thus, verified by
Boogie.

6.1 Verification passes

The verification of a specification is performed in multiple stages. Let us consider
these in order:

22 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

1. Syntax checks
The first simple checks validate that the specification provided respects Boo-
gie syntax when ignoring Soteria annotations. It also calls Boogie to validate
that the types are correct and that the pre/post conditions provided are
sound.
Then it checks that the specification provides all the elements necessary for a
complete specification. Specifically, it checks the function signatures marked
by @gteq and @invariant and the procedure marked by @merge.

2. Convergence check
This stage checks the convergence of the specification. Specifically, it checks
whether the specification respects Strong Eventual Consistency. The Strong
Eventual Consistency (SEC) property states that any two replicas that re-
ceived the same set of updates are in the same state. To guarantee this,
objects are designed to have certain sufficient properties in the encoding of
the state [3, 4, 25], which can be summarised as follows:
– The state space is equipped with an ordering operator, comparing two

states.
– The ordering forms a join-semilattice.
– Each individual operation is an inflation in the semilattice.
– The merge operation, composing states from two replicas, computes the

least-upper-bound of the given states in the semilattice.
We present the conditions formally in the extended version[23].
An alternative is to make use of the CALM theorem [12]. This allows non-
monotonic operations, but requires them to coordinate. However, our aim is
to provide maximum possible availability with SEC. 7

To ensure these conditions of Strong Eventual Consistency, the tool performs
the following checks:
– That each operation is an inflation. In a nutshell, we prove using Boogie

the following Hoare-logic triple:

assume σ ∈ Preop
call σnew := op(σ)
assert σnew ≥ σ

– Merge computes the least upper bound. The verification condition dis-
charged is shown below:

assume (σ, σ′) ∈ Premerge
call σnew := merge(σ, σ′)

assert σnew ≥ σ ∧ σnew ≥ σ′

assert ∀σ∗, σ∗ ≥ σ ∧ σ∗ ≥ σ′ =⇒ σ∗ ≥ σnew

3. Safety check This stage verifies the safety of the specification as discussed
in Section 4. This stage is divided further into two sub-stages:
– Sequential safety: Soteria checks whether each individual operation is

safe. This corresponds to the conditions (2) and (3) in Figure 5. The
verification condition discharged by the tool to ensure sequential safety
of operations is:

7 Convergence of our running example is discussed in the extended version[23].

Proving the safety of highly-available distributed objects 23

assume σ ∈ Preop ∧ Inv
call σnew := op(σ)
assert σnew ∈ Inv

The special case of the merge function is verified with the following
verification condition:

assume (σ, σ′) ∈ Premerge ∧ σ ∈ Inv ∧ σ′ ∈ Inv

call σnew := merge(σ, σ′)
assert σnew ∈ Inv

Notice that in this condition we assume that there are two copies of the
state, the state of the replica applying the merge, and the state with
superscript representing a state arriving from another replica. In case of
failure of the sequential safety check, the designer needs to strengthen
the precondition of the operation (or merge) which was unsafe.

– Concurrent safety: Here we check whether each operation upholds the
precondition of merge. This corresponds to the conditions (5) and (6) in
Figure 5. Notice that while this check relates to the concurrent behaviour
of the distributed object, the check itself is completely sequential; it does
not require reasoning about operations performed by other processes. As
shown in Section 4, this ensures safety during concurrent operation.
The verification conditions are:

assume σ ∈ Preop ∧ Inv ∧ (σ, σ′) ∈ Invconc

call σnew := op(σ)

assert (σnew, σ
′) ∈ Invconc

to validate each operation op, and

assume (σ, σ′) ∈ Invconc ∧ σ ∈ Inv ∧ σ′ ∈ Inv

call σnew := merge(σ, σ′)
assert (σnew, σ) ∈ Invconc

to validate a call to merge. If the concurrent safety check fails, the design
of the distributed object needs a replicated concurrency control mecha-
nism embedded as part of the state.

When all checks are validated, the tool reports that the specification is safe.
Whenever a check fails, Soteria provides a counterexample 8 along with the
failure message tailored to the type of check. This can help the developer identify
issues with the specification and fix it.

Once the invariants and specification of an application is given, Soteria is
fully automatic, thanks to Z3, an SMT solver that is fully automated. The spec-
ification of the application includes the state, all the operations including the pre
and post conditions (including merge). In case the invariant cannot be proven,
Soteria provides counter-examples. The programmer can leverage these to up-
date the specification with appropriate concurrency control, rerun Soteria, and
so on until the application is correct. As far as the proof system is concerned, no
programmer involvement is required. Currently, the effort of adding the required
synchronization conditions is manual, but as the next step, we are working on

8 Soteria uses the counter model provided by Boogie.

24 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

automating the efficient generation of synchronization control considering the
workload characteristics. The tool and the full specifications in the form of the
tool input are available at Soteria [22]. 9

7 Related Work

Several works have concentrated on the formalisation and specification of even-
tually consistent systems [7, 8, 27] to mention but a few.

A number of works concentrate on the specification and correct implementa-
tion of replicated data types [10, 14]. Unlike these works, we are not concerned
with the correctness of the data type implementation with respect to a specifi-
cation, but rather on proving properties that hold of a distributed object.

Gotsman et al.[11] present a proof methodology for proving invariants of
distributed objects. In fact, that work has been extended with a tool called
CISE [24] which, similar to Soteria, performs the check using an SMT solver as
a backend. Another more user-friendly tool was developed by Marcelino et al.[19]
based on the principle of CISE. It is named Correct Eventual Consistency(CEC)
Tool. The tool is based on Boogie verification framework and also proposes sets
of tokens that the developer might use. An improved token generation by using
the counterexamples generated by Boogie is discussed by Nair and Shapiro[20].

Unlike our work, CISE and CEC (and more generally the work of Gots-
man et al.[11]) consider the implementation of operation-based objects. As a
consequence, they assume that the underlying network model ensures causal
consistency, and the proof methodology therein presented requires reasoning
about concurrent behaviours (reflected as stability verification conditions on as-
sertions). We position Soteria as a complementary tool to CISE, since CISE is
not well-adapted to reason about systems that propagate state, and Soteria is
not well-adapted to reason about objects that propagate operations. We con-
sider, as part of our future work, the use of both CISE and Soteria in tandem
to prove properties depending on the implementation of the objects at hand.

Houshmand et al.[13] extends CISE by lowering the causal consistency re-
quirements and generating concurrency control protocols. It still requires rea-
soning about concurrent behaviours.

As anticipated in Section 4, Bailis et al. [2] introduced the concept of I-
confluence based on a similar system model. I-confluence states that for an
invariant to hold in a lattice-based state-propagating distributed application,
the set of reachable valid (i.e. invariant preserving) states must be closed under
operations and merge. This condition is similar to the ones presented in Figure 5.
However, there is a fundamental difference: while Bailis et al. [2] recognises that
one needs to consider only reachable states when checking that the merge opera-
tion satisfies the invariant, they do not provide means to identify these reachable
states. This is indeed a hard problem. In Soteria, we instead over-approximate
the set of reachable states by ignoring whether the states are indeed reachable,

9 Experimental results with verification time is provided in the extended version[23].

Proving the safety of highly-available distributed objects 25

but requiring that their merge satisfies the invariant. This is captured in the
concurrency invariant, Invconc, which is synthesised from the user provided in-
variant. How to obtain this invariant is understandably not addressed in Bailis
et al.[2] since no proof technique is provided. Notice that this is a sound approxi-
mation since it guarantees the invariant is satisfied, and we also verify that every
operation preserves this condition as shown in Corollary 1. In this sense we say
that the pre-condition of merge for a given invariant I, is also an invariant of the
system. It is this abstraction step that makes the analysis performed by Soteria
to be syntax-driven, automated, and machine-checked. The fact that Soteria is
an analysis of a program is in contrast with I-confluence [2] where no means
to link a given program text to the semantical model, let alone rules to show
that the syntax implies invariant preservation, are provided. In other words, I-
confluence [2] does not provide a program logic, but rather a meta-theoretical
proof about lattice-based state-propagating systems.

Our previous work [21], provides an informal proof methodology for ensuring
safety of Convergent Replicated Data Types(CvRDTs), which are a group of
specialised data structures used to ensure convergence in distributed program-
ming. This work builds upon it, and formalises the proof rules and prove them
sound. We relax the requirement of CvRDTs by allowing the usage of any data
types, that together respect the lattice conditions mentioned in Section 3. We
also show several case studies which demonstrate the use of the rule.

A final interesting remark is that we can show how our methodology can
aid in the verification of distributed objects mediated by concurrency control.
Some works [16, 17, 26, 27] have considered this problem from the standpoint of
synthesis, or from the point of view of which mechanisms can be used to check
a certain property of the system.

8 Conclusion

We have presented a sound proof rule to verify invariants of state-based dis-
tributed objects, i.e., the objects that propagate state. We present the proof
obligations guaranteeing that the implementation is safe in concurrent execution
by reducing the problem to checking that each operation of the object satisfies
a precondition of the merge function of the state.

We presented Soteria, a tool sitting on top of the Boogie verification frame-
work. This tool can be used to identify the concurrency bugs in the design of
a distributed object. Soteria also checks convergence by checking the lattice
conditions on the state, described by [3]. We have shown multiple compelling
case-studies showing how Soteria can be leveraged to ensure the correctness of
distributed objects that propagate state. It would be an interesting next step
to look into automatic concurrency control synthesis. The synthesised concur-
rency control can be analysed and adapted dynamically to minimise the cost of
synchronisation.

Acknowledgements. This research is supported in part by the RainbowFS project (Agence Na-
tionale de la Recherche, France, number ANR-16-CE25-0013-01) and by European H2020 project
732 505 LightKone (2017–2020).

Bibliography

[1] Almeida, P.S., Shoker, A., Baquero, C.: Delta state replicated data types.
J. Parallel Distrib. Comput. 111, 162–173 (2018), https://doi.org/10.1016/
j.jpdc.2017.08.003

[2] Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Sto-
ica, I.: Coordination avoidance in database systems. Proc. VLDB Endow.
8(3), 185–196 (Nov 2014), http://dx.doi.org/10.14778/2735508.2735509,
int. Conf. on Very Large Data Bases (VLDB) 2015, Waikoloa, Hawai’i, USA

[3] Baquero, C., Almeida, P.S., Cunha, A., Ferreira, C.: Composition in state-
based replicated data types. Bulletin of the EATCS 123 (2017), http://
eatcs.org/beatcs/index.php/beatcs/article/view/507

[4] Baquero, C., Moura, F.: Using structural characteristics for autonomous
operation. Operating Systems Review 33(4), 90–96 (1999), https://doi.org/
10.1145/334598.334614

[5] Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: Proceedings
of the 4th International Conference on Formal Methods for Components
and Objects. pp. 364–387. FMCO’05, Springer-Verlag, Berlin, Heidelberg
(2006), http://dx.doi.org/10.1007/11804192 17

[6] Brookes, S., O’Hearn, P.W.: Concurrent separation logic. SIGLOG News
3(3), 47–65 (2016), https://dl.acm.org/citation.cfm?id=2984457

[7] Burckhardt, S.: Principles of eventual consistency. Foundations and Trends
in Programming Languages 1(1-2), 1–150 (2014), https://doi.org/10.1561/
2500000011

[8] Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types:
Specification, verification, optimality. In: Symp. on Principles of Prog. Lang.
(POPL). pp. 271–284. San Diego, CA, USA (Jan 2014), http://doi.acm.org/
10.1145/2535838.2535848

[9] Dijkstra, E.: A discipline of programming. Prentice-Hall series in automatic
computation, Prentice-Hall (1976)

[10] Gomes, V.B.F., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: A frame-
work for establishing strong eventual consistency for conflict-free replicated
datatypes. Archive of Formal Proofs 2017 (2017), https://www.isa-afp.org/
entries/CRDT.shtml

[11] Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., Shapiro, M.: ’Cause
I’m Strong Enough: Reasoning about consistency choices in distributed sys-
tems. In: Symp. on Principles of Prog. Lang. (POPL). pp. 371–384. St. Pe-
tersburg, FL, USA (2016), http://dx.doi.org/10.1145/2837614.2837625

[12] Hellerstein, J.M., Alvaro, P.: Keeping CALM: when distributed consistency
is easy. CoRR abs/1901.01930 (2019), http://arxiv.org/abs/1901.01930

[13] Houshmand, F., Lesani, M.: Hamsaz: Replication coordination analysis and
synthesis. Proc. ACM Program. Lang. 3(POPL), 74:1–74:32 (Jan 2019),
http://doi.acm.org/10.1145/3290387

https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1016/j.jpdc.2017.08.003
http://dx.doi.org/10.14778/2735508.2735509
http://eatcs.org/beatcs/index.php/beatcs/article/view/507
http://eatcs.org/beatcs/index.php/beatcs/article/view/507
https://doi.org/10.1145/334598.334614
https://doi.org/10.1145/334598.334614
http://dx.doi.org/10.1007/11804192_17
https://dl.acm.org/citation.cfm?id=2984457
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
http://doi.acm.org/10.1145/2535838.2535848
http://doi.acm.org/10.1145/2535838.2535848
https://www.isa-afp.org/entries/CRDT.shtml
https://www.isa-afp.org/entries/CRDT.shtml
http://dx.doi.org/10.1145/2837614.2837625
http://arxiv.org/abs/1901.01930
http://doi.acm.org/10.1145/3290387

Proving the safety of highly-available distributed objects 27

[14] Jagadeesan, R., Riely, J.: Eventual consistency for crdts. In: Ahmed, A.
(ed.) Programming Languages and Systems - 27th European Symposium
on Programming, ESOP 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10801, pp. 968–995. Springer (2018), https://doi.org/10.1007/
978-3-319-89884-1 34

[15] Jones, C.B.: Specification and design of (parallel) programs. In: Mason, R.
(ed.) Information Processing 83. IFIP Congress Series, vol. 9, pp. 321–332.
IFIP, North-Holland/IFIP, Paris, France (Sep 1983)

[16] Kaki, G., Earanky, K., Sivaramakrishnan, K., Jagannathan, S.: Safe repli-
cation through bounded concurrency verification. Proc. ACM Program.
Lang. 2(OOPSLA), 164:1–164:27 (Oct 2018), http://doi.acm.org/10.1145/
3276534

[17] Kaki, G., Nagar, K., Najafzadeh, M., Jagannathan, S.: Alone together:
Compositional reasoning and inference for weak isolation. In: Symp. on
Principles of Prog. Lang. (POPL). Proc. ACM Program. Lang., vol. 2, pp.
27:1–27:34. Assoc. for Computing Machinery, Assoc. for Computing Ma-
chinery, Los Angeles, CA, USA (Dec 2017), http://doi.acm.org/10.1145/
3158115

[18] Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-
order smt solvers. In: Proceedings of the 2009 ACM Symposium on Applied
Computing. pp. 615–622. SAC ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1529282.1529411

[19] Marcelino, G., Balegas, V., Ferreira, C.: Bringing hybrid consistency closer
to programmers. In: W. on Principles and Practice of Consistency for
Distr. Data (PaPoC). pp. 6:1–6:4. PaPoC ’17, Euro. Conf. on Comp. Sys.
(EuroSys), ACM, Belgrade, Serbia (2017), http://doi.acm.org/10.1145/
3064889.3064896

[20] Nair, S., Shapiro, M.: Improving the “Correct Eventual Consistency” tool.
Rapport de recherche RR-9191, Institut National de la Recherche en Infor-
matique et Automatique (Inria), Paris, France (Jul 2018), https://hal.inria.
fr/hal-01832888

[21] Nair, S.S., Petri, G., Shapiro, M.: Invariant safety for distributed appli-
cations. In: W. on Principles and Practice of Consistency for Distr. Data
(PaPoC). pp. 4:1–4:7. Assoc. for Computing Machinery, Assoc. for Com-
puting Machinery, Dresden, Germany (Mar 2019), https://doi.org/10.1145/
3301419.3323970

[22] Nair, S.S., Petri, G., Shapiro, M.: Soteria. https://github.com/sreeja/
soteria tool (2019)

[23] Nair, S.S., Petri, G., Shapiro, M.: Proving the safety of highly-available
distributed objects (Extended version). Tech. rep. (Feb 2020), https://hal.
archives-ouvertes.fr/hal-02492599

[24] Najafzadeh, M., Gotsman, A., Yang, H., Ferreira, C., Shapiro, M.: The
CISE tool: Proving weakly-consistent applications correct. In: W. on Prin-
ciples and Practice of Consistency for Distr. Data (PaPoC). EuroSys 2016

https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.1007/978-3-319-89884-1_34
http://doi.acm.org/10.1145/3276534
http://doi.acm.org/10.1145/3276534
http://doi.acm.org/10.1145/3158115
http://doi.acm.org/10.1145/3158115
http://doi.acm.org/10.1145/1529282.1529411
http://doi.acm.org/10.1145/3064889.3064896
http://doi.acm.org/10.1145/3064889.3064896
https://hal.inria.fr/hal-01832888
https://hal.inria.fr/hal-01832888
https://doi.org/10.1145/3301419.3323970
https://doi.org/10.1145/3301419.3323970
https://github.com/sreeja/soteria_tool
https://github.com/sreeja/soteria_tool
https://hal.archives-ouvertes.fr/hal-02492599
https://hal.archives-ouvertes.fr/hal-02492599

28 Sreeja S Nair, Gustavo Petri, and Marc Shapiro

workshops, Assoc. for Computing MachinerySpecial Interest Group on Op.
Sys. (SIGOPS), Assoc. for Computing Machinery, London, UK (Apr 2016),
http://dx.doi.org/10.1145/2911151.2911160

[25] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free repli-
cated data types. In: Défago, X., Petit, F., Villain, V. (eds.) Int. Symp.
on Stabilization, Safety, and Security of Dist. Sys. (SSS). Lecture Notes in
Comp. Sc., vol. 6976, pp. 386–400. Springer-Verlag, Grenoble, France (Oct
2011)

[26] Shapiro, M., Saeida Ardekani, M., Petri, G.: Consistency in 3D. In: Deshar-
nais, J., Jagadeesan, R. (eds.) Int. Conf. on Concurrency Theory (CON-
CUR). Leibniz Int. Proc. in Informatics (LIPICS), vol. 59, pp. 3:1–3:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing,
Germany, Québec, Québec, Canada (Aug 2016), http://dx.doi.org/10.4230/
LIPIcs.CONCUR.2016.3

[27] Sivaramakrishnan, K., Kaki, G., Jagannathan, S.: Declarative programming
over eventually consistent data stores. In: Assoc. for Computing Machin-
erySpecial Interest Group on Pg. Lang. (SIGPLAN). pp. 413–424. PLDI
’15, Assoc. for Computing Machinery, Assoc. for Computing Machinery,
Portland, OR, USA (2015), http://doi.acm.org/10.1145/2737924.2737981

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1145/2911151.2911160
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.3
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.3
http://doi.acm.org/10.1145/2737924.2737981
http://creativecommons.org/licenses/by/4.0/

	Proving the safety of highly-available distributed objects

