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Abstract

Edge detection in SAR images is a difficult task due to the strong multi-
plicative noise. Many researches have been dedicated to edge detection in SAR
images but very few try to address the most challenging 1-look situations. Mo-
tivated by the success of CNNs for the analysis of natural images, we develop
a CNN edge detector for 1-look SAR images. We propose to simulate a SAR
dataset using the optical dataset BSDS500 to avoid the tedious job of edge la-
beling, and we propose a framework, a hand-crafted layer followed by learnable
layers, to enable the model trained on simulated SAR images to work in real
SAR images. The hypothesis behind these two propositions is that both optical
and SAR images can be divided into piecewise constant areas and edges are
boundaries between two homogeneous areas. The hand-crafted layer, which is
defined by a ratio based gradient computation method, helps to tackle the gap
between training and testing images, because the gradient distribution will not
be influenced by the mean intensity values of homogeneous areas. The gradient
computation step is done by Gradient by Ratio (GR) and the learnable layers
are identical to those in HED. The proposed edge detector, GRHED, outper-
forms concurrent approaches in all our simulations especially in two 1-look real
SAR images.

Keywords:
edge detection, 1-look SAR image, optical dataset, CNNs, hand-crafted layer,
GRHED

1. Introduction

Edges are important features in Synthetic Aperture Radar (SAR) images.
They can be used as low level features for many applications like line segment
detection [1, 2], SAR image segmentation [3, 4], coastline detection [5, 6], image
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registration [7, 8] and even SAR image despeckling [9]. Due to the strong mul-
tiplicative speckle noise in SAR images, methods developed for optical images,
which are usually based on pixel value differences, produce more false edges
in brighter areas and thus are not suitable for SAR images. Many researches
have been dedicated to edge detection in SAR images in the past years. In [10],
the Ratio of Average (ROA) was proved to have a constant false alarm rate
for SAR images (CFAR property). The ratio operator is applied along four
directions and the minimum normalized ratio is used to compute the gradient
magnitude. The direction corresponding to the minimum normalized ratio is
regarded as the edge orientation. A threshold determined by a given probabil-
ity of false alarms and a morphological operator are then applied to obtain a
binary thin edge map. However, ROA is optimal only for isolated step edges.
An efficient multiedge detector, ROEWA, was proposed afterwards in [11]. The
Ratio of Exponentially Weighted Average was shown to be optimal in terms
of minimum mean square error (MMSE) under the hypothesis of a stochastic
multi-edge model. The method is based on ROA, but averages are weighted
by a decreasing exponential function, allowing a better detection of multiple
edges close to each other. Besides, instead of computing the ratio along four
directions, the ratio is computed along the horizontal and vertical directions
and the normalized ratios are considered as the horizontal and vertical com-
ponents of the gradient magnitude. A modified watershed algorithm is then
used to threshold the Edge Strength Map and a region merging algorithm is
used to eliminate the false edge pixels. Edge detectors using different shape of
window functions were introduced later in [12] and [13]. Non-maxima suppres-
sion [14] and hysteresis thresholding are applied to obtain the binary thin edge
map. An edge compensation strategy was also introduced in [13] to extract
weak edge pixels. To reduce the influence of isolated strong bright points in
real SAR images, an Anisotropic Morphological Directional Ratio (AMDR) [15]
was proposed by replacing the weighted average filter with the weighted median
filter. The edge localization accuracy in the Edge Strength Map (ESM) and the
Edge Direction Map (EDM) was then improved by a multiplicative spatial and
directional matching filter. By introducing the improved ESM and EDM into
the routine of Canny edge detector [14], the resulting edge detector is able to
obtain a binary thin edge map. The connectivity of edges is finally improved
by an edge remedy strategy. However, the performances of the edge detectors
developed for SAR images are still not fully satisfying, especially in the very
noisy 1-look situation.

On the other hand, convolutional neural networks (CNNs) have proven to
be very succesful for edge detection in natural images, with approaches such as
Deepedge [16], DeepContour [17], HED [18, 19], CEDN [20], AMH-Net [21] or
RCF [22, 23], which have permitted to improve significantly the performances
of traditional edge detectors like Sobel [24], Canny [14], Statistical Edge [25],
Pb [26], gPb [27] and Structured Edge [28], at least on databases similar to the
training sets. Motivated by this fact, we propose to develop a CNN based edge
detector for SAR images.

One crucial factor that contributes to the success of CNNs is the availability
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of training datasets with ground truth, but there is still no training dataset
for edge detection in SAR images. Under the hypothesis that both optical
and SAR images can be divided into piecewise constant areas. we propose to
simulate a SAR dataset using optical dataset. The motivation is that under this
hypothesis both optical and SAR images can be divided into two kinds of regions:
homogeneous areas and two homogeneous areas across boundaries (edges being
boundaries between two homogeneous areas). Only if we can ensure that all
homogeneous areas in the simulated SAR dataset follow similar distributions as
those in real SAR images, the models trained using the simulated dataset should
be applicable to real SAR images. The simulated dataset can be obtained by
multiplying images in the optical dataset with speckle noise. The simulated
SAR images are called speckled optical images in the following.

Even though the homogeneous areas in simulated SAR images are modified
to follow similar distributions as those in real SAR images, the distributions of
homogeneous areas depend on ttheir mean intensity values. Due to the existence
of some bright homogeneous areas in real SAR images which are not contained
in the simulated dataset. CNN models directly trained on the images are not
applicable to real SAR images as can be seen in Figure 1-(c), where we train
a classical CNN edge detector HED [18, 19] using the simulated dataset and
apply the trained model to the 1-look real SAR images. HED produces spurious
detections since it does not learn the way to process those areas.

(a) real image (b) GR (c) HED (d) GRHED

Figure 1: Edge maps produced by different methods in a 1-look real image (a subpart of the
TerraSAR-X image, San Francisco). (a) 1-look real image of size 512 × 512 pixels; (b) edge
map computed by GR [29]; (c) edge map computed by HED; (d) edge map computed by
GRHED (proposed method).

To cope with this problem, we propose in this paper to add a hand-crafted
layer before the learnable layers. The hand-crafted layer is defined by a ratio
based gradient computation method. Since the parameters in the hand-crafted
layer are fixed, we train learnable layers on the feature maps computed by
the hand-crafted layer in images, and apply the trained layers to the (gradient)
feature maps of testing images. The motivation is that, with the ratio operation,
the gradient distribution in each pixel depends only on the ratio of the mean
intensity values of two homogeneous areas in the opposite side windows (ratio
being 1 for pixels in homogeneous areas) [10]. In this paper, the hand-crafted
layerr is chosen as Gradient by Ratio (GR) proposed in [29]. The learnable
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layers are identical to those in HED [18, 19]. We train HED layers on the
gradient feature maps of training images and apply the trained model to the
gradient feature maps of testing images. The proposed edge detector will thus
be called GRHED. It can be seen in Figure 1-(d) that GRHED is performing
efficient edge detection in 1-look real SAR images.

The pipeline of the proposed method can be found in Figure 2. In the train-
ing phase of GRHED, as shown in Figure 2-(a), training images are first fed
into the hand-crafted layer to obtain the gradient feature maps. The convo-
lutional layers of HED are trained on the feature maps computed by GR to
get the edge probability map. In the testing phase, as shown in Figure 2-(b),
testing images are successively processed by the hand-crafted layer (GR) and
convolutional layers (HED) to obtain the edge probability map. Postprocessing
steps including non-maxima suppression and thresholding are applied to obtain
the binary edge map. The non-maxima suppression step is identical to that in
[28], and the strategy to choose the threshold can be found in Section 4.3.1.

The contributions of this paper can be summarized as follows:

• we propose to simulate a SAR dataset using the optical dataset, since
there is still no dataset for edge detection in SAR images;

• we propose a framework, which is composed of a hand-crafted layer and
learnable layers, to tackle the gap between training and testing images.
The hand-crafted layer defined by a ratio based method, ensures the sim-
ilarity of computed feature maps in simulated SAR and real SAR images;

• the proposed edge detector GRHED, largely outperforms existing edge
detectors in the most challenging situations (complex scenes, 1-look real
SAR images).

This paper is organized as follows: in Section 2 we give details about the
building of the speckled optical dataset and explain the gap between simulated
SAR and real SAR images. In section 3, we describe the proposed framework, a
hand-crafted layer defined by a ratio based gradient computation method, fol-
lowed by learnable fully convolutional layers. We will also explain why the pro-
posed strategy is able to tackle the gap between training and testing images. In
section 4, we demonstrate the efficiency of the proposed edge detector, GRHED,
with experiments on several 1-look simulated edge images, 200 speckled optical
images simulated from BSDS500 [27], one 1-look realistically simulated SAR
image, and two 1-look real SAR images.
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Input image

hand-crafted layer (GR)

convolutional layers (HED)

Edge probability map

cross entropy loss

Ground truth

Input image

hand-crafted layer (GR)

convolutional layers (HED)

Edge probability map

non-maxima suppression

thresholding

Binary edge map

(a) training procedure (b) testing procedure

Figure 2: The pipeline of GRHED. During training, gradient feature maps of training images
are precomputed, then HED layers are trained on the feature maps to produce the edge
probability map. During testing, testing images are successively processed by GR, HED,
non-maxima suppression (identical to [28]) and thresholding to obtain the edge map.
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2. Simulated SAR dataset and the gap between simulated SAR and
real SAR images

2.1. Speckled optical dataset
Since the aim of this paper is to train CNNs for edge detection in SAR

images, the training dataset is of crucial importance for the performances of
the edge detector. In order to avoid the tedious job of manual edge labeling,
we simulated a SAR dataset using optical dataset for edge detection in natural
images, under the hypothesis that both optical and SAR images are composed
of piecewise constant areas and edges are boundaries between two homogeneous
areas. If we can ensure that all homogeneous areas in the simulated dataset
follow similar distributions as those in real SAR images, the simulated dataset
should be usable for edge detection in real SAR images.

Due to the coherent imaging system, SAR data present the well known
speckle phenomenon. Following Goodman model [30] of fully developed speckle,
it can be shown that the amplitude of the backscattered electro-magnetic field
of a homogeneous area with mean intensity 〈I〉 follows a Nakagami distribution
:

f(t|〈I〉) =
2

Γ(L)

(
L

〈I〉

)L

t2L−1e−(Lt2/〈I〉), (1)

L being the number of looks of the image. For images with the best resolution,
L = 1 and the amplitude of a physically homogeneous area follows a Rayleigh
distribution. Another way of modeling 1-look data is the multiplicative model
: t =

√
〈I〉s, s representing the speckle noise and following the Rayleigh distri-

bution given in eq. (1) with 〈I〉 = 1 and L = 1.
Using the multiplicative noise model it is therefore easy to generate speckled

data by multiplying an image by s. In this paper, we use the Berkeley Seg-
mentation Data Set 500 (BSDS500) [27] with the same data augmentation as in
HED [19] for training and validation, to simulate a SAR dataset. Specifically,
each image in the training and validation set is rotated by 16 angles, flipped
horizontally, and rescaled to 50%, 100% and 150% of its original size. There is
no data augmentation for the testing set. The resulting speckled optical dataset,
which we will call BSDS500-speckled in the following, is obtained by multiplying
the grayscale intensity channel of each color image with 1-look speckle noise.
It contains 300 × 16 × 2 × 3 = 28800 images for training (80%) and validation
(20%) and 200 images for testing.

2.2. The differences between speckled optical images and real SAR images
In order to compare the differences between speckled optical images and real

SAR images, we plot the histograms for both of them. We display the histograms
of five speckled optical images which are randomly selected from the training
dataset in Figure 3-(a), the histogram of the entire training dataset in Figure 3-
(b) and compare them with the histograms of two 1-look real SAR images (a
Sentinel-1 image of Lelystad and a TerraSAR-X image of San Francisco) as
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shown in Figure 4. From Figure 3 and Figure 4 we can see that the main
differences between speckled optical images and real SAR images are the range
of pixel values. The values of some pixels in real SAR images are much larger
than those of pixels in the speckled optical images.
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(a) five images (b) entire training dataset

Figure 3: (a) histograms of five speckled optical images which are randomly chosen from the
training dataset; (b) the histogram of the entire training dataset. The size of the bin is 1.0.
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(a) real image 1 (Lelystad) (b) truncated histogram of (a)
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(c) real image 2 (San Francisco) (d) truncated histogram of (c)

Figure 4: Histograms of two 1-look real SAR images and the truncated histogram for each
image. The size of the bin is 1.0.

Formula (1) is the most usual way to describe the statistics of real SAR im-
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ages, which gives the way of modelling the homogeneous areas in real SAR im-
ages. In addition, most existing gradient computation methods for SAR images,
such as ROA [10], ROEWA [11] and other ratio based methods, are justified un-
der the hypothesis of piecewise constant areas so all images can be considered
as a mixture of homogeneous areas (the ratio operator was shown to be more
suitable for SAR images in [10] with the hypothesis that in each (of the two)
windows used to compute the ratio, pixel values are independently, identically
and Gamma distributed, and in [11], the exponentially weighted average was
shown to be optimal to estimate the local mean of the homogeneous areas under
the hypothesis of a multi-edge model). In this work, we proceed in the same
way and assume that both speckled optical images and real SAR images can
be divided into homogeneous areas with many different mean intensity values.
The edges are defined as boundaries between any two homogeneous areas.

0 0.5 1 1.5 2

Windows ×10
5

0

50

100

150

200

250

300

E
s
ti
m

a
te

d
 m

e
a
n
 i
n
te

n
s
it
y
 v

a
lu

e

0 0.5 1 1.5 2

Windows ×10
5

0

20

40

60

80

100

120

140

160

180

E
s
ti
m

a
te

d
 m

e
a
n
 i
n
te

n
s
it
y
 v

a
lu

e

(a) speckled optical image 1 (b) speckled optical image 2
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(c) real image 1 (d) real image 2

Figure 5: The curves for square root of mean intensity values estimated from two speckled
optical images and two real SAR images, using windows of size 20 × 20 pixels. (a) speckled
optical image 1; (b) speckled optical image 2; (c) real image 1 (Leystad); (d) real image 2
(San Francisco).

Under the hypothesis that both speckled optical images and real SAR images
are composed of piecewise constant areas, we assume that the differences in the
range of pixel values are caused by the differences in the mean intensity values of
homogeneous areas. We try to evaluate the possible underlying mean intensity
values for both speckled optical images and real SAR images. We use windows
of size 20× 20 pixels to estimate the underlying mean intensity values for areas
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whose size is equal to the size of the windows, in both speckled optical images
and real SAR images. The curves of the square root of the mean intensity values
(in ascending order) estimated from two randomly selected speckled optical
images and two 1-look real SAR images can be found in Figure 5. For the
estimation in speckled optical images, we use the maximum likelihood estimator
to estimate the square root of the mean intensity values, while for real SAR
images, we use the mode (the most frequent pixel value after digitizing the pixel
values) to estimate the mean intensity values in order to reduce the influence of
strong bright points in real SAR images (the square root of the mean intensity
value is obtained by multiplying the mode with

√
2). It should be pointed out

that both maximum likelihood estimator and mode estimator are under the
hypothesis that samples in the windows follow a Rayleigh distribution.

From Figure 5 we can see that the underlying mean intensity values in ho-
mogeneous ares of real SAR images can be much larger than those in speckled
optical images (it should be noted that the underlying mean intensity values
for all homogeneous areas in the training dataset will not be larger than 2552

because the maximum possible value in natural images before multiplying the
speckle noise is 255). Therefore, the main differences between speckled optical
and real SAR images are that some areas with high mean intensity values exist
in real SAR images but not in speckled optical images.

After creating a simulated dataset for training and knowing the gap between
simulated SAR and real SAR images, the next question is how to train CNNs
using this dataset and how to enable the trained model to work in real SAR
images. We will describe the way to tackle the gap between the training and
testing data in the next section.

3. GRHED, a CNN based edge detector for SAR images

In order to deal with the differences in the mean intensity values of homoge-
neous areas between speckled optical images and real SAR images, we propose
to add a hand-crafted layer before the learnable layers. The learnable layers are
trained on the feature maps computed by the hand-crafted layer. The hand-
crafted layer is defined by a ratio based gradient computation method GR [29]
and it aims to tackle the gap between training and testing images, The convolu-
tional layers are identical to thosee in HED [18, 19]. We therefore call GRHED
the resulting architecture. In the following we will describe the details about
GR, the benefits of adding the hand-crafted layer defined by GR, HED network
architecture and the proposed edge detector GRHED.

3.1. Gradient by Ratio (GR)
For a given pixel located at position (x, y) in the image u, the horizontal and

vertical gradient components (GR) are defined as

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).
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where Rh(x, y) and Rv(x, y) is the ratio of exponentially weighted average in
the opposite side windows of pixel located at (x, y), along the horizontal and
vertical directions. In the horizontal direction, Rh(x, y) can be computed as

Rh(x, y) =
mh

1 (x, y)

mh
2 (x, y)

,

where

mh
1 (x, y) =

W∑
x′=−W

W∑
y′=1

u(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2 (x, y) =

W∑
x′=−W

−1∑
y′=−W

u(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10) × α. Rv(x, y) can be
computed in a similar way.

The magnitude Ggr(x, y) and orientation anggr(x, y) of GR at position (x, y)
are defined by

Ggr(x, y) =
√
Gh(x, y)2 +Gv(x, y)2,

anggr(x, y) = arctan
Gv(x, y)

Gh(x, y)
.

3.2. Interest of adding a hand-crafted layer before learnable layers
Under the hypothesis that both optical and SAR images are composed of

piecewise constant areas, they can be divided into two kinds of regions: ho-
mogeneous areas and boundaries (boundaries exist between two homogeneous
areas).

If we train CNN models directly on the images, the aim of training can
be summarized as follows: 1) the model should learn to suppress all pixels in
homogeneous areas; 2) the model should learn to highlight the boundaries be-
tween any two homogeneous areas. In this case, CNNs are trained to process
samples drawn from many different distributions and the way of the model to
process those samples depends on their corresponding distributions. In 1-look
SAR images, the amplitude of all homogeneous areas follows a Rayleigh distri-
bution depending on their mean intensity values. For two homogeneous areas
across boundaries, the total distribution of them depends on the mean intensity
values of both two homogeneous areas. Adding a hand-crafted layer defined by
a ratio based gradient computation method before CNN models helps to deal
with the gap between training and testing images because for all homogeneous
areas, their gradient magnitude fields follow the same distribution, regardless
of their mean intensity values, and the gradient distribution computed over two
homogeneous areas across boundaries depends only on the ratio of the mean
intensity values. The feature maps computed by the hand-crafted layer (GR) in
simulated SAR and real SAR images are similar. Adding the hand-crafted layer
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enables the network trained on speckled optical dataset to work in real SAR
images. In addition, computing GR can be considered as a form of data aug-
mentation since we have much less kinds of distributions to learn while the total
amount of data remains unchanged. Besides, the ratio operation contributes to
an edge detector having constant false alarm rate for SAR images.

(a) 1-look image (b) GT

Figure 6: A 1-look edge image with ratio contrast 1.5 and the associated ground truth. The
size of the image are 512× 512 pixels.

In order to give a better explanation on the benefits of computing GR, we
compare the distribution of the data before and after computing the gradient
for both homogeneous areas and two homogeneous areas across boundaries. We
simulate eight 1-look pure noise images of size 4096 × 4096 pixels and eight
1-look synthetic images of size 512 × 512 pixels with amplitude ratio contrast
1.5. The square root of the mean intensity values of the homogeneous im-
ages (proportional to an amplitude value) are 60, 90, 120, 150, 180, 210, 240
and 270. For two homogeneous areas across boundaries, the amplitude ra-
tio is chosen as 1.5 for mean values (for the smallest value along the edge) of
20, 50, 70, 90, 110, 130, 150, 200. One example of the synthetic edge image can
be found in Figure 6-(a).

The histograms of the eight 1-look pure noise images and the histograms
of their gradient magnitude fields computed by GR with weighting parameter
α = 4 can be found in Figure 7. The histograms of eight 1-look synthetic
edge images as well as the histograms of their gradient magnitude fields can be
found in Figure 8. From Figure 7 and Figure 8 we can see that the gradient
distribution computed by GR depends only on the ratio of the mean intensity
values of homogeneous areas (ratio being 1 for homogeneous areas) and will not
be influenced by the mean intensity values. The bright homogeneous areas in
real SAR images which are not contained in the training dataset will not be a
problem because: 1) the gradient distribution of those homogeneous areas will
be the same as that of homogeneous areas with low mean intensity values; 2) the
gradient distribution for those homogeneous areas and their neighbouring ones
depends only on the ratio of the mean intensity values, which can be the same
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as the gradient distribution of two homogeneous areas, whose mean intensity
values are both contained in the training dataset. In addition, it can be deduced
that the number of distributions that has to be learned by CNNs when trained
on the gradient magnitude fields is much smaller than that of a direct training
on the images. Since the amount of data is unchanged, the amount of training
data for each distribution is therefore increased.
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(a) histograms of images (b) histograms of GR fields

Figure 7: Histograms of the eight 1-look pure noise images and histograms of their gradient
magnitude fields computed by GR with α = 4.
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(a) histograms of images (b) histograms of GR fields

Figure 8: Histograms of the eight 1-look synthetic edge images and histograms of their gradient
magnitude fields computed by GR with α = 4.

A further illustration of the interest to compute GR can be done by com-
paring the histograms of GR fields in both speckled optical images and real
SAR images. The histograms of the gradient magnitude fields computed by GR
in 5 randomly selected speckled optical images and the histograms of the GR
field computed in the entire training dataset can be found in Figure 9. The
histograms of the gradient magnitude fields computed by GR in two 1-look real
SAR images can be found in Figure 10. The weighting parameter α is set to
4.0. The size of the bin is 0.01. From Figure 9 and Figure 10 we can see that
even though the range of pixel values in the GR fields of those two 1-look real
SAR images may be larger than that of some speckled optical images, nearly
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all pixel values in the GR fields of real SAR images are within the range of GR
field computed in the entire training dataset (The maximum value in the GR
field of the TerraSAR-X image (San Francisco) is 3.7, the maximum pixel value
in the GR field of the Sentinel-1 image (Lelystad) is 5.66, and the maximum
pixel value in the GR field of the entire training dataset is 5.36). Compared to
the huge differences in the range of pixel values of images shown in Figure 3
and Figure 4, this observation illustrates the benefits of computing GR.
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(a) GR field (5 images) (b) GR field (entire training dataset)

Figure 9: (a) histograms of the gradient magnitude fields computed by GR in five speckled
optical images which are randomly chosen from the training dataset; (b) the histogram of
the gradient magnitude field computed by GR in the entire training dataset. The weighting
parameter α is set to 4.0. The size of the bin is 0.01. The maximum pixel value in the GR
field of the entire training dataset is 5.36. The tail of the histogram in (b) goes up to 7.0
because we set the maximum value to be 7.0 when we plot the histogram.
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(a) GR field (Lelystad) (b) GR field (San Francisco)

Figure 10: Histograms of the gradient magnitude fields computed by GR in two 1-look real
SAR images. The weighting parameter α is set to 4.0. The size of the bin is 0.01. The
maximum pixel value in the GR field of the Sentinel-1 image (Lelystad) is 5.66 and the
maximum pixel value in the GR field of the TerraSAR-X image (San Francisco) is 3.7.

3.3. HED layers
In this work, we choose to use the convolutional layers of HED, and we

train HED layers on the gradient feature maps computed by GR. The HED
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method, introduced in [18, 19], relies on a fully convolutional network [31, 32],
which is trained end-to-end to perform image-to-image prediction. The network
architecture of HED is shown in table 1. The HED network is trimmed from
the VGG-16 [33] net by discarding the last max-pooling layer and the 3 fully
connected layers. Motivated by the deeply-supervised nets [34], five side outputs
are added to the convolutional layers just before the five max-pooling layers in
the original VGG-16 net. The loss function of the HED network is composed
of the loss function from the side layers and the loss function from the fused
output. The final output of HED is an average of the side outputs and the fused
output. In-network bilinear interpolation [31, 32] is used to upsample the side
outputs so that they all have the same size as the edge ground truth.

Table 1: The network architecture of HED. The convolutional layers are denoted as
"conv(receptive field size)-(number of channels)". For brevity, we do not show the ReLU
activation function following the convolutional filters in each convolutional layer.

conv3-64
conv3-64 → side output 1

MAX-POOLING

conv3-128
conv3-128 → side output 2

MAX-POOLING

conv3-256
conv3-256
conv3-256 → side output 3

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 4

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 5

3.4. GRHED, the proposed framework for edge detection in real SAR images
Since the gradient distribution of GR is the same for homogeneous areas

with all possible mean intensity values, and the gradient distribution in two
homogeneous areas across boundaries is influenced by the ratio and not by their
mean intensity values, we assume that the possible distributions in the gradient
feature space of real SAR images are included in those of the training dataset.
Therefore, we propose to train HED on the gradient magnitude field computed
by GR in training images and apply the trained model to the gradient features
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of testing images. This can be seen as the addition of a hand-crafted layer before
the usual HED layers. The resulting GRHED has the following advantages:

• the distribution of feature map values obtained by GR depends only on
the ratio of the mean intensity values on the opposite side windows of each
pixel (ratio being 1 for pixels located in homogeneous areas), therefore,
homogeneous areas with high mean intensity values in real SAR images
will not impair the performances of GRHED;

• constant false alarm rate (CFAR) is ensured for SAR images because of
the ratio operation;

• by using multiple weighting parameter α values in GR [29] we can combine
diverse informations from the image by concatenating together gradient
magnitude fields produced by GR with different α values (the input of
HED will have multiple channels with each channel being the gradient
magnitude field computed by GR with a certain value of α). It has been
studied in [35] that GR with different α values can capture complementary
informations.

3.5. Formulation of GRHED
Training phase. Given an image u in the training dataset, noting G for its
associated edge ground truth, where u = {uj , j = 1, · · · , |u|} denotes the input
image and G = {Gj , j = 1, · · · , |G|} denotes the edge ground truth, we first
precompute the feature map of u with GR (noting Gu

gr for the feature map
of u), and then train HED layers on Gu

gr. The goal of training HED layers
is to produce an output approaching the edge ground truth from the feature
maps of each input image. Noting W for the collection of parameters in all
network layers (excluding those corresponding to side output layers), and noting
Wside = (W(1)

side,W
(2)
side, · · · ,W

(5)
side) for the collection of parameters in those side

output layers, the objective function for the side output layers is defined as:

Lside(W,Wside) =

5∑
m=1

`
(m)
side(W,W(m)

side), (2)

where `side denotes the loss corresponding to the side outputs. The loss functions
are computed over all pixels of the image.

In order to balance the loss between positive/negative classes, a class-balanced
cross-entropy loss function is used in formula (2):

`
(m)
side(W,W(m)

side) = −λ
∑
j∈G+

logP(Gj = 1|Gu
gr : W,W(m)

side)

−(1− λ)
∑
j∈G−

logP(Gj = 0|Gu
gr : W,W(m)

side), (3)

where λ = |G−|
|G| , and 1 − λ = |G+|

|G| , |G−| and |G+| represent the non-edge

and edge label sets. P(Gj = 1|Gu
gr : W,Wm

side) = σ(a
(m)
j ) ∈ [0, 1] with σ(·)
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representing the sigmoid function and a(m)
j representing the activation value at

pixel j. The edge probability map produced by each side layer is thus defined
as:

Ĝ(m)
side = σ(Âm

side), (4)

where Â(m)
side ≡ {a

(m)
j , j = 1, 2, · · · , |G|} represents the activations of the output

of the side layer.
The fused output is a weighted fusion of those side outputs:

Ĝfuse ≡ σ(

5∑
m=1

hmÂ
(m)
side), (5)

and the corresponding loss function for the fused output Lfuse is defined as:

Lfuse(W,Wside, h) = Dist(G, Ĝfuse), (6)

where h denotes the fusion weights which are learned during training. Dist(·, ·)
represents the distance between the fused output and the edge ground truth,
which is measured by the cross entropy loss.

The objective function that needs to be minimized during training using
stochastic gradient descent is thus defined as:

(W,Wside, h)? = argmin(Lside(W,Wside) + Lfuse(W,Wside, h)). (7)

Testing phase. Given a testing image u, six edge probability maps (five side
outputs and one fused output) are obtained from GRHED:

(Ĝfuse, Ĝ(1)
side, · · · , Ĝ

(5)
side) = CNN(GR(u), (W,Wside, h)?), (8)

where GR(u) computes the feature maps of u using GR.
The final output is computed as the average of all the outputs:

Ĝprediction = Average(Ĝfuse, Ĝ(1)
side, · · · , Ĝ

(5)
side). (9)

After obtaining Ĝprediction, we apply the same non-maxima suppression step
as that in [28], and then plain thresholding is applied to obtain the binary edge
map. The strategy of choosing thresholds can be found in Section 4.3.1.

4. Experiments

In this section we demonstrate the efficiency of the method we propose,
GRHED, using several 1-look synthetic edge images, two hundred 1-look speck-
led optical images in BSDS500-speckled, one 1-look realistically simulated SAR
image and two 1-look real SAR images. In order to show the efficiency of
GRHED, we compare it with the original HED algorithm and to the result of
training HED on the logarithm of images, as defined below, an algorithm that
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we will cal HED-log. Observe that for GRHED, HED and HED-log, the convo-
lutional layers that need to be trained are the same, the difference between these
method being the input of the network: gradient magnitude fields of images for
GRHED, plain images for HED and logarithm of these for HED-log. The train-
ing strategy for those convolutional layers is as follows: we use Adam optimizer
to train the nework from scratch on the speckled optical dataset BSDS500-
speckled. The number of iterations for training is 10000 and the learning rate
is 0.001. The size of the batch is 10. The preprocessing step before feeding
the data into the learnable layers is global mean substraction, as done in VGG.
Since the outputs of all methods are probability edge maps, they should be
processed further to obtain the binary edge maps. In order to obtain the binary
edge map, we use the same Non-maxima Suppression procedure as the one in
Structured Edge [28] and use a threshold to discard pixels with low values in
the probability edge map.

The following methods will be used in the comparison of the next sections:

• GR with α = 4 (this choice of α = 4 being adapted to GR in 1-look
situations, as discussed in [35]). For the GR magnitude field, we use the
same postprocessing steps as for the magnitude field produced by HED,
HED-log and GRHED;

• HED: HED is trained on the speckled optical images and applied to the
testing images;

• HED-log: HED is trained on the logarithm of the images in BSDS500-
speckled, and is applied to the logarithm of testing images;

• GRHED with multiple α values, α = 2, 3, 4, 5: HED is trained on the
gradient feature maps which are obtained by concatenating the gradient
magnitude fields produced by GR with different α values.

4.1. Comparison in 1-look synthetic edge images
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(a) ratio contrast 1.2 (b) ratio contrast 1.3 (c) ratio contrast 1.4 (d) ratio contrast 1.5

Figure 11: ROC curves computed from the magnitude field produced by GR, HED, HED-log
and GRHED in 1-look simulated images with contrast 1.2, 1.3, 1.4 and 1.5. The size of the
images is 512× 512 pixels.

In order to give a fair comparison between the different methods, we compare
them in terms of ROC curves [36, 37] and F1-score curves in 1-look synthetic
edge images with different ratio contrasts.
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Figure 12: F1-score curves obtained by GR, HED, HED-log and GRHED in synthetic edge
images with ratio contrast 1.2, 1.3, 1.4 and 1.5. The F1-score curves are obtained by varying
the threshold from 0.0 to 0.9 with step 0.01.

One example of the simulated 1-look edge images with contrast 1.5 and
the corresponding ground truth can be found in Figure 6. The ROC curves
computed in the magnitude fields produced by GR, HED, HED-log and GRHED
in 1-look simulated images with ratio contrast 1.2, 1.3, 1.4 and 1.5 can be found
in Figure 11. It can be seen from Figure 11 that GRHED yields the best
performances in all situations, especially in 1-look and low contrast situations.
The performances of GR and HED appear comparable in terms of ROC curves,
and both are better than HED-log.

In order to give a clearer comparison between the different methods, we apply
the same Non-maxima suppression step for all methods and vary the threshold
from 0.0 to 0.9 with step 0.01 for each method. The F1-score is computed for
each threshold and the corresponding F1-score curves for each method in the 4
simulated edge images can be found in Figure 12. From Figure 12 we can see
that the F1-score curves of GRHED are above the F1-score curves of the other
methods. In addition, flat areas of F1-score curves of GRHED indicate greater
stability regarding the threshold choice than with other approaches. Although
the best F1-scores that can be obtained by GR and HED are comparable, the
performances of HED are less sensitive to the choice of the threshold.

The optimal edge maps obtained by GR, HED, HED-log and GRHED in
those synthetic images with contrast 1.2 and 1.4 (using the threshold which gives
the best F1-score) can be found in Figure 13 and Figure 14. From Figure 13 and
Figure 14 we can see that the ability of GRHED to preserve true edge pixels
and suppress noise pixels is clearly greater on these images than when using the
other methods; the GRHED method detects most true edge pixels while having
the least number of false detections. It should be noted that although these
edge maps are obtained using the optimal threshold, the edge maps obtained
by HED and GRHED will remain reasonable with the threshold in a relatively
large range, as can be deduced from Figure 12, especially for GRHED.

4.2. Comparison of different algorithms on the speckled optical images in BSDS500-
speckled

In order to give a more comprehensive comparison in more general situa-
tions between different methods, we compare GR, HED, HED-log and GRHED
in the two hundred 1-look speckled optical images in BSDS500-speckled. For
GR, we use α = 2 and α = 4. For GRHED, GRHED with a single α value
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GR, contrast 1.2 HED, contrast 1.2 HED-log, contrast 1.2 GRHED, contrast 1.2

Figure 13: Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look sim-
ulated edge images with contrast 1.2. For each method, the chosen threshold gives the best
F1-score in this image. The size of the images is 512× 512 pixels.

GR, contrast 1.4 HED, contrast 1.4 HED-log, contrast 1.4 GRHED, contrast 1.4

Figure 14: Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look sim-
ulated edge images with contrast 1.4. For each method, the chosen threshold gives the best
F1-score in this image. The size of the images is 512× 512 pixels.

and GRHED combining multiple α values are all provided. Three criterions are
used to compare different algorithms: Optimal Dataset Scale (ODS) F1 (fixed
contour threshold for 200 images), Optimal Image Scale (OIS) F1 (best thresh-
old for each image), and average precision (AP). The quantitative comparison
can be found in table 2. From table 2 we can see that compared to GR, the
CNN-based methods give much higher values for all three criterions. In addi-
tion, GRHED gives at least comparable or even better performances than HED
and HED-log in the 200 1-look images, especially when combining multiple α
values. We also notice that GRHED combining multiple α values yields better
performances than GRHED using a single α value, which is probably due to the
richer information which is provided to HED convolutional layers.

The edge maps obtained by GR (with α = 2), GR (with α = 4), HED,
HED-log, GRHED (with α = 2) and GRHED (combining α = 2, 3, 4, 5) on
one speckled optical image can be found in Figure 15. For each method, the
threshold is chosen to be the one corresponding to the ODS F1, which gives
the best results in the 200 images. Specifically, the threshold used for each
method can be found in table 3. It should be noted that using the threshold
corresponding to the ODS F1, GRHED (combining α = 2, 3, 4, 5) will obtain
near-optimal edge maps in the simulated edge images as shown in Figure 12.
The ground truth of this image is the one provided by 1 labeler (there are
usually five labelers for each image in BSDS500). From Figure 15 we can see
that GRHED detects more true edge pixels than HED, and that both preserve
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Table 2: The performances of different methods over the 200 speckled optical images in
BSDS500-speckled.

methods ODS (F1) OIS (F1) AP

GR (α = 2) 0.5658 0.5852 0.5094

GR (α = 4) 0.5894 0.6151 0.5286

HED 0.6461 0.6671 0.6981

HED-log 0.6258 0.6466 0.6838

GRHED (α = 1) 0.6427 0.6523 0.6949

GRHED (α = 2) 0.6603 0.6762 0.7208

GRHED (α = 3) 0.6570 0.6783 0.7018

GRHED (α = 4) 0.6552 0.6729 0.7050

GRHED (α = 5) 0.6492 0.6687 0.6897

GRHED (α = 6) 0.6463 0.6660 0.6893

GRHED (α = 2, 3, 4, 5) 0.6643 0.6826 0.7109

GRHED (α = 1, 2, 3, 4, 5, 6) 0.6643 0.6832 0.7070

more true edge pixels while detecting less false detections than GR. Using HED
layers to postprocess the feature maps computed by GR, the GRHED is able to
strengthen true edge pixels and suppress false detections.

(a) speckled image (b) GT (c) HED (d) HED-log

(e) GRHED (α = 2) (f) GRHED (α = 2, 3, 4, 5) (g) GR (α = 2) (h) GR (α = 4)

Figure 15: Comparison of different edge detectors on 1-look speckled optical images.
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Table 3: The threshold corresponding to the ODS F1-score for each method.

methods HED HED-log GRHED GRHED GR GR
(α = 2) (α = 2, 3, 4, 5) (α = 2) (α = 4)

threshold 0.5666 0.5306 0.5686 0.5516 0.3137 0.2745(ODS F1)

4.3. Comparison of different methods in 1-look SAR images
Though the efficiency of GRHED has been demonstrated in both simulated

edge images and speckled optical images, demonstrating its ability to detect
edges in real SAR images is the most important point in practice.

4.3.1. Setting thresholds according to a given probability of false alarms
Usually, detection thresholds for SAR images are set according to a chosen

probability of false alarms (pfa). This is only possible when the detectors have
a constant false alarm rate (CFAR). Therefore, it is important to study whether
HED, HED-log and GRHED have CFAR for SAR images. The CFAR property
can be checked experimentally by ploting the histograms of their gradient mag-
nitude fields computed in noise images having different mean values. A method
is considered to have CFAR if the histograms of its gradient magnitude fields
computed in all images overlap well. We plot the histograms of the magnitude
fields produced by GR, HED, HED-log and GRHED in 160 1-look noise images
of size 1024 × 1024 pixels in Figure 16. The square root of the mean intensity
values (proportional to the amplitude) of these noise images can take the fol-
lowing 8 values: 50, 80, 120, 150, 180, 200, 230 and 250. For each possible mean
value, there are 20 random realizations. From Figure 16 we can see that GR
and GRHED both hold CFAR, but HED and HED-log do not.

Next, we set the detection thresholds according to a given pfa (envethough
HED and HED-log do not have CFAR for SAR images). The threshold cor-
responding to a given probability of false alarms for GR, HED, HED-log and
GRHED is estimated from 160 noise images as shown in table 4. Notice that
for different methods, we will use the testing threshold corresponding to the pfa
(10−5, fifth column in table 4).
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(c) HED-log (d) GRHED (α = 2, 3, 4, 5)

Figure 16: The histograms of the gradient magnitude fields produced by GR, HED, HED-
log and GRHED in 160 1-look pure noise images of size 1024 × 1024 pixels. There are 8
possibilities for the square root of the mean intensity values of these images, namely, 50, 80,
120, 150, 180, 200, 230 and 250. For noise images with each mean intensity value, there are
20 random realizations.

Table 4: The threshold corresponding to a given pfa for each method.

pfa 10−2 10−3 10−4 10−5 10−6

threshold (GR) 0.18 0.22 0.26 0.29 0.31

threshold (HED) 0.3 0.38 0.48 0.57 0.63

threshold (HED-log) 0.23 0.27 0.3 0.34 0.39

threshold (GRHED) 0.17 0.26 0.37 0.45 0.52

4.3.2. Comparison of different algorithms in synthetic realistic SAR images
It is usually difficult to annotate the edges in real SAR images due to very

strong multiplicative noise. In order to give a quantitative evaluation on the
performances of HED, HED-log, GRHED, and GR in images with targets sim-
ilar to those in real SAR images, we use the ground truth which is obtained by
applying HED-clean (HED trained on the grayscale images converted from clean
natural images in BSDS500) to a SAR image with very little speckle noise. This
SAR image with reduced speckle is obtained by averaging a large amount of well

22



(a) clean image

(b) GT

Figure 17: A denoised multi-look image (Leystad, Sentinel 1) and its ground truth. The size
of the image is 1024× 3072 pixels.

registered Sentinel-1 images (equivalent to temporal multi-looking). Although
not justified in changing areas, this temporal multi-looking allows a strong re-
duction of the speckle in stable ones like roads, urban areas, etc. To overcome
the varying residual noise, a final despeckling step is applied [38]. The image
is then converted to an 8-bits image using a clipping between [0, 255] with a
threshold given by the mean value of the image plus three times its standard
deviation. This image is a natural image, but contains targets similar to those in
real SAR images. The multi-temporal despeckled SAR image and its associated
ground truth can be found in Figure 17.

F1-score curves computed for GR, HED, HED-log and GRHED for the syn-
thetic realistic 1-look SAR image can be found in Figure 18, where the 1-look
SAR image is obtained by multiplying the clean SAR image with 1-look speckle
noise. What can be seen from Figure 18 is that the F1-score curve of GRHED
is above the F1-score curves of all the other methods. We observe also that
the performances of GRHED are relatively robust to the choice of theb thresh-
old. In addition, both HED and HED-log are shown to be more powerful than
GR to detect edges in complex situations. The edge maps obtained with the
threshold corresponding to pfa (10−5) for different methods (for GR, the thresh-
old is corresponding to pfa 10−3 in order to preserve more true edges) can be
found in Figure 19. From Figure 19 we can see that GRHED detects more true
edge pixels than the other methods and the F1-scores of GRHED is higher than
with other methods. In addition, HED also provides competitive edge detection
results. GR detects more false detections probably because of the threshold
chosen from a higher pfa, but it should be noted that the F1-score of GR is
close to its optimal value, according to Figure 18. The method HED-log yields
significantly more flase detection, probably as a result of not having CFAR. Due
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to the poor performances of HED-log, we do not use it for comparison in the
following.
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Figure 18: F1-score curves computed for GR, HED, HED-log and GRHED on a 1-look syn-
thetic SAR image of size 1024× 3072 pixels. The 1-look synthetic SAR image is obtained by
multiplying the clean SAR image in Fig. 17 with 1-look speckle noise.
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(a) 1-look image

(b) HED (F1-score 0.34)

(c) HED-log (F1-score 0.28)

(d) GRHED (F1-score 0.38)

(e) GR (F1-score 0.28)

Figure 19: Edge maps computed with a threshold corresponding to pfa (10−5) on a synthetic
realistic 1-look image (Leystad, Sentinel 1) for different methods. For GR, we use the threshold
corresponding to pfa (10−3), which is very close to the threshold corresponding to the best
F1-score.

4.3.3. Further comparisons on real SAR images
In this part, we test the efficiency of GRHED with two 1-look real SAR

images. We tested the efficiency of the state-of-art edge detectors AMDR [15] in

25



SAR images, but we found it not suitable for such complex and noisy situations
and did not investigate its performances further. We then compare HED and
GRHED with GR on a 1-look real SAR image (Lelystad, Sentinel 1) of size
1024 × 3072 pixels as shown in Figure 20. From Figure 20 we can see that
though GR is able to detect many true edges, but it is not able to provide a good
separation between true edge pixels and noise pixels. Therefore, there are also
many false detections in the edge maps produced by GR. In comparison, both
HED and GRHED detect many true edge pixels with clearly less false detections.
However, HED produces spurious detections in bright areas (probably because
of the lack of such zones in the training set). On the other hand, GRHED does
not suffer from a similar problem. On this experiment for GRHED, the number
of false detections is smaller and more evenly distributed, and edges appear to
be better connected.

We compare GR, HED, and GRHED in another 1-look real SAR image (San
Francisco, TerraSAR-X) of size 2048× 2048 pixels. The edge maps obtained by
these methods can be found in Figure 21. Again, the weakness of GR is that
it is not able to separate the true edge pixels and noise pixels efficiently. For
HED, since many homogeneous areas with high mean intensity values exist
in the image, and these kinds of areas do not exist in the training images, it
is difficult for HED to perform effective edge detection on them. Therefore,
the edge map outputed by HED has spurious detections in many bright areas.
In comparison, those bright areas do not cause troubles to GRHED because
the gradient distribution computed by GR will not be influenced by the mean
intensity values of homogeneous areas. What is more important, GRHED is
able to separate true edge pixels and false edge pixels efficiently.
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(a) 1-look image

(b) GR

(c) HED

(d) GRHED (α = 2, 3, 4, 5)

Figure 20: Comparison of different methods on a 1-look real SAR image (Leystad, Sentinel
1). The size of the image is 1024× 3072 pixels.
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(a) 1-look image (b) GR

(c) HED (d) GRHED (α = 2, 3, 4, 5)

Figure 21: Comparison of different methods on a 1-look real SAR image (San Francisco,
TerraSAR-X). The size of the image is 2048× 2048 pixels.

5. Conclusion

In this paper we addressed the challenging task of edge detection in 1-look
real SAR images. Leveraging the available optical dataset, we proposed a frame-
work enabling CNN models trained using simulated SAR dataset to work in
real SAR images. By introducing the fixed hand-crafted layer (GR) instead of
a learnable one, the proposed CNN edge detector GRHED is much less influ-
enced by the gap between speckled optical and real SAR images, which can
be seen from the comparison of HED and GRHED in 1-look real SAR images.
The hand-crafted layer defined by a ratio based gradient computation method
ensures that nearly all kinds of gradient distributions of real SAR images are
included in those of speckled optical images. A straightforward observation is
that nearly all the pixel values in the GR feature maps of real SAR images are
within the range of pixel values of the gradient feature maps computed in the
training dataset, where we assume that the range of pixel values depends on
the underlying distributions. However, it should be pointed out that edges with
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extremely high contrast may appear in real SAR images due to the bright homo-
geneous areas. The gradient distributions corresponding to these edges may not
be contained in those of the training dataset. In addition, introducing the hand-
crafted layer improves the performances of models composed of fully learnable
layers, as can be seen from the comparison of HED and GRHED in synthetic
edge images and 200 speckled optical images. From all the experiments we can
see that GRHED outperforms existing edge detectors a lot, especially in the
case of 1-look real SAR images.

Among the points that have not been addressed in this work and will be
addressed in further works, we can mention the followings. First, the spatial
correlation of the noise on real images has not been addressed and probably
leads to a decreasing of the CNN performances. The method of [39] could be an
interesting approach to take it into account. Secondly, the specific features of
SAR images like bright points and lines due to strong backscatterings of diedral
or triedral structures do not exactly correspond to edges. Therefore dedicated
detectors should be developed for these specific structures to be combined with
edge detectors.

Source code

The source code of GRHED is available at https://github.com/ChenguangTelecom/
GRHED.
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