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Training CNNs on speckled optical dataset for edge
detection in SAR images
Chenguang Liu, Florence Tupin and Yann Gousseau

Abstract—Edge detection in SAR images is a difficult task
due to the strong multiplicative noise inherent to this imaging
modality. Many researches have been dedicated to edge detection
in SAR images but very few try to address the most challenging
situations, namely edge detection in 1-look real SAR images. Mo-
tivated by the success of Convolutional Neural Networks (CNNs)
for the analysis of natural images, we study the applicability
of a classical CNN edge detector to SAR images, especially for
edge detection in 1-look real SAR images. One crucial factor
that contributes to the success of CNNs is a training dataset
with labeled ground truth. In order to avoid the tedious job
of annotating a large amount of SAR images, we simulate a
SAR dataset leveraging the optical dataset BSDS500 [1] to train
CNN models. Under the hypothesis that both optical and SAR
images can be divided into piecewise constant areas, the main
gap between simulated SAR images and real SAR images is that
the possibility of mean intensity values for homogeneous areas is
different. Therefore, we propose to train the CNN model on the
gradient magnitude fields of the SAR images. The motivation
behind this choice is that, provided a suitable definition of
the gradient for SAR images, the gradient magnitude fields
of homogeneous areas follow the same distribution regardless
of their mean intensity values and the gradient distribution
of two homogeneous areas across boundaries depends only on
the ratio of their mean intensity values. The proposed stategy
yields a detector with an approximately constant false alarm
rate (CFAR property). We propose to train a state-of-the-art
edge detector based on deep convolutional networks, namely
HED (Holistically-Nested Edge Detector) [2], [3], on a Ratio-
based Gradient operator (GR) on SAR images. The proposed
edge detector, GRHED, achieves excellent performances in all
our simulations including several 1-look synthetic edge images
with different edge contrasts, two hundred 1-look optical images
with synthetic noise, which are simulated from BSDS500, one
synthetic SAR image and two 1-look real SAR images. In all these
situations, the proposed edge detector outperforms concurrent
approaches.

Index Terms—edge detection, 1-look SAR image, speckled
optical dataset, CNNs, gradient distribution, GRHED

I. INTRODUCTION

Edges are important features in Synthetic Aperture Radar
(SAR) images. They can be used as low level features for
many applications like line segment detection [4], [5], SAR
image segmentation [6], [7], coastline detection [8], [9], image
registration [10], [11] and even SAR image despeckling [12].
Due to the strong multiplicative speckle noise in SAR images,
methods developed for optical images, which are usually
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based on pixel value differences, produce more false edges
in brighter areas and thus are not suitable for SAR images.
Many researches have been dedicated to edge detection in
SAR images in the past years. In [13], the Ratio of Average
(ROA) was proved to have a constant false alarm rate for SAR
images (CFAR property). The ratio operator is applied along
four directions and the minimum normalized ratio is used to
compute the gradient magnitude. The direction corresponding
to the minimum normalized ratio is regarded as the edge
orientation. A threshold determined by a given probability
of false alarm rate and a morphological operator are then
applied to obtain a binary thin edge map. However, ROA is
optimal only for isolated step edges. An efficient multiedge
detector, ROEWA, was proposed afterwards in [14]. The Ratio
of Exponentially Weighted Average was shown to be optimal
in terms of minimum mean square error (MMSE) under the
hypothesis of a stochastic multi-edge model. The method is
based on ROA, but averages are weighted by a decreasing
exponential function, allowing a better detection of multiple
edges close to each other. Besides, instead of computing the
ratio along four directions, the ratio is computed along the
horizontal and vertical directions and the normalized ratios
are considered as the horizontal and vertical components of
the gradient magnitude. A modified watershed algorithm is
then used to threshold the Edge Strength Map and a region
merging algorithm is used to eliminate the false edge pixels.
Edge detectors using different shape of window functions
were introduced later in [15] and [16]. Non-maxima suppres-
sion [17] and hysteresis thresholding are applied to obtain the
binary thin edge map. An edge compensation strategy was also
introduced in [16] to extract weak edge pixels. To reduce the
influence of isolated strong bright points in real SAR images,
an Anisotropic Morphological Directional Ratio (AMDR) [18]
was proposed by replacing the weighted average filter with
the weighted median filter. The edge localization accuracy
in the Edge Strength Map (ESM) and the Edge Direction
Map (EDM) was then improved by a multiplicative spatial
and directional matching filter. By introducing the improved
ESM and EDM into the routine of Canny edge detector [17],
the resulting edge detector is able to obtain a binary thin
edge map. The connectivity of edges is finally improved by
an edge remedy strategy. However, the performances of the
edge detectors developed for SAR images are still not fully
satisfying, especially in the very noisy 1-look situation.

On the other hand, convolutional neural networks (CNNs)
have proven to be very succesful for edge detection in natural
images, with approaches such as Deepedge [19], DeepCon-
tour [20], HED [2], [3], CEDN [21], AMH-Net [22] or
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RCF [23], [24], which have permitted to improve significantly
traditional edge detectors like Sobel [25], Canny [17], Statis-
tical Edge [26], Pb [27], gPb [1] and Structured Edge [28],
at least on databases similar to the training sets. Motivated by
this fact, we study the possibility to apply CNN-based methods
to SAR images. We will pay a special attention on developing
methods that are as CFAR as possible.

One crucial factor that contributes to the success of CNNs
is the availability of training datasets with ground truth. A
first difficulty for the present work is that, to the best of
our knowledge, there is still no available training dataset for
edge detection in SAR images. Considering that edges mostly
correspond to changes in local brightness and textures (and
color for color images), we assume that the problem of edge
detection should not rely much on the specific content of the
image. In this case, datasets of natural images used to train
CNN could be used to train a SAR edge detector, provided
images are modified using a reasonable noise model. On
this basis, we propose to simulate a SAR-like training set
by multiplying by speckle noise datasets of natural images.
The natural images multiplied by speckle are called speckled
optical images in the following.

Another difficulty in applying CNN-based method to SAR
images is their specific dynamic ranges. The range of values is
indeed much higher for SAR images than for natural images.
To cope with this problem and ease the training of the network,
we propose in this paper to apply a pre-processing step to the
SAR images by applying a first low-level edge detection step.
This step is done using the Gradient by Ratio (GR) proposed
in [29]. These pre-processed features are then given as input
to the network to be trained (HED [2], [3]). This strategy will
be called GRHED in the following.

This paper is organized as follows: in Section II we give
details about the original HED method and explain the building
of the speckled optical dataset. In section III, we describe our
gradient-based strategy and the proposed method, GRHED. In
section IV, we demonstrate the efficiency of GRHED with
experiments on several 1-look simulated edge images, 200
speckled optical images simulated from BSDS500 [1], one
1-look realistically simulated SAR image, and two 1-look real
SAR images.

II. ORIGINAL HED ALGORITHM AND TRAINING DATASET

A. Description of HED

The HED method, introduced in [2], [3], relies on a fully
convolutional network [30], [31], which is trained end-to-
end to perform image-to-image prediction. The network ar-
chitecture of HED is shown in table I. The HED network is
trimmed from the VGG-16 [32] net by discarding the last max-
pooling layer and the 3 fully connected layers. Motivated by
the deeply-supervised nets [33], five side outputs are added
to the convolutional layers just before the five max-pooling
layers in the original VGG-16 net. The loss function of the
HED network is composed of the loss function from the side
layers and the loss function from the fused output. The final
output of HED is an average of the side outputs and the fused
output. In-network bilinear interpolation [30], [31] is used to

TABLE I: The network architecture of HED

conv3-64
conv3-64 → side output 1

MAX-POOLING

conv3-128
conv3-128 → side output 2

MAX-POOLING

conv3-256
conv3-256
conv3-256 → side output 3

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 4

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 5

upsample the side outputs so that they all have the same size
as the edge ground truth.

B. Speckled optical dataset

Since the aim of this paper is to train CNNs for edge
detection in SAR images, the training dataset is of crucial
importance for the performances of the edge detector. In order
to avoid the tedious job of manual edge labeling, we leverage
the available optical dataset for edge detection in natural
images.

In order to simulate a SAR dataset, it is very important to
take into account the statistics of SAR images. SAR data repre-
sents a complex backscattered electro-magnetic field z whose
modulus |z| is the amplitude and the square of the modulus
|z|2 the intensity data. Due to the coherent imaging system,
SAR data present the well known speckle phenomenon. Fol-
lowing Goodman model [34] of fully developed speckle, it
can be shown that the amplitude of the backscattered electro-
magnetic field of a homogeneous area with mean intensity 〈I〉
follows a Nakagami distribution :

f(t|〈I〉) =
2

Γ(L)

(
L

〈I〉

)L

t2L−1e−(Lt2/〈I〉), (1)

L being the number of looks of the image. For images with
the best resolution, L = 1 and the amplitude of a physically
homogeneous area follows a Rayleigh distribution. Another
way of modeling 1-look data is the multiplicative model :
t =

√
〈I〉s, s representing the speckle noise and following

the Rayleigh distribution given in eq. (1) with 〈I〉 = 1 and
L = 1.

Using the multiplicative noise model it is therefore easy
to generate speckled data by multiplying an image by s.
Although not truly verified (for real data the speckle is
spatially correlated and the fully developed model of Goodman
is verified only for rough surfaces [34]), this model is widely
used to generate simulated data.

In this paper, we use the Berkeley Segmentation Data Set
500 (BSDS500) [1] with the same data augmentation as in
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HED [3] for training and validation, to simulate a SAR dataset.
Specifically, each image in the training and validation set
is rotated by 16 angles, flipped horizontally, and rescaled
to 50%, 100% and 150% of its original size. There is no
data augmentation for the testing set. The resulting speckled
optical dataset, which we will call BSDS500-speckled in the
following, is obtained by multiplying the grayscale intensity
channel of each color image with 1-look speckle noise. It
contains 300× 16× 2× 3 = 28800 images for training (80%)
and validation (20%) and 200 images for testing. After creating
a simulated dataset for training, the next question is how to
train HED using this dataset and how to enable the trained
model to be applied real SAR images. We will describe the
way to tackle the gap between the training and testing data in
the next section.

III. GRHED, AN EDGE DETECTOR ADAPTED TO SAR
IMAGES

Even though speckled optical images and real SAR images
are both contaminated by speckle noise, they still largely differ.
Specifically, the range of pixel values differs a lot between
natural images coded on 8-bits and thus having a maximum
value of 255 and real SAR data. Real SAR data are known
to have heavy-tailed distributions with very strong values
backscattered by trihedral configurations. Besides the range
of the data is between 0 and several thousands (for instance
between 0 and 37 000 for Sentinel-1 amplitude images).

In order to deal with the differences in the range of pixel
values between speckled optical images and real SAR images,
but also to ease the training of the network, we propose to train
HED on the gradient magnitude fields of the training images
and to apply the trained network to the gradient magnitude
fields of images at test time. The main reason for computing
the gradient is that the gradient distribution of speckled optical
images and SAR images are similar for the usual ratio based
gradient computation methods [13], [14], [29]. The interest
of this strategy will be discussed in the following and be
demonstrated in the experimental part, Section IV.

The gradient computation is achieved by the Gradient by
Ratio method [29] and the HED network is trained on the
gradient magnitude fields computed by GR. We therefore call
GRHED the resulting architecture. In the following we will
describe the details about the GR and the benefits of computing
GR.

A. Gradient by Ratio (GR)

For a given pixel located at position (x, y) in the image
u, the horizontal and vertical gradient components (GR) are
defined as [29]:

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).

where Rh(x, y) and Rv(x, y) are the ratio of exponentially
weighted average in the opposite side windows of pixel located

at (x, y), along the horizontal and vertical directions respec-
tively. In the horizontal direction, Rh(x, y) can be computed
as

Rh(x, y) =
mh

1 (x, y)

mh
2 (x, y)

,

where

mh
1 (x, y) =

W∑
x′=−W

W∑
y′=1

u(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2 (x, y) =

W∑
x′=−W

−1∑
y′=−W

u(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10)×α. The
quantity Rv(x, y) can be computed in a similar way.

The magnitude |GR(x, y)| and orientation ang(GR(x, y))
of GR at position (x, y) are defined as

|GR(x, y)| =
√
Gh(x, y)2 +Gv(x, y)2,

ang(GR(x, y)) = arctan
Gv(x, y)

Gh(x, y)
.

B. Interest of using GR to feed the network

An image, whatever optical or SAR, can be roughly divided
into two types of regions: homogeneous areas and boundaries
(boundaries exist between two homogeneous areas). If we
train HED directly on the images, the aim of training can
be summarized as follows: 1) HED should not produce edge
pixels in homogeneous areas; 2) HED should be able to
highlight the boundaries between any two homogeneous areas.
In this case, HED is trained to process samples drawn from
many different distributions and the way of HED to process
those samples depends on their corresponding distributions.
In 1-look SAR images, the amplitude of all homogeneous
areas follows a Rayleigh distribution depending on their mean
intensity values. Therefore, even for homogeneous areas, there
are many different distributions that HED has to learn to
process. For two homogeneous areas across boundaries, their
distribution depends on the mean intensity values of both ho-
mogeneous areas. Computing the ratio based gradient thus ease
the training process, reducing the number of situations to learn,
since for all homogeneous areas, their gradient magnitude
fields follow the same distribution, regardless of their mean
intensity values, and the gradient distribution computed over
two homogeneous areas across boundaries depends only on
the ratio of the mean intensity values. What’s more important,
The main gap between speckled optical images and real SAR
images is that SAR images may contain homogeneous areas
with very high mean intensity values. Since the gradient
distribution will not be influenced by the mean intensity
values of any homogeneous areas, feeding the gradient features
enables the network trained on speckled optical dataset to work
well in real SAR images. Besides, it ensures a CFAR property
for the network result since only CFAR features are given as
input.

In order to give a better explanation on the benefits of
computing GR, we compare the distribution of the data before
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(a) 1-look image (b) GT

Fig. 1: A 1-look synthetic image with ratio contrast 1.5 and
the associated ground truth. The size of the image is 512×512
pixels.
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(a) histograms of images (b) histograms of GR fields

Fig. 2: Histograms of the eight 1-look pure noise images and
histograms of their gradient magnitude fields computed by GR
with α = 4.

and after computing the gradient for both homogeneous areas
and two homogeneous areas across boundaries. We simulate
eight 1-look pure noise images of size 4096 × 4096 pixels
and eight 1-look synthetic images of size 512 × 512 pixels
with amplitude ratio contrast 1.5. The square root of the mean
intensity values of the homogeneous images (proportional to
an amplitude value) are 60, 90, 120, 150, 180, 210, 240 and
270. For two homogeneous areas across boundaries, the am-
plitude ratio is chosen as 1.5 for mean values (for the smallest
value along the edge) of 20, 50, 70, 90, 110, 130, 150, 200. One
example of the synthetic edge image can be found in Fig. 1-
(a).

The histograms of the eight 1-look pure noise images and
the histograms of their gradient magnitude fields computed by
GR with weighting parameter α = 4 can be found in Fig. 2.
The histograms of eight 1-look synthetic edge images as well
as the histograms of their gradient magnitude fields can be
found in Fig. 3. From Fig. 2 and Fig. 3 we can deduce that
the number of distributions that has to be learned by HED
when trained on the gradient magnitude fields is much smaller
than that of a direct training on the images. Since the amount
of data is unchanged, the amount of training data for each
distribution is therefore increased.

C. The resulting GRHED edge detection method

Since the gradient distribution of GR is the same for
homogeneous areas with all possible mean intensity values,
and the gradient distribution in two homogeneous areas across
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(a) histograms of images (b) histograms of GR fields

Fig. 3: Histograms of the eight 1-look synthetic edge images
and histograms of their gradient magnitude fields computed
by GR with α = 4.

boundaries is influenced by the ratio and not by their mean
intensity values, we assume that the possible distributions in
the gradient feature space of real SAR images are included in
those of the training dataset. Therefore, we propose to train
HED on the gradient magnitude field of GR. This can be seen
as the addition of a hand-crafted layer before the usual HED
layers. The resulting GRHED has the following advantages:
• the distribution of feature map values obtained by GR

depends only on the ratio of the mean intensity values
on the opposite side windows of each pixel (ratio being
1 for pixels located in homogeneous areas), therefore,
homogeneous areas with very high mean intensity values
in real SAR images will not impair the performances of
GRHED;

• constant false alarm rate (CFAR) is ensured for SAR
images because of the ratio operation;

• by using multiple weighting parameter α values in
GR [29] we can combine diverse informations from
the image by concatenating together gradient magnitude
fields produced by GR with different α values. It has
been studied in [35] that GR with different α values can
capture complementary informations.

IV. EXPERIMENTS

In this section we study the performances of the method we
propose, GRHED, using several 1-look synthetic edge images,
two hundred 1-look speckled optical images in BSDS500-
speckled, one 1-look realistically simulated SAR image and
two 1-look real SAR images. In order to show the efficiency
of GRHED, we compare it with the original HED algo-
rithm and to the result of training HED on the logarithm
of images, as defined below, an algorithm that we will cal
HED-log. Observe that for GRHED, HED and HED-log, the
convolutional layers that need to be trained are the same,
the difference between these method being the input of the
network: gradient magnitude fields of images for GRHED,
plain images for HED and logarithm of these for HED-log.
To take into account the distribution of the training set, the
SAR data are first normalized to have a similar distribution
as explained in section IV-A. The training strategy for those
convolutional layers is as follows: we use Adam optimizer to
train the nework from scratch on the speckled optical dataset
BSDS500-speckled. The number of iterations for training is
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10000 and the learning rate is 0.001. The size of the batch
is 10. The preprocessing step before feeding the data into the
learnable layers is global mean substraction, as done in VGG.
Since the outputs of all methods are probability edge maps,
they should be processed further to obtain the binary edge
maps. In order to obtain the binary edge map, we use the same
Non-maxima Suppression procedure as the one in Structured
Edge [28] and use a threshold to discard pixels with low values
in the probability edge map.

The following methods will be used in the comparison of
the next sections:

• GR with α = 4 (this choice of α = 4 being adapted to
GR in 1-look situations, as discussed in [35]). For the GR
magnitude field, we use the same postprocessing steps as
for the magnitude field produced by HED, HED-log and
GRHED;

• HED: HED is trained on the original speckled images
and tested on normalized images (see IV-A);

• HED-log: HED is trained on the logarithm of the images
in BSDS500-speckled, and is applied to the logarithm of
testing images after normalization (see IV-A);

• GRHED with multiple α values, α = 2, 3, 4, 5: HED is
trained on the gradient feature maps which are obtained
by concatenating the gradient magnitude fields produced
by GR with different α values.

A. Normalization of the SAR data

As already mentioned, speckled optical data have a much
narrower dynamic range than real SAR images. This is a
problem at test time if we want the method to be efficient
on real SAR images. We therefore need to define a strategy
to normalize images at test time, ensuring a relatively stable
dynamic range. In order to do so, for a given image (potentially
a real SAR image), we divide its amplitude values by the
square root of their mean intensity value, before multiplying
them by the square root of the mean intensity value of the
optical (training) dataset. Let 〈Iopt〉 be the mean intensity of
the global training set and 〈ISAR〉 the mean intensity value of
the SAR data, the normalization formula of the SAR amplitude
values u is the following :

û =
u.
√
〈Iopt〉√
〈ISAR〉

(2)

It is easy to check that the the mean value of û in intensity is
equal to 〈Iopt〉 and thus corresponds to the one of the training
distribution.

We use maximum likelihood estimator to estimate 〈Iopt〉,
while for 〈ISAR, to avoid being too much influenced by the
strong backscattered values in real SAR images (especially for
urban areas), we propose to use a robust estimate of 〈ISAR〉,
assuming a global Rayleigh distribution of the scene. Under
this hypothesis it can easily be shown that the link between
the mode of the distribution Am and the mean intensity is the
following:

〈ISAR〉 = 2A2
m.

In the following, for each test image, Am is computed to
estimate 〈ISAR〉 and the data are normalized using equation
(2).

B. Comparison in 1-look synthetic edge images
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Fig. 4: ROC curves computed from the magnitude field
produced by GR, HED, HED-log and GRHED in 1-look
simulated images with contrast 1.2, 1.3, 1.4 and 1.5. The size
of the images is 512× 512 pixels.

In order to give a fair comparison between the different
methods, we compare them in terms of ROC curves and F1-
score curves in 1-look synthetic edge images with different
ratio contrasts.

One example of the simulated 1-look edge images with
contrast 1.5 and the corresponding ground truth can be found
in Fig. 1. The ROC curves computed in the magnitude fields
produced by GR, HED, HED-log and GRHED in 1-look
simulated images with ratio contrast 1.2, 1.3, 1.4 and 1.5 can
be found in Fig. 4. It can be seen from Fig. 4 that GRHED
yields the best performances in all situations, especially in 1-
look and low contrast situations. The performances of GR and
HED appear comparable in terms of ROC curves, and both are
better than HED-log.

In order to give a clearer comparison between the different
methods, we apply the same Non-maxima suppression step
for all methods and vary the threshold from 0.0 to 0.9 with
step 0.01 for each method. The F1-score is computed for
each threshold and the corresponding F1-score curves for
each method in the 4 simulated edge images can be found
in Fig. 5. From Fig. 5 we can see that the F1-score curves of
GRHED are above the F1-score curves of the other methods.
In addition, flat areas of F1-score curves of GRHED indicate
greater stability regarding the threshold choice than with other
approaches. Although the best F1-scores that can be obtained
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Fig. 5: F1-score curves obtained by GR, HED, HED-log and
GRHED in synthetic edge images with ratio contrast 1.2, 1.3,
1.4 and 1.5. The F1-score curves are obtained by varying the
threshold from 0.0 to 0.9 with step 0.01.

by GR and HED are comparable, the performances of HED
are less sensitive to the choice of the threshold.

The optimal edge maps obtained by GR, HED, HED-log
and GRHED in those synthetic images with contrast 1.2 and
1.4 (using the threshold which gives the best F1-score) can be
found in Fig. 6 and Fig. 7. From Fig. 6 and Fig. 7 we can
see that the ability of GRHED to preserve true edge pixels
and suppress noise pixels is clearly greater on these images
than when using the other methods; the GRHED method
detects most true edge pixels while having the least number
of false detections. It should be noted that although these edge
maps are obtained using the optimal threshold, the edge maps
obtained by HED and GRHED will remain reasonable with
the threshold in a relatively large range, as can be deduced
from Fig. 5, especially for GRHED.

C. Comparison of different algorithms on the speckled optical
images in BSDS500-speckled

In order to give a more comprehensive comparison in more
general situations between different methods, we compare
GR, HED, HED-log and GRHED in the two hundred 1-
look speckled optical images in BSDS500-speckled. For GR,
we use α = 2 and α = 4. For GRHED, GRHED with a
single α value and GRHED combining multiple α values are
all provided. Three criterions are used to compare different
algorithms: ODS F1 (fixed contour threshold for 200 images),
OIS F1 (best threshold for each image), and average precision
(AP). The quantitative comparison can be found in table II.
From table II we can see that compared to GR, the CNN-based
methods give much higher values for all three criterions. In
addition, GRHED gives at least comparable or even better
performances than HED and HED-log in the 200 1-look
images, especially when combining multiple α values. We also
notice that GRHED combining multiple α values yields better

performances than GRHED using a single α value, which is
probably due to the richer information which is provided to
HED convolutional layers.

The edge maps obtained by GR (with α = 2), GR (with
α = 4), HED, HED-log, GRHED (with α = 2) and GRHED
(combining α = 2, 3, 4, 5) on one speckled optical image can
be found in Fig. 8. For each method, the threshold is chosen to
be the one corresponding to the ODS F1, which gives the best
results in the 200 images. Specifically, the threshold used for
each method can be found in table III. It should be noted that
using the threshold corresponding to the ODS F1, GRHED
(combining α = 2, 3, 4, 5) will obtain near-optimal edge maps
in the simulated edge images as shown in Fig. 5. The ground
truth of this image is the one provided by 1 labeler (there
are usually five labelers for each image in BSDS500). From
Fig. 8 we can see that GRHED detects slightly more true edge
pixels than HED, and that both preserve more true edge pixels
while detecting less false detections than GR. Using HED as a
postprocessing of GR field, the GRHED is able to strengthen
true edge pixels and suppress false detections.

TABLE II: The performances of different methods over the
200 speckled optical images in BSDS500-speckled.

methods ODS (F1) OIS (F1) AP

GR (α = 2) 0.5658 0.5852 0.5094

GR (α = 4) 0.5894 0.6151 0.5286

HED 0.6461 0.6671 0.6981

HED-log 0.6258 0.6466 0.6838

GRHED (α = 1) 0.6427 0.6523 0.6949

GRHED (α = 2) 0.6603 0.6762 0.7208

GRHED (α = 3) 0.6570 0.6783 0.7018

GRHED (α = 4) 0.6552 0.6729 0.7050

GRHED (α = 5) 0.6492 0.6687 0.6897

GRHED (α = 6) 0.6463 0.6660 0.6893

GRHED (α = 2, 3, 4, 5) 0.6643 0.6826 0.7109

GRHED (α = 1, 2, 3, 4, 5, 6) 0.6643 0.6832 0.7070

D. Comparison of different methods in 1-look SAR images

Though the efficiency of GRHED has been demonstrated
in both simulated edge images and speckled optical images,
demonstrating its ability to detect edges in real SAR images
is the most important point in practice.

1) Setting thresholds according to a given probability of
false alarm rate: Usually, detection thresholds for SAR im-
ages are set according to a chosen probability of false alarms
(pfa). This is only possible when the detectors have a constant
false alarm rate (CFAR). Therefore, it is important to study
whether HED, HED-log and GRHED have CFAR for SAR
images. The CFAR property can be checked experimentally
by ploting the histograms of their gradient magnitude fields
computed in noise images having different mean values. A
method is considered to have CFAR if the histograms of its
gradient magnitude fields computed in all images overlap well.
We plot the histograms of the magnitude fields produced by
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GR, contrast 1.2 HED, contrast 1.2 HED-log, contrast 1.2 GRHED, contrast 1.2

Fig. 6: Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look simulated edge images with contrast 1.2.
For each method, the chosen threshold gives the best F1-score in this image. The size of the images is 512× 512 pixels.

GR, contrast 1.4 HED, contrast 1.4 HED-log, contrast 1.4 GRHED, contrast 1.4

Fig. 7: Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look simulated edge images with contrast 1.4.
For each method, the chosen threshold gives the best F1-score in this image. The size of the images is 512× 512 pixels.

(a) speckled image (b) GT (c) HED (d) HED-log

(e) GRHED (α = 2) (f) GRHED (α = 2, 3, 4, 5) (g) GR (α = 2) (h) GR (α = 4)

Fig. 8: Comparison of different edge detectors on 1-look speckled optical images.

GR, HED, HED-log and GRHED in 160 1-look noise images
of size 1024 × 1024 pixels in Fig. 9. The square root of the
mean intensity values (proportional to the amplitude) of these
noise images can take the following 8 values: 50, 80, 120,
150, 180, 200, 230 and 250. For each possible mean value,
there are 20 random realizations. From Fig. 9 we can see that
GR and GRHED both hold CFAR, but HED and HED-log do
not.

Next, we set the detection thresholds according to a given
pfa (envethough HED and HED-log do not have CFAR
for SAR images). The threshold corresponding to a given
probability of false alarm rate for GR, HED, HED-log and

GRHED is estimated from 160 noise images as shown in
table IV. Notice that for different methods, we will use the
testing threshold corresponding to the pfa (10−5, fifth column
in table IV).

2) Comparison of different algorithms in synthetic realistic
SAR images: It is usually difficult to annotate the edges in
real SAR images due to very strong multiplicative noise. In
order to give a quantitative evaluation on the performances
of HED, HED-log, GRHED, and GR in images with targets
similar to those in real SAR images, we use the ground truth
which is obtained by applying HED-clean (HED trained on
the grayscale images converted from clean natural images in
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TABLE III: The threshold corresponding to the ODS F1-score for each method.

methods HED HED-log GRHED GRHED GR GR
(α = 2) (α = 2, 3, 4, 5) (α = 2) (α = 4)

threshold 0.5666 0.5306 0.5686 0.5516 0.3137 0.2745(ODS F1)
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(a) GR (α = 4) (b) HED (c) HED-log (d) GRHED (α = 2, 3, 4, 5)

Fig. 9: The histograms of the gradient magnitude fields produced by GR, HED, HED-log and GRHED in 160 1-look pure
noise images of size 1024 × 1024 pixels. There are 8 possibilities for the square root of the mean intensity values of these
images, namely, 50, 80, 120, 150, 180, 200, 230 and 250. For noise images with each mean intensity value, there are 20
random realizations.

(a) clean image

(b) GT

Fig. 10: A denoised multi-look image (Leystad, Sentinel 1) and its ground truth. The size of the image is 1024× 3072 pixels.

TABLE IV: The threshold corresponding to a given pfa for
each method.

pfa 10−2 10−3 10−4 10−5 10−6

threshold (GR) 0.18 0.22 0.26 0.29 0.31

threshold (HED) 0.3 0.38 0.48 0.57 0.63

threshold (HED-log) 0.23 0.27 0.3 0.34 0.39

threshold (GRHED) 0.17 0.26 0.37 0.45 0.52

BSDS500) to a SAR image with very little speckle noise. This
SAR image with reduced speckle is obtained by averaging a

large amount of well registered Sentinel-1 images (equivalent
to temporal multi-looking). Although not justified in changing
areas, this temporal multi-looking allows a strong reduction
of the speckle in stable ones like roads, urban areas, etc. To
overcome the varying residual noise, a final despeckling step is
applied [36]. The image is then converted to an 8-bits image
using a clipping between [0, 255] with a threshold given by
the mean value of the image plus three times its standard
deviation. This image is very similar to a natural image and
an "edge ground truth" is obtained by using HED-clean on it.
The multi-temporal despeckled SAR image and its associated
ground truth can be found in Fig. 10.

F1-score curves computed for GR, HED, HED-log and
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Fig. 11: F1-score curves computed for GR, HED, HED-
log and GRHED on a 1-look synthetic SAR image of size
1024 × 3072 pixels. The 1-look synthetic SAR image is
obtained by multiplying the clean SAR image in Fig. 10 with
1-look speckle noise.

GRHED for the synthetic realistic 1-look SAR image can be
found in Fig. 11, where the 1-look SAR image is obtained by
multiplying the clean SAR image with 1-look speckle noise.
What can be seen from Fig. 11 is that the F1-score curve of
GRHED is above the F1-score curves of all the other methods.
We observe also that the performances of GRHED are rela-
tively robust to the choice of theb threshold. In addition, both
HED and HED-log are shown to be more powerful than GR
to detect edges in complex situations. The edge maps obtained
with the threshold corresponding to pfa (10−5) for different
methods (for GR, the threshold is corresponding to pfa 10−3

in order to preserve more true edges) can be found in Fig. 12.
From Fig. 12 we can see that GRHED detects more true edge
pixels than the other methods and the F1-scores of GRHED
is higher than with other methods. In addition, HED also
provides very competitive edge detection results. GR detects
more false detections probably because of the threshold chosen
from a higher pfa, but it should be noted that the F1-score of
GR is very close to its optimal value, according to Fig. 11.
The method HED-log yields significantly more flase detection,
possible as a result of not having CFAR. Due to the poor
performances of HED-log, we do not use it for comparison in
the following.

3) Further comparisons on real SAR images: In this part,
we test the efficiency of GRHED with two 1-look real SAR
images. We first have tested the efficiency of the state-of-art
edge detectors AMDR [18] in SAR images, but we found it
not suitable for such complex and noisy situations and did
not investigate its behavior further. We then compare HED
and GRHED with GR on a 1-look real SAR image (Leystad,
Sentinel 1) of size 1024 × 3072 pixels as shown in Fig. 13.
From Fig. 13 we can see that though GR is able to detect
many true edges, it is not able to provide a good separation
between true edge pixels and noise pixels. Therefore, there
are also many false detections in the edge maps produced

by GR. In comparison, both HED and GRHED detect many
true edge pixels with clearly less false detections. However,
HED produces spurious detections in very bright areas (maybe
because of the lack of such zone in the training set). On the
other hand, GRHED does not suffer from a similar problem.
On this experiment for GRHED, the number of false detections
is smaller and more evenly distributed, and edges appear to
be better connected.

We compare GR, HED, and GRHED in another 1-look real
SAR image (San Francisco, TerraSAR-X) of size 2048×2048
pixels. The edge maps obtained by these methods can be
found in Fig. 14. Again, the weakness of GR is that it is
not able to separate the true edge pixels and noise pixels
efficiently. For HED, since many homogeneous areas with
very high mean intensity values exist in the image, and these
kinds of areas do not exist in the training images, it is
very difficult for HED to perform effective edge detection on
them. Therefore, the edge map outputed by HED has spurious
detections in many bright areas. In comparison, those very
bright areas do not cause troubles to GRHED because the
gradient distribution computed by GR in homogeneous areas
will not be influenced by their mean intensity values. What is
more important, GRHED is able to separate true edge pixels
and false edge pixels efficiently.

V. CONCLUSION

In this paper we addressed the challenging task of edge
detection in 1-look real SAR images. Leveraging the available
optical dataset, we proposed to develop a CNN-based edge
detector for SAR images by training the CNN models on
the gradient magnitude fields of speckled optical images. By
introducing the fixed hand-crafted layer (GR) instead of a
learnable one, the proposed CNN edge detector GRHED is
much less influenced by the differences in the range of pixel
values between speckled optical and real SAR images. GR
ensures that all kinds of gradient distributions of real SAR
images are very likely to be included in those of speckled
optical images, but it should be pointed out that there may
be some gradient distributions that do not exist in those of
the training dataset. For example, when some edges with
extremely high contrast appear in real SAR images, the ratio
between the mean intensity values of the homogeneous areas
on the opposite side of the edges is too high.

From all the experiments we can see that GRHED is able to
obtain stable and reliable detection results. This is especially
interesting in the case of one-look images.

Among the points that have not been addressed in this
work and will be addressed in further works, we can mention
the followings. First, the spatial correlation of the noise on
real images has not been addressed and probably leads to a
decreasing of the CNN performances. The method of [37]
could be an interesting approach to take it into account.
Secondly, the specific features of SAR images like bright
points and lines due to strong backscatterings of diedral
or triedral structures do not exactly correspond to edges.
Therefore dedicated detectors should be developed for these
specific structures to be combined with edge detectors.
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(a) 1-look image

(b) HED (F1-score 0.34)

(c) HED-log (F1-score 0.28)

(d) GRHED (F1-score 0.38)

(e) GR (F1-score 0.28)

Fig. 12: Edge maps computed with a threshold corresponding to pfa (10−5) on a synthetic realistic 1-look image (Leystad,
Sentinel 1) for different methods. For GR, we use the threshold corresponding to pfa (10−3), which is very close to the
threshold corresponding to the best F1-score.
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(a) 1-look image

(b) GR

(c) HED

(d) GRHED (α = 2, 3, 4, 5)

Fig. 13: Comparison of different methods on a 1-look real SAR image (Leystad, Sentinel 1). The size of the image is 1024×3072
pixels.
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