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Training CNNs on speckled optical dataset for edge
detection in SAR images

Chenguang Liu, Florence Tupin, Yann Gousseau and Rémy Abergel

Abstract—Edge detection in SAR images remains a difficult
task due to the strong multiplicative noise. Many researches have
been dedicated to edge detection in SAR images but very few
of them try to address the most challenging situation, namely
the edge detection in 1-look real SAR images. Motivated by the
success of Convolutional Neural Networks (CNNs) in natural
images, we study the applicability of the usual CNN edge detector
to SAR images, especially for edge detection in 1-look real SAR
images. One crucial factor that contributes to the success of CNNs
is the training dataset with labeled ground truth. Instead of doing
the tedious job of annotating plenty of SAR images, we simulate
a SAR dataset leveraging the optical dataset BSDS500 [1] to
train CNN models because edges are mainly corresponding to
changes in brightness and textures in grayscale images. In order
to cope with the differences in the range of pixel values between
SAR and optical images, we propose to train CNN models on the
gradient magnitude fields of images because the differences in the
gradient distribution between speckled optical images and real
SAR images are tiny and insignificant. In the gradient feature
space, the gradient magnitude fields of homogeneous areas follow
exactly the same distribution regardless of their mean intensity
values, and the distribution of gradient magnitude fields for two
homogeneous areas across boundaries depends only on the ratio
of their mean intensity values. The proposed CNN edge detector
GRHED achieves excellent performances in all our simulations
including several 1-look synthetic edge images with different
ratio contrasts, two hundred 1-look optical images, which are
simulated from BSDS500, one synthetic SAR image and two 1-
look real SAR images. In addition, it exceeds the existing edge
detectors in SAR images a lot.

Index Terms—edge detection, 1-look SAR image, speckled
optical dataset, CNNs, gradient distribution, GRHED

I. INTRODUCTION

Edges are very important features in Synthetic Aperture
Radar (SAR) images. The edge features can be used as
low level features for many applications like line segment
detection [2], [3], SAR image segmentation [4], [5], coastline
detection [6], [7], image registration [8], [9] and SAR image
despeckling [10]. Due to the strong multiplicative speckle
noise in SAR images, methods developed for optical images,
which are usually based on pixel value differences, produce
more false edges in brighter areas and thus are not suitable for
SAR images. Many researches have been dedicated to edge
detection in SAR images in the past years. In [11], the Ratio
of Average (ROA) was proved to have a constant false alarm
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rate for SAR images. The ratio operator was performed along
four directions and the minimum normalized ratio was used to
compute the gradient magnitude. The direction corresponding
to the minimum normalized ratio was regarded as the edge
orientation. A threshold determined by a given probability of
false alarm rate and the morphological operator were then
applied to obtain a binary thin edge map. However, ROA is
optimal only for isolated step edges. An efficient multiedge
detector ROEWA was proposed afterwards in [12]. The Ratio
of Exponentially Weighted Average was shown to be optimal
in terms of minimum mean square error (MMSE) under the
hypothesis of a stochastic multiedge model. The average was
weighted by a decreasing exponential function, allowing a
better detection of multiple edges close to each other. Besides,
instead of computing the ratio along four directions, the ratio
was computed along the horizontal and vertical directions and
the normalized ratios were considered as the horizontal and
vertical components of the gradient magnitude. The modified
watershed algorithm was then used to threshold the Edge
Strength Map and a region merging algorithm was used to
eliminate the false edge pixels. Edge detectors using different
shape of window functions were introduced later in [13]
and [14]. Non-maxima Suppression [15] and hysteresis thresh-
olding were then applied to obtain the binary thin edge map.
An edge compensation strategy was also introduced in [14] to
extract weak edge pixels. To reduce the influence of isolated
strong bright points in real SAR images, an Anisotropic
morphological directional ratio (AMDR) [16] was proposed by
replacing the weighted average filter with the weighted median
filter. The edge localization accuracy in the Edge Strength Map
(ESM) and the Edge Direction Map (EDM) was then improved
by a multiplicative spatial and directional matching filter. By
introducing the improved ESM and EDM into the routine of
Canny [15] edge detector, the resulting edge detector is able
to obtain a binary thin edge map. The connectivity of edges
is finally improved by an edge remedy strategy.

However, the performances of the edge detectors developed
for SAR images are still far from satisfying, especially in the
very noisy 1-look situation. Motivated by the success of the
convolutional neural networks (CNNs) for edge detection in
natural images, such as Deepedge [17], DeepContour [18],
HED [19], [20], CEDN [21], AMH-Net [22] and RCF [23],
[24], all of which achieve comparable or even better perfor-
mances than the traditional edge detectors like Sobel edge
detector [25], Canny [15], Statistical Edge [26], Pb [27],
gPb [1] and Structured Edge [28], we study the possibility
to apply CNN-based methods to SAR images.

One crucial factor that contributes to the success of CNNs
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is the training dataset with labeled ground truth, while there
is still no available training dataset for edge detection in SAR
images. Considering that the edges are mainly corresponding
to changes in local brightness and textures (and color for color
images), the problem of edge detection should rely little on
the targets of the images. In this case, the models trained
on the optical datasets should be applicable to SAR images.
Therefore, we simulate a SAR dataset by multiplying speckle
noise with the images in the optical dataset.

Even though the noise models are similar for speckled
optical images and real SAR images, the differences in the
range of pixel values between them can not be neglected.
In a real SAR image, the pixel values can go up to several
thousand or much larger, while for all the images in the
simulated SAR dataset, the maximum value is approximately
1000. Very large pixel values in real SAR images could
exist in homogeneous areas with high mean intensity values
(much larger than 255), or be corresponding to the bright
targets. Therefore, training CNNs directly on the images is
not feasible because the trained model does not learn the
way to process those pixels. To deal with this problem, we
propose to train CNNs on the gradient magnitude fields of the
images and apply the trained model to the gradient magnitude
fields of testing images. For the gradient computation methods
dedicated to SAR images, the usual ratio based methods [11],
[12], [29] have a constant false alarm rate (CFAR) for SAR
images, which implies that the gradient magnitude fields of
the homogeneous areas computed by the ratio based methods
follow the same distribution regardless of their mean intensiy
values. The gradient distribution for two homogeneous areas
across boundaries does not depend on their mean intensity
values, but only on the ratio of them. Therefore, unless some
highly contrasted edges exist in real SAR images, there is very
minor gap between the gradient magnitude fields of SAR and
those of speckled optical images. The gradient computation
is done by Gradient by Ratio (GR) [29], and the trainable
layers are identical to those in HED [19], [20]. The gradient
computation step aims at finding the changes in brightness,
and HED layers are responsible for strengthening true edge
pixels while suppressing the noise pixels. The proposed edge
detector is thus named as GRHED.

The structure of this paper is organized as follows: in
Section II, we will give the details about HED and the details
about the simulated speckled optical dataset. In section III,
we provide the justification for training HED on the gradi-
ent magnitude fields and describe the proposed GRHED. In
section IV, we demonstrate the efficiency of GRHED with
experiments in several 1-look synthetic edge images, 200
speckled optical images simulated from BSDS500 [1], one 1-
look synthetic SAR image, and two 1-look real SAR images.
Some conclusions are finally given in section V.

II. THE DETAILS OF HED AND THE TRAINING DATASET

A. The details of HED

HED is a fully convolutional network [30], [31] and thus
it can be trained end-to-end and perform image-to-image
prediction. The network architecture of HED is shown in

TABLE I: The network architecture of HED

conv3-64
conv3-64 → side output 1

MAX-POOLING

conv3-128
conv3-128 → side output 2

MAX-POOLING

conv3-256
conv3-256
conv3-256 → side output 3

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 4

MAX-POOLING

conv3-512
conv3-512
conv3-512 → side output 5

table I. HED network is trimmed from the VGG-16 [32] net by
discarding the last max-pooling layer and the 3 fully connected
layers. Motivated by the deeply-supervised nets [33], five side
outputs are added in the conv layers just before the five max-
pooling layers in the original VGG-16 net. These side outputs
and the fused output obtained from the fusion of them are
all supervised by the edge ground truth. The resulting loss
function of the HED net is composed of the loss from the side
layers and the loss from the fused outputs. The final output of
HED is an average of the side outputs and the fused output. In-
network bilinear interpolation [30], [31] is used to upsample
the side outputs so that all the side outputs have the same size
as the edge ground truth. The reason for upsampling is caused
by the subsampling of 2 after each max-pooling function.

B. Speckled optical dataset

Since the aim of this paper is to train CNNs for edge
detection in SAR images, the training dataset is of crucial
importance for the performances of the edge detector. Instead
of doing the tedious job of edge labeling, we leverage the
available optical dataset for edge detection in natural images
motivated by the fact that the edges are mainly corresponding
to the changes in brightness and textures so the task of edge
detection should not be influenced a lot by the image contents.

In order to simulate a SAR dataset, it is very important
to know the statistics of SAR images. Due to the coherent
imaging system, SAR data presents the well known speckle
phenomenon. Following Goodman model [34] of fully devel-
opped speckle, it can be shown that the amplitude of the
backscattered electro-magnetic field of a homogeneous area
with mean intensity 〈I〉 follows a Nakagami distribution :

f(t|〈I〉) =
2

Γ(L)

(
L

〈I〉

)L

t2L−1e−(Lt2/〈I〉), (1)

L being a system parameter. For images with the best reso-
lution, L = 1 and amplitude of a homogeneous area follows
a Rayleigh distribution. Another way of modeling the 1-look
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Fig. 1: The pdf of a 1-look speckle noise.

data is the multiplicative model : t =
√
〈I〉s, s representing

the speckle noise and following the Rayleigh distribution given
in eq. 1 with 〈I〉 = 1 and L = 1. Fig. 1 shows the distribution
of s.

Using the multiplicative model it is therefore very easy to
generate speckled data by multiplying an image by s. Although
not truly verified (for real data the speckle is correlated and the
fully developped model of Goodman is verified only for rough
surfaces), this model is widely used to generate simulated data.

In this paper, we use the Berkeley Segmentation Data Set
and Benchmarks 500 (BSDS500) [1] with the same data
augmentation as in HED [20] for training and validation,
to simulate a SAR dataset. Specifically, each image in the
training and validation set is rotated by 16 angles, flipped
horizontally, and rescaled to the 50%, 100%, 150% of its
original size. There is no data augmentation for the testing
images. The resulting speckled optical dataset, which we
will call BSDS500-speckled in the following, is formed by
multiplying the green channel of each image with 1-look
speckle noise. It contains 300 × 16 × 2 × 3 = 28800 images
for training (80%) and validation (20%) and 200 images for
testing. After creating a simulated dataset for training, the next
question is how to train HED using this dataset, especially
how to enable the trained model to work well in real SAR
images. We will describe the way to tackle the gap between
the training and testing data in the next section.

III. GRHED, INTRODUCING A HAND-CRAFTED LAYER
BEFORE THE TRADITIONAL CNNS

Even though speckled optical images and real SAR images
are both contaminated by the speckle noise, the gap between
them remains large. Specifically, the range of pixel values
differs a lot. The maximum pixel value in a natural image
is usually not larger than 255, which means that the mean
intensity value of any homogeneous areas in the training
dataset will not be larger than 2552, while in SAR images the
mean intensity values of some homogeneous areas could be
much larger. Many pixel values in a real SAR image could be
out of the range of pixel values in the speckled optical dataset.

These pixels could exist in homomgeneous areas with high
mean intensity values or be corresponding to bright targets.
Therefore, It is quite questionable to apply a model trained
directly on the speckled optical images to real SAR images.

In order to deal with the differences in the range of pixel
values between speckled optical images and real SAR images,
we propose to train HED on the gradient magnitude fields
of the training images and apply the trained model to the
gradient magnitude fields of testing images. The main reason
for computing the gradient is that the gradient distribution
of speckled optical images and SAR images are similar for
the usual ratio based gradient computation methods for SAR
images [11], [12], [29]. The gradient computation is done by
Gradient by Ratio [29] and we train HED on the gradient
magnitude fields computed by GR, therefore, the resulting
architecture is named as GRHED.

A. Gradient by Ratio (GR)

For a given pixel located at position (x, y) in the image
U , the horizontal and vertical gradient components (GR) are
defined as

Gh(x, y) = log(Rh(x, y)),

Gv(x, y) = log(Rv(x, y)).

where Rh(x, y) and Rv(x, y) is the ratio of exponentially
weighted average in the opposite side windows of pixel located
at (x, y), along the horizontal and vertical directions. In the
horizontal direction, Rh(x, y) can be computed as

Rh(x, y) =
mh

1 (x, y)

mh
2 (x, y)

,

where

mh
1 (x, y) =

W∑
x′=−W

W∑
y′=1

U(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

mh
2 (x, y) =

W∑
x′=−W

−1∑
y′=−W

U(x+ x′, y + y′)× e−
|x′|+|y′|

α ,

and where W is the upper integer part of log(10) × α.
Rv(x, y) can be computed in a similar way.

The magnitude |GR(x, y)| and orientation ang(GR(x, y))
of GR at position (x, y) are defined by

|GR(x, y)| =
√
Gh(x, y)2 +Gv(x, y)2,

ang(GR(x, y)) = arctan
Gv(x, y)

Gh(x, y)
.

B. Computing GR, fusing different distributions

An image, whatever optical or SAR, can be roughly di-
vided into two parts: homogeneous areas and boundaries
(boundaries exist between two homogeneous areas). If we
train HED directly on the images, the aim of training can
be summarized as follows: 1) HED should not produce edge
pixels in homogeneous areas; 2) HED should be able to
highlight the boundaries between any two homogeneous areas.
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(a) 1-look image (b) GT

Fig. 2: A 1-look edge image with ratio contrast 1.5 and the
associated ground truth. The size of the image are 512× 512
pixels.

In this case, HED is trained to process samples drawn from
many different distributions and the way of HED to process
those samples depends on their corresponding distributions.
In 1-look SAR images, the amplitude of all homogeneous
areas follows a Rayleigh distribution depending on their mean
intensity values. Therefore, even for homogeneous areas, there
are many different distributions that HED has to learn to
process. For two homogeneous areas across boundaries, the
total distribution of them depends on the mean intensity
values of both two homogeneous areas. The main gap between
speckled optical images and real SAR images is that SAR
images may contain homogeneous areas with very high mean
intensity values, the mean intensity values of which could be
much larger than the maximum possible one in the training
dataset. The models trained directly on the speckled optical
images do not learn the ability to suppress the pixels in those
areas, and they do not learn the way to highlight the edge
pixels between those areas and the other areas.

The usual ratio based gradient computation methods [11],
[12], [29] ensure a constant false alarm rate for SAR images,
which means that for all homogeneous areas, their gradi-
ent magnitude fields follow exactly the same distribution,
regardless of their mean intensity values. In addition, the
gradient distribution computed over two homogeneous areas
across boundaries depends only on the ratio of the mean
intensity values. Therefore, the distribution of the gradient
magnitude fields of speckled optical images and SAR images
should be similar except for the situation that some highly
contrasted edges exist in real SAR images but not in speckled
optical images. In order to give a better explanation about
this, we compare the distribution of the data before and after
computing the gradient for both homogeneous areas and two
homogeneous areas across boundaries, We simulate eight 1-
look pure noise images of size 4096× 4096 pixels and eight
1-look synthetic edge images of size 512 × 512 pixels with
amplitude ratio contrast 1.5. The mean intensity values of the
homogeneous areas are 602, 902, 1202, 1502, 1802, 2102, 2402

and 2702. For two homogeneous areas across boundaries, the
relationship between the square root of the mean intensity
values and amplitude ratio contrast is as follows: 20∗1.5

20 ,
50∗1.5

50 , 70∗1.570 , 90∗1.590 , 110∗1.5110 , 130∗1.5130 , 150∗1.5150 , 200∗1.5200 . One ex-
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Fig. 3: Histograms of the eight 1-look pure noise images and
histograms of their gradient magnitude fields computed by GR
with α = 4.
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Fig. 4: Histograms of the eight 1-look synthetic edge images
and histograms of their gradient magnitude fields computed
by GR with α = 4.

ample of the synthetic edge image can be found in Fig. 2-(a).
The histograms of the eight 1-look pure noise images and the
histograms of their gradient magnitude fields computed by GR
with weighting parameter α = 4 can be found in Fig. 3. The
histograms of eight 1-look synthetic edge images as well as the
histograms of their gradient magnitude fields can be found in
Fig. 4. From Fig. 3 and Fig. 4 we can deduce that the number
of distributions that has to be learned by HED when trained
on the gradient magnitude fields is much smaller than that of
a direct training on the images, Since the amount of data is
unchannged, the amount of training data for each distribution
becomes larger. What’s more important, the problem caused by
the homogeneous areas with very high mean intensity values
does not exist since the gradient distribution of these areas
is the same as those of homogeneous areas with small mean
intensity values. In addition, if a boundary exists between one
of these areas and another area, the total distribution depends
only on the ratio of their mean intensity values.

C. Justification of training on the gradient magnitude field
according to the observation in existing neural networks

1) Fully convolutional neural networks: The main contri-
butions of the paper introducing FCN [30], [31] lie mainly
on two points: 1) converting existing networks so that all the
layers in the network are convolutional layers, which makes
the network can be learned end to end, and can be applied to
images of any size; 2) adding the skip connection so that local
and global information are combined together to obtain pixel-
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wise precision segmentation. The local information obtained
from shallower layers has better location precision of the
object boundaries because less subsampling steps have been
done. The global information obtained from high level layers
is more semantically meaningful thanks to the increasing size
of receptive field so that they are able to take contextual
information into account. We can assume that the shallower
layers are mainly responsible for capturing the gradient infor-
mation, while the high level layers are trained on the gradient
information and learn to highlight, connect the edge pixels
while suppressing the false detections.

2) ResNet: One preconditioning in ResNet [35] is that the
input and output of a building block (2 or more conv layers) are
similar signals, They assume and prove that it is much easier to
learn the residual than to learn the unreferenced signal. That
is to say, the feature maps passing through residual blocks
carry similar information. The higher level layers are trained
on the feature maps similar to its output in order to enhance
its performance.

3) Deeply supervised nets, HED, and RCF: The deeply
supervised nets DSN [33] is motivated by the fact that a
classifier trained on highly discriminative features gives better
performances than a classifier trained on less discriminative
features. Therefore, the transparency of the hidden layer
feature maps can be a proxy for the performances of the
final classifier. By directly supervising the hidden layer feature
maps with the ground truth, the proposed DSN shows superior
performances than those without deep supervision. HED [19],
[20] leverages the advantages of deeply supervised nets and
enforces the feature maps in hidden layers for an accurate
prediction of the edges. RCF [23], [24] makes a stronger
supervision by supervising the output feature maps of all
hidden conv layers with the edge ground truth. Thus, the
feature maps of the hidden layers can be assumed to carry
the gradient information in the case of edge detection and
the high level layers are trained on the gradient feature maps
outputed by the low level layers.

D. GRHED: training HED on the gradient feature maps
produced by GR

Since the gradient distribution of GR is the same for
homogeneous areas with all possible mean intensity values,
and the gradient distribution in two homogeneous areas across
boundaries is influenced by the ratio and not by their mean
intensity values, we assume that the kinds of distributions in
the gradient feature space of real SAR images are included in
those of the training dataset. Therefore, we propose to train
HED on the gradient magnitude field of GR regarding the
gradient computation step as a hand-crafted layer before HED
layers. The resulting GRHED has the following advantages:
• the distribution of feature map values obtained by GR

depends only on the ratio of the mean intensity values
on the opposite side windows of each pixel (ratio being
1 for pixels located in homogeneous areas), therefore,
homogeneous areas with very high mean intensity values
will not cause trouble to GRHED;

• constant false alarm rate (CFAR) is ensured for SAR
images because of the ratio operation;

• by using multiple weighting parameter α values in
GR [29] we can combine diverse information from
the image by concatenating together gradient magnitude
fields produced by GR with different α values. It has
been studied in [36] that GR with different α values can
capture complementary information.

IV. EXPERIMENTS

In this section we are going to demonstrate the efficiency of
GRHED in several 1-look synthetic edge images, two hundred
1-look speckled optical images in BSDS500-speckled, one 1-
look synthetic SAR image and two 1-look real SAR images.
In order to show the efficiency of GRHED, we compare it with
HED (trained directly on the images so we call HED directly)
and HED-log (trained on the logarithm of the images). Taking
logarithm of the images can change multiplicative noise into
additive noise and it is a usual way to deal with multiplicative
noise in SAR images. For GRHED, HED and HED-log, the
conv layers that need to be trained are the same, the difference
is just the kind of input data. For GRHED, the gradient
magnitude fields of images are the input. For HED, the input
are the images themselves and for HED-log the input are
the logarithm of images. The training strategy for those conv
layers is as follows: we use Adam optimizer to train the conv
layers from scratch on the speckled optical dataset BSDS500-
speckled. The number of iterations for training is 10000 and
the learning rate is 0.001. The size of the batch is 10. The
preprocessing step before feeding the data into the learnable
layers is global mean substraction, as done in VGG. Since the
outputs of all methods are probability edge maps, they should
be processed further to obtain the binary edge maps. In order
to obtain the binary edge map, we use the same Non-maxima
Suppression as the one in Structured Edge [28] and use a
threshold to discard pixels with low values in the probability
edge map.

A. Comparison in 1-look synthetic edge images

In order to give a fair comparison of different methods, we
compare the following methods in terms of ROC curves and
F1-score curves in 1-look synthetic edge images with different
ratio contrasts:
• GR with α = 4: The reason using α = 4 is that it

seems to be a good choice for GR in 1-look situations
as discussed in [36]. For the GR magnitude field, we
use the same postprocessing steps as the magnitude field
produced by HED, HED-log and GRHED;

• HED: HED is trained on the images and tested on the
images;

• HED-log: HED is trained on the logarithm of the images
in BSDS500-speckled, and is applied to the logarithm of
testing images;

• GRHED with multiple α values, α = 2, 3, 4, 5: HED is
trained on the gradient feature maps which are constituted
by concatenating the gradient magnitude fields produced
by GR with different α values.

One example of the simulated 1-look edge images with
contrast 1.5 and the corresponding ground truth can be found
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Fig. 5: ROC curves computed in the magnitude field produced
by GR, HED, HED-log and GRHED in 1-look simulated
images with contrast 1.2, 1.3, 1.4 and 1.5. The size of the
images are 512× 512 pixels.
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Fig. 6: F1-score curves obtained by GR, HED, HED-log and
GRHED in synthetic edge images with ratio contrast 1.2, 1.3,
1.4 and 1.5. The F1-score curves are obtained by varying the
threshold from 0.0 to 0.9 with step 0.01.

in Fig. 2. The ROC curves computed in the magnitude fields
produced by GR, HED, HED-log and GRHED in 1-look
simulated images with ratio contrast 1.2, 1.3, 1.4 and 1.5 can
be found in Fig. 5. It can be seen from Fig. 5 that GRHED
shows the best performances in all situations, especially in 1-
look and low contrast situation. The performances of GR and
HED appears comparable in terms of ROC curves, and both

are better than HED-log.
In order to give a more clear comparison of different

methods, we apply the same Non-maxima suppression step
for all methods and vary the threshold from 0.0 to 0.9 with
step 0.01 for each method. The F1-score is computed for
each threshold and the corresponding F1-score curves for each
method in the 4 simulated edge images can be found in Fig. 6.
From Fig. 6 we can see that the F1-score curves of GRHED
are above the F1-score curves of all the other methods. In
addition, the large flat areas of F1-score curves of GRHED
show that the performances of GRHED are very insensitive
to the chosen threshold. In addition, it should also be pointed
out that although the best F1-scores that can be obtained by
GR and HED seem comparable, the performances of HED are
less sensitive to the choice of threshold.

The optimal edge maps obtained by GR, HED, HED-log
and GRHED in those simulated edges with contrast 1.2 and
1.4 using the threshold which gives the best F1-score can be
found in Fig. 7 and Fig. 8. From Fig. 7 and Fig. 8 we can
see that the ability of GRHED to preserve true edge pixels
and suppress noise pixels are much more powerful than all
the other methods. GRHED detects the most true edge pixels
while detecting the least number of false detections. It should
be noted that although these edge maps are obtained using
the optimal threshold, the edge maps obtained by HED and
GRHED will remain to be reasonable with the threshold in a
relatively large range as can be deduced from Fig. 6, especially
for GRHED.

B. Comparison of different algorithms on the speckled optical
images in BSDS500-speckled

In order to give a more comprehensive comparison in more
general situations between different methods, we compare
GR, HED, HED-log and GRHED in the two hundred 1-look
speckled optical images in BSDS500-speckled. For GR, we
use α = 2 and α = 4 to show its performance. For GRHED,
GRHED with a single α value and GRHED combining mul-
tiple α values are all provided to give a clearer demonstration
of the efficiency for choosing the combination of α values.
Three criterions are used to compare different algorithms: ODS
F1 (fixed contour threshold for 200 images), OIS F1 (best
threshold for each image), and average precision (AP). The
quantitative comparison can be found in table II. From table II
we can see that compared to GR, the CNN-based methods give
much higher values in all three criterions. In addition, GRHED
gives at least comparable or even better performances than
HED and HED-log in the 200 1-look images, especially in the
case of combining multiple α values of GR. It should also be
noted that, GRHED combining multiple α values give better
performances than GRHED using a single α value, which is
probably due to the richer information which is provided to
HED conv layers.

The edge maps obtained by GR (α = 2), GR (α = 4), HED,
HED-log, GRHED (α = 2) and GRHED (α = 2, 3, 4, 5) on
one speckled optical image can be found in Fig. 9. For each
method, the threshold is chosen to be the one corresponding
to the ODS F1, which gives the best results in the 200
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GR, contrast 1.2 HED, contrast 1.2 HED-log, contrast 1.2 GRHED, contrast 1.2

Fig. 7: Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look simulated edge images with contrast 1.2.
For each method, the chosen threshold gives the best F1-score in this image. The size of the images are 512× 512 pixels.

GR, contrast 1.4 HED, contrast 1.4 HED-log, contrast 1.4 GRHED, contrast 1.4

Fig. 8: Optimal edge maps obtained by GR, HED, HED-log and GRHED in 1-look simulated edge images with contrast 1.4.
For each method, the chosen threshold gives the best F1-score in this image. The size of the images are 512× 512 pixels.

images. Specifically, the threshold used for each method can
be found in table III. It should be noted that using the threshold
corresponding to the ODS F1, GRHED (α = 2, 3, 4, 5) will
obtain near-optimal edge maps in the simulated edge images
as shown in Fig. 6. The ground truth of this images is the one
provided by 1 labeler (there are usually five labelers for each
image in BSDS500). From Fig. 9 we can see that GRHED
detects a bit more true edge pixels than HED, and both of
them preserve more true edge pixels while detecting less false
detections. What can also be concluded from the figure is that
a direct processing of the GR magnitude field can not obtain
satisfying results. Using HED as a postprocessing of GR field,
the GRHED is able to strengthen the true edge pixels and
suppress the false detections.

C. Comparison of different methods in 1-look SAR images

Though the efficiency of GRHED has been demonstrated
in both simulated edge images and speckled optical images,
demonstrating its ability to detect edges in SAR images is the
most important point in practice.

1) Setting threshold according to a given probability of
false alarm rate: For the gradient computation method ded-
icated to SAR images, only if it has a constant false alarm
Rate (CFAR), it is possible to set the threshold according to
a chosen probability of false alarm rate (pfa). Therefore, it is
important to study whether HED, HED-log and GRHED have

TABLE II: The performances of different methods in the 200
speckled optical images in BSDS500-speckled.

methods ODS (F1) OIS (F1) AP

GR (α = 2) 0.5658 0.5852 0.5094

GR (α = 4) 0.5894 0.6151 0.5286

HED 0.6461 0.6671 0.6981

HED-log 0.6258 0.6466 0.6838

GRHED (α = 1) 0.6427 0.6523 0.6949

GRHED (α = 2) 0.6603 0.6762 0.7208

GRHED (α = 3) 0.6570 0.6783 0.7018

GRHED (α = 4) 0.6552 0.6729 0.7050

GRHED (α = 5) 0.6492 0.6687 0.6897

GRHED (α = 6) 0.6463 0.6660 0.6893

GRHED (α = 2, 3, 4, 5) 0.6643 0.6826 0.7109

GRHED (α = 1, 2, 3, 4, 5, 6) 0.6643 0.6832 0.7070

CFAR for SAR images. The CFAR property of these methods
can be checked experimentally by ploting the histograms of
their gradient magnitude fields computed in pure noise images
(hommogeneous areas with different mean intensity values).
A method is considered to have CFAR if the histograms of
its gradient magnitude fields computed in all images overlap
well. We plot the histograms of the magnitude fields produced
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(a) speckled image (b) GT (c) HED (d) HED-log

(e) GRHED (α = 2) (f) GRHED (α = 2, 3, 4, 5) (g) GR (α = 2) (h) GR (α = 4)

Fig. 9: Comparison of different edge detectors on a 1-look speckled optical images.

TABLE III: The threshold corresponding to the ODS F1-score for each method.

methods HED HED-log GRHED GRHED GR GR
(α = 2) (α = 2, 3, 4, 5) (α = 2) (α = 4)

threshold 0.5666 0.5306 0.5686 0.5516 0.3137 0.2745(ODS F1)
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Fig. 10: The histograms of the gradient magnitude fields produced by GR, HED, HED-log and GRHED in 160 1-look pure
noise images of size 1024× 1024 pixels. There are 8 possibilities for the mean intensity values of these images, namely, 502,
802, 1202, 1502, 1802, 2002, 2302 and 2502. For noise images with each mean intensity value, there are 20 random realizations.

by GR, HED, HED-log and GRHED in 160 1-look pure
noise images of size 1024 × 1024 pixels in Fig. 10. The
mean intensity values of these pure noise images have eight
possibilities, 502, 802, 1202, 1502, 1802, 2002, 2302 and 2502.
For pure noise images with a certain mean intensity value,
there are 20 random realizations. From Fig. 10 we can see
that GR and GRHED both hold CFAR, but HED and HED-
log do not.

Even though HED and HED-log do not have CFAR for SAR
images, we still assume they have CFAR since we desire to set
the threshold from a given pfa. The threshold corresponding
to a given probability of false alarm rate for GR, HED, HED-
log and GRHED is estimated from 160 pure noise images as
shown in table IV. Notice that for different methods, we will
use the testing threshold corresponding to the pfa (10−5, fifth
column in table IV).

2) Comparison of different algorithms in synthetic SAR
images: It is usually difficult to annotate the edges in real

TABLE IV: The threshold corresponding to a given pfa for
each method.

pfa 10−2 10−3 10−4 10−5 10−6

threshold (GR) 0.18 0.22 0.26 0.29 0.31

threshold (HED) 0.3 0.38 0.48 0.57 0.63

threshold (HED-log) 0.23 0.27 0.3 0.34 0.39

threshold (GRHED) 0.17 0.26 0.37 0.45 0.52

SAR images due to very strong multiplicative noise. In order
to give a quantitative evaluation on the performances of HED,
HED-log, GRHED, and GR in images with targets similar
to those in real SAR images, we obtain a ’ground truth’ by
applying HED-clean (HED trained on the green channel of
clean natural images in BSDS500) to a clean SAR image. The
clean SAR image is obtained by clipping the denoised multi-
look real SAR images (Leystad, Sentinel 1) with the value of
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(a) clean image

(b) GT

Fig. 11: The denoised multi-look image (Leystad, Sentinel 1) and its ground truth. The size of the image are 1024 × 3072
pixels.

its mean value plus three times of its standard deviation and
then changing the range of the clipped images to be [0, 255].
The clean SAR image with its associated ground truth can be
found in Fig. 11.

F1-score curves computed for GR, HED, HED-log and
GRHED in the synthetic 1-look SAR image can be found in
Fig. 12, where 1-look SAR image is obtained by multiplying
the clean SAR image with 1-look speckle noise. What can
be seen from Fig. 12 is that the F1-score curve of GRHED
is above the F1-score curves of all the other methods and
the performances of GRHED is not sensitive to the choice of
threshold. In addition, both HED and HED-log are shown to be
more powerful than GR to detect edges in complex situations.
The edge maps obtained with the threshold corresponding to
pfa (10−5) for different methods (for GR, the threshold is cor-
responding to pfa 10−3 in order to preserve more true edges)
can be found in Fig. 13. From Fig. 13 we can see that GRHED
detects more true edge pixels than the other methods and the
F1-scores of GRHED is higher than all the other methods. In
addition, HED also provides very competitive edge detection
results. GR detects more false detections probably because of
the threshold chosen from a higher pfa, but it should be noted
that the F1-score of GR is very close to the optimal one for
GR according to Fig. 12. There are too many false detections
for HED-log, this could probably be because HED-log is too
far from CFAR, the strategy to choose threshold is not suitable
for it. Due to the poor performances of HED-log, we do not
compare with it in the following.

3) Comparison of different algorithms in two 1-look real
SAR images using testing threshold corresponding to pfa
(10−5): In this part, we test the efficiency of GRHED in
two 1-look real SAR images. We first compare HED and
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Fig. 12: F1-score curves computed for GR, HED, HED-
log and GRHED in a 1-look synthetic SAR image of size
1024 × 3072 pixels. The 1-look synthetic SAR image is
obtained by multiplying the clean SAR image in Fig. 11 with
1-look speckle noise.

GRHED with the state-of-art edge detectors AMDR [16] and
GR in a 1-look real SAR image (Leystad, Sentinel 1) of size
1024×3072 pixels as shown in Fig. 14. From Fig. 14 we can
see that AMDR detects too many false detections and thus is
not usable in such noisy situations (1-look). We do not provide
more experiments with it. Though GR is able to detect many
true edges, it is not able to provide a good separation between
true edge pixels and noise pixels. Therefore, there are also
many false detections in the edge maps produced using GR.
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(a) 1-look image

(b) HED (F1-score 0.34)

(c) HED-log (F1-score 0.28)

(d) GRHED (F1-score 0.38)

(e) GR (F1-score 0.28)

Fig. 13: edge maps computed with a threshold corresponding to pfa (10−5) in a synthetic 1-look image (Leystad, Sentinel
1) for different methods. For GR, we use the threshold corresponding to pfa (10−3), which is very close to the threshold
corresponding to the best F1-score.
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In comparison, both HED and GRHED detect many true edge
pixels while the number of false detections seems reasonable.
However, HED provides strange results in some areas, this
could be probably because the distributions of these areas are
not included in those of the training dataset, HED does not
learn the way to process them. Compared to HED, GRHED
does not suffer from a similar problem. The detections of
GRHED in all areas seem reasonable, the number of false
detections is very small, and it detects many true edges. In
addition, the connectivity of edges detected by GRHED is
better than that of HED.

We compare GR, HED, and GRHED in another 1-look real
SAR image (San Francisco, TerraSAR-X) of size 2048×2048
pixels. The edge maps obtained by these methods can be found
in Fig. 15. Again, the weakness of GR is that it is not able to
separate the true edge pixels and noise pixels efficiently. For
HED, since many homogeneous areas with very high mean
intensity values exist in the image, and these kinds of areas do
not exist in the training images, it is very difficult for HED to
perform effective edge detection on them. Therefore, the edge
map outputed by HED has strange detections in many areas.
In comparison, those very bright areas do not cause troubles
to GRHED because the gradient distribution computed by GR
in homogeneous areas will not be influenced by their mean
intensity values. What’s more important, GRHED is able to
separate true edge pixels and false edge pixels efficiently.

V. CONCLUSION

In this paper we address the challenging task of edge
detection in 1-look real SAR images. Leveraging the available
optical dataset, we propose to develop a CNN-based edge
detector for SAR images by training the CNN models on
the gradient magnitude fields of speckled optical images. By
introducing the fixed hand-crafted layer (GR) instead of a
learnable one, the proposed CNN edge detector GRHED is
much less influenced by the differences in the range of pixel
values between speckled optical and real SAR images. GR
ensures that all kinds of gradient distributions of real SAR
images are very likely to be included in those of speckled
optical images, but it should be pointed out that there may
be some gradient distributions that do not exist in those
of training dataset. For example, when some edges with
extremely high contrast appear in real SAR images, the ratio
between the mean intensity values of the homogeneous areas
on the opposite side of the edges is too high. We ignore this
kind of situations because: first, in homogeneous areas with
very high mean intensity values, the probability of false alarm
rate is controlled; second, highly contrasted edges could also
exist in speckled optical images because the ratio between
two values drawn from [0, 255] could also be very large, so
the occurrences of extremely high-cotrasted edges (higher than
those in speckled optical images) should be rare; third, even
when this kind of edges occurs, the number of false detections
is very small compared to the total number of detections and
thus it is insignificant (the width of this kind of areas will not
be larger than 25 pixels when the maximum value of α used
in GR is not larger than 5, the length of the area depends on

the length of the edges). From all the experiments we can see
that GRHED is able to obtain stable and reliable results in
all situations. In addition, introducing the hand-crafted layer
GR enables GRHED trained on the speckled optical images
to work well in real SAR images. Furthermore, to the best of
our knowledge, this is the first edge detector that can achieve
reasonable results in very noisy and very complex scenes, and
it exceeds the existing edge detectors a lot.
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