
HAL Id: hal-02424297
https://hal.science/hal-02424297

Submitted on 27 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Normal form based analytical investigation of nonlinear
power system dynamics under excitation

Tian Tian, Xavier Kestelyn, Olivier Thomas

To cite this version:
Tian Tian, Xavier Kestelyn, Olivier Thomas. Normal form based analytical investigation of nonlinear
power system dynamics under excitation. 2017 IEEE Power & Energy Society General Meeting
(PESGM), Jul 2017, Chicago, United States. pp.1-5, �10.1109/PESGM.2017.8273920�. �hal-02424297�

https://hal.science/hal-02424297
https://hal.archives-ouvertes.fr


Normal Form based Analytical Investigation of
Nonlinear Power System Dynamics under Excitation

Tian TIAN, Xavier KESTELYN
Univ. Lille, Centrale Lille, Arts et Metiers Paris Tech, HEI,

EA 2697 - L2EP

Laboratoire d’Electrotechnique et d’Electronique de Puissance

F-59000 Lille, France

Olivier THOMAS
Arts et Metiers ParisTech

LSIS UMR CNRS 7296

Laboratoire des Sciences de l’Information

et des Systemes

8 bd. Louis XIV 59000 Lille, France

Abstract—The increase of power exchanges through long lines
makes power systems exhibiting predominant nonlinear inter-
area or local oscillations, for which the conventional linear
analysis fails to offer an accurate picture. Existing 2nd Order and
3rd Order Normal Form methods make possible to do analytical
investigations of the nonlinear interactions by including higher-
order terms. However, those methods can only study the power
system dynamics under free oscillations, usually used to study
the effect of disturbances apply to the state variables, e.g the
post-fault cases. When the system is subject to excitation, as
variable power references or variable loads, there is no available
Normal Form method in the literature making possible to study
the higher-order oscillations. In this paper, for the first time to the
author’s knowledge, a methodology based on the Normal Form
theory is proposed to give an analytical description of power
system nonlinear dynamic response of excited power systems. The
proposed method makes possible to simplify the initial problem
by decomposing the complex power system dynamics into a set
of simpler normal dynamics. The proposed analytical normal
dynamics are validated using time-domain simulations and open
the way to new analyzing tools for power grids.

I. INTRODUCTION

A. Oscillations in Interconnected Power Systems

Nowadays power systems are composed of a collection of

interconnected subsystems working in collaboration to supply

a common load, such as groups of generators [1] or intercon-

nected Voltage Sources Converters working in parallel [2]–[4].

One of the most important issue in large-scale interconnected

power systems under stress is the oscillations in the power

system dynamics [5]. As the oscillations are essentially caused

by the modal interactions between the system components,

they are called Modal Oscillations. The complexity of an-

alyzing such oscillations comes from the strong coupling

between the components of the system. Understanding of the

essence of such oscillations is necessary to help stabilizing

and controlling power systems.

In this sense, analytical analysis tools are developed for:

1) Dynamic performance analysis: suggesting an approxi-

mate analytical solution;

2) Modal structural analysis: how the system components

interact with each other;

3) Stability analysis.

B. Various Analysis Tools

Among all the analytical methods, linear analysis or lin-

earizing analysis is the most conventional analysis tool, such as

small-signal analysis [1] and linear modal analysis [6]. These

methods are based on the linearization of the inherently non-

linear power system around the operating point by including

only the first-order terms of its Taylor’s series expansion.

The eigen-analysis is made to obtain analytical results for the

system dynamic performance and to know about the system

stability. Besides, modal analysis (based on the eigenvectors)

provides an insight of the modal structure of a power system

demonstrating how the components of the power system

interact with each other. Based on the modal analysis, power

system stabilizers can be located in the right place to stabilizer

the whole system [1] ensuring then its small-signal stability.

The nonlinearity of oscillations increases in case of stressed

tie line flow between large areas [7]. Later researches sug-

gested that in certain cases, linear analysis techniques might

not provide an accurate picture of the power system modal

characteristics. From 1996 to 2005, numerous papers [8]–

[15] have published advocating the Normal Form (NF) as

an efficient way for studying higher order modal interactions

by inclusion of 2nd order terms [7]. The applications are

well developed, such as for example the optimal placement

of stabilizers [16].

The increasing number of renewable-energy-based-

generators, leading to unbalanced energy generation and

presence of weak grids, associated to fast control devices [2],

increases the nonlinear behavior of the system leading to the

necessity of including 3rd order terms in the modal analysis.

Several explorations [3], [4], [17], [18] have been done, but

their applications haven’t been fully developed. Among them,

methods [3], [4] are advancements of a method validated by

physical experiments in beam structure analysis [19]–[21].

A method between the 2nd order and 3rd order NF analysis

is proposed to suggest stability bounds [22] when the linear

analysis fails to accurately identify them.

C. Problematic

Nonlinear analysis can replace the linear analysis as it

does a better job in all the three issues: describing dynamic
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response, modal interaction and stability analysis. However,

the existing nonlinear analysis tools only deal with the case

of free oscillations (e.g the post-fault case after the fault is

cleared), and not with excited systems ( i.e the oscillations

caused by variable power references or variable loads). This

largely limits the scope of the NF analysis. This is a big

disadvantage compared to the linear analysis, which can deal

with the case when there are changes in the input (voltage

reference, power reference, load, etc) as well as when there

are no excitation (free oscillations).

D. Originality

In this paper, a method is introduced to study the power

system nonlinear forced oscillations. To the author’s knowl-

edge, it is for the first time that an analytical analysis tool

based on NF theory is proposed to analyze the nonlinear power

system dynamic under excitation. This enlarges the scope of

NF analysis. Moreover, all the benefits provided by second

order based NF and linear analysis can be inherited.

This paper is organized as follows. In Section II, the NF

theory is introduced and the general procedures are outlined.

Based on this, the previous analysis tools are summarized and

compared. In section III, the proposed method, based on NF

theory, is outlined and the methodology is introduced. The

case study and the obtained results are shown in Section VI.

Conclusions are given in Section V.

II. LITERATURE REVIEW OF APPLICATIONS OF NORMAL

FORM THEORY

The method of NF is well established to tackle with systems

having nonlinear coupled dynamics.

The equations of the system are firstly approximated by a

Taylor’s expansion series. The procedure can be summarized

as [23]:

1 simplifying the linear part of a system by the use of a

linear transformation;

2 simplifying the higher-order terms by NF transformations

up to different orders. In this paper, order 2 and order 3

NF transformations;

3 simplifying the transformed system by neglecting some

higher-order terms depending on the expected accuracy,

some nonlinear terms are kept or neglected, leading to

decoupled or invariant subsystems having normal dy-

namics and obtaining the decoupled or invariant normal

dynamics;

4a making a nonlinear analysis based on the normal dynam-

ics: higher-order modal interactions, stability bound or

limit cycles, etc;

4b obtaining the solutions of the normal dynamics and

reconstructing the original system variables.

In this paper, the proposed approximation, called FDNF3,

is derived and compared to existing approximations as DNF3

[3], [4], NF3 [20], more classical nonlinear analysis NF2 and

and the representative linear analysis(LNM).

Table I gives an overview of the different approximations

and shows that only FDNF3 approximation covers the whole

TABLE I
COMPARISON OF EXISTING AND PROPOSED NORMAL FORM

APPROXIMATIONS

Method Transformation Decoupled/Invariant Normal Dynamics Free Oscillations / Excited systems
LNM [6] linear decoupled linear free and forced
NF2 [7] order 2 decoupled linear free

NF3 [19], [21] order 3 invariant order 3 free
DNF3 [3], [4] order 3 decoupled order 3 free

FDNF3 order 3 decoupled order 3 free and forced

application range of power system dynamic analysis as the

linear analysis tool does.

III. THEORETICAL FORMULATION

A. Modeling of Power System Oscillations

The oscillatory modes of power system can be modeled

by (1). If the variables of the system are gathers in a N
dimensional vector q, the motion equation writes as:

Mq̈ +Cq̇ +Kq + fnl(q) = F (1)

where M ,C are constant diagonal inertia and damping ma-

trices, whose values depend on the physical and controller

parameters of the system. K and fnl indicate the coupling

between the variables, where K is a constant matrix including

the linear terms and fnl gathers the nonlinear terms coming

from the 2nd and 3rd order terms of the Taylor’s series. F is

the excitation vector.

B. Linear Transformation: Modal Expansion

A modal expansion q(t) = ΦTx(t) can transform (1) into

modal coordinates with decoupled linear part [6].

Ẍp+2ξpωpẊp + ω2
pXp (2)

+

N∑

i=1

N∑

j≥i
gpijXiXj +

N∑

i=1

N∑

j≥i

N∑

k≥j
hpijkXiXjXk = Fp

where ξp is the p-th modal damping ratio, and gpij and hpijk are

quadratic and cubic nonlinearities coming from fnl Taylor’s

series expansion. Neglecting the nonlinear terms in (2), a linear

model called LNM [6] is obtained and can be used both for

analysis and control of multi-input systems.

C. Normal Form Transformation in Modal Coordinates

A normal form transformation is proposed in [19], [21],

which reads, ∀p = 1 . . . N :

Xp = Rp +R(3)(Ri, Si), Yp = Sp + S(3)(Ri, Si), (3)

where Yp = Ẋp, Sp = Ṙp and R(3), S(3) are third order

polynomials in Ri ans Si, fully defined in [19], [21] and are

functions of the gpij and hpijk coefficients present in (2).

D. Normal Dynamics

Up to order 3 and keeping all the terms after the trans-

formation, it leads to a set of invariant oscillators (if no

internal resonance occurs) defined as NF3 [19], [21]. NF3

separates the nonlinear terms into cross-coupling terms and

self-coupling terms. Neglecting the cross-coupling terms, the

equations defining the normal dynamics are decoupled and

defined as DNF3 and FDNF3.
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1) DNF3: Free-damped Oscillations

R̈p+2ξpωpṘp + ω2
pRp (4)

+ (hpppp +Ap
ppp)R

3
p +Bp

pppRpṘ
2
p + Cp

pppR
2
pṘp = 0

2) FDNF3: Systems under excitation

Ṙp =Sp − 2bpppSpFp − cpppFpRp (5)

Ṡp =− ω2
pRp − 2ξpωpṘp

− (hpppp +Ap
ppp)R

3
p − Bp

pppRpṘ
2
p − Cp

pppR
2
pṘp

+ Fp − 2βpppSpFp − 2γpppFpRp

It is shown that, when F is zero, (5) becomes (4). In other

words, (4) is a specific case of (5) or (5) is a generalization

of (4). Equation (5) shows that transforming variables X − Y
coordinates into R−S coordinates will add coupling terms in

the excitation vector F ( 2βpppSpFp − 2γpppFpRp terms). The

NF approximation decouples the state-variables but adds some

coupling terms in the excitation vector components.

E. Reconstructing the Results for the Original System

Multi-scale calculating methods can be used to compute an

approximate analytical solution of (4) and (5). From Rp, Sp
variables, Xp, Yp can be reconstructed using transformations

(3). The efficiency of FDNF3 is validated by a case-study

based on interconnected VSCs and compared to the classical

linear analysis tool LNM and nonlinear analysis tool NF2.

IV. CASE–STUDY: INTERCONNECTED VSCS

A. Test System

Modern girds are more and more composed of renewable

energy based power generators that can be interconnected to

the grid through long transmission lines [24]. This weak grid

configuration can lead to nonlinear oscillations [3], [25]. To

illustrate this particular case, a test case composed of two

interconnected VSCs to a transmission grid as been chosen,

as shown in Fig.1.

V SC1 and V SC2 are interconnected by a short connection

line having a reactance X12 and are both connected to the

transmission grid by long transmission lines having reactances

X1, X2.

To study the nonlinear interactions under disturbances or

variable references or loads, a detailed mathematical model

is firsly made, which consists of the physical structure as

well as the current, voltage and power loops. To design the

power loop, since the conventional PLL controller can cause

synchronization problems when facing connections using long

transmission lines [26], the Virtual Synchronous Machine

(VSM) control strategy is adopted [27].

For the chosen test case, the equivalent switching frequency

of VSCs is set as 1700Hz and the control loops are tuned

with time constants as Tcurrent = 5ms, Tvoltage = 60ms,

Tpower = 1.47s. Large Volume Capacitor is installed to avoid

the voltage collapse.

The electromagnetic model of one VSC is a set of 13th

order equations [27], and the order of the overall system

Fig. 1. Case test composed of interconnected VSCs

model can be higher than 26. Considering that the current

and voltage loops are linear and that the time constants of

the three loops respect Tpower � Tvoltage � Tcurrent, the

voltage V1 and V2 at the Point of Common Couplings (PCC)

of VSCs are assumed sinusoidal with constant amplitudes and

power flows are represented by dynamics in power angles.

Thus, a reduced model to study the nonlinear interactions of

the system presented in Fig.1, can be described as (6). A 4th

order model is then chosen to govern the nonlinear dynamics

of the system.

M1
d2δ1
dt2 +D1

dδ1
dt +

V1Vg
X1

sin δ1 +
V1V2

X12
sin(δ1 − δ2) = P ∗

1

M2
d2δ2
dt2 +D2

dδ2
dt +

V2Vg
X2

sin δ2 +
V1V2

X12
sin(δ2 − δ1) = P ∗

2

(6)

In (6), δ1 and δ2 represent the power angles. X1 and X2 are

the reactances of the transmission lines which connect the two

VSCs to the transmission grid. X12 is the reactance of the

line interconnecting the two VSCs. V1, V2, Vg are the RMS

voltages at the PCC of the VSCs and at the grid. Finally,

P ∗
1 and P ∗

2 are the active power references, which are set

according to the expected operating points.

B. Selected Case Study

Two cases are selected.

Case I : Post-fault case: the three phase fault happens near the

terminal of V SC2 , the fault is cleared after 0.19s. The

system experiences then free-damped oscillations.

Case II : Step Excitation in the Power Reference: V SC1 and

V SC2 respectively transfer an amount of power as 0.68pu

and 0.28pu. It is supposed that there is an increase in

the wind energy supply, which implies a step in the

power reference of 0.2pu for both VSCs. The system

experiences then oscillations due to excitation.
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Fig. 2. Case I– System Dynamics under Free-damped Oscillations:δ1
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Fig. 3. Case I– System Dynamics under Free-damped Oscillations

As FDNF3 is a generalization of DNF3, for the sake of

simplicity, FDNF3 is used for both the two cases and prove

to be efficient in comparison with NF2 and LNM approaches.

C. Analysis based on EMT Simulations

The time-domain simulation is done by using a EMT

software.

1) Original Results for Case I: The dynamics in the power

angles of the VSCs,δ1 and δ2 are shown in Fig.2. Time t = 0
is the time when the power angle reaches its maximum.

It is shown in Fig.2 that FDNF3 can describe the nonlinear

dynamics more accurately than NF2, not only in amplitude

but also in frequency since it is based on a 3rd order Taylor’s

series terms, with a NF transformation up to 3rd order and

higher-order terms kept in the normal dynamics.

FDNF3 has the property of decomposing a N -dimensional

nonlinear system into a nonlinear sum of nonlinear 1-
dimensional nonlinear systems, analogous to linear analysis

that decompose a N -dimensional linear system into a linear

sum of 1-dimensional linear systems. In this way, the complex

power dynamics can be reviewed as the combination simpler

ones.

Fig.3 shows that, as proposed by the classical linear analy-

sis, the system dynamic can be decoupled into 2 simpler ones

Ex ≈ Sub1 + Sub2, making it possible to identify that Sub1
has a lower frequency and Sub2 has a much higher frequency.

2) Original Results for Case II: The dynamics in the power

angles of the VSCs, δ1 and δ2 are shown in Fig.4. The step
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Fig. 4. Case II– System Dynamics under Step Excitation
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excitation in P ∗
1 = P ∗ equal to 0.2pu happens at the time

t = 0.5.

It is shown in Fig.4 that FDNF3 can describe the system

dynamic response much more accurately than the linear anal-

ysis LNM, especially the overshoot, which corresponds to the

limit cycles [6] or the stability bound of system’s nonlinear

dynamics [22].

Also, as shown in Fig. 5, even both VSCs are excited, only

one nonlinear mode is excited in R−S coordinates. Therefore,

inversely, by controlling R1, R2 we can make the decoupling

control of V SC1 and V SC2 possible even if they work in

the nonlinear region. It could be one way to overcome the

difficulty on how to control VSCs independently when they

work in nonlinear regions.

Transforming the original system dynamic into its normal

dynamics gives a clear picture on how the excitation influences

the system dynamics.

Compared to the classical linear analysis LNM and the

nonlinear analysis NF2, the advantages of FDNF3 approach

can be summarized as:

1) Describing more exactly the power system dynamics

under disturbances or under excitation by decomposition

of the complex system dynamics into simpler ones;

2) Making possible to independently control interconnected

systems even if there are working in highly nonlinear

regions.
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TABLE II
PARAMETERS OF THE CASE STUDY

M1 = 3.2 X1(pu) = 0.7 VN = 400kV
M2 = 3.2 X2(pu) = 0.7 SN = 1GMW
D1 = 20 X12(pu) = 0.01 V1 = V2 = Vg = 1pu
D2 = 20 fg = 50Hz

V. CONCLUSION

In this paper, to the author’s knowledge, it is the first time

that Normal Form theory is applied to study the power system

dynamics under excitation (i.e. with variable references or

loads). The proposed method is validated by comparing results

with time-domain simulations based on an EMT software. For

the sake of simplicity, only the results under the case N = 2
are presented, but the possibility of working with large-scale

problems will be investigated by the methodology suggested

in this paper.

Although the chosen test case is composed of inteconnected

VSCs, since the system model is the same as groups of

generators working in parallel, the proposed methodology

can be applied for studying the modal oscillations between

classical generators working in parallel.

In this paper, the proposed method only shows its ability

to describe the power system response by decomposing the

complex dynamics. Further applications may be found in

modal structural analysis under excitation or stability analysis.

Future work can be composed of:

1) Controlling the two VSCs independently in the nonlinear

R−S coordinates, reducing the oscillations in the system

dynamics;

2) Making the stability analysis under excitation to see the

power transfer limit of power system under severe stress

(working in the nonlinear domain).
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