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Normal Form based Analytical Investigation of Nonlinear Power System Dynamics under Excitation

The increase of power exchanges through long lines makes power systems exhibiting predominant nonlinear interarea or local oscillations, for which the conventional linear analysis fails to offer an accurate picture. Existing 2nd Order and 3rd Order Normal Form methods make possible to do analytical investigations of the nonlinear interactions by including higherorder terms. However, those methods can only study the power system dynamics under free oscillations, usually used to study the effect of disturbances apply to the state variables, e.g the post-fault cases. When the system is subject to excitation, as variable power references or variable loads, there is no available Normal Form method in the literature making possible to study the higher-order oscillations. In this paper, for the first time to the author's knowledge, a methodology based on the Normal Form theory is proposed to give an analytical description of power system nonlinear dynamic response of excited power systems. The proposed method makes possible to simplify the initial problem by decomposing the complex power system dynamics into a set of simpler normal dynamics. The proposed analytical normal dynamics are validated using time-domain simulations and open the way to new analyzing tools for power grids.

I. INTRODUCTION

A. Oscillations in Interconnected Power Systems

Nowadays power systems are composed of a collection of interconnected subsystems working in collaboration to supply a common load, such as groups of generators [START_REF] Kundur | Power system stability and control[END_REF] or interconnected Voltage Sources Converters working in parallel [START_REF] Quintero | The impact of increased penetration of converter control-based generators on power system modes of oscillation[END_REF]- [START_REF] Tian | Third-order based analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF]. One of the most important issue in large-scale interconnected power systems under stress is the oscillations in the power system dynamics [START_REF] Vittal | Analysis of the inter-area mode phenomenon in power systems following large disturbances[END_REF]. As the oscillations are essentially caused by the modal interactions between the system components, they are called Modal Oscillations. The complexity of analyzing such oscillations comes from the strong coupling between the components of the system. Understanding of the essence of such oscillations is necessary to help stabilizing and controlling power systems.

In this sense, analytical analysis tools are developed for:

1) Dynamic performance analysis: suggesting an approximate analytical solution; 2) Modal structural analysis: how the system components interact with each other; 3) Stability analysis.

B. Various Analysis Tools

Among all the analytical methods, linear analysis or linearizing analysis is the most conventional analysis tool, such as small-signal analysis [START_REF] Kundur | Power system stability and control[END_REF] and linear modal analysis [START_REF] Nayfeh | Nonlinear oscillations[END_REF]. These methods are based on the linearization of the inherently nonlinear power system around the operating point by including only the first-order terms of its Taylor's series expansion. The eigen-analysis is made to obtain analytical results for the system dynamic performance and to know about the system stability. Besides, modal analysis (based on the eigenvectors) provides an insight of the modal structure of a power system demonstrating how the components of the power system interact with each other. Based on the modal analysis, power system stabilizers can be located in the right place to stabilizer the whole system [START_REF] Kundur | Power system stability and control[END_REF] ensuring then its small-signal stability.

The nonlinearity of oscillations increases in case of stressed tie line flow between large areas [START_REF] Sanchez-Gasca | Inclusion of higher order terms for small-signal (modal) analysis: committee report-task force on assessing the need to include higher order terms for small-signal (modal) analysis[END_REF]. Later researches suggested that in certain cases, linear analysis techniques might not provide an accurate picture of the power system modal characteristics. From 1996 to 2005, numerous papers [START_REF] Lin | Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields[END_REF]- [START_REF] Zhu | Analyzing dynamic performance of power systems over parameter space using normal forms of vector fields-part i: identification of vulnerable regions[END_REF] have published advocating the Normal Form (NF) as an efficient way for studying higher order modal interactions by inclusion of 2nd order terms [START_REF] Sanchez-Gasca | Inclusion of higher order terms for small-signal (modal) analysis: committee report-task force on assessing the need to include higher order terms for small-signal (modal) analysis[END_REF]. The applications are well developed, such as for example the optimal placement of stabilizers [START_REF] Liu | Assessing placement of controllers and nonlinear behavior using normal form analysis[END_REF].

The increasing number of renewable-energy-basedgenerators, leading to unbalanced energy generation and presence of weak grids, associated to fast control devices [START_REF] Quintero | The impact of increased penetration of converter control-based generators on power system modes of oscillation[END_REF], increases the nonlinear behavior of the system leading to the necessity of including 3rd order terms in the modal analysis. Several explorations [START_REF] Tian | Analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], [START_REF] Tian | Third-order based analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], [START_REF] Martínez | Perturbation analysis of power systems: effects of second-and third-order nonlinear terms on system dynamic behavior[END_REF], [START_REF] Huang | Evaluation of the effect of modal interaction higher than 2nd order in small-signal analysis[END_REF] have been done, but their applications haven't been fully developed. Among them, methods [START_REF] Tian | Analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], [START_REF] Tian | Third-order based analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF] are advancements of a method validated by physical experiments in beam structure analysis [START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF]- [START_REF] Touzé | Normal form theory and nonlinear normal modes: theoretical settings and applications[END_REF].

A method between the 2nd order and 3rd order NF analysis is proposed to suggest stability bounds [START_REF] Amano | Nonlinear stability indexes of power swing oscillation using normal form analysis[END_REF] when the linear analysis fails to accurately identify them.

C. Problematic

Nonlinear analysis can replace the linear analysis as it does a better job in all the three issues: describing dynamic response, modal interaction and stability analysis. However, the existing nonlinear analysis tools only deal with the case of free oscillations (e.g the post-fault case after the fault is cleared), and not with excited systems ( i.e the oscillations caused by variable power references or variable loads). This largely limits the scope of the NF analysis. This is a big disadvantage compared to the linear analysis, which can deal with the case when there are changes in the input (voltage reference, power reference, load, etc) as well as when there are no excitation (free oscillations).

D. Originality

In this paper, a method is introduced to study the power system nonlinear forced oscillations. To the author's knowledge, it is for the first time that an analytical analysis tool based on NF theory is proposed to analyze the nonlinear power system dynamic under excitation. This enlarges the scope of NF analysis. Moreover, all the benefits provided by second order based NF and linear analysis can be inherited.

This paper is organized as follows. In Section II, the NF theory is introduced and the general procedures are outlined. Based on this, the previous analysis tools are summarized and compared. In section III, the proposed method, based on NF theory, is outlined and the methodology is introduced. The case study and the obtained results are shown in Section VI. Conclusions are given in Section V.

II. LITERATURE REVIEW OF APPLICATIONS OF NORMAL FORM THEORY

The method of NF is well established to tackle with systems having nonlinear coupled dynamics.

The equations of the system are firstly approximated by a Taylor's expansion series. The procedure can be summarized as [START_REF] Nayfeh | A Method of Normal Forms[END_REF]:

1 simplifying the linear part of a system by the use of a linear transformation; 2 simplifying the higher-order terms by NF transformations up to different orders. In this paper, order 2 and order 3 NF transformations; 3 simplifying the transformed system by neglecting some higher-order terms depending on the expected accuracy, some nonlinear terms are kept or neglected, leading to decoupled or invariant subsystems having normal dynamics and obtaining the decoupled or invariant normal dynamics; 4a making a nonlinear analysis based on the normal dynamics: higher-order modal interactions, stability bound or limit cycles, etc; 4b obtaining the solutions of the normal dynamics and reconstructing the original system variables. In this paper, the proposed approximation, called FDNF3, is derived and compared to existing approximations as DNF3 [START_REF] Tian | Analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], [START_REF] Tian | Third-order based analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], NF3 [START_REF] Touzé | Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures[END_REF], more classical nonlinear analysis NF2 and and the representative linear analysis(LNM).

Table I gives an overview of the different approximations and shows that only FDNF3 approximation covers the whole linear decoupled linear free and forced NF2 [START_REF] Sanchez-Gasca | Inclusion of higher order terms for small-signal (modal) analysis: committee report-task force on assessing the need to include higher order terms for small-signal (modal) analysis[END_REF] order 2 decoupled linear free NF3 [START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF], [START_REF] Touzé | Normal form theory and nonlinear normal modes: theoretical settings and applications[END_REF] order 3 invariant order 3 free DNF3 [START_REF] Tian | Analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], [START_REF] Tian | Third-order based analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF] order 3 decoupled order 3 free FDNF3 order 3 decoupled order 3 free and forced application range of power system dynamic analysis as the linear analysis tool does.

III. THEORETICAL FORMULATION A. Modeling of Power System Oscillations

The oscillatory modes of power system can be modeled by [START_REF] Kundur | Power system stability and control[END_REF]. If the variables of the system are gathers in a N dimensional vector q, the motion equation writes as:

M q + C q + Kq + f nl (q) = F (1)
where M , C are constant diagonal inertia and damping matrices, whose values depend on the physical and controller parameters of the system. K and f nl indicate the coupling between the variables, where K is a constant matrix including the linear terms and f nl gathers the nonlinear terms coming from the 2nd and 3rd order terms of the Taylor's series. F is the excitation vector.

B. Linear Transformation: Modal Expansion

A modal expansion q(t) = Φ T x(t) can transform (1) into modal coordinates with decoupled linear part [START_REF] Nayfeh | Nonlinear oscillations[END_REF].

Ẍp +2ξ p ω p Ẋp + ω 2 p X p ( 2 
)
+ N i=1 N j≥i g p ij X i X j + N i=1 N j≥i N k≥j h p ijk X i X j X k = F p
where ξ p is the p-th modal damping ratio, and g p ij and h p ijk are quadratic and cubic nonlinearities coming from f nl Taylor's series expansion. Neglecting the nonlinear terms in (2), a linear model called LNM [START_REF] Nayfeh | Nonlinear oscillations[END_REF] is obtained and can be used both for analysis and control of multi-input systems.

C. Normal Form Transformation in Modal Coordinates

A normal form transformation is proposed in [START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF], [START_REF] Touzé | Normal form theory and nonlinear normal modes: theoretical settings and applications[END_REF], which reads, ∀p = 1 . . . N:

X p = R p + R (3) (R i , S i ), Y p = S p + S (3) (R i , S i ), (3) 
where Y p = Ẋp , S p = Ṙp and R (3) , S (3) are third order polynomials in R i ans S i , fully defined in [START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF], [START_REF] Touzé | Normal form theory and nonlinear normal modes: theoretical settings and applications[END_REF] and are functions of the g p ij and h p ijk coefficients present in (2).

D. Normal Dynamics

Up to order 3 and keeping all the terms after the transformation, it leads to a set of invariant oscillators (if no internal resonance occurs) defined as NF3 [START_REF] Touzé | Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes[END_REF], [START_REF] Touzé | Normal form theory and nonlinear normal modes: theoretical settings and applications[END_REF]. NF3 separates the nonlinear terms into cross-coupling terms and self-coupling terms. Neglecting the cross-coupling terms, the equations defining the normal dynamics are decoupled and defined as DNF3 and FDNF3. 5) becomes [START_REF] Tian | Third-order based analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF]. In other words, ( 4) is a specific case of ( 5) or ( 5) is a generalization of (4). Equation [START_REF] Vittal | Analysis of the inter-area mode phenomenon in power systems following large disturbances[END_REF] shows that transforming variables X -Y coordinates into R -S coordinates will add coupling terms in the excitation vector F ( 2β p pp S p F p -2γ p pp F p R p terms). The NF approximation decouples the state-variables but adds some coupling terms in the excitation vector components.

+ (h p ppp + A p ppp )R 3 p + B p ppp R p Ṙ2 p + C p ppp R 2 p Ṙp = 0 2) FDNF3: Systems under excitation Ṙp =S p -2b p pp S p F p -c p pp F p R p (5) Ṡp = -ω 2 p R p -2ξ p ω p Ṙp -(h p ppp + A p ppp )R 3 p -B p ppp R p Ṙ2 p -C p ppp R 2 p Ṙp + F p -2β p pp S p F p -2γ p pp F p R p It is shown that, when F is zero, (

E. Reconstructing the Results for the Original System

Multi-scale calculating methods can be used to compute an approximate analytical solution of ( 4) and ( 5). From R p , S p variables, X p , Y p can be reconstructed using transformations [START_REF] Tian | Analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF]. The efficiency of FDNF3 is validated by a case-study based on interconnected VSCs and compared to the classical linear analysis tool LNM and nonlinear analysis tool NF2.

IV. CASE-STUDY: INTERCONNECTED VSCS

A. Test System

Modern girds are more and more composed of renewable energy based power generators that can be interconnected to the grid through long transmission lines [START_REF] Archer | Supplying baseload power and reducing transmission requirements by interconnecting wind farms[END_REF]. This weak grid configuration can lead to nonlinear oscillations [START_REF] Tian | Analytical investigation of nonlinear interactions between voltage source converters interconnected to a transmission grid[END_REF], [START_REF] Piwko | Integrating large wind farms into weak power grids with long transmission lines[END_REF]. To illustrate this particular case, a test case composed of two interconnected VSCs to a transmission grid as been chosen, as shown in Fig. 1.

V SC 1 and V SC 2 are interconnected by a short connection line having a reactance X 12 and are both connected to the transmission grid by long transmission lines having reactances X 1 , X 2 .

To study the nonlinear interactions under disturbances or variable references or loads, a detailed mathematical model is firsly made, which consists of the physical structure as well as the current, voltage and power loops. To design the power loop, since the conventional PLL controller can cause synchronization problems when facing connections using long transmission lines [START_REF] Egea-Alvarez | Advanced vector control for voltage source converters connected to weak grids[END_REF], the Virtual Synchronous Machine (VSM) control strategy is adopted [START_REF] D'arco | Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities[END_REF].

For the chosen test case, the equivalent switching frequency of VSCs is set as 1700Hz and the control loops are tuned with time constants as T current = 5ms, T voltage = 60ms, T power = 1.47s. Large Volume Capacitor is installed to avoid the voltage collapse.

The electromagnetic model of one VSC is a set of 13th order equations [START_REF] D'arco | Automatic tuning of cascaded controllers for power converters using eigenvalue parametric sensitivities[END_REF], and the order of the overall system Thus, a reduced model to study the nonlinear interactions of the system presented in Fig. 1, can be described as [START_REF] Nayfeh | Nonlinear oscillations[END_REF]. A 4th order model is then chosen to govern the nonlinear dynamics of the system. 6), δ 1 and δ 2 represent the power angles. X 1 and X 2 are the reactances of the transmission lines which connect the two VSCs to the transmission grid. X 12 is the reactance of the line interconnecting the two VSCs. V 1 , V 2 , V g are the RMS voltages at the PCC of the VSCs and at the grid. Finally, P * 1 and P * 2 are the active power references, which are set according to the expected operating points.

M 1 d 2 δ1 dt 2 + D 1 dδ1 dt + V1Vg X1 sin δ 1 + V1V2 X12 sin(δ 1 -δ 2 ) = P * 1 M 2 d 2 δ2 dt 2 + D 2 dδ2 dt + V2Vg X2 sin δ 2 + V1V2 X12 sin(δ 2 -δ 1 ) = P * 2 (6) In (

B. Selected Case Study

Two cases are selected.

Case I : Post-fault case: the three phase fault happens near the terminal of V SC 2 , the fault is cleared after 0.19s. The system experiences then free-damped oscillations. Case II : Step Excitation in the Power Reference: V SC 1 and V SC 2 respectively transfer an amount of power as 0.68pu and 0.28pu. It is supposed that there is an increase in the wind energy supply, which implies a step in the power reference of 0.2pu for both VSCs. The system experiences then oscillations due to excitation. As FDNF3 is a generalization of DNF3, for the sake of simplicity, FDNF3 is used for both the two cases and prove to be efficient in comparison with NF2 and LNM approaches.

C. Analysis based on EMT Simulations

The time-domain simulation is done by using a EMT software.

1) Original Results for Case I: The dynamics in the power angles of the VSCs,δ 1 and δ 2 are shown in Fig. 2. Time t = 0 is the time when the power angle reaches its maximum.

It is shown in Fig. 2 that FDNF3 can describe the nonlinear dynamics more accurately than NF2, not only in amplitude but also in frequency since it is based on a 3rd order Taylor's series terms, with a NF transformation up to 3rd order and higher-order terms kept in the normal dynamics.

FDNF3 has the property of decomposing a N -dimensional nonlinear system into a nonlinear sum of nonlinear 1dimensional nonlinear systems, analogous to linear analysis that decompose a N -dimensional linear system into a linear sum of 1-dimensional linear systems. In this way, the complex power dynamics can be reviewed as the combination simpler ones.

Fig. 3 shows that, as proposed by the classical linear analysis, the system dynamic can be decoupled into 2 simpler ones Ex ≈ Sub1 + Sub2, making it possible to identify that Sub1 has a lower frequency and Sub2 has a much higher frequency.

2) Original Results for Case II: The dynamics in the power angles of the VSCs, δ 1 and δ 2 are shown in Fig. 4. The step It is shown in Fig. 4 that FDNF3 can describe the system dynamic response much more accurately than the linear analysis LNM, especially the overshoot, which corresponds to the limit cycles [START_REF] Nayfeh | Nonlinear oscillations[END_REF] or the stability bound of system's nonlinear dynamics [START_REF] Amano | Nonlinear stability indexes of power swing oscillation using normal form analysis[END_REF].

Also, as shown in Fig. 5, even both VSCs are excited, only one nonlinear mode is excited in R-S coordinates. Therefore, inversely, by controlling R1, R2 we can make the decoupling control of V SC 1 and V SC 2 possible even if they work in the nonlinear region. It could be one way to overcome the difficulty on how to control VSCs independently when they work in nonlinear regions.

Transforming the original system dynamic into its normal dynamics gives a clear picture on how the excitation influences the system dynamics.

Compared to the classical linear analysis LNM and the nonlinear analysis NF2, the advantages of FDNF3 approach can be summarized as:

1) Describing more exactly the power system dynamics under disturbances or under excitation by decomposition of the complex system dynamics into simpler ones; 2) Making possible to independently control interconnected systems even if there are working in highly nonlinear regions. V. CONCLUSION

In this paper, to the author's knowledge, it is the first time that Normal Form theory is applied to study the power system dynamics under excitation (i.e. with variable references or loads). The proposed method is validated by comparing results with time-domain simulations based on an EMT software. For the sake of simplicity, only the results under the case N = 2 are presented, but the possibility of working with large-scale problems will be investigated by the methodology suggested in this paper.

Although the chosen test case is composed of inteconnected VSCs, since the system model is the same as groups of generators working in parallel, the proposed methodology can be applied for studying the modal oscillations between classical generators working in parallel.

In this paper, the proposed method only shows its ability to describe the power system response by decomposing the complex dynamics. Further applications may be found in modal structural analysis under excitation or stability analysis. Future work can be composed of:

1) Controlling the two VSCs independently in the nonlinear R-S coordinates, reducing the oscillations in the system dynamics; 2) Making the stability analysis under excitation to see the power transfer limit of power system under severe stress (working in the nonlinear domain).
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TABLE I COMPARISON
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	LNM [6]