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Abstract

This research focuses on localised states arising from modulationally unstable plane waves in non-conservative cyclic and
symmetric structures. The main application is on vibrations of bladed-disks of aircraft engines experiencing non-linear effects,
such as large displacements, friction dissipation, and/or complex fluid-structure interactions. The investigation is based on a
minimal model composed of a chain of linearly damped Duffing oscillators under external travelling wave excitation. The
computed results are based on two strategies: (1) a Non-Linear Schrödinger Equation (NLSE) approximation; and (2) the
periodic and quasi-periodic Harmonic Balance Methods (HBM). In both cases, the results show that unstable plane waves may
self-modulate, leading to stable and unstable single and multiple solitons configurations.
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1 Introduction
Localisation of vibrations is a very important topic in rotating machines, such as bladed-disks of aircraft engines, due to high
cycle fatigue. In the linear regime, localised vibrations arise in ideally periodic structures due to inherent inhomogeneities
resulting e.g. from the manufacturing processes or wear. However, in real applications, when structures e.g. experience
large deformations induced by strong excitations, their behaviours deviate from the linear regime due to non-linearities. It is
well-known that, in the non-linear regime, energy localisation may arise even in perfect period structures due to bifurcations.

This research focuses on the non-linear dynamics of cyclic and symmetric structures excited by travelling waves. This exci-
tation is very common in turbomachinery applications since it can be generated due to unbalances or aerodynamic excitations.
The findings are based on two different strategies: (1) a non-conservative NLSE approximation; and (2) a fully numeric peri-
odic and quasi-period HBM approach. The results show that stable solitons may emerge from unstable homogeneous solutions,
leading to localised vibrations which move along the structure preserving their shapes.

2 Physical system
The physical system under investigation consists of Ns unitary masses, cyclically connected to each other by linear springs ω2

c ,
and attached to the ground by linear springs ω2

0 , viscous dampers γ2, and cubic springs ξ . The displacement for the nth degree
of freedom un is written as

ün + γ
2u̇n +ω

2
0 un−ω

2
c (un−1 +un+1−2un)+ξ u3

n = fn, (1)

where fn represents the external excitation. For the following analysis, it is assumed that fn has a travelling wave form such as

fn(t) = F0 exp
{

i
[
k(n−1)a−ω f t

]}
+ c.c. (2)

where F0 is the force amplitude, k is the corresponding wave number, a = 2π/Ns is the lattice parameter, ω f is the external
frequency, i is the imaginary unit, and c.c. states the complex-conjugate of the first expression. It should be noted that, due to
the cyclic symmetry ( f1 = fNs+1), k can only assume integer numbers.

3 Solution approach
In this section, the two proposed solution approaches are presented. Firstly, the requirements to derive a non-conservative
NLSE is introduced, and its limitations are discussed. Finally, a periodic and quasi-periodic HBM is proposed to compute
homogeneous solutions and localised states emerging from unstable plane waves, respectively.
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3.1 Non-conservative NLSE
In the weakly non-linear regime the displacement un is assumed to have the form

un(t) = εΨ(X ,T )exp{i[k(n−1)a−ωkt]}+ c.c., (3)

where Ψ(X ,T ) is an envelope function which modulates the travelling wave response, ωk =
√

ω2
0 +4ω2

c sin2 ( ka
2

)
is the linear

natural frequency, and ε is a small parameter. In Eq. (3), X and T are continuous variables such as X = εx = ε(n− 1)a and
T = εt. After plugging Eq. (3) into Eq. (1), it is possible to obtain

i
∂Ψ

∂τ
+P

∂ 2Ψ

∂η2 +Q|Ψ|2Ψ =−iΓΨ−hexp{iδω τ}, (4)

where τ = εT , while η = X − cgt is a frame moving with the group velocity cg = dωk
dk

. In Eq (4), the parameter P = 1
2

d2
ωk

dk2

accounts for the dispersion, Q =− 3ξ

2ωk
is the non-linear term, Γ = γ2

2 models the linear damping effect, h = F0
2ωk

is the external
force, and δω = ωk−ω f is a detuning parameter. The approach is based on a multiscale approximation and the continuous
limit [1, 2, 3]. In practical terms, Eq. (4) is valid when: (1) the solution Ψ varies slowly in space and time compared to a and
2π/ω f ; (2) the detuning parameter δω is small and the system is close to the resonance; and (3) the system weakly forced and
weakly damped. Finally, the carrier wave is assumed to vibrate with ω f such as Ψ(η ,τ) = ψ(η ,τ)exp{iδω τ}, leading Eq. (4)
to an autonomous system.

3.2 Quasi-periodic HBM
In the quasi-periodic HBM approach, the solution un is expanded in a truncated Fourier series such as

un(t) =
k2

∑
−k2

k2

∑
−k1

Ak2k1 cos(k2ω2t + k1ω1t)+Bk2k1 sin(k2ω2t + k1ω1t), (5)

where k1 and k2 are the numbers of retained harmonics, Ak2k1 and Bk2k1 are the corresponding amplitudes, while ω1 and ω2
are the two incommensurable frequencies. It is important to notice that if k1=0 or k2=0 Eq. (5) recovers the standard periodic
HBM. The values of Ak2k1 and Bk2k1 are obtained by plugging Eq. (5) into Eq. 1, followed by a Galerkin projection, in order to
represent the response in Fourier space such as

[L]{Z}+{ fnl}−{g}= {0} . (6)

In Eq. (6), {Z} is the vector containing the Fourier coefficients Ak1k2 and Bk1k2 , [L] is a matrix representing the linear dynamics,
while the vectors { fnl} and {g} are the projections of the non-linear and the external forces into the Fourier space, respectively
(see [4] for a more detailed discussion). The projection from time domain to Fourier space is calculated using a two-dimensional
FFT algorithm, where the two frequencies ω1 and ω2 are sampled using a hyper-time approach [4]. Finally, one should note
that this paper is interested in quasi-periodic oscillations arising from Neimark-Sacker bifurcations (see Sub. 4). Therefore,
the frequency ω2 is an unknown in Eq. (6), and an additional equation representing a phase condition is added to compute the
value of ω2 (see [5] for a more detailed discussion).

4 Numerical Results
The system described by Eq. (1) is solved assuming Ns=36, γ2=0.01 kg · s−1, ω2

0 =1.0 kg· s−2, ω2
c =1.0 kg·s−2, ξ =0.10

kg·m−2·s−2. The external force fn is assumed to vibrate with amplitude F0 ∼ 0.0225 N and wave number k=16 m−1.
In order to solve the previous example with the NLSE approach, standing solutions

(
∂ψ

∂τ
= 0
)

resulting from the au-
tonomous system discussed in Sub. 3.1 is solved with the continuation code AUTO [6]. Figure 1 shows the maximum dis-
placement of u as a function of ω f . In Panel (a) of Fig. 1 solid lines indicate stable solutions, while dashed lines identify
unstable ones (see [7] for the stability analysis of ψ). Panel (b) of Fig. 1 shows the envelope function ψ for four different points
identified in Panel (a): P1, P2, P3 show solutions for the branch detaching around ω f ∼2.2125 rad/s, corresponding to solitons
with one hump; and P4 identifies a solution with two humps corresponding to the branch detaching at ω f ∼ 2.2160 rad/s.

The HBM approach is also applied to the same example using an arc-length continuation [4]. Solutions are shown in Panel
(a) of Fig. 1 with dotted blue lines. For the plane wave branch Eq. (5) is solved assuming k2=0 and k1=3, while the solitons
branches are calculated assuming k2=5 and k1=1. Initial conditions from S1 are used to solve Eq. (1) with a time-marching
algorithm. Figure 2 shows the results from the quasi-periodic HBM approach compared to the numerical integration of Eq. (1).
The results show great agreement.
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Figure 1: Panel (a) shows the bifurcation diagram computed with the NLSE and the HBM approaches. For the NLSE, solid
lines show stable solutions while dashed lines identify unstable ones. Blue dotted lines show results obtained from the HBM
approach. Panel (b) shows the envelope functions calculated with the NLSE.
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Figure 2: Time evolution of u30 calculated with the quasi-periodic HBM (blue) and with a time-marching algorithm (black).
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[5] L. Guillot, P. Vigué, C. Vergez, and B. Cochelin, “Continuation of quasi-periodic solutions with two-frequency harmonic
balance method,” Journal of Sound and Vibration, vol. 394, pp. 434 – 450, 2017.

[6] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang, “Auto97,” Continuation and
bifurcation software for ordinary differential equations, 1998.

[7] I. Barashenkov and Y. Smirnov, “Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons,”
Physical Review E, vol. 54, no. 5, pp. 5707–5725, 1996.


	Introduction
	Physical system
	Solution approach
	Non-conservative NLSE
	Quasi-periodic HBM

	Numerical Results

