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This work is devoted to the study of non linear dynamics of structures with cyclic symmetry under geometrical nonlinearity using the harmonic balance method (HBM). In order to study the influence of the non-linearity due to large deflection of blades a simplified model has been developed. It leads to nonlinear differential equations of the second order, linearly coupled, in which the nonlinearity appears by cubic terms. Periodic solutions in both free and forced cases are sought by the HBM coupled with an arc length continuation and stability analysis.

In this study, a specific attention has been paid to the evaluation of nonlinear modes and to the influence of excitation on dynamic responses. Indeed, several cases of excitation have been analyzed: punctual one and tuned or detuned low engine order. The paper shows that for a localized, or sufficiently detuned, excitation, several solutions can coexist, some of them being represented by closed curves in the Frequency-Amplitude domain. Those different kinds of solution meet up when increasing the force amplitude, leading to forced nonlinear localization. As the closed curves are not tied with the basic nonlinear solution they are easily missed. They were calculated using a sequential continuation with the force amplitude as a parameter.

Introduction

The study considers both free and forced vibrations of structures with cyclic symmetry under geometrical nonlinearity. This class of systems appears in the model of bladed disc or space antenna [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF], [START_REF] Vakakis | A multiple-scales analysis of nonlinear, localized modes in a cyclic periodic system[END_REF]. It leads to nonlinear differential equations of the second order, linearly coupled, in which the nonlinearity appears by cubic terms.

In the linear case, most of the natural frequencies appear in pair due to the perfect symmetry of the problem. These natural frequencies are related to deformed shapes with nodal diameters [START_REF] Samaranayake | Subharmonic oscillations in harmonically excited mechanical systems with cyclic symmetry[END_REF]. For weakly coupled and weakly mistuned systems, lo-calization can take place leading to motions that are confined on only a few substructures.

In the nonlinear case, the study of free vibrations relies on the definitions of nonlinear normal modes (NNMs) which have leads to many scientific papers [START_REF] Vakakis | Nonlinear normal mode and their application in vibration theory: An overview[END_REF] [START_REF] Kerschen | Nonlinear normal modes, part i: A useful framework for the structural dynamicist[END_REF]. Unlike linear system, the number of NNMs can exceed the number of dofs. The other NNMs arise from bifurcations. In both free and forced cases, if the ratio between the coupling of the substructure and the nonlinearity is small, Vakakis [START_REF] Vakakis | Normal mode and localiation in nonlinear systems[END_REF] showed that nonlinear localization can take place in a perfectly symmetric system. When this ratio increases, bifurcations occur and nonlinear localization disappear. Traveling waves motions have also been detected in such systems [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF], [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF].

In recent works, Peeters [START_REF] Peeters | Nonlinear normal modes, part ii: toward a practical computation using continuation technique[END_REF] [1] used a shooting method coupled with a continuation algorithm to study the NNMs of a system with cyclic symmetry. Similar and non similar NNMs have been found. Moreover, he studied the modal interactions between modes. He showed that these interactions can occur even if the natural frequencies of the modes are not commensurable, and he detected a countable infinity of such interactions.

The aim of this paper is to study both free and forced nonlinear vibrations of a bladed disc, using the HBM coupled with an arc length continuation. This study emphases the numerous bifurcation that can happen in this kind of system. Attention has been paid to the localization phenomenon, and particularly to the link between non symmetric loading and localization. The effect of the force amplitude on the solutions is also studied.

Simplified model

Consider a structure with cyclic symmetry made of n identical substructures called sectors. As a result of its dimension, its materials, and because of the external effort, such sectors can experiment large deflections leading to geometrical nonlinearity.

Many papers have studied the effect of geometrical nonlinearity on thin structures. Among others, Benamar [START_REF] Benamar | The effect of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part ii: fully clamped rectangular isotropic plates[END_REF] and Amabili [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF], focused on the case of thin rectangular plates with large deflection. The case of circular shells have been studied by Touzé [START_REF] Touze | Hardening/softening behaviour in non linear oscillation of structural systems using non linear normal modes[END_REF], and the case of beams by Lewandowski [START_REF] Lewandowski | Computational formulation for periodic vibration of geometrically nonlinear structures-part 1:theoretical background[END_REF] [START_REF] Lewandowski | Computational formulation for periodic vibration of geometrically nonlinear structurespart 2:numerical strategy and examples[END_REF].

Here the computation of our simplified mathematical model for a structure with cyclic symmetry is describe. In this paper, each sector is modeled by a thin rectangular plate clamped on one edge to a fixed frame. The coupling between the substructure is realized by a linear stiffness (fig. 1 a). First, only one sector will be considered in order to obtain the expression of the different kinds of energy. These preliminary results will then be applied to the system with cyclic symmetry.

Preliminary considerations for one sector

This section focuses on a single sector. The retained hypothesis will be presented and expressions for the different kinds of Consider a plate P with dimensions L x , L y , and thickness h in a Cartesian system of coordinates (O, x, y, z), clamped on the edge (x = 0). The displacement of a point with coordinates (x, y, z) in the direction (Ox) (respectively (Oy), (Oz)) is denoted by u (respectively v, w) (fig. 1 b).

Elastic strain energy of a plate

The Love-Kirchhoff hypothesis for the displacement are used so that the displacement u u u is expressed as:

u u u(x, y, z) =   u(x, y, z) v(x, y, z) w(x, y, z)   =   -z ∂w ∂x -z ∂w ∂y w(x, y)   (1) 
In addition, the use of the Von Karman nonlinear straindisplacement relationships and the standard bidimensional Hooke's law [START_REF] Ribeiro | Non-linear free vibration of isotropic plates with internal resonance[END_REF], leads to the following expression for the elastic strain energy U:

U = 1 2 Eh (1 -ν 2 ) L x 0 L y /2 -L y /2 ( 1 2 ( ∂w ∂x ) 2 ) 2 + ( 1 2 ( ∂w ∂y ) 2 ) 2 + 2ν( 1 2 ( ∂w ∂x ) 2 1 2 ( ∂w ∂y ) 2 ) + 1 -ν 2 ( ∂w ∂x ∂w ∂y ) 2 dxdy + 1 2 Eh 3 12(1 -ν 2 ) L x 0 L y /2 -L y /2 ( ∂ 2 w ∂x 2 ) 2 + ( ∂ 2 w ∂y 2 ) 2 + 2ν ∂ 2 w ∂x 2 ∂ 2 w ∂y 2 + 1 -ν 2 (2 ∂ 2 w ∂x∂y ) 2 dxdy ( 2 
)
where E is the Young's modulus and ν is the Poisson's ratio.

Kinetic energy and external load

By neglecting rotary inertia, the kinetic energy T of a rectangular plate is given by :

T = 1 2 ρh L x x=0 L y /2 y=-L y /2 ( u2 + v2 + ẇ2 )dxdy (3) 
In this paper the terms u2 + v2 will be omitted since it is in O(h 2 ) which is small compared to ẇ2 which is in O [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF]. The kinetic energy is therefore given by :

T = 1 2 ρh L x x=0 L y /2 y=-L y /2
ẇ2 dxdy (4)

The work W due to external forces is written as:

W = L x x=0 L y /2 y=-L y /2 ( f x u + f y v + f z w)dxdy ( 5 
)
where f x , f y , f z represent the distributed forces per unit area acting respectively in (Ox), (Oy), (Oz) directions. In this study only a localized harmonic force orthogonal to the plate is considered, thus f x = f y = 0. The external load f z of a localized force is given by :

f z = A f cos(Ωt)δ(x -x f )δ(y -y f ) ( 6 
)
where Ω is the excitation frequency, t is the time, δ is the Dirac function, A f is the force amplitude and (x f , y f ) = (L x , 0). In this case, equation ( 5) can be rewritten as:

W = w(L x , 0)A f cos(Ωt) (7)
2.2 Equation of motion for the structure with cyclic symmetry Let's come back to the structure with cyclic symmetry. For 1 ≤ j ≤ n, w j denotes the transverse displacement of the plate number j, U j its strain energy, T j its kinetic energy, and W j the work due to external forces on this plate. U j , T j and W j are obtain by substituting w by w j in equations ( 2),( 4), [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF]. The coupling between substructures is modeled by massless linear stiffness of value k. These stiffness are positioned in a point (x r , y r ) = (L x /4, 0) for all plates. The energy V j of such stiffness between the plates j and j + 1 is given by:

V j = 1 2 k(w j (x r , y r ) -w j+1 (x r , y r )) 2 for 1 ≤ j ≤ n with convention j + 1 = 1 if j = n (8)
The total energies U t , T t , V t and W t are then given by the sum over the number of plates n of the different local energies U j , T j , V j and W j . The discretization of the transverse displacement w j in now introduced. This discretization is done by a Rayleigh-Ritz method [START_REF] Liew | pb2-rayleigh-ritz method for general plate analysis[END_REF], and it allows us to have a simplified model of the system. Transverse displacements w j are interpolated by the following expression:

w j (x, y,t) = N ∑ i=1 λ j i (t)Φ i (x, y) (9) 
where (Φ i ) are kinematically admissible shape functions, λ j i is the contribution of the shape function Φ i in the displacement w j , and N is the number of shape functions used for the interpolation. This method leads to a discretized problem with nN unknowns (λ j i ) 1≤i≤N, 1≤ j≤n . Equations of motion are then given by Lagrange's equations (Appendix).

In this paper, we propose to study a system with six identical substructures (n = 6), of which displacements are interpolated by a single Ritz shape function (N = 1). This will leads to a problem with six degrees of freedom which will be used for numerical computation.

The retained shape function for the example is Φ = ( x L x ) 2 , it satisfies the boundary condition clamped at x = 0. By using Lagrange's equations we finally obtained the following equations of motion: Ẍ X X + KX X X + βX X X 3 = F F F(t) [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF] with X X X = (λ j ) 1≤ j≤6 , the convention X X X 3 = (x 3 j ) 1≤ j≤6 , and K a matrix defined by:

K =         α + 2c -c 0 0 0 -c -c α + 2c -c 0 0 0 0 -c α + 2c -c 0 0 0 0 -c α + 2c -c 0 0 0 0 -c α + 2c -c -c 0 0 0 -c α + 2c         (11) 
where α, c, β, and F F F are given in appendix 3 Resolution method: Harmonic Balance Method

Principle of the HBM

The HBM is a widely spread method for solving non linear differential equations. One of the advantages of this method is that it can treat weakly or strongly non linear system in the same way. It can be used for problem with friction [START_REF] Laxalde | Qualitative analysis of forced responce of blisks with friction ring dampers[END_REF] [17], or geometrical nonlinearity [START_REF] Lewandowski | Computational formulation for periodic vibration of geometrically nonlinear structures-part 1:theoretical background[END_REF], [START_REF] Ribiero | Nonlinear vibration of plates by the hierarchical finite element and contination method[END_REF]. Consider the following system of non linear differential equations

M Ẍ X X + KX X X + K K K nl ( ( (X X X) ) ) = F F F(t) (12)
where X X X is a vector of unknowns of dimension n, M and K the mass and linear stiffness matrix of the system, K K K nl the non linear forces, and F F F the external forces. The HBM consists in finding of periodic solutions X X X of the form:

X X X(t) = A A A 0 + N h ∑ k=1 A A A k cos(kωt) + B B B k sin(kωt) ( 13 
)
where N h is the number of retained harmonics. Substituting equation ( 13) in equation ( 12), and projecting the result on the trigonometric base (1, (cos(kωt), sin(kωt)) 1≤k≤N h ), one obtains a set of n(2N h + 1) algebraic nonlinear equations with n(2N h + 1) + 1 unknowns

(A A A k ) 0≤k≤N h ,(B B B k ) 1≤k≤N h and ω.
The most important parameter in this method is the number N h of retained harmonics. This number is not known a priori, so convergence studies are needed to ensure a good estimation of the solution. In one hand the higher N h is the better the solution. But in another hand, when N h is too high, computations can require many time and memory. However, in many cases, few harmonics are needed to ensure a good convergence leading to reasonable system size.

Numerical procedure: Arc length continuation

In a general way, the algebraic system obtains by the HBM can be reformulated as following:

G G G(Y Y Y , ω) = 0 ( 14 
)
where Y Y Y is a vector of dimension n(2N + 1) containing the unknown

(A A A k ) 0≤k≤N and (B B B k ) 1≤k≤N ,
and G G G is a nonlinear function taking its values in a space of dimension n(2N + 1). This system is going to be solved by an arc length continuation method. Continuation methods consist in finding numerically a series of points (Y Y Y i , ω i ) 0≤i≤M which verifies the following criterion :

G G G(Y Y Y i , ω i ) ≤ ε ( 15 
)
where ε is a small parameter which determines the accuracy of the solution. In an arc-length continuation, solutions are parameterized by the arc-length s, so that

(Y Y Y i , ω i ) = (Y Y Y (s i ), ω(s i )).
The method takes place in two steps : a predictor step which gives an estimation of the solution and a corrector step which correct the solution until the criterion ( 15) is achieve. In the study a tangent predictor and the Newton-Raphson corrector have been chosen. Further explanations can be found in [START_REF] Nayfey | Applied nonlinear dynamics[END_REF]. A sum up of the continuation algorithm is given in Fig. 2. This algorithm has been implemented in the Matlab software. 

Stability of solutions and bifurcations

The stability of periodic solutions is determined by Floquet theory. It needs the computation of the monodromy matrix and of its eigenvalues. A detailed presentation of the method is given in [START_REF] Nayfey | Applied nonlinear dynamics[END_REF].

Here, the focus is on the bifurcation that the system can withstand. There is two way of detecting a bifurcation. First, by monitoring the eigenvalues of the monodromy matrix: if some eigenvalues go outside the unit circle then there is a bifurcation, the type of the bifurcation is determined by the way that the eigenvalues leave the unit circle. The second method to detect bifurcations is by monitoring the determinant |J y | of the jacobian matrix

[J y ] = ∂G G G
∂Y Y Y of system ( 14): when this determinant is zero at some point, then the matrix [J y ] is singular and this point is a bifurcation point. The type of bifurcation is determined by the range of the matrix [J y J ω ] (where J ω = ∂G G G ∂ω ). For a turning point, the range of [J y J ω ] is n, and there is no particular treatment to apply since the arc length continuation can handle turning points. For a branching point, the range of [J y J ω ] is at most n -1, so there is at least two tangent vectors T T T = [T T T y y y T ω ] t such that [J y J ω ]T T T = 0. There is two way of computing the bifurcated branches. The first method is to add a small perturbation to the function G G G(Y Y Y , ω) in the vicinity of the bifurcation point. Since branching points are structurally unstable, the perturbation breaks the bifurcation. Once another branch have been detected with the continuation algorithm, one remove the perturbation and carry on the continuation [START_REF] Nayfey | Applied nonlinear dynamics[END_REF]. The other method is to compute the eigenvectors Ψ i of the matrix [J y ] associated with the zero eigenvalue at the bifurcation point. The eigenvectors Ψ i indicate the directions to be followed [START_REF] Ribeiro | Non-linear free vibration of isotropic plates with internal resonance[END_REF].

Free vibrations of a system with six dofs

The first objective of this paper is to estimate the free solutions of system [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF]. The natural approach is to use the nonlinear normal modes (NNMs) which have lead to numerous publications. A survey about NNMs is given in [START_REF] Vakakis | Nonlinear normal mode and their application in vibration theory: An overview[END_REF] and [START_REF] Kerschen | Nonlinear normal modes, part i: A useful framework for the structural dynamicist[END_REF]. The most used definition of NNM is the one given by Rosenberg in [START_REF] Rosenberg | On nonlinear vibration of systems with many degrees of freedom[END_REF], in which he defines the NNMs by the vibrations in unison of a free and undamped system. Other approaches to define NNMs exist, they are based on geometrical arguments like the invariant manifold definition proposed by Shaw and Pierre [START_REF] Shaw | Normal modes for non-linear vibratory systems[END_REF], or based on the normal form theory [START_REF] Touze | Hardening/softening behaviour in non linear oscillation of structural systems using non linear normal modes[END_REF].

In this section, the underlying linear system of problem (10) will first be studied. This will give starting points for the study of the nonlinear system. Then, the search for the NNMs of system (10) by the HBM coupled with an arc length continuation will be carried out.

Numerical values for the physical parameters are introduced :

L x = 1, 5m, L y = 0, 3m, h = 0, 03m, E = 210GPa, ν = 0.3, k = 8.10 5 N.m -1 (16) 
which correspond to the following values for the parameters of equation ( 10):

α = 8, 7662.10 3 s -2 , c = 148, 36s -2 , β = 4, 6752.10 7 m -2 .s -2 (17) 
Modal analysis of the underlying linear system The underlying linear system of problem ( 10) is given by: Ẍ

X X + KX X X = F F F(t) ( 18 
)
Linear normal modes (LNMs) are given by the resolution of the eigenvalue problem KΦ = ω 2 Φ. Matrix K have single and double eigenvalues, but double eigenvalues represent the majority [START_REF] Samaranayake | Subharmonic oscillations in harmonically excited mechanical systems with cyclic symmetry[END_REF]. With each double eigenvalue are associated two distinct deformed shapes which are not uniquely defined. The mode shapes are characterized by their number of nodal diameters p.

The eigenvalues and eigenvectors of matrix K are given by (the linear frequencies are given in rad.s -1 ):

ω 0 = √ α = 93.63 Φ 0 = [ 1, 1, 1, 1, 1, 1 ] 
ω 1 = √ α + c = 94.42 Φ c 1 = [ 1, 1, 0, -1, -1, 0 ] Φ s 1 = [ 1, 1 2 , -1 2 , -1, -1 2 , 1 2 ] ω 2 = √ α + 3c = 95.98 Φ c 2 = [ 1, -1, 0, 1, -1, 0 ] Φ s 2 = [ 1, -1 2 , -1 2 , 1, -1 2 , -1 2 ] ω 3 = √ α + 4c = 96.75 Φ 3 = [ 1, -1, 1, -1, 1, -1 ] (19) 
The deformed shapes of equation [START_REF] Nayfey | Applied nonlinear dynamics[END_REF] are depicted in Fig. 3 Nonlinear normal modes In this section, the nonlinear normal modes of system [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF] are computed with the algorithm described earlier. NNMs branches are computed by starting from the corresponding linear normal mode at low amplitude. These branches are termed the backbone curves, and they are represented in an Energy-Frequency plot as in [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF]. The energy considered here is defined by:

E(X X X) = A 0 2 + ∑ k ( A k 2 + B k 2 ) ( 20 
)
where A A A k and B B B k are the HBM coefficients defined in relation [START_REF] Lewandowski | Computational formulation for periodic vibration of geometrically nonlinear structurespart 2:numerical strategy and examples[END_REF]. Since the non linearity is odd and because there is no damping in system [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF], only odd harmonics and cosine terms are retained in the development of X X X (the last condition corresponds to a phase condition in which all initial velocities are set to zero). A convergence study with the number of harmonic on the zero nodal diameter mode showed that a good approximation can be obtained when retaining only the first and the third harmonic. This approximation holds for amplitudes of vibration up to the plate thickness h. We suppose that this remark holds for all NNMs. Therefore the NNMs of system [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF] are sought of the form:

X X X(t) = A A A 1 cos(ωt) +

A A A 3 cos(3ωt) (21) 

Natural nonlinear normal modes

We call a natural NNM, a NNM which is directly born from a LNM at low magnitude of vibration. Since there are six LMNs, there will be six natural NNMs. They are represented in Fig. 4 and Fig. 5. The first noticeable feature in these figures is the Frequency-Energy (or amplitude) dependence of the NNMs. In addition to the dependence of their oscillation frequency, the NNMs may also have their modal shapes varying with the amplitude of vibration: these are nonsimilar NNMs. NNMs born from the LNMs shapes Φ c i (i = 0, 1, 2, or 3) defined in equation ( 19) are similar NNMs, and NNMs born from the LNM shapes Φ s i (i = 1, 2) are nonsimilar NNMs.

For double modes, the two backbones curves associated with the p nodal diameter mode (p = 1 or 2) are different (fig. 5). This is because the number of sector is of the form = 2m with m odd.

As we shall see, other NNM branches bifurcate from these backbone curves.

Bifurcated NNMs

This section focus on the NNM with 3 nodal diameters (NNM3D). By using the procedure described in section 3.3, several branching point bifurcations have been detected and bifurcated branches have been computed. They are It means that only one (strongly localized) or several (weakly localized) sectors have a non negligible amplitude of motion, the others remaining virtually motionless [START_REF] Vakakis | Normal mode and localiation in nonlinear systems[END_REF]. Such localization phenomenon was already observed in a linear mistuned system [START_REF] Yana | Vibration mechanism of a mistuned bladed-disk[END_REF], but here, and in general nonlinear system with cyclic symmetry, it occurs without structural disorder. The spatial confinement of the energy causes the responses of some sectors to be high and might lead to premature failure of the blades.

Traveling waves All the NNMs computed so far correspond to standing wave motions in the sense that the dofs vibrate in a synchronous way as in Rosenberg's definition of NNMs. Some papers [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF], [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF] refer to traveling wave motions in which vibrations are not synchronous anymore. For Vakakis [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF], these traveling waves arise from a 1:1 internal resonance between the two modes associated with the same number of nodal diameter.

Because of the phase difference between the dofs, a different phase condition is considered for traveling wave NNMs computation. Sine terms are re-introduce in the HBM development of solution X X X in order to take into account the phase difference. Therefore X X X is now sought of the following form:

X X X(t) = A A A 1 cos(ωt) + B B B 1 sin(ωt) + A A A 2 cos(3ωt) + B B B 2 sin(3ωt) (22) 
The starting point, at low amplitude of vibration, for the continuation algorithm is given by:

A A A 1 = ε cos(φ φ φ p ) A A A 2 = 0 0 0 B B B 1 = ε sin(-φ φ φ p ) B B B 2 = 0 0 0 ( 23 
)
where p correspond to the number of nodal diameter (p = 1, or 2), ε is the amplitude of vibration (considered small) and φ φ φ p is a vector which coordinates ((φ φ φ p ) i ) 1≤i≤6 are defined by:

(φ φ φ p ) i = (i -1) 2pπ 6 (24) 
These starting points enable the computation of traveling waves propagating in the anticlockwise direction. Their companions, propagating in the clockwise direction, can be obtain by replacing φ φ φ p by -φ φ φ p in equation 23.

The backbone curves of traveling waves are given in Fig. 8 (curves a and b). By monitoring the jacobian matrix as indicated in section 3.3, a branch that bifurcate from the traveling wave with 2 nodal diameters has been found (fig. 8 curve c). This bifurcated branch is quite noticeable because it can be seen as a weakly localized traveling wave since only three of the six sectors vibrate with non negligible amplitude. To illustrate the phase difference between coordinates, we plotted in fig. 9 the time series of the six blades for the 2 nodal diameters localized traveling wave motions. 

Forced vibrations

Results from the previous section (free vibrations) are in agreement with the literature regarding structure with cyclic symmetry under geometric (cubic) nonlinearity [START_REF] Georgiades | Modal analysis of a nonlinear periodic structure with cyclic symmetry[END_REF], [START_REF] Vakakis | Dynamics of a nonlinear periodic structure with cyclic symmetry[END_REF] [START_REF] Vakakis | A multiple-scales analysis of nonlinear, localized modes in a cyclic periodic system[END_REF]. They highlight the complexity of the free dynamic of such structures. Obviously, this complexity is going to come back in forced vibrations. We here propose to study the impact of the different external loading on the forced response. Simulations are carried out for the structure with six dofs which correspond to system [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF]. Numerical parameters are the same as in the previous section. In order to have finite amplitude response, a damping term is added to system (10) which becomes:

Ẍ X X + δ Ẋ X X + KX X X + βX X X 3 = F F F(t) (25)
with δ a damping coefficient defined by δ = ω 0 /200. The right hand side of equation ( 25) is considered to be of the following form:

F F F(t) = A A A F cos(Ωt) ( 26 
)
where A A A F stands for the shape and magnitude of the external force and Ω stands for the excitation frequency. Solutions are computed by the HBM. Stability of solutions is investigated using Floquet theory, and bifurcations are detected as described in section 3.3. Since the nonlinearity is odd, only odd harmonics are retained in the HBM approximation. A convergence study of the stability with the number of retained harmonics showed that keeping the first and the third harmonic is sufficient enough to ensure valid results on stability. Therefore, solutions of equation ( 25) are sought of the form:

X X X(t) = A A A 1 cos(Ωt) + B B B 1 sin(Ωt) + A A A 2 cos(3Ωt) + B B B 2 cos(3Ωt)
(27) Three kinds of excitationwill be considered. First, low engine order excitation, then localized excitation, and finally, detuned excitation. In all cases, a parametric study with the force amplitude as parameter has been carried out. Because of symmetry, only one (or four) of the six sectors are going to be represented.

Low engine order excitation with zero nodal diameters

In this section, the forced response of system ( 25) is studied for an excitation F(t) which takes the shape of the zero nodal diameters LNM. This means that F(t) is of the form:

F F F(t) = A A A F cos(Ωt) with A A A F = a f Φ Φ Φ (28)
where Φ Φ Φ is equal to Φ Φ Φ 0 0 0 of equation ( 19)

The effect of the force amplitude a f on the form and on the stability of solutions is studied. For low force amplitude (Fig. 10 a), the response of the nonlinear system is close to the one of the underlying linear system, and the solution is stable for all frequencies Ω. By increasing the force amplitude (Fig. 10 b), an unstable zone is generated between two turning points. When the force amplitude is increased again (Fig. 11), a second zone of instability is generated after the second turning point. This second zone takes birth through a branching point bifurcation. By using the branch switching method described in section 3.3, a bifurcated branch of solution has been computed. The bifurcated branch is stable for a few points at the beginning of the curve and then an instability is generated through a Hopf bifurcation. The area near the peak of the bifurcated solution is stable and correspond to a weakly localized motion (framed areas of Fig. 11) 

Localized excitation

In this section, the external loading acts on only one sector (the first one), therefore the force is given by:

F F F(t) = a f         1 0 0 0 0 0         cos(Ωt) (29) 
The forced response has been computed for several values of the amplitude a f . Results are depicted from Fig. 12 to Fig. 15. Because of symmetry only the response for four of the six sectors has been represented.

For values of amplitude from a f = 0 to a f = a s f ≈ 0.8 4 , the nonlinear response is topologically equivalent to the response of the underlying linear system (fig. 12).

When a f is larger than a loc f ≈ 0.9125 4 , stable forced localization occurs (fig. 15): for a well chosen excitation frequency (between 98 and 100 rad.s -1 ), only the excited sector vibrate with a non negligible amplitude, and this kind of motion is stable. Moreover the part of the curve corresponding to forced localization is positioned around the backbone curve of the strongly localized NNM which have been computed in the previous section (free vibration). These results are in agreement with those of Vakakis presented in [START_REF] King | A very copmplicated structure of resonances in a nonlinear system with cyclic symmetry: non forced localization[END_REF].

When a s f ≤ a f ≤ a loc f (Fig. 14 and Fig. 13), it is possible to find another type of solution. These new solutions are represented by closed curve in the Amplitude-Frequency diagram. They are not tied up with the basic nonlinear response, but they are positioned around the backbone curve of the strongly localized NNM. Stability analysis shows that some parts of the closed curves can be stable for points that have very larger amplitude than the basic nonlinear solution.

Since the closed curves are not tied up with the basic nonlinear response, they are unreachable with a unique continuation scheme. To compute the closed curves, a sequential continuation with fixed frequency and with the force amplitude a f as a parameter has been used. The starting point was taken from the part of the curve that correspond to forced localization (for a f ≥ a loc f ), then the force amplitude was decreased by continuation until a f ≤ a loc f . The results obtained this way have been used as starting points for the arc length continuation. This method is illustrated in Fig. 16.

The new kind of solution makes us think that forced localization is the result of the fusion of the closed curve with the basic nonlinear solution when a f = a loc f . Whereas the basic nonlinear solution seems to be weakly nonlinear since it is close to the linear solution, there exist stable solutions (the closed curve) which have a large vibration amplitude and which could be attained depending on initial conditions. This remark is important because the closed curves could be easily missed by a classical continuation scheme, thus leading to a wrong design of the structure. Frequency 

Detuned low engine order with zero nodal diameter excitation

It has been seen that in the case of low engine order excitation the system response is simpler than in the case of localized excitation. However we have to keep in mind that realistic excitations are not perfectly symmetric. So now, the external forces are considered detuned, that is a perturbation is added to the low Sequential continuation with the force amplitude as a parameter Figure 16. Illustration of the method used to computes closed curve solutions engine order excitation. The perturbation is assumed to act only on the force amplitude. The external forces are then given by:

F F F(t) = (Φ + ε) (30) 
where Φ is a linear deformed shape and ε is a vector characterizing the perturbation Because of the projection in the HBM, adding a perturbation to the force is equivalent to adding a perturbation to the function G G G(Y Y Y , ω) defined in equation [START_REF] Ribeiro | Non-linear free vibration of isotropic plates with internal resonance[END_REF]. Then the branching point bifurcations which are structurally unstable will disappear [START_REF] Nayfey | Applied nonlinear dynamics[END_REF]. Thus, bifurcated branches will be part of the nonlinear solution and will be obtained by the continuation method.

Here, only a low engine order with zero nodal diameters is considered, but similar results could be obtained with the other vibration modes. Finally, the perturbation is assumed to act only on the first coordinate of the force. Therefore we have:

F F F(t) = a f         1 + ε 1 1 1 1 1 1         cos(Ωt) (31) 
where ε 1 correspond to the detuning percentage of the force with zero nodal diameter. In the remainder of the paper the force amplitude a f will be set to a f = 1 4 . Simulations start with ε = 1%. Results are represented in Fig. 17. As expected the bifurcated branch of the case ε = 0% (Fig. 11) is now a part of the solution.

When ε 1 becomes larger than 26% it is possible to compute a secondary solution which correspond to a closed curve. This kind of solution is represented in Fig. 18 for ε 1 = 40%. This closed curve have stable parts, and it merges to the basic nonlinear solution for ε 1 = 70% (Fig. 19).

In this example the closed curve have been detected when the detuning is larger than 26% which is a quite significant detuning level. However, the threshold for the detection of closed curve is highly dependent on the damping of the system: for a smaller damping the closed curves would have appeared sooner.

Conclusion

In this study, the free and forced response of a system with cyclic symmetry under geometric nonlinearity has been computed. The discretized equation of has been obtained by a Rayleigh-Ritz method. Solutions were computed by the harmonic balance method, stability was investigated using Floquet theory and bifurcations were computed through a branch switching algorithm.

In the free case, in addition to natural nonlinear normal modes, other vibration modes were detected by studying the branching point bifurcation of the system. Some of the bifurcated solutions correspond to localized nonlinear modes. Traveling wave motions have also been detected in this study.

In the forced case, when the excitation is localized to one of the substructure or sufficiently detuned, in addition to the basic nonlinear response, another kind of solution has been detected. This secondary solution is represented by closed curve in the Amplitude Frequency diagram, and it merge with the basic nonlinear solution when increasing the force amplitude, leading to forced nonlinear localization. For low engine excitations, we computed several bifurcated branches which also correspond to stable localized motions.

This study is based on a simple model, therefore the results remains at a theoretical level. However, this paper highlights the complex dynamic of system with cyclic symmetry under geomet- rical nonlinearity. Of importance is the detection of closed curve solutions which can be stable, and which may play an important role during the design of such a mechanical system.

Appendix: Expression of parameters for the system with six dofs

Here, we give the definition of parameters of equation [START_REF] Amabili | Theory and experiments for largeamplitude vibrations of rectangular plates with geometric imperfections[END_REF].

With the definition of the Ritz shape function Φ given in section 2.2, the transverse displacement is given by: j (x, y,t) = λ j ( x L x ) 2 for 1 ≤ j ≤ 6 (32)

Lagrange's equations are given by:

d dt ∂T t ∂ λ j i + ∂U t ∂λ j i + ∂V t ∂λ j i = ∂W t ∂λ j i for 1 ≤ i ≤ N, 1 ≤ j ≤ n (33)
Then the different terms of Lagrange's equations (33) become: F j (t) = Φ(x j f , y j f ) f j (t) m = f j (t) m (35)

  (a) Simplified model of a bladed disc (b) Rectangular plate and system of coordinates
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 1 Figure 1. Retained model and system of coordinates for a rectangular plate
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 2 Figure 2. Algorithm for the computation of solutions by Arc-Length continuation
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 3 Figure 3. Mode shapes of the linear system[START_REF] Ribiero | Nonlinear vibration of plates by the hierarchical finite element and contination method[END_REF] 
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 45 Figure 4. Backbone curves and deformed shapes for natural NNMs with 0 (a) or 3 (b) nodal diameters

Figure 6 .Figure 7 .

 67 Figure 6. Backbone curve of NNM3D (-) and its localized bifurcations (-• -)(a: 1 sector, b: 2 sectors, c: 3 sectors, d: 4 sectors)

Figure 8 .

 8 Figure 8. Backbone curves of traveling wave motions with one nodal diameter (a), two nodal diameters (b), two nodal diameters localized on three sectors (c)

Figure 9 .

 9 Figure 9. Time series of the two nodal diameters localized traveling wave

a f = 1/ 8 Figure 10 .Figure 11 .

 81011 Figure 10. Nonlinear forced response for a low engine order with zero nodal diameter (-: stable, • • • : unstable, -• -: linear response)

Figure 12 .

 12 Figure 12. Nonlinear forced response for a localized excitation on sector 1 with a f = 2,5 16 (-: stable, • • • : unstable, -• -: linear response)

Figure 13 .Figure 14 .

 1314 Figure 13. Nonlinear forced response for a localized excitation on sector 1 with a f = 3,222 16 (-: stable, • • • : unstable, -• -: linear response)

Figure 15 .

 15 Figure 15. Nonlinear forced response for a localized excitation on sector 1 with a f = 1 4 (-: stable, • • • : unstable, -• -: linear response)

3 Figure 17 .Figure 18 .

 31718 Figure 17. Nonlinear forced response for a detuned excitation with ε 1 = 1% (-: stable, • • • : unstable, -• -: linear response)

Figure 19 .

 19 Figure 19. Nonlinear forced response for a detuned excitation with ε 1 = 70% (-: stable, • • • : unstable, -• -: linear response)

  d dt ∂T ∂ λ j = m λ j ∂U ∂λ j = mαλ j + mβ(λ j ) 3 ∂V ∂λ j = mc(2λ jλ j+1 -λ j-1 ) ∂W ∂λ j = mF j (t)