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(a) École Centrale de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes
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ABSTRACT
This work is devoted to the study of non linear dynamics of

structures with cyclic symmetry under geometrical nonlinearity
using the harmonic balance method (HBM). In order to study the
influence of the non-linearity due to large deflection of blades a
simplified model has been developed. It leads to nonlinear differ-
ential equations of the second order, linearly coupled, in which
the nonlinearity appears by cubic terms. Periodic solutions in
both free and forced cases are sought by the HBM coupled with
an arc length continuation and stability analysis.

In this study, a specific attention has been paid to the eva-
luation of nonlinear modes and to the influence of excitationon
dynamic responses. Indeed, several cases of excitation have been
analyzed: punctual one and tuned or detuned low engine order.
The paper shows that for a localized, or sufficiently detuned, ex-
citation, several solutions can coexist, some of them beingrep-
resented by closed curves in the Frequency-Amplitude domain.
Those different kinds of solution meet up when increasing the
force amplitude, leading to forced nonlinear localization. As the
closed curves are not tied with the basic nonlinear solutionthey
are easily missed. They were calculated using a sequential con-
tinuation with the force amplitude as a parameter.

Keywords: Geometrical nonlinearity, nonlinear normal
modes, bifurcation, localization.

NOMENCLATURE
AAAk, BBBk HBM coefficients.
FFF(t) Time domain external forces.

GGG(YYY ,ω) Algebraic system given by the HBM.
KKKnl Nonlinear stiffness.
MMM, KKK Mass and Linear stiffness matrices.
T,U Kinetic and strain energy.
V Strain energy of a linear stiffness.
W Work due to external forces.
XXX(t) Time domain vector of dof.
YYY Vector of HBM coefficient.
Lx, Ly, h Plate length, width and thickness
Jy, Jω Jacobian ofGGG with respect toYYY or ω.
u, v, w Displacements.
ΦΦΦc

i , ΦΦΦs
i Linear deformed shapes.

ΦΦΦi Ritz shape functions.
λ j

i Ritz coordinates (dof).
ρ Density.
ω, Ω Free frequency, Excitation frequency.

1 Introduction
The study considers both free and forced vibrations of struc-

tures with cyclic symmetry under geometrical nonlinearity. This
class of systems appears in the model of bladed disc or space an-
tenna [1], [2]. It leads to nonlinear differential equations of the
second order, linearly coupled, in which the nonlinearity appears
by cubic terms.

In the linear case, most of the natural frequencies appear in
pair due to the perfect symmetry of the problem. These natural
frequencies are related to deformed shapes with nodal diame-
ters [3]. For weakly coupled and weakly mistuned systems, lo-

1



calization can take place leading to motions that are confined on
only a few substructures.

In the nonlinear case, the study of free vibrations relies on
the definitions of nonlinear normal modes (NNMs) which have
leads to many scientific papers [4] [5]. Unlike linear system,
the number of NNMs can exceed the number of dofs. The other
NNMs arise from bifurcations. In both free and forced cases,if
the ratio between the coupling of the substructure and the non-
linearity is small, Vakakis [6] showed that nonlinear localization
can take place in a perfectly symmetric system. When this ra-
tio increases, bifurcations occur and nonlinear localization dis-
appear. Traveling waves motions have also been detected in such
systems [7], [1].

In recent works, Peeters [8] [1] used a shooting method cou-
pled with a continuation algorithm to study the NNMs of a sys-
tem with cyclic symmetry. Similar and non similar NNMs have
been found. Moreover, he studied the modal interactions be-
tween modes. He showed that these interactions can occur even
if the natural frequencies of the modes are not commensurable,
and he detected a countable infinity of such interactions.

The aim of this paper is to study both free and forced non-
linear vibrations of a bladed disc, using the HBM coupled with
an arc length continuation. This study emphases the numerous
bifurcation that can happen in this kind of system. Attention has
been paid to the localization phenomenon, and particularlyto the
link between non symmetric loading and localization. The effect
of the force amplitude on the solutions is also studied.

2 Simplified model
Consider a structure with cyclic symmetry made ofn iden-

tical substructures called sectors. As a result of its dimension,
its materials, and because of the external effort, such sectors can
experiment large deflections leading to geometrical nonlinearity.

Many papers have studied the effect of geometrical nonlin-
earity on thin structures. Among others, Benamar [9] and Am-
abili [10], focused on the case of thin rectangular plates with
large deflection. The case of circular shells have been studied by
Touzé [11], and the case of beams by Lewandowski [12] [13].

Here the computation of our simplified mathematical model
for a structure with cyclic symmetry is describe. In this paper,
each sector is modeled by a thin rectangular plate clamped onone
edge to a fixed frame. The coupling between the substructure is
realized by a linear stiffness (fig.1 a). First, only one sector will
be considered in order to obtain the expression of the different
kinds of energy. These preliminary results will then be applied
to the system with cyclic symmetry.

2.1 Preliminary considerations for one sector
This section focuses on a single sector. The retained hypo-

thesis will be presented and expressions for the different kinds of

(a) Simplified model of a bladed disc

(b) Rectangular plate and system of coordinates

Figure 1. Retained model and system of coordinates for a rectangular

plate

energy will be given.

Consider a plateP with dimensionsLx, Ly, and thickness
h in a Cartesian system of coordinates(O,x,y,z), clamped on
the edge(x = 0). The displacement of a point with coordinates
(x,y,z) in the direction(Ox) (respectively(Oy), (Oz)) is denoted
by u (respectivelyv, w) (fig.1 b).

Elastic strain energy of a plate The Love-Kirchhoff
hypothesis for the displacement are used so that the displacement
uuu is expressed as:

uuu(x,y,z) =





u(x,y,z)
v(x,y,z)
w(x,y,z)



 =





−z ∂w
∂x

−z ∂w
∂y

w(x,y)



 (1)

In addition, the use of the Von Karman nonlinear strain-
displacement relationships and the standard bidimensional
Hooke’s law [14], leads to the following expression for the elas-
tic strain energy U:

2



U =
1
2

Eh
(1−ν2)

∫ Lx

0

∫ Ly/2

−Ly/2
(
1
2
(
∂w
∂x

)2)2 +(
1
2
(
∂w
∂y

)2)2

+2ν(
1
2
(
∂w
∂x

)2 1
2
(
∂w
∂y

)2)+
1−ν

2
(
∂w
∂x

∂w
∂y

)2dxdy

+
1
2

Eh3

12(1−ν2)

∫ Lx

0

∫ Ly/2

−Ly/2
(
∂2w
∂x2 )2 +(

∂2w
∂y2 )2

+2ν
∂2w
∂x2

∂2w
∂y2 +

1−ν
2

(2
∂2w
∂x∂y

)2dxdy

(2)

whereE is the Young’s modulus andν is the Poisson’s ratio.

Kinetic energy and external load By neglecting ro-
tary inertia, the kinetic energyT of a rectangular plate is given
by :

T =
1
2

ρh
∫ Lx

x=0

∫ Ly/2

y=−Ly/2
(u̇2 + v̇2+ ẇ2)dxdy (3)

In this paper the terms ˙u2+ v̇2 will be omitted since it is inO(h2)
which is small compared to ˙w2 which is in O(1). The kinetic
energy is therefore given by :

T =
1
2

ρh
∫ Lx

x=0

∫ Ly/2

y=−Ly/2
ẇ2dxdy (4)

The workW due to external forces is written as:

W =

∫ Lx

x=0

∫ Ly/2

y=−Ly/2
( fxu + fyv + fzw)dxdy (5)

where fx, fy, fz represent the distributed forces per unit area act-
ing respectively in(Ox), (Oy), (Oz) directions. In this study only
a localized harmonic force orthogonal to the plate is considered,
thus fx = fy = 0. The external loadfz of a localized force is given
by :

fz = A f cos(Ωt)δ(x− x f )δ(y− y f ) (6)

whereΩ is the excitation frequency,t is the time,δ is the Dirac
function,A f is the force amplitude and(x f ,y f ) = (Lx,0). In this
case, equation (5) can be rewritten as:

W = w(Lx,0)A f cos(Ωt) (7)

2.2 Equation of motion for the structure with cyclic
symmetry

Let’s come back to the structure with cyclic symmetry. For
1 ≤ j ≤ n, w j denotes the transverse displacement of the plate
number j, U j its strain energy,T j its kinetic energy, andW j

the work due to external forces on this plate.U j, T j andW j

are obtain by substitutingw by w j in equations (2),(4),(7). The
coupling between substructures is modeled by massless linear
stiffness of valuek. These stiffness are positioned in a point
(xr,yr) = (Lx/4,0) for all plates. The energyV j of such stiff-
ness between the platesj and j +1 is given by:

V j = 1
2k(w j(xr,yr)−w j+1(xr,yr))

2

for 1≤ j ≤ n with conventionj +1 = 1 if j = n
(8)

The total energiesUt , Tt , Vt andWt are then given by the sum over
the number of platesn of the different local energiesU j, T j, V j

andW j.
The discretization of the transverse displacementw j in now

introduced. This discretization is done by a Rayleigh-Ritz
method [15], and it allows us to have a simplified model of the
system. Transverse displacementsw j are interpolated by the fol-
lowing expression:

w j(x,y,t) =
N

∑
i=1

λ j
i (t)Φi(x,y) (9)

where (Φi) are kinematically admissible shape functions,λ j
i is

the contribution of the shape functionΦi in the displacementw j,
andN is the number of shape functions used for the interpola-
tion. This method leads to a discretized problem withnN un-
knowns(λ j

i )1≤i≤N,1≤ j≤n. Equations of motion are then given by
Lagrange’s equations (Appendix).

In this paper, we propose to study a system with six identical
substructures (n = 6), of which displacements are interpolated by
a single Ritz shape function (N = 1). This will leads to a problem
with six degrees of freedom which will be used for numerical
computation.

The retained shape function for the example isΦ = ( x
Lx

)2,
it satisfies the boundary condition clamped atx = 0. By using
Lagrange’s equations we finally obtained the following equations
of motion:

ẌXX + KXXX +βXXX3 = FFF(t) (10)

with XXX = (λ j)1≤ j≤6, the conventionXXX3 = (x3
j)1≤ j≤6, andK a

Copyright c 2010 by ASME3



matrix defined by:

K =

















α +2c −c 0 0 0 −c
−c α +2c −c 0 0 0
0 −c α +2c −c 0 0
0 0 −c α +2c −c 0
0 0 0 −c α +2c −c
−c 0 0 0 −c α +2c

















(11)

whereα, c, β, andFFF are given in appendix

3 Resolution method: Harmonic Balance Method
3.1 Principle of the HBM

The HBM is a widely spread method for solving non lin-
ear differential equations. One of the advantages of this method
is that it can treat weakly or strongly non linear system in the
same way. It can be used for problem with friction [16] [17], or
geometrical nonlinearity [12], [18].

Consider the following system of non linear differential
equations

MẌXX + KXXX + KKKnl(((XXX))) = FFF(t) (12)

whereXXX is a vector of unknowns of dimensionn, M andK the
mass and linear stiffness matrix of the system,KKKnl the non linear
forces, andFFF the external forces.

The HBM consists in finding of periodic solutionsXXX of the
form:

XXX(t) = AAA0 +
Nh

∑
k=1

AAAk cos(kωt)+ BBBk sin(kωt) (13)

whereNh is the number of retained harmonics.
Substituting equation (13) in equation (12),

and projecting the result on the trigonometric base
(1,(cos(kωt),sin(kωt))1≤k≤Nh), one obtains a set ofn(2Nh + 1)
algebraic nonlinear equations withn(2Nh + 1) + 1 unknowns
(AAAk)0≤k≤Nh ,(BBBk)1≤k≤Nh andω.

The most important parameter in this method is the number
Nh of retained harmonics. This number is not known a priori,
so convergence studies are needed to ensure a good estimation
of the solution. In one hand the higherNh is the better the solu-
tion. But in another hand, whenNh is too high, computations can
require many time and memory. However, in many cases, few
harmonics are needed to ensure a good convergence leading to
reasonable system size.

3.2 Numerical procedure: Arc length continuation
In a general way, the algebraic system obtains by the HBM

can be reformulated as following:

GGG(YYY ,ω) = 0 (14)

whereYYY is a vector of dimensionn(2N + 1) containing the un-
known(AAAk)0≤k≤N and(BBBk)1≤k≤N , andGGG is a nonlinear function
taking its values in a space of dimensionn(2N + 1). This sys-
tem is going to be solved by an arc length continuation method.
Continuation methods consist in finding numerically a series of
points(YYY i,ωi)0≤i≤M which verifies the following criterion :

GGG(YYY i,ωi) ≤ ε (15)

whereε is a small parameter which determines the accuracy of
the solution. In an arc-length continuation, solutions areparam-
eterized by the arc-lengths, so that(YYY i,ωi) = (YYY (si),ω(si)). The
method takes place in two steps : a predictor step which givesan
estimation of the solution and a corrector step which correct the
solution until the criterion (15) is achieve. In the study a tangent
predictor and the Newton-Raphson corrector have been chosen.
Further explanations can be found in [19]. A sum up of the con-
tinuation algorithm is given in Fig.2. This algorithm has been
implemented in the Matlab software.

Figure 2. Algorithm for the computation of solutions by Arc-Length con-

tinuation

3.3 Stability of solutions and bifurcations
The stability of periodic solutions is determined by Floquet

theory. It needs the computation of the monodromy matrix and
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of its eigenvalues. A detailed presentation of the method isgiven
in [19].

Here, the focus is on the bifurcation that the system can
withstand. There is two way of detecting a bifurcation. First, by
monitoring the eigenvalues of the monodromy matrix: if some
eigenvalues go outside the unit circle then there is a bifurcation,
the type of the bifurcation is determined by the way that the
eigenvalues leave the unit circle. The second method to detect
bifurcations is by monitoring the determinant|Jy| of the jaco-
bian matrix[Jy] = ∂GGG

∂YYY of system (14): when this determinant is
zero at some point, then the matrix[Jy] is singular and this point
is a bifurcation point. The type of bifurcation is determined by
the range of the matrix[Jy Jω] (whereJω = ∂GGG

∂ω). For a turn-
ing point, the range of[Jy Jω] is n, and there is no particular
treatment to apply since the arc length continuation can handle
turning points. For a branching point, the range of[Jy Jω] is at
mostn−1, so there is at least two tangent vectorsTTT = [TTT yyy Tω]t

such that[Jy Jω]TTT = 0. There is two way of computing the bifur-
cated branches. The first method is to add a small perturbation
to the functionGGG(YYY ,ω) in the vicinity of the bifurcation point.
Since branching points are structurally unstable, the perturbation
breaks the bifurcation. Once another branch have been detected
with the continuation algorithm, one remove the perturbation and
carry on the continuation [19]. The other method is to compute
the eigenvectorsΨi of the matrix[Jy] associated with the zero
eigenvalue at the bifurcation point. The eigenvectorsΨi indicate
the directions to be followed [14].

4 Free vibrations of a system with six dofs
The first objective of this paper is to estimate the free solu-

tions of system (10). The natural approach is to use the nonlinear
normal modes (NNMs) which have lead to numerous publica-
tions. A survey about NNMs is given in [4] and [5]. The most
used definition of NNM is the one given by Rosenberg in [20],
in which he defines the NNMs by the vibrations in unison of a
free and undamped system. Other approaches to define NNMs
exist, they are based on geometrical arguments like the invariant
manifold definition proposed by Shaw and Pierre [21], or based
on the normal form theory [11].

In this section, the underlying linear system of problem (10)
will first be studied. This will give starting points for the study of
the nonlinear system. Then, the search for the NNMs of system
(10) by the HBM coupled with an arc length continuation will be
carried out.

Numerical values for the physical parameters are introduced
:

Lx = 1,5m, Ly = 0,3m, h = 0,03m,
E = 210GPa, ν = 0.3, k = 8.105N.m−1 (16)

which correspond to the following values for the parametersof

equation (10):

α = 8,7662.103s−2, c = 148,36s−2, β = 4,6752.107m−2.s−2

(17)

Modal analysis of the underlying linear system
The underlying linear system of problem (10) is given by:

ẌXX + KXXX = FFF(t) (18)

Linear normal modes (LNMs) are given by the resolution of
the eigenvalue problemKΦ = ω2Φ. Matrix K have single and
double eigenvalues, but double eigenvalues represent the major-
ity [3]. With each double eigenvalue are associated two distinct
deformed shapes which are not uniquely defined. The mode
shapes are characterized by their number of nodal diametersp.
The eigenvalues and eigenvectors of matrixK are given by (the
linear frequencies are given inrad.s−1):

ω0 =
√

α = 93.63 Φ0 = [1, 1, 1, 1, 1, 1]

ω1 =
√

α + c = 94.42 Φc
1 = [1, 1, 0, −1, −1, 0]

Φs
1 = [1, 1

2, − 1
2, −1, − 1

2, 1
2 ]

ω2 =
√

α +3c = 95.98 Φc
2 = [1, −1, 0, 1, −1, 0]

Φs
2 = [1, − 1

2, − 1
2, 1, − 1

2, − 1
2 ]

ω3 =
√

α +4c = 96.75 Φ3 = [1, −1, 1, −1, 1, −1]

(19)

The deformed shapes of equation (19) are depicted in Fig.3

Nonlinear normal modes In this section, the nonlinear
normal modes of system (10) are computed with the algorithm
described earlier. NNMs branches are computed by starting from
the corresponding linear normal mode at low amplitude. These
branches are termed the backbone curves, and they are repre-
sented in an Energy-Frequency plot as in [1]. The energy con-
sidered here is defined by:

E(XXX) =
√

‖A0‖2 +∑
k

(‖Ak‖2 +‖Bk‖2) (20)

whereAAAk and BBBk are the HBM coefficients defined in relation
(13). Since the non linearity is odd and because there is no
damping in system (10), only odd harmonics and cosine terms
are retained in the development ofXXX (the last condition corre-
sponds to a phase condition in which all initial velocities are set
to zero). A convergence study with the number of harmonic on
the zero nodal diameter mode showed that a good approximation
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Figure 3. Mode shapes of the linear system (18)

can be obtained when retaining only the first and the third har-
monic. This approximation holds for amplitudes of vibration up
to the plate thicknessh. We suppose that this remark holds for
all NNMs. Therefore the NNMs of system (10) are sought of the
form:

XXX(t) = AAA1cos(ωt)+ AAA3cos(3ωt) (21)

Natural nonlinear normal modes We call a natural
NNM, a NNM which is directly born from a LNM at low mag-
nitude of vibration. Since there are six LMNs, there will be six
natural NNMs. They are represented in Fig.4 and Fig.5. The
first noticeable feature in these figures is the Frequency-Energy
(or amplitude) dependence of the NNMs. In addition to the de-
pendence of their oscillation frequency, the NNMs may also have
their modal shapes varying with the amplitude of vibration:these
are nonsimilar NNMs. NNMs born from the LNMs shapesΦc

i
(i = 0, 1, 2, or 3) defined in equation (19) are similar NNMs,
and NNMs born from the LNM shapesΦs

i (i = 1,2) are nonsim-
ilar NNMs.

For double modes, the two backbones curves associated with
thep nodal diameter mode (p = 1 or 2) are different (fig.5). This
is because the number of sector is of the formn = 2m with m
odd.

As we shall see, other NNM branches bifurcate from these
backbone curves.

Bifurcated NNMs This section focus on the NNM with
3 nodal diameters (NNM3D). By using the procedure described
in section 3.3, several branching point bifurcations have been de-
tected and bifurcated branches have been computed. They are
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Figure 4. Backbone curves and deformed shapes for natural NNMs with
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Figure 5. Backbone curves and deformed shapes for natural NNMs with

1 (a) and 2 (b) nodal diameters

represented in Fig.6 (dashed curves) along with the backbone
curve of NNM3D (continuous curve). The mode shapes of bifur-
cated branches for a frequency about 190rad.s−1 are depicted in
Fig.7. The bifurcated branches correspond to localized NNMs.
It means that only one (strongly localized) or several (weakly lo-
calized) sectors have a non negligible amplitude of motion,the
others remaining virtually motionless [6]. Such localization phe-
nomenon was already observed in a linear mistuned system [22],
but here, and in general nonlinear system with cyclic symmetry,
it occurs without structural disorder. The spatial confinement of
the energy causes the responses of some sectors to be high and
might lead to premature failure of the blades.

Traveling waves All the NNMs computed so far corre-
spond to standing wave motions in the sense that the dofs vibrate
in a synchronous way as in Rosenberg’s definition of NNMs.
Some papers [7], [1] refer to traveling wave motions in which
vibrations are not synchronous anymore. For Vakakis [7], these
traveling waves arise from a 1:1 internal resonance betweenthe
two modes associated with the same number of nodal diameter.

Because of the phase difference between the dofs, a differ-
ent phase condition is considered for traveling wave NNMs com-
putation. Sine terms are re-introduce in the HBM development
of solutionXXX in order to take into account the phase difference.
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Figure 7. Deformed shapes of the bifurcated modes for a frequency ω=
190rad.s−1

ThereforeXXX is now sought of the following form:

XXX(t) = AAA1cos(ωt)+ BBB1sin(ωt)+ AAA2cos(3ωt)+ BBB2sin(3ωt)
(22)

The starting point, at low amplitude of vibration, for the contin-
uation algorithm is given by:

AAA1 = εcos(φφφp) AAA2 = 000
BBB1 = εsin(−φφφp) BBB2 = 000

(23)

where p correspond to the number of nodal diameter (p =
1,or 2), ε is the amplitude of vibration (considered small) and

φφφp is a vector which coordinates((φφφp)i)1≤i≤6 are defined by:

(φφφp)i = (i−1)
2pπ
6

(24)

These starting points enable the computation of traveling
waves propagating in the anticlockwise direction. Their com-
panions, propagating in the clockwise direction, can be obtain
by replacingφφφp by−φφφp in equation 23.

The backbone curves of traveling waves are given in Fig.8
(curves a and b). By monitoring the jacobian matrix as indicated
in section 3.3, a branch that bifurcate from the traveling wave
with 2 nodal diameters has been found (fig.8 curve c). This bi-
furcated branch is quite noticeable because it can be seen asa
weakly localized traveling wave since only three of the six sec-
tors vibrate with non negligible amplitude. To illustrate the phase
difference between coordinates, we plotted in fig.9 the timese-
ries of the six blades for the 2 nodal diameters localized traveling
wave motions.
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Figure 8. Backbone curves of traveling wave motions with one nodal

diameter (a), two nodal diameters (b), two nodal diameters localized on

three sectors (c)

5 Forced vibrations
Results from the previous section (free vibrations) are in

agreement with the literature regarding structure with cyclic
symmetry under geometric (cubic) nonlinearity [1], [7] [2]. They
highlight the complexity of the free dynamic of such structures.
Obviously, this complexity is going to come back in forced vi-
brations. We here propose to study the impact of the different
external loading on the forced response. Simulations are carried
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Figure 9. Time series of the two nodal diameters localized traveling wave

out for the structure with six dofs which correspond to system
(10). Numerical parameters are the same as in the previous sec-
tion. In order to have finite amplitude response, a damping term
is added to system (10) which becomes:

ẌXX +δẊXX + KXXX +βXXX3 = FFF(t) (25)

with δ a damping coefficient defined byδ = ω0/200.
The right hand side of equation (25) is considered to be of

the following form:

FFF(t) = AAAF cos(Ωt) (26)

whereAAAF stands for the shape and magnitude of the external
force andΩ stands for the excitation frequency.

Solutions are computed by the HBM. Stability of solutions is
investigated using Floquet theory, and bifurcations are detected
as described in section 3.3. Since the nonlinearity is odd, only
odd harmonics are retained in the HBM approximation. A con-
vergence study of the stability with the number of retained har-
monics showed that keeping the first and the third harmonic is
sufficient enough to ensure valid results on stability. Therefore,
solutions of equation (25) are sought of the form:

XXX(t) = AAA1cos(Ωt)+ BBB1sin(Ωt)+ AAA2cos(3Ωt)+ BBB2cos(3Ωt)
(27)

Three kinds of excitationwill be considered. First, low en-
gine order excitation, then localized excitation, and finally, de-
tuned excitation. In all cases, a parametric study with the force

amplitude as parameter has been carried out. Because of sym-
metry, only one (or four) of the six sectors are going to be repre-
sented.

5.1 Low engine order excitation with zero nodal diam-
eters

In this section, the forced response of system (25) is studied
for an excitationF(t) which takes the shape of the zero nodal
diameters LNM. This means thatF(t) is of the form:

FFF(t) = AAAF cos(Ωt) with AAAF = a f ΦΦΦ (28)

whereΦΦΦ is equal toΦΦΦ000 of equation (19)

The effect of the force amplitudea f on the form and on the
stability of solutions is studied. For low force amplitude (Fig.10
a), the response of the nonlinear system is close to the one of
the underlying linear system, and the solution is stable forall
frequenciesΩ. By increasing the force amplitude (Fig.10 b), an
unstable zone is generated between two turning points. When
the force amplitude is increased again (Fig.11), a second zone
of instability is generated after the second turning point.This
second zone takes birth through a branching point bifurcation.
By using the branch switching method described in section 3.3, a
bifurcated branch of solution has been computed. The bifurcated
branch is stable for a few points at the beginning of the curve
and then an instability is generated through a Hopf bifurcation.
The area near the peak of the bifurcated solution is stable and
correspond to a weakly localized motion (framed areas of Fig.11)
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Figure 10. Nonlinear forced response for a low engine order with zero

nodal diameter (−: stable, · · · : unstable, −·−: linear response)
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response)

5.2 Localized excitation
In this section, the external loading acts on only one sector

(the first one), therefore the force is given by:

FFF(t) = a f

















1
0
0
0
0
0

















cos(Ωt) (29)

The forced response has been computed for several values
of the amplitudea f . Results are depicted from Fig.12 to Fig.15.
Because of symmetry only the response for four of the six sectors
has been represented.

For values of amplitude froma f = 0 to a f = as
f ≈ 0.8

4 , the
nonlinear response is topologically equivalent to the response of
the underlying linear system (fig.12).

Whena f is larger thanaloc
f ≈ 0.9125

4 , stable forced localiza-
tion occurs (fig.15): for a well chosen excitation frequency(be-
tween 98 and 100rad.s−1), only the excited sector vibrate with
a non negligible amplitude, and this kind of motion is stable.
Moreover the part of the curve corresponding to forced local-
ization is positioned around the backbone curve of the strongly
localized NNM which have been computed in the previous sec-
tion (free vibration). These results are in agreement with those
of Vakakis presented in [23].

Whenas
f ≤ a f ≤ aloc

f (Fig.14 and Fig.13), it is possible to

find another type of solution. These new solutions are repre-
sented by closed curve in the Amplitude-Frequency diagram.
They are not tied up with the basic nonlinear response, but they
are positioned around the backbone curve of the strongly local-
ized NNM. Stability analysis shows that some parts of the closed
curves can be stable for points that have very larger amplitude
than the basic nonlinear solution.

Since the closed curves are not tied up with the basic non-
linear response, they are unreachable with a unique continuation
scheme. To compute the closed curves, a sequential continu-
ation with fixed frequency and with the force amplitudea f as
a parameter has been used. The starting point was taken from
the part of the curve that correspond to forced localization(for
a f ≥ aloc

f ), then the force amplitude was decreased by continua-

tion until a f ≤ aloc
f . The results obtained this way have been used

as starting points for the arc length continuation. This method is
illustrated in Fig.16.

The new kind of solution makes us think that forced local-
ization is the result of the fusion of the closed curve with the
basic nonlinear solution whena f = aloc

f . Whereas the basic non-
linear solution seems to be weakly nonlinear since it is close to
the linear solution, there exist stable solutions (the closed curve)
which have a large vibration amplitude and which could be at-
tained depending on initial conditions. This remark is important
because the closed curves could be easily missed by a classical
continuation scheme, thus leading to a wrong design of the struc-
ture.
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Figure 12. Nonlinear forced response for a localized excitation on sector

1 with a f = 2,5
16 (−: stable, · · · : unstable, −·−: linear response)
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Figure 13. Nonlinear forced response for a localized excitation on sector

1 with a f = 3,222
16 (−: stable, · · · : unstable, −·−: linear response)
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Figure 14. Nonlinear forced response for a localized excitation on sector

1 with a f = 3,4
16 (−: stable, · · · : unstable, −·−: linear response)

5.3 Detuned low engine order with zero nodal diame-
ter excitation

It has been seen that in the case of low engine order excita-
tion the system response is simpler than in the case of localized
excitation. However we have to keep in mind that realistic exci-
tations are not perfectly symmetric. So now, the external forces
are considered detuned, that is a perturbation is added to the low
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Figure 15. Nonlinear forced response for a localized excitation on sector

1 with a f = 1
4 (−: stable, · · · : unstable, −·−: linear response)
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engine order excitation. The perturbation is assumed to actonly
on the force amplitude. The external forces are then given by:

FFF(t) = (Φ+ ε)cos(Ωt) (30)

whereΦ is a linear deformed shape andε is a vector characteriz-
ing the perturbation

Because of the projection in the HBM, adding a perturbation
to the force is equivalent to adding a perturbation to the func-
tion GGG(YYY ,ω) defined in equation (14). Then the branching point
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bifurcations which are structurally unstable will disappear [19].
Thus, bifurcated branches will be part of the nonlinear solution
and will be obtained by the continuation method.

Here, only a low engine order with zero nodal diameters is
considered, but similar results could be obtained with the other
vibration modes. Finally, the perturbation is assumed to act only
on the first coordinate of the force. Therefore we have:

FFF(t) = a f

















1+ ε1

1
1
1
1
1

















cos(Ωt) (31)

whereε1 correspond to the detuning percentage of the force with
zero nodal diameter. In the remainder of the paper the force am-
plitudea f will be set toa f = 1

4.
Simulations start withε = 1%. Results are represented in

Fig.17. As expected the bifurcated branch of the caseε = 0%
(Fig.11) is now a part of the solution.

When ε1 becomes larger than 26% it is possible to com-
pute a secondary solution which correspond to a closed curve.
This kind of solution is represented in Fig.18 forε1 = 40%. This
closed curve have stable parts, and it merges to the basic nonlin-
ear solution forε1 = 70% (Fig.19).

In this example the closed curve have been detected when
the detuning is larger than 26% which is a quite significant de-
tuning level. However, the threshold for the detection of closed
curve is highly dependent on the damping of the system: for a
smaller damping the closed curves would have appeared sooner.

6 Conclusion
In this study, the free and forced response of a system with

cyclic symmetry under geometric nonlinearity has been com-
puted. The discretized equation of has been obtained by a
Rayleigh-Ritz method. Solutions were computed by the har-
monic balance method, stability was investigated using Floquet
theory and bifurcations were computed through a branch switch-
ing algorithm.

In the free case, in addition to natural nonlinear normal
modes, other vibration modes were detected by studying the
branching point bifurcation of the system. Some of the bifur-
cated solutions correspond to localized nonlinear modes. Travel-
ing wave motions have also been detected in this study.

In the forced case, when the excitation is localized to one of
the substructure or sufficiently detuned, in addition to theba-
sic nonlinear response, another kind of solution has been de-
tected. This secondary solution is represented by closed curve in
the Amplitude Frequency diagram, and it merge with the basic
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Figure 17. Nonlinear forced response for a detuned excitation with ε1 =
1% (−: stable, · · · : unstable, −·−: linear response)
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Figure 18. Nonlinear forced response for a detuned excitation with ε1 =
40%(−: stable, · · · : unstable, −·−: linear response)

nonlinear solution when increasing the force amplitude, leading
to forced nonlinear localization. For low engine excitations, we
computed several bifurcated branches which also correspond to
stable localized motions.

This study is based on a simple model, therefore the results
remains at a theoretical level. However, this paper highlights the
complex dynamic of system with cyclic symmetry under geomet-
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Figure 19. Nonlinear forced response for a detuned excitation with ε1 =
70%(−: stable, · · · : unstable, −·−: linear response)

rical nonlinearity. Of importance is the detection of closed curve
solutions which can be stable, and which may play an important
role during the design of such a mechanical system.

Appendix: Expression of parameters for the system
with six dofs

Here, we give the definition of parameters of equation (10).
With the definition of the Ritz shape functionΦ given in

section 2.2, the transverse displacement is given by:

w j(x,y,t) = λ j(
x

Lx
)2 for 1≤ j ≤ 6 (32)

Lagrange’s equations are given by:

d
dt

∂Tt

∂λ̇ j
i

+
∂Ut

∂λ j
i

+
∂Vt

∂λ j
i

=
∂Wt

∂λ j
i

for 1≤ i ≤ N, 1≤ j ≤ n (33)

Then the different terms of Lagrange’s equations (33) become:

d
dt

∂T
∂λ̇ j

= mλ̈ j

∂U
∂λ j = mαλ j + mβ(λ j)3

∂V
∂λ j = mc(2λ j −λ j+1−λ j−1)
∂W
∂λ j = mF j(t)

(34)

With:

m = ρ
∫

P Φ2dP =
ρhLxLy

5

α = 5
3

Eh2

ρL4
x (1−ν2)

β = 8E
ρL4

x(1−ν2)

c = k
m Φ(xr,yr)

2 = 1
256

k
m

F j(t) = Φ(x j
f ,y

j
f )

f j(t)
m = f j(t)

m

(35)
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