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ABSTRACT G(Y,w) Algebraic system given by the HBM.

This work is devoted to the study of non linear dynamics of K, Nonlinear stiffness.
structures with cyclic symmetry under geometrical nordhitgy M, K Mass and Linear stiffness matrices.
using the harmonic balance method (HBM). Inorderto stugyth T U Kinetic and strain energy.
influence of the non-linearity due to large deflection of lelsid V  Strain energy of a linear stifiness.
simplified model has been developed. It leads to nonlindfardi W Work due to external forces.
ential equations of the second order, linearly coupled, hcty X(t)
the nonlinearity appears by cubic terms. Periodic solstion
both free and forced cases are sought by the HBM coupled with
an arc length continuation and stability analysis.

In this study, a specific attention has been paid to the eva-
luation of nonlinear modes and to the influence of excitation
dynamic responses. Indeed, several cases of excitatiertiesn ) )
analyzed: punctual one and tuned or detuned low engine.order ®i  Ritz shape functions.

The paper shows that for a localized, or sufficiently detyeead Al Ritz coordinates (dof).

citation, several solutions can coexist, some of them begpg p Density.

resented by closed curves in the Frequency-Amplitude domai  w, Q Free frequency, Excitation frequency.
Those different kinds of solution meet up when increasirgy th

force amplitude, leading to forced nonlinear localizatiés the

Time domain vector of dof.

Y Vector of HBM coefficient.

Ly, Ly, h  Plate length, width and thickness
Jy, Jw Jacobian ofG with respect tof or w.
u,v,w Displacements.

®f, ®° Linear deformed shapes.

closed curves are not tied with the basic nonlinear solutey 1 Introduction

are easily missed. They were calculated using a sequeotial ¢ The study considers both free and forced vibrations of struc

tinuation with t.he force amplitude as a parameter. tures with cyclic symmetry under geometrical nonlinearftiis
Keywords: Geometrical nonlinearity, nonlinear normal 555 of systems appears in the model of bladed disc or space a

modes, bifurcation, localization. tenna [1], [2]. It leads to nonlinear differential equatioof the

second order, linearly coupled, in which the nonlinearfipears
by cubic terms.

In the linear case, most of the natural frequencies appear in
pair due to the perfect symmetry of the problem. These nlatura
frequencies are related to deformed shapes with nodal diame
ters [3]. For weakly coupled and weakly mistuned systems, lo

NOMENCLATURE
Ay, B HBM coefficients.
F(t) Time domain external forces.



calization can take place leading to motions that are cothfime
only a few substructures.

In the nonlinear case, the study of free vibrations relies on
the definitions of nonlinear normal modes (NNMs) which have
leads to many scientific papers [4] [5]. Unlike linear system
the number of NNMs can exceed the number of dofs. The other
NNMs arise from bifurcations. In both free and forced caffes,
the ratio between the coupling of the substructure and time no
linearity is small, Vakakis [6] showed that nonlinear lazation
can take place in a perfectly symmetric system. When this ra-
tio increases, bifurcations occur and nonlinear locabzadis-
appear. Traveling waves motions have also been detectedlin s
systems [7], [1].

In recent works, Peeters [8] [1] used a shooting method cou-
pled with a continuation algorithm to study the NNMs of a sys-
tem with cyclic symmetry. Similar and non similar NNMs have
been found. Moreover, he studied the modal interactions be-
tween modes. He showed that these interactions can ocaur eve
if the natural frequencies of the modes are not commensgjrabl
and he detected a countable infinity of such interactions.

The aim of this paper is to study both free and forced non-
linear vibrations of a bladed disc, using the HBM couplechwit
an arc length continuation. This study emphases the nuraerou
bifurcation that can happen in this kind of system. Attemtias
been paid to the localization phenomenon, and particulartiye
link between non symmetric loading and localization. THeaf
of the force amplitude on the solutions is also studied.

2 Simplified model
Consider a structure with cyclic symmetry madenaflen-
tical substructures called sectors. As a result of its dsimm)
its materials, and because of the external effort, suclosecan
experiment large deflections leading to geometrical nealiity.
Many papers have studied the effect of geometrical nonlin-
earity on thin structures. Among others, Benamar [9] and Am-
abili [10], focused on the case of thin rectangular plateth wi
large deflection. The case of circular shells have beenesuuli
Touzé [11], and the case of beams by Lewandowski [12] [13].
Here the computation of our simplified mathematical model
for a structure with cyclic symmetry is describe. In this eap
each sector is modeled by a thin rectangular plate clamped®n
edge to a fixed frame. The coupling between the substructure i
realized by a linear stiffness (fig.1 a). First, only one seutill
be considered in order to obtain the expression of the diffier
kinds of energy. These preliminary results will then be &apl
to the system with cyclic symmetry.

2.1 Preliminary considerations for one sector

This section focuses on a single sector. The retained hypo-

thesis will be presented and expressions for the differieaigkof

Linear Stiffness i

8 ] Sectors (Thin
/| RectangularPlates)

Fixed Fundation —

(b) Rectangular plate and system of coordinates

Figure 1.
plate

Retained model and system of coordinates for a rectangular

energy will be given.

Consider a platd® with dimensions.y, Ly, and thickness
h in a Cartesian system of coordinat@3,x,y,z), clamped on
the edgex = 0). The displacement of a point with coordinates
(x,Y,2) in the direction(Ox) (respectively(Oy), (Oz)) is denoted
by u (respectivelw, w) (fig.1 b).

Elastic strain energy of a plate The Love-Kirchhoff
hypothesis for the displacement are used so that the despkat
uis expressed as:

u(x.y.2) 2
uxy2) = [ vixyz | =| -2 (1)
w(X,Y,2) w(X,Y)

In addition, the use of the Von Karman nonlinear strain-
displacement relationships and the standard bidimenisiona
Hooke’s law [14], leads to the following expression for thase
tic strain energy U:
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whereE is the Young’s modulus andis the Poisson’s ratio.

Kinetic energy and external load By neglecting ro-
tary inertia, the kinetic energy of a rectangular plate is given

by :

+ V2 4+ W) dxdy (3)

Lo ly/2
/ /ffl_y/z
In this paper the terms* %+ V2 will be omitted since it is ir0(h?)

which is small compared to? which is in O(1). The kinetic
energy is therefore given by :

Lk rly/2
/ / viZdxdy 4)
2 —Ly/2
The workW due to external forces is written as:
Ly/2
/ qu + fyv+ fw)dxdy (5)

wherefy, fy, f; represent the distributed forces per unit area act-
ing respectively ifOx), (Oy), (Oz) directions. In this study only

a localized harmonic force orthogonal to the plate is considered,

thusfy = fy = 0. The external load, of a localized force is given
by :

f, = As cogQt)3(x— X )3(y— Vi) (6)

whereQ is the excitation frequency,is the time,d is the Dirac

function,As is the force amplitude ancks,ys) = (Lx,0). In this
case, equation (5) can be rewritten as:
W = w(Lx,0)As coqQt) (7

2.2 Equation of motion for the structure with cyclic
symmetry

Let's come back to the structure with cyclic symmetry. For
1< j <n, wl denotes the transverse displacement of the plate
numberj, Ul its strain energyT! its kinetic energy, andV!
the work due to external forces on this platgd, TI andW!
are obtain by substituting by w! in equations (2),(4),(7). The
coupling between substructures is modeled by massless linear
stiffness of valuek. These stiffness are positioned in a point
(%,Yr) = (Lx/4,0) for all plates. The energy! of such stiff-
ness between the platgaindj + 1 is given by:

% (WJ (X, ¥r) — WHl(Xrayr))z
nwith conventionj+1=1if j=n

(8)

V=
forl<j<

The total energied;, Ti, Vi andW are then given by the sum over
the number of plates of the different local energigg!, T1, V!
andwi,

The discretization of the transverse displacemérih now
introduced. This discretization is done by a Rayleigh-Ritz
method [15], and it allows us to have a simplified model of the
system. Transverse displacementsare interpolated by the fol-
lowing expression:

(xyt) 9)

-3l

where (P;) are kinematically admissible shape functioh-‘,s,is

the contribution of the shape functidn in the displacement!,
andN is the number of shape functions used for the interpola-
tion. This method leads to a discretized problem wibh un-
knowns(A)1<i<n,1<j<n. Equations of motion are then given by
Lagrange’s equations (Appendix).

In this paper, we propose to study a system with six identical
substructuregi= 6), of which displacements are interpolated by
a single Ritz shape functiol(= 1). This will leads to a problem
with six degrees of freedom which will be used for numerical
computation.

The retained shape function for the exampl&is- (Lix)z,
it satisfies the boundary condition clampedkat 0. By using
Lagrange’s equations we finally obtained the following equations
of motion:

X4+ KX +pX3=

F(t) (20)

with X = (\j)1<j<e, the conventiorX® = (x )1<J<6, andK a

Copyright ¢ 2010 by ASME



matrix defined by:

a+2c —-c 0 0 0 —C

—C a+2c —-c 0 0 0

- 0 —-C a+2c -c 0 0
K=l 0 0 —¢ a+2c —c¢ 0 (11)

0 0 0 —C a+4+2c -c

—C 0 0 0 —C Oa+2c

whereaq, ¢, B, andF are given in appendix

3 Resolution method: Harmonic Balance Method
3.1 Principle of the HBM

The HBM is a widely spread method for solving non lin-
ear differential equations. One of the advantages of thihak
is that it can treat weakly or strongly non linear system ia th
same way. It can be used for problem with friction [16] [1 7], o
geometrical nonlinearity [12], [18].

Consider the following system of non linear differential
equations

MX 4+ KX+ Kn (X) = F(t) (12)

whereX is a vector of unknowns of dimension M andK the
mass and linear stiffness matrix of the syst&mn,the non linear
forces, andF the external forces.

The HBM consists in finding of periodic solutiodsof the
form:

Nh
X(t) = Ao+ Accoskat) + Bysin(kat) (13)
K=1

whereN; is the number of retained harmonics.

Substituting  equation (13) in  equation (12),
and projecting the result on the trigonometric base
(1, (cos(kut),sin(kut))1<k<n, ), One obtains a set af( 2Ny + 1)
algebraic nonlinear equations with(2N, + 1) + 1 unknowns
(AK) o<k<Ny»(Bk)1<k<n, andw.

The most important parameter in this method is the number

Nn of retained harmonics. This humber is not known a priori,

S0 convergence studies are needed to ensure a good estimatio

of the solution. In one hand the highdy is the better the solu-
tion. But in another hand, whe, is too high, computations can

3.2 Numerical procedure: Arc length continuation
In a general way, the algebraic system obtains by the HBM

can be reformulated as following:

GY,w)=0

(14)

whereY is a vector of dimension(2N + 1) containing the un-
known (Ay)o<k<n and(Byg)1<k<n, andG is a nonlinear function
taking its values in a space of dimensio{2N + 1). This sys-
tem is going to be solved by an arc length continuation method
Continuation methods consist in finding numerically a seae

points(Y', w')o<i<m Which verifies the following criterion :

GY. w)<e

(15)

wheree is a small parameter which determines the accuracy of
the solution. In an arc-length continuation, solutions@asm-

eterized by the arc-lengthso that(Y', o) =

(Y(s),w(s)). The

method takes place in two steps : a predictor step which gines
estimation of the solution and a corrector step which caitres
solution until the criterion (15) is achieve. In the studyadent
predictor and the Newton-Raphson corrector have been ohose
Further explanations can be found in [19]. A sum up of the con-
tinuation algorithm is given in Fig.2. This algorithm hascbe

implemented in the Matlab software.

Starting Point (Yg,uw,) with
G(Y,wy) <e (j=0)

| Predictor step

control of the step size
(¥)01'%,00,,,1%) (k=0)
¥
Residual evaluation

‘ Computation of the tangent and

Computation of G, w,,, )

Canvergence? YES

|

j=j#l |

New point:

k=k+1

1161Y;.:™,00,,,7) | <&

NO

Corrector Step

Computation by Newton-Raphson
of the correction
(¥y0,0e1), o lee2))

Yo=K

=t 9
=l

Figure 2. Algorithm for the computation of solutions by Arc-Length con-

tinuation

require many time and memory. However, in many cases, few 3.3 Stability of solutions and bifurcations

harmonics are needed to ensure a good convergence leading to

reasonable system size.

The stability of periodic solutions is determined by Flogue
theory. It needs the computation of the monodromy matrix and



of its eigenvalues. A detailed presentation of the methgé/isn
in [19].

Here, the focus is on the bifurcation that the system can
withstand. There is two way of detecting a bifurcation. iby
monitoring the eigenvalues of the monodromy matrix: if some
eigenvalues go outside the unit circle then there is a kafion,
the type of the bifurcation is determined by the way that the
eigenvalues leave the unit circle. The second method tatdete
bifurcations is by monitoring the determinadt| of the jaco-
bian matrix[Jy] = % of system (14): when this determinant is
zero at some point, then the matfd] is singular and this point
is a bifurcation point. The type of bifurcation is determintzy
the range of the matrifdy Jo,] (whereJ, = a Gy For a turn-
ing point, the range ofly Ju| is n, and there is no particular
treatment to apply since the arc length continuation carlllean
turning points. For a branching point, the ranggXQfJ.)] is at
mostn— 1, so there is at least two tangent vectdrs: [Ty Tg,*
such thafdy J,| T = 0. There is two way of computing the bifur-
cated branches. The first method is to add a small perturbatio
to the functionG(Y,w) in the vicinity of the bifurcation point.
Since branching points are structurally unstable, theupeation
breaks the bifurcation. Once another branch have beentddtec
with the continuation algorithm, one remove the pertudratind
carry on the continuation [19]. The other method is to coraput
the eigenvector¥; of the matrix[Jy| associated with the zero
eigenvalue at the bifurcation point. The eigenvectrindicate
the directions to be followed [14].

4  Free vibrations of a system with six dofs

The first objective of this paper is to estimate the free solu-
tions of system (10). The natural approach is to use the meai
normal modes (NNMs) which have lead to numerous publica-
tions. A survey about NNMs is given in [4] and [5]. The most
used definition of NNM is the one given by Rosenberg in [20],
in which he defines the NNMs by the vibrations in unison of a

equation (10):

o =8,766210°2, c=14836s5 2, B=4,675210'm 2.5 ?

(17)

Modal analysis of the underlying linear system
The underlying linear system of problem (10) is given by:

X+KX=F(t) (18)

Linear normal modes (LNMs) are given by the resolution of
the eigenvalue problemd ® = w?®. Matrix K have single and
double eigenvalues, but double eigenvalues representdfor-m

ity [3]. With each double eigenvalue are associated twardist
deformed shapes which are not uniquely defined. The mode
shapes are characterized by their number of nodal diampters
The eigenvalues and eigenvectors of maktiare given by (the
linear frequencies are giveniad.s™):

o = +/a =93.63 Po=101,11,1 1 1]
w=+0o+c=9442 ®{=[1,10 -1, -1, 0]
R L
19
W = cx+3c_9598d>§_[1, -1,0, 1, -1, 0]
5 =1 1 141 _1 _l]
9 29 27 20 2
w=+v0+4c=9675d3=[1 -1, 1 -1 1 —1]

The deformed shapes of equation (19) are depicted in Fig.3

Nonlinear normal modes In this section, the nonlinear
normal modes of system (10) are computed with the algorithm
described earlier. NNMs branches are computed by starriimgy f

free and undamped system. Other approaches to define NNMsthe corresponding linear normal mode at low amplitude. &hes

exist, they are based on geometrical arguments like theiamta
manifold definition proposed by Shaw and Pierre [21], or Hase
on the normal form theory [11].

In this section, the underlying linear system of problem) (10
will first be studied. This will give starting points for thausly of

the nonlinear system. Then, the search for the NNMs of system

(10) by the HBM coupled with an arc length continuation wil b
carried out.
Numerical values for the physical parameters are introduce

LX = 1, 5m, Ly = O, 3m, h = 0,03[“7

E —210GPa, v=0.3, k=8.10PN.m ! (16)

which correspond to the following values for the parametdrs

branches are termed the backbone curves, and they are repre-
sented in an Energy-Frequency plot as in [1]. The energy con-
sidered here is defined by:

— \/||Ao|2+g<||Ak|2+||Bk||2> (20)

where Ay and Bi are the HBM coefficients defined in relation
(13). Since the non linearity is odd and because there is no
damping in system (10), only odd harmonics and cosine terms
are retained in the development Xf(the last condition corre-
sponds to a phase condition in which all initial velocities aet

to zero). A convergence study with the number of harmonic on
the zero nodal diameter mode showed that a good approximatio
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Figure 3. Mode shapes of the linear system (18)

can be obtained when retaining only the first and the third har
monic. This approximation holds for amplitudes of vibratigp

to the plate thicknesk. We suppose that this remark holds for
all NNMs. Therefore the NNMs of system (10) are sought of the
form:

X(t) = Arcogwt) + Azcog3ut) (21)
Natural nonlinear normal modes We call a natural
NNM, a NNM which is directly born from a LNM at low mag-
nitude of vibration. Since there are six LMNs, there will lve s
natural NNMs. They are represented in Fig.4 and Fig.5. The
first noticeable feature in these figures is the Frequen®rdyn
(or amplitude) dependence of the NNMs. In addition to the de-
pendence of their oscillation frequency, the NNMs may akseeh
their modal shapes varying with the amplitude of vibratithese
are nonsimilar NNMs. NNMs born from the LNMs shapé$
(i=0, 1, 2, or 3) defined in equation (19) are similar NNMs,
and NNMs born from the LNM shapea®? (i = 1,2) are nonsim-
ilar NNMs.

For double modes, the two backbones curves associated with

the p nodal diameter modep(= 1 or 2) are different (fig.5). This
is because the number of sector is of the farm 2m with m
odd.
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Figure 4. Backbone curves and deformed shapes for natural NNMs with
0 (a) or 3 (b) nodal diameters
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Figure 5. Backbone curves and deformed shapes for natural NNMs with
1 (a) and 2 (b) nodal diameters

represented in Fig.6 (dashed curves) along with the baekbon
curve of NNM3D (continuous curve). The mode shapes of bifur-
cated branches for a frequency aboutrk@0s ! are depicted in
Fig.7. The bifurcated branches correspond to localized NNM
It means that only one (strongly localized) or several (viyektk
calized) sectors have a non negligible amplitude of motibe,
others remaining virtually motionless [6]. Such localiaatphe-
nomenon was already observed in a linear mistuned systejn [22
but here, and in general nonlinear system with cyclic syrmynet

it occurs without structural disorder. The spatial confieatrof

the energy causes the responses of some sectors to be high and

might lead to premature failure of the blades.

Traveling waves  All the NNMs computed so far corre-
spond to standing wave motions in the sense that the dofateibr
in a synchronous way as in Rosenberg’s definition of NNMs.
Some papers [7], [1] refer to traveling wave motions in which

As we shall see, other NNM branches bifurcate from these vibrations are not synchronous anymore. For Vakakis [gs¢h

backbone curves.

Bifurcated NNMs  This section focus on the NNM with
3 nodal diameters (NNM3D). By using the procedure described
in section 3.3, several branching point bifurcations haaenxe-

traveling waves arise from a 1:1 internal resonance betwrezn
two modes associated with the same number of nodal diameter.

Because of the phase difference between the dofs, a differ-
ent phase condition is considered for traveling wave NNMsa-co
putation. Sine terms are re-introduce in the HBM developgmen

tected and bifurcated branches have been computed. They areof solutionX in order to take into account the phase difference.
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ThereforeX is now sought of the following form:

X(t) = Apcogwt) + By sin(wt) + Az cog3wt) + By sin(3wt)
(22)
The starting point, at low amplitude of vibration, for thentio-
uation algorithm is given by:

Al = acos((pp) A =0
B, = asin(—(pp) B,=0 (23)
where p correspond to the number of nodal diameter=

1,0r 2), € is the amplitude of vibration (considered small) and

@, is a vector which coordinaté$®, )i)1<i<e are defined by:

2pm

(@)= (-1 (24)

These starting points enable the computation of traveling
waves propagating in the anticlockwise direction. Theimeo
panions, propagating in the clockwise direction, can baiabt
by replacingp, by —@, in equation 23.

The backbone curves of traveling waves are given in Fig.8
(curves a and b). By monitoring the jacobian matrix as ingida
in section 3.3, a branch that bifurcate from the travelingava
with 2 nodal diameters has been found (fig.8 curve c). This bi-
furcated branch is quite noticeable because it can be sean as
weakly localized traveling wave since only three of the @g-s
tors vibrate with non negligible amplitude. To illustratetphase
difference between coordinates, we plotted in fig.9 the ee
ries of the six blades for the 2 nodal diameters localizedktiag
wave motions.

1-Diameter traveling wave
150 | —— 2-Diameter traveling wave
Localized 2—-Diameter traveling wave

1401

130

120

Frequency  (rad/s)

1101

100 )

7
log(E)

Figure 8. Backbone curves of traveling wave motions with one nodal
diameter (a), two nodal diameters (b), two nodal diameters localized on
three sectors (c)

5 Forced vibrations

Results from the previous section (free vibrations) are in
agreement with the literature regarding structure withlicyc
symmetry under geometric (cubic) nonlinearity [1], [7].[Zhey
highlight the complexity of the free dynamic of such struesu
Obviously, this complexity is going to come back in forced vi
brations. We here propose to study the impact of the difteren
external loading on the forced response. Simulations aréda
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out for the structure with six dofs which correspond to syste
(10). Numerical parameters are the same as in the previgus se
tion. In order to have finite amplitude response, a damping te
is added to system (10) which becomes:

X+ 38X +KX+pX3 =

F(t) (25)

with & a damping coefficient defined ldy= wy/200.

The right hand side of equation (25) is considered to be of
the following form:

F(t) = As coqQt) (26)

where A stands for the shape and magnitude of the external
force andQ stands for the excitation frequency.

Solutions are computed by the HBM. Stability of solutions is
investigated using Floquet theory, and bifurcations ateaed
as described in section 3.3. Since the nonlinearity is odty; o
odd harmonics are retained in the HBM approximation. A con-
vergence study of the stability with the number of retainad h
monics showed that keeping the first and the third harmonic is
sufficient enough to ensure valid results on stability. Efene,
solutions of equation (25) are sought of the form:

X(t) = A1 coqQt) + By sin(Qt) + A2 cog3Qt) + B cog3Qt)
(27)
Three kinds of excitationwill be considered. First, low en-
gine order excitation, then localized excitation, and finale-

tuned excitation. In all cases, a parametric study with tred

amplitude as parameter has been carried out. Because of sym-
metry, only one (or four) of the six sectors are going to beeep
sented.

5.1 Low engine order excitation with zero nodal diam-
eters

In this section, the forced response of system (25) is studie
for an excitationF (t) which takes the shape of the zero nodal
diameters LNM. This means thB{t) is of the form:

F(t) = A cogQt) with Ap = a; ® (28)

where® is equal to®gq of equation (19)

The effect of the force amplitud® on the form and on the
stability of solutions is studied. For low force amplitudeg.10
a), the response of the nonlinear system is close to the one of
the underlying linear system, and the solution is stableafbr
frequencief. By increasing the force amplitude (Fig.10 b), an
unstable zone is generated between two turning points. When
the force amplitude is increased again (Fig.11), a second zo
of instability is generated after the second turning poibhis
second zone takes birth through a branching point bifuroati
By using the branch switching method described in sectidne.
bifurcated branch of solution has been computed. The lzfact
branch is stable for a few points at the beginning of the curve
and then an instability is generated through a Hopf bifuocat
The area near the peak of the bifurcated solution is stalide an
correspond to a weakly localized motion (framed areas ofifig

sector n°1 x10° sector n°1
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(a) ar =1/20 (b) as =1/8
Figure 10. Nonlinear forced response for a low engine order with zero

nodal diameter (—: stable, - --: unstable, — - —: linear response)
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5.2 Localized excitation

In this section, the external loading acts on only one sector

~
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Nonlinear forced response for a low engine order with zero

- unstable, — - —: linear

(the first one), therefore the force is given by:

[cNoNoNoNol

cogQt) (29)

The forced response has been computed for several
of the amplitudeas. Results are depicted from Fig.12 to Fig
Because of symmetry only the response for four of the si>ose

has been represented.

For values of amplitude from; = 0 toas = a3 ~ OTS, the
nonlinear response is topologically equivalent to theoasp o
the underlying linear system (fig.12).

Whena is larger thare® ~

09125 stable forced localiz

tion occurs (fig.15): for a well chosen excitation freque(iog-
tween 98 and 100ad.s™1), only the excited sector vibrate w
a non negligible amplitude, and this kind of motion is ste

Moreover the part of the curve corresponding to forced k ...

ization is positioned around the backbone curve of the gtyon

localized NNM which have been computed in the previous sec-

tion (free vibration). These results are in agreement witisé

of Vakakis presented in [23].

Whena$ < ar < al® (Fig.14 and Fig.13), it is possible to

find another type of solution. These new solutions are repre-
sented by closed curve in the Amplitude-Frequency diagram.
They are not tied up with the basic nonlinear response, layt th
are positioned around the backbone curve of the stronghiHoc
ized NNM. Stability analysis shows that some parts of theetb
curves can be stable for points that have very larger anggitu
than the basic nonlinear solution.

Since the closed curves are not tied up with the basic non-
linear response, they are unreachable with a unique catiomu
scheme. To compute the closed curves, a sequential continu-
ation with fixed frequency and with the force amplitude as
a parameter has been used. The starting point was taken from
the part of the curve that correspond to forced localizatfon
as > a'foc), then the force amplitude was decreased by continua-

tion untilas < a'foc. The results obtained this way have been used
as starting points for the arc length continuation. Thishodtis
illustrated in Fig.16.

The new kind of solution makes us think that forced local-
ization is the result of the fusion of the closed curve witk th
basic nonlinear solution whexy = a'f°°. Whereas the basic non-
linear solution seems to be weakly nonlinear since it isectos
the linear solution, there exist stable solutions (theediosurve)
which have a large vibration amplitude and which could be at-
tained depending on initial conditions. This remark is impot
because the closed curves could be easily missed by a elassic
continuation scheme, thus leading to a wrong design of thest
ture.
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Figure 12. Nonlinear forced response for a localized excitation on sector
1 with af = 21;'2 (—: stable, - - -: unstable, — - —: linear response)
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Figure 14. Nonlinear forced response for a localized excitation on sector

1 with a5 — %1 (—: stable, - -+ unstable, —  —: linear response) engine order excitation. The perturbation is assumed toragt

on the force amplitude. The external forces are then given by

5.3 Detuned low engine order with zero nodal diame- F(t) = (®+e)cod) (30)

ter excitation
It has been seen that in the case of low engine order excita- where® is a linear deformed shape aaé a vector characteriz-
tion the system response is simpler than in the case of imzhli  ing the perturbation

excitation. However we have to keep in mind that realistici-ex Because of the projection in the HBM, adding a perturbation
tations are not perfectly symmetric. So now, the externaids to the force is equivalent to adding a perturbation to thecfun
are considered detuned, that is a perturbation is addee fouh tion G(Y,w) defined in equation (14). Then the branching point

10



bifurcations which are structurally unstable will disapp€L9].
Thus, bifurcated branches will be part of the nonlinear tsoh ; ;
and will be obtained by the continuation method. H '.

Here, only a low engine order with zero nodal diamete ' R I
considered, but similar results could be obtained with tieei ’
vibration modes. Finally, the perturbation is assumed tmaly

Amplitude
N
N
~
-
- N
[
7
Amplitude
~
N
XH
o N

on the first coordinate of the force. Therefore we have: N - SN wmwsw NS So | ceesmassess
090 92 94 96 98 100 090 92 94 96 98 '1_00
Frequency w rad/s Frequency w rad/s
l+e
1 1 X107 . sector n°3 X107 . sector n°4
1 5 I' i 5 " i
F(t)=as 1 |cogQt) (31) . [y } ] '
o \ x 10 o '
E 3 [ 1:8 é 3 [
1 g I' \‘\ ig N g I‘ \\
1 2 /I o8l Ty - 2 //
1 s l/94 89595.95.45.65.8 1 _Z Vs

whereg; correspond to the detuning percentage of the force T egenss B ey s
zero nodal diameter. In the remainder of the paper the fare
plitudeas will be set toas = 5.
Simulations start witte = 1%. Results are represented in Figure 17. Nonlinear forced response for a detuned excitation with €1 =

Fig.17. As expected the bifurcated branch of the @ase0% 1%(—: stable, ---: unstable, — - —: linear response)
(Fig.11) is now a part of the solution.

When g; becomes larger than 26% it is possible to c~rm-
pute a secondary solution which correspond to a closed | x10° sector 'L )10 sector 2
This kind of solution is represented in Fig.18 far= 40%. Thit ¢ - ¢
closed curve have stable parts, and it merges to the basiiof s i ° i
ear solution foke; = 70% (Fig.19). ) o N N

In this example the closed curve have been detected 3: X 52 s
the detuning is larger than 26% which is a quite significan AT NG
tuning level. However, the threshold for the detection ofsek | e = i
curve is highly dependent on the damping of the system: ” *Heency arads 1°5 ? equency orads o
smaller damping the closed curves would have appearedis 1 sector s - sectorrea

6 1 6 I

6 Conclusion gt v gt f"‘

In this study, the free and forced response of a systen £ / p g /' p
cyclic symmetry under geometric nonlinearity has been ’ \ ’ yany
puted. The discretized equation of has been obtained :— Nl ) : SN _
Rayleigh-Ritz method. Solutions were computed by the * ooy s 1 * Hequency wradss e

monic balance method, stability was investigated usingt
theory and bifurcations were computed through a branclthwit
ing algorithm.

In the free case, in addition to natural nonlinear normal
modes, other vibration modes were detected by studying the
branching point bifurcation of the system. Some of the bifur
cated solutions correspond to localized nonlinear modes/el- nonlinear solution when increasing the force amplitudadieg
ing wave motions have also been detected in this study. to forced nonlinear localization. For low engine excitagpwe

In the forced case, when the excitation is localized to one of computed several bifurcated branches which also corresfwon
the substructure or sufficiently detuned, in addition to tae stable localized motions.
sic nonlinear response, another kind of solution has been de This study is based on a simple model, therefore the results
tected. This secondary solution is represented by close® du remains at a theoretical level. However, this paper hidittighe
the Amplitude Frequency diagram, and it merge with the basic complex dynamic of system with cyclic symmetry under geemet

Figure 18. Nonlinear forced response for a detuned excitation with €1 =
40%(—: stable, - - -: unstable, — - —: linear response)
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Figure 19. Nonlinear forced response for a detuned excitation with €1 =

70%¢(—: stable, - - -: unstable, — - —: linear response)

rical nonlinearity. Of importance is the detection of cldsarve
solutions which can be stable, and which may play an importan
role during the design of such a mechanical system.

Appendix: Expression of parameters for the system
with six dofs
Here, we give the definition of parameters of equation (10).

With the definition of the Ritz shape functiah given in
section 2.2, the transverse displacement is given by:

W (x,y,t) :Ai(Li)Zfor 1<j<6 (32)
X
Lagrange’s equations are given by:
giﬁ_+%+% oW for1<i<N,1<j<n (33)
dt o) oN! oA/ o

Then the different terms of Lagrange’s equations (33) becom

%gTT — M\l
o5 =marl +mB(A)® (34)
‘;’NE = m(g)\l — AT

12

With:

m=p Jp ®ZdP = by
aq—5_EW
3 pLi(1-v2)
P= sy ) (35)
C=mn (XrYr) :Jziam _
Fit) = o(xj.yp) Rt = 5
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