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1. Introduction

This paper is intended to study both free and forced nonlinear vibrations of a structure with cyclic symmetry [1–3],
composed of n identical substructures subjected to large displacements. This type of system appears, in particular, in the
context of modeling bladed wheels and spatial antennas [3,4]. The nonlinearities involved stem from the large
displacements of the substructures (i.e. geometric type nonlinearities). Establishing the equations for such structures
leads to a system of second-order, coupled differential equations containing polynomial-type nonlinear terms.

In the linear case, due to perfect problem symmetry, a study of these equations reveals a majority of double
eigenfrequencies, corresponding to distinct mode shapes. These mode shapes are associated with diameter vibration modes;
for a given eigenfrequency, the associated mode shapes feature mutually orthogonal diameters. Moreover, for weakly coupled
lien.grolet@ecl2009.ec-lyon.fr (A. Grolet), fabrice.thouverez@ec-lyon.fr (F. Thouverez).
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and slightly detuned (linear) systems (i.e. systems with minor imperfections that lead to symmetry breaks), it has been
demonstrated that localization phenomena may arise [5]. Such phenomena produce confined motion on one or more system
substructures, leaving the others practically motionless.

In the nonlinear case, Vakakis [6,4,7] showed that localization phenomena are indeed possible, in either a free or forced mode,
for a weak enough coupling between substructures or a strong enough nonlinearity. This author also studied the transition
between localization and non-localization as a function of the coupling/nonlinearities ratio; he found that localization was only
possible for small values of this ratio and in cases where bifurcations appear as this ratio increases, thus leading to a
disappearance of localized solutions. Localization phenomena have also been identified by many studies such as [8–10].

During more recent research [11,3], Peeters applied a shooting method to calculate the nonlinear normal modes of a
system with cyclic symmetry, which has the effect of exposing both the similar and nonsimilar normal modes and even
localization phenomena for some nonlinear normal modes. He showed that mode localization arise from bifurcations of
the free undamped systems.

In the scope of the present paper, we propose studying both the free and forced responses of a simplified model of a bladed
wheel. Contrary to Peeters, we will use the harmonic balance method (HBM) to derive solutions. This technique will yield, as part
of its very nature, analytical as well as numerical studies. We aim at conducting bifurcation analysis (whether in the free or forced
case) of the obtained HBM equations and thus confirm that mode localization arise from bifurcation of the free undamped system.
Moreover, in the forced case, we will focus on localization effects and the links between disymmetric loading and localized
responses. Special attention will be paid to the influence exerted by loading level on the forced response, which allows drawing
original observations on the appearance of periodic solutions displayed in the form of closed curves in the frequency–amplitude
diagram. Stability analysis will also be conducted, which will reveal that some parts of the closed curve solution may be stable,
thus implying that this new phenomenology may be important in the design of bladed disks.

2. Problem presentation and equations of motion

Let us consider a structure with cyclic symmetry composed of n identical substructures. It is decided to model these
sectors by means of beams embedded onto a fixed foundation at one end and axially restricted on the other end. The
coupling between beams is introduced via a linear stiffness running between two consecutive substructure (Fig. 1). When
undergoing relatively large displacements, substructure can be subjected to geometric nonlinearities. Many studies have
been conducted to examine the effect of geometric nonlinearities on thin structures (e.g. [12,13]).

Given the level of problem symmetry, the initial focus will involve just one beam; afterward, the other beams will be
integrated along with the linear coupling stiffening elements.

2.1. Derivation of strain and kinetic energies for a single beam

Now assume a beam of length L, constant section S and constant quadratic momentum I, associated with a Cartesian
coordinate system ðO,x,y,zÞ, embedded at the end ðx¼ 0Þ and axially restricted at the end x¼L (Fig. 2). The displacement of
a single coordinate point (x,y) in direction (Ox) (resp. (Oy)) is denoted ~u (respectively ~v).
Fig. 1. Cyclic system used for establishing equations.

Fig. 2. Diagram of the beam considered and boundary conditions.
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Boundary conditions for such a beam are given by the following:
�
 Kinematic boundary conditions:

~uð0,yÞ ¼ ~uðL,yÞ ¼ ~vð0Þ ¼
@ ~v

@x
ð0Þ ¼ 0 (1)
�
 Natural boundary conditions:

MðLÞ ¼ TðLÞ ¼ 0 (2)
where M is the bending moment and T the shear force.
In the following we will derive an expression for the different energies (strain, kinetic and work of external forces) of a

single beam in terms of the transverse and axial displacements. Then we will show that applying Hamilton’s principle and
neglecting axial inertia allow to remove the axial displacement from the different energies thus leading to energies
expressed only in terms of the transverse displacement. After introducing cyclic symmetry, these energies will be used to
derive a discretization of the motion’s equations through a Rayleigh–Ritz approach along with Lagrange’s equations.

Strain energy: In the following discussion the Lagrangian formulation is adopted along with classical Von Karman theory
hypothesis [14]. Among them, the Kirchhoff hypothesis is introduced so that stresses in the direction normal to the beam
middle line are negligible, and strains vary linearly within the beam thickness. In this case, displacements of the assembly
are entirely determined by middle line displacements u and w, by the following relation:

uðx,yÞ ¼
~uðx,yÞ

~vðxÞ

!
¼

uðxÞ�y @v
@x

vðxÞ

!
(3)

The nonlinear relation between displacements u,v and strains of the middle line E is given by the Von Karman
relationship for beams i.e.:

E¼ @u

@x
þ

1

2

@v

@x

� �2

(4)

The total strain ~E is expressed as

~E ¼ E�ykz (5)

where kz ¼ @2v=@x2 is the change of curvature.
The elastic strain energy of the beam is given by

U ¼
1

2

Z L

0

Z
S
s~E dS

� �
dx (6)

where s is the Kirchhoff stresses, related to Green’s strain ~E by a standard Hooke’s law given by

s¼ E~E (7)

where E is Young’s modulus of the material.
Finally by substituting Eq. (7) into Eq. (6) and doing integration, we obtain the following expression for the strain

energy:

U ¼
1

2

Z L

0

Z
S

EE2 dS
� �

dxþ
1

2
EI

Z L

0

@2v

@x2

� �2

dx (8)

Kinetic energy: If the inertia of rotation is neglected the kinetic energy of a beam is given as

T ¼
1

2
r
Z L

0

Z
S
ð _u2
þ _v2
Þ dS

� �
dx (9)

where r is the density of the material.
External force: In the following discussion, only the case of a punctual periodic force orthogonal to the beam applied in

xf ¼ L will be considered. The work of such a force is given by the following relation:

W ¼ vðLÞgðtÞ (10)

where g(t) is a periodic function.
Hamilton’s principle: The previous developments (Eqs. (8)–(10)) allow to derive an expression for the Lagrangian of a

single beam system. The application of Hamilton’s principle gives the following continuous equation of motion for the
3



axial displacement u:

rS €uþ
@

@x
ES

@u

@x
þ

1

2

@v

@x

� �2
 !" #

¼ 0 (11)

By defining the tension along the beam as N¼
R
Ss dS¼ ESE and by neglecting axial inertia effects, Eq. (11) can be

rewritten as

@N

@x
¼ 0 (12)

From Eq. (12) we can conclude that N is constant along the beam. By integrating N from 0 to L we have

Z L

0
N dx¼ LN¼ ES

Z L

0

@u

@x
þ

1

2

@v

@x

� �2
!

dx (13)

Considering the kinematic boundary conditions in Eq. (1) (i.e. uð0Þ ¼ uðLÞ ¼ 0) gives
R L

0 ð@u=@xÞdx¼ 0 and the in plane
displacement u vanishes from the expression of the normal stress, which is ultimately given by the following relation:

N¼
ES

L

Z L

0

1

2

@v

@x

� �2

dx (14)

We then deduce the following expression for the in plane strain E:

E¼ N

ES
¼

1

2L

Z L

0

1

2

@v

@x

� �2

dx (15)

Substituting Eq. (15) into Eq. (8) results in an expression for the strain energy U only in terms of the transverse
displacement v given by

U ¼
ES

8L2

Z L

0

Z L

0

@v

@x

� �2

dx

 !2

dXþ
1

2
EI

Z L

0

@2v

@x2

� �2

dx (16)

Finally, by neglecting the axial inertia the kinetic energy in Eq. (9) is reduced to the following:

T ¼
1

2
r
Z L

0

Z
S
_v2 dS

� �
dx (17)

In the remaining of the paper the strain and kinetic energies will be defined by Eqs. (16) and (17) and will be used for
the computation of the Lagrangian of the system. But before that we will present how we switch from a single beam to the
cyclic symmetry model presented in Fig. 1.
2.2. Incorporation of cyclic symmetry

Let us return to the case of the structure with cyclic symmetry composed of n identical sectors. For 1r jrn, vj denotes
the transverse displacement of the jth beam relative to its coordinate system, Uj its strain energy, Tj its kinetic energy and
Wj the work of forces being applied on this beam. The expressions for Uj, Tj and Wj have been obtained by replacing v by vj

in Eqs. (16), (17), (10). The expressions of strain energy U, kinetic energy T, and work W for the complete system can then
be given by

U ¼
Xn

j ¼ 1

Uj, T ¼
Xn

j ¼ 1

Tj and W ¼
Xn

j ¼ 1

Wj (18)

Let us now assume that the coupling between beams is modeled by a set of massless linear springs, all with an identical
constant of stiffness k. The springs are set at points in xr ¼ L=4 on all beams. The energy stored by such a spring located
between beams j and jþ1 is expressed by

Vj
¼

1

2
k vj L

4

� �
�vjþ1 L

4

� �� �2

(19)

for 1r jrn according to the convention jþ1¼ 1 if j¼ n (cyclic symmetry). The total energy V stored by the n springs can
then be written as

V ¼
Xn

j ¼ 1

Vj (20)
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2.3. Discretization and equations of motion

Now, let us introduce the discretization protocol for transverse displacement vj. This discretization routine is performed
by relying on a Rayleigh–Ritz approach [15], which generates an approximated model of the structure. The transverse
displacements ðvjÞ are interpolated using the following expression:

vjðx,y,tÞ ¼
XN

i ¼ 0

lj
iðtÞFiðx,yÞ (21)

where the ðFiÞ are kinematically admissible functions, lj
i the participation of these functions in the displacement wj, and N

the number of Ritz functions selected for the interpolation step. By using this method, the transition is made from a

continuous problem to a discrete one of dimension nN where the unknowns are the variables ðlj
iÞ1r irN, 1r jrn. By

substituting vj into Eqs. (19) and (21), an expression of the various energies can be derived as a function of ðlj
iÞ.

The motion equations are then provided by the Lagrange equations, written as follows:

d

dt

@T

@
_lj
i

þ
@U

@lj
i

þ
@V

@lj
i

¼
@W

@lj
i

for 1r irN, 1r jrn (22)

For numerical purpose, we arbitrarily choose to set n¼6 (only six substructures) and N¼1 (only one Ritz function) thus
yielding a nonlinear problem with 6 degrees of freedom that will serve as an example for the present work. These
numerical values are sufficient to illustrate the main effects, but the procedure remains the same for any values of n and N.

The single Ritz function selected for this interpolation step is F¼ ðx=LxÞ
2, which verifies the kinematic boundary

conditions given in Eq. (1). Applying Lagrange’s equations (Eq. (22)) for the discretization vj ¼ ljðx=LÞ2 results in the
following equation of motion for the jth beam:

€ljþðaþ2cÞljþbl
3
j �cljþ1�clj�1 ¼ f jðtÞ (23)

with

a¼ 20EI

rSL4
, b¼

40ES

9rSL4
, c¼

5k

256rSL
, f j ¼

5gj

rSL
(24)

By setting vector X¼ ðljÞ1r jr6 and the convention X3
¼ ðl3

j Þ1r jr6, the matrix form of Eq. (23) is given by the following:

½M� €Xþ½K�XþbX3
¼ FðtÞ (25)

with ½M� ¼ ½I�6 and

½K� ¼

aþ2c �c 0 0 0 �c

�c aþ2c �c 0 0 0

0 �c aþ2c �c 0 0

0 0 �c aþ2c �c 0

0 0 0 �c aþ2c �c

�c 0 0 0 �c aþ2c

0
BBBBBBBB@

1
CCCCCCCCA

(26)

The numerical values to be input throughout the remainder of this study are given by the following:

L¼ 1:5 m

rSL¼ 105:3 kg

ES

L
¼ 2:484� 109 N m�1

EI

L3
¼ 4:6123� 104 N m�1

k¼ 8� 105 N m�1 (27)

which in turn correspond to the parameter values in Eq. (23):

a¼ 8;7662� 103 s�2, c¼ 148:36 s�2, b¼ 4;6752� 107 m�2 s�2 (28)
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3. Solution method: harmonic balance method (HBM)

3.1. Principle of the HBM method

The harmonic balance method is a widely used technique for studying nonlinear systems, with a large number of
application illustrations available. This method offers the ability to treat the case of a highly nonlinear system with, for
example, friction [16,17] or geometric nonlinearities [18,19]. The following system of nonlinear differential equations will
now be considered:

½M� €Xþ½K�XþKnlðXÞ ¼ FðtÞ (29)

where X is a vector of unknowns with dimension n, ½M� and ½K� are the system’s mass and stiffness matrices respectively;
Knl is the nonlinear forces and F the external loading which is assumed to be periodic with period T ¼ 2p=o.

The harmonic balance method consists of identifying periodic solutions X to the system in Eq. (29) in the form of a
truncated Fourier series, i.e.:

XðtÞ ¼ A0þ
XNh

k ¼ 1

Ak cosðkotÞþBk sinðkotÞ (30)

By including this development in Eq. (29), and by projecting equations on the Fourier basis, as follows:Z 2p=o

0
ð½M� €Xþ½K�XþKnlðXÞÞ cosðkotÞ dt¼

Z 2p=o

0
FðtÞ cosðkotÞ dt (31)

Z 2p=o

0
ð½M� €Xþ½K�XþKnlðXÞÞ sinðkotÞ dt¼

Z 2p=o

0
FðtÞ sinðkotÞ dt (32)

then a system of nð2Nhþ1Þ nonlinear algebraic equations is obtained, containing nð2Nhþ1Þ unknowns ðAkÞ0rkrN ,
ðBkÞ1rkrNh

. Note that in the case of a free undamped system, the angular frequency o is not known a priori, and we have
to consider it as a variable.

One inherent advantage of this method is its absence of a hypothesis regarding the order of magnitude of
nonlinearities: the same treatment procedure is employed regardless of whether a given system is strongly or weakly
nonlinear. The most important parameter of this method is the number of selected harmonics Nh; this number in fact is not
typically known ahead of time, a situation that necessitates convergence studies in order to ensure accurate solution
estimation. On the other hand, in the case where the number of harmonics selected is high, the solution procedure can
quickly become complex and difficult. In many cases however, it turns out that the solution rapidly converges in terms of
harmonics, which leads to systems with more practical dimensions.

3.2. Numerical procedure

Generally speaking, the system resulting from the application of the HBM can be rewritten in the following form:

GðY,oÞ ¼ 0 (33)

where Y is a vector of dimension nð2Nhþ1Þ that corresponds to the HBM unknowns ðAkÞ0rkrNh
and ðBkÞ1rkrNh

, and G a
nonlinear value function within a space of dimension nð2Nhþ1Þ.

The solution to Eq. (33) will make use of a continuation technique [11,20–22] that consists of numerically searching for
a series of Mþ1 points ðYi,oiÞ0r irM that verifies the following:

GðYi,oiÞrE (34)

where E is a small parameter introduced to determine the level of solution accuracy.
The continuation procedure takes place in two stages: a prediction phase, followed by a correction phase. The predictor

yields an estimation of the solution sought based on the previously determined solution points, while the corrector
iteratively performs corrections on the predicted solution so as to derive a solution that satisfies criterion in Eq. (34).

An arc length type of continuation will be used herein [21]; as such, the solutions are to be parameterized by the
curvilinear abscissa s, with o being considered as a variable and with the solutions to Eq. (33) being of the form ðYðsÞ,oðsÞÞ.

3.3. Solution stability and bifurcations

To determine the stability of periodic solutions, we turn to the well known Floquet’s theory, and we compute the
so-called monodromy matrix. The eigenvalues of the monodromy matrix offer the ability to draw a conclusion on both the
stability of solutions and the nature of bifurcations likely to appear [20].

The focus now turns to two types of bifurcation (of the nonlinear algebraic system) that very often appear in this study:
turning point type bifurcation, and branching point type bifurcation. For the turning point bifurcation, no special
procedure is applied since the arc length continuation algorithm is adapted to handle such situations.
6



The detection of bifurcation points is done by monitoring the determinant 9½J�½y�9 of the Jacobian matrix ½J�½y� ¼ @G=@Y of
the system in Eq. (33): when this determinant is zero at some point, then the matrix ½J�½y� is singular and this point is a
bifurcation point. In order to precisely obtain the bifurcation point, we used an algorithm describe in [20] that finds the
solution ðYb,obÞ such that

GðYb,obÞ ¼ 0

@G

@Y
ðYb,obÞT¼ 0

JTJ¼ 1 (35)

Once bifurcation points have been obtained, the type of bifurcation is determined by the rank of the Mh � ðMhþ1Þ
matrix ½J� ¼ ½½J�½Y� ½J�x� (where ½J�x ¼ @G=@o). At the level of the branching points, the matrix ½J� has a rank of at most Mh�1.
Several linearly independent tangents Tj can then be found such that ½J�Tj ¼ 0, which in practice corresponds to several
prediction directions for the continuation algorithm. In this study, we computed the prediction direction by calculating the
eigenvectors Wi of the matrix ½J�½y� associated with the zero eigenvalue at the bifurcation point [23].

Another way of computing bifurcated branches is the so-called perturbation method witch consists of adding a small
constant perturbation to the function GðY,oÞ (Eq. (33)) in the vicinity of the bifurcation point. This step serves to separate
the structurally unstable branching points. A continuation can thus be carried out on a few points with the perturbed
system, during the time it takes to extend beyond the branching point and lock in on another solution [20].

4. Free response of a 6 degree-of-freedom system: nonlinear normal modes

The objective in this section is to estimate the free periodic solutions of the system in Eq. (25). The natural approach
here would thus be to make use of nonlinear normal modes (NNM) which have already yielded an abundance of scientific
output. In [24,25], Vakakis and Kerschen conducted a literature review of results relative to these NNMs, which may be
defined in one of the several ways. The most widespread definition has been provided by Rosenberg [26] who defined
NNM as vibrations in unison of the free undamped system:

½M� €Xþ½K�XþbX3
¼ 0 (36)

This definition imposes that the degrees of freedoms vibrate with the same frequency, reaching their extreme values while
simultaneously passing through zero. Consequently, all displacements may be expressed as a function of a single
(reference) degree of freedom. This parameterization allows calculating and representing the NNMs by curves within the
configuration space. When these curves are straight lines (i.e. a linear relation between the degree of freedom (dof) and the
reference coordinate), the NNMs are said to be similar and their mode shapes are independent on vibration amplitude.
In the general case, the modal lines are not straight-line curves and the corresponding NNMs are said to be nonsimilar,
since both their mode shapes and eigenfrequencies vary with respect to vibration amplitude. These modal curves are
tangent to the straight lines that correspond to the eigenmode of the linear system for small vibration amplitudes. Among
the other approaches available for defining NNMs, let us highlight the method of invariant manifolds proposed by Shaw
and Pierre [27], the multiple scales method [20,4], the normal form method [28], the harmonic balance method [19], and
the shooting method [11].

We will start by studying the linear system underlying the problem expressed in Eq. (25) which will serve as a starting
point for the nonlinear analysis. The next step will concentrate on identifying system NNMs through the use of the
harmonic balance method described in Section 3. An analytical assessment will first be drawn before numerically
searching for solutions by means of coupling the HBM with an arc-length continuation.

4.1. Study of the underlying linear system

Let us consider the free undamped linear system underlying the problem displayed in Eq. (25):

½M� €Xþ½K�X¼ 0 (37)

The linear eigenmodes (both eigenfrequencies and mode shapes) of Eq. (37) are given by the solution to the following
eigenvalue equation:

½K�U¼o2½M�U (38)

Matrix ½K� contains simple as well as double eigenvalues (we recall that in this study ½M� equals the identity matrix), yet
the double eigenvalues are predominant (i.e. a simple eigenvalue if the dimension of ½K� is odd-numbered, versus
two simple eigenvalues if the dimension is even). Each double eigenvalue corresponds to two distinct eigenvectors that
create a two-dimensional solution space. In the general case, the eigenvalues of matrix ½K� are given by the formula derived
from [1]:

o2
p ¼ aþ2cð1�cosðypÞÞ with yp ¼

2pp
n

(39)
7



with p being the mode diameter number, such that 0rprðn�1Þ=2 if n is odd and 0rprn=2 if n is even. For a weak
coupling coefficient c, the eigenfrequencies lie relatively close to one another. The linear mode shapes are given by

U0 ¼ ½1;1,1;1,1;1�T

Uc
p ¼ ½cosðypÞ,cosð2ypÞ, . . . ,cosðnypÞ�

T

Us
p ¼ ½sinðypÞ,sinð2ypÞ, . . . ,sinðnypÞ�

T (40)

In our specific case, application of these formulae yields the eigenfrequencies (expressed in rad s�1) along with the
associated mode shapes:

o0 ¼
ffiffiffi
a
p
¼ 93:6278 U0 ¼ ½1;1,1;1,1;1�T

o1 ¼
ffiffiffiffiffiffiffiffiffiffi
aþc
p

¼ 94:4168 Uc
1 ¼ ½1;1,0,�1,�1;0�T

Us
1 ¼ ½1,12 ,�1

2 ,�1,�1
2 ,12�

T

o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ3c
p

¼ 95:9753 Uc
2 ¼ ½1,�1;0,1,�1;0�T

Us
2 ¼ ½1,�1

2 ,�1
2 ,1,�1

2 ,�1
2�

T

o3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ4c
p

¼ 96:7451 U3 ¼ ½1,�1;1,�1;1,�1�T

(41)

These mode shapes are depicted in Fig. 3.

4.2. Analytical study of nonlinear modes: free exact solutions

This section of the paper will focus on analytically determining the free solutions of system in Eq. (25). Results from the
linear analysis will be used to determine solution forms for the nonlinear system in Eq. (36). Attention will be paid to the
case of modes whose mode shapes contain just 0, 1 or �1 as a component (i.e. the Uc

p variables in Eq. (40)). For these mode
shapes, all nonzero amplitude degrees of freedom actually vibrate with the same amplitude (in absolute value terms);
consequently, it can be assumed that the adjustment of eigenfrequencies occurs naturally without having to change the
modal shape. It will now be demonstrated that these linear modes are similar for the nonlinear system, meaning that their
shapes do not vary with vibration amplitude. Let us suppose then that the solution vector X assumes one of the following
forms:

Xðp ¼ 0ÞðtÞ ¼ x1ðtÞU0 or Xðp ¼ 1ÞðtÞ ¼ x1ðtÞU
c
1

Xðp ¼ 2ÞðtÞ ¼ x1ðtÞU
c
2 or Xðp ¼ 3ÞðtÞ ¼ x1ðtÞU3 (42)
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In this case, the system in Eq. (36) can be simplified into a single Duffing type equation:

€x1þo2
0,px1þbx3

1 ¼ 0 (43)

with o2
0,p ¼ ðaþ2cð1�cosðypÞÞÞ and yp ¼ 2pp=6 for p¼ 0;1,2 or 3.

It can then be deduced that the linear mode shapes Uc
p for p¼ 0;1,2 or 3 also serve as mode shapes for the nonlinear

system. The nonlinear modes associated with these mode shapes are similar for the system in Eq. (36). Moreover, Eq. (43)
enables identifying the relation between angular frequency and vibration amplitude for each of the four similar modes by
means of Jacobi’s elliptic functions (elliptic cosine and integrals) [29]. In the present case, the analytical expression of exact
solutions to Eq. (43) is written as follows:

x1,pðtÞ ¼ A cnðlpt; kpÞ (44)

where cnð�; �Þ is the elliptic cosine, A the vibration amplitude and the quantities lp, kp are given by

l2
p ¼o

2
0,pþbA2

k2
p ¼

bA2

2ðo2
0,pþbA2

Þ
(45)

Lastly, the relation tying vibration amplitude A and vibration frequency op is expressed by

op ¼
lpp

2KðkpÞ
(46)

where K(k) is the complete elliptic integral of the first kind for the modulus k as defined by

KðkÞ ¼
2

p

Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þð1�k2x2Þ

q (47)

These analytical expressions will be used in order to validate our numerical results.

4.3. Numerical study of nonlinear modes for the 6 degree-of-freedom system

The previous section offered an effective display of free solutions from an analytical perspective. Attention will now be
turned to a numerical calculation of the free solutions of Eq. (25).

4.3.1. Convergence versus harmonic number

The effect of the selected harmonic numbers on solution convergence will first be studied by examining the zero-
diameter mode. This step is equivalent to searching for solutions to Eq. (43) with a value of p¼1. Three successive
calculations were performed by retaining just 1, 2 or 3 odd harmonics. The results of this step are presented in Fig. 4a,
where the vibration amplitude of the first degree of freedom has been plotted vs. frequency. It can be observed that the
fact of considering the first and third harmonics is sufficient not only for solution convergence but also for an accurate
approximation up until vibration amplitudes reaching an order of h. Moreover, the backbone curve obtained by HBM using
two odd harmonics is compared with the exact solution obtained to Eq. (46). These results are presented in Fig. 4b which
also reveals a strong level of agreement in results, as the relative error on frequency for a vibration amplitude equal to the
thickness (h¼0.03) is less than 0.1%.
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In light of these results, we will now be searching for the NNMs of Eq. (36) by assuming just the first and third
harmonics, i.e. in the following form:

XðtÞ ¼A1 cosðotÞþA3 cosð3otÞ (48)

where Ak are vectors of dimension 6.
In order to illustrate the backbone curves of this system, we will be using a representation within the energy–frequency

plane analogous to that produced by Peeters in [3]. Let us note however a slight difference since the following relation will
be introduced to express energy:

EðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

JAkJ

s
(49)

which is directly expressed through the use of the HBM coefficients. This representation allows clearly displaying the
minimum energy required for nonlinear effects to become significant, yet exhibits the disadvantage of concealing the
individual behavior of degrees of freedom. To overcome this shortcoming, we will also provide the mode shape at some
different frequencies.

4.3.2. Nonlinear normal modes

‘‘Natural’’ NNMs: Nonlinear modes stemming from linear modes are depicted on the energy–frequency plane in Figs. 5
and 6. It is clearly observed that these modes are tangent to the linear normal modes and moreover that nonlinearity
exerts a strong hardening effect (high frequency offset as energy increases) due to the retained Ritz function (Section 2).

For double modes (i.e. one and two diameters), it is observed that the backbone curves of both modes associated with
the same frequency differ (Fig. 6) as a result of a number of sectors of the form n¼ 2m, with m being an odd number.

It has been verified that modes associated with the forms Uc
i ði¼ 0;1,2, or 3Þ are similar; their mode shapes do not vary

with vibration amplitude. On the other hand, the modes associated with forms Us
1 and Us

2 are nonsimilar, and the first
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tends toward a mode shape where all amplitudes are equal, while the second tends toward a vibration mode that localizes
motion on just two blades (Fig. 6). These results are in close agreement with the analytical study conducted in the previous
section.

Localized nonlinear mode: In this section we concentrate on the NNM with three nodal diameters (NNM3D). By using the
procedure described in Section 3.3, we detected several branching point bifurcations and we computed bifurcated
branches. They are represented in Fig. 7 (dashed curves) along with the backbone curve of NNM3D (continuous curve). The
mode shapes of bifurcated branches for a frequency about 190 rad s�1 are depicted in Fig. 8. The bifurcated branches
correspond to localized NNMs which means that only one (strongly localized) or several (weakly localized) sectors have a
non-negligible amplitude of motion, the other sectors remaining virtually motionless [6]. It turns out that these bifurcated
branches correspond to the (approximative) localized solution computed in Section 4.1. It can thus be concluded that
solutions localized on 1, 2, 3 or 4 sectors originate as of the three-diameter mode through branching point bifurcations.

All these localized modes will prove useful when studying the system’s forced vibrations. More specifically, it will be
seen that during an excitation that assumes the three-diameter mode form, bifurcated solutions corresponding to a
localized motion can be identified; moreover, these solutions are positioned around the backbones calculated in this
section.

Traveling waves: Should the terms be kept in sine form as part of the development in Eq. (30), and by conveniently
choosing the form of the solution at low vibration amplitude, it then becomes possible to calculate the NNMs that
correspond to waves propagating in both the clockwise and counterclockwise directions. In the case of a six degree-of-
freedom system, these nonlinear modes correspond to one and two-diameter rotating waves. In addition, in the case of a
two-diameter traveling wave, a branching point bifurcation can be detected; this bifurcation gives rise to a traveling wave
localized on three blades. The backbone curves of traveling waves in the energy–frequency plane are shown in Fig. 9;
afterward, Fig. 10 depicts the temporal evolution of the various sectors, clearly indicating that the sectors vibrate with a
constant phase shift between two consecutive sectors (the traveling waves shown here are propagating in a clockwise
direction). Fig. 10c illustrates the special case of the traveling wave localized on three sectors.
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5. Forced response

Previous results reveal tremendous complexity in the free vibration behavior of such structures. It is obvious that this
complexity will reappear in the case of the forced regime. We propose examining the impact of the various types of
loadings (modal load, localized, detuned) on the structure of these responses; the focus thus lies on the forced response of
the 6 degree-of-freedom system. The numerical parameters used to calculate the forced response are those defined in
Eq. (28). With the aim of deriving curves of finite amplitudes, a damping term is added to Eq. (25) which then becomes

½M� €Xþ½C� _Xþ½K�XþbX3
¼ FðtÞ (50)

with ½C� ¼ d½I� and d being a constant defined by d¼o0=200.
The right-hand side of the equation FðtÞ is considered to be of the following form:

FðtÞ ¼AF cosðOtÞ (51)

where vector AF represents both the form and amplitude of the force.
The solutions to this problem are then calculated using both the harmonic balance method and continuation algorithm

presented above. After convergence studies, we are assuming herein that determining the solutions with two odd
harmonics is sufficient to provide us with accurate amplitude and stability results. The forced solutions of the system in
Eq. (50) will thus be sought in the form

XðtÞ ¼A1 cosðOtÞþB1 sinðOtÞþA2 cosð3OtÞþB2 cosð3OtÞ (52)

Results will be depicted in frequency–energy plots, with the energy defined as follows:

EðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

JAkJ
2
þJBkJ

2

s
(53)

5.1. Zero-diameter modal excitation

This section of the paper entails exciting the system along the zero-diameter mode, thus the excitation force can be
written as

FðtÞ ¼ af U0 cosðOtÞ (54)

where U0 is the shape of the zero diameter mode (Eq. (41)).
The influence of force amplitude af on both the form and stability of the response will be studied herein, results are

presented in Fig. 11. It is noted that for small excitation amplitudes, the nonlinear response is analogous to the linear
response and moreover that this solution is stable for all excitation frequencies. By increasing the force amplitude, a zone
of instability is exposed between two turning points. By increasing the force amplitude even further, a second zone of
instability is created after the second turning point (Fig. 12). This second zone originates via a branching point bifurcation.
Through the use of the method described in Section 3, it is possible to calculate a secondary solution branch, which
corresponds to a weakly localized vibration mode, where the sectors no longer vibrate in phase (Fig. 13). The bifurcated
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solution is stable over a few points, then loses its stability through a Hopf bifurcation, and finally a stable part is identified
at the bifurcated solution ‘‘peak’’.

It is observed that even simple diameter excitations reveal dynamic complexity. Consequently, it may be assumed that
localized excitations or detuned excitations are capable of exposing even greater complexity and varying types of behavior.
The following section is intended to verify this assumption.

5.2. Localized excitation

This section adopts the stance that the excitation force is only acting on a single substructure (the first one) and thus
assumes the following expression:

FðtÞ ¼ af ð1;0,0;0,0;0ÞT cosðOtÞ (55)

The forced response is calculated for various values of amplitude af. These results are presented in Figs. 14 and 15. For
purposes of comparison, the linear system response of Eq. (37) has also been depicted on these figures.

For af �
2:5
16, we can observe that the nonlinear system response is topologically equivalent to the linear system

response. When af �
1
4, the appearance of a stable forced localization can be detected, meaning that for a conveniently

chosen excitation frequency (between 98 and 100 rad s�1), only the excited sector vibrates with a noticeable amplitude.
Furthermore, this forced localization actually occurs around the backbone curve of the strongly localized mode obtained in
the free vibration part, which is in agreement with what has already been demonstrated in [7].

When af �
3:5
16 (Fig. 15), it is possible to show a different form of the previous frequency response functions. These

solutions are represented by closed curves that are completely dissociated from the nonlinear FRF and positioned around
the backbone curves of the strongly localized mode. By studying the stability of this secondary solution, its potential
14
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stability is apparent for certain excitation frequency values, and moreover the vibration amplitude (related to the energy)
of this solution may be well above that of the basic nonlinear FRF.

This second solution, dissociated from the first, cannot be accessed by a single continuation; instead, to obtain the
closed curve solution, an initiation point must be chosen on the localized FRF branch for a fixed force amplitude such as
af ¼

1
4, next, a sequential continuation with decreasing force amplitude is performed on this point with a fixed O. The

subsequent step consists of applying the arc-length continuation algorithm at the selected point to determine the solution
in closed curve form (Fig. 15).

The identification of solutions in closed curve form leads to assuming that the forced localization phenomenon is due to
the fusion of two distinct solution families (i.e. classical nonlinear response and closed curve), which coexist for
intermediate excitation amplitude values and which overlap when af is greater than a threshold value. Moreover, solutions
in closed curve form may be stable for relatively high vibration amplitudes and for a seemingly weakly nonlinear FRF
behavior. This remark is an important one since such solutions might be overlooked when applying a classical
continuation approach, which could lead to erroneous structural design.

5.3. Detuned zero-diameter mode excitation

If, in the case of excitations, assuming a diameter mode form offers a ‘‘simpler’’ response than in the case of a localized
excitation, it must be kept in mind that actual loadings are often imperfect and correspond more to perturbed diameter
15



excitations than to a perfect diameter. Our system will now be excited in a detuned manner, meaning that a perturbation
is added to the excitation force. Let us consider that this perturbation only affects the force amplitude, yielding the
following form:

FðtÞ ¼ ðUþe ÞcosðOtÞ (56)

where E is a vector characterizing the perturbation.
Due to the scalar products induced by the harmonic balance method, disturbing the force in this manner is equivalent

to adding a perturbation to the GðY,oÞ function (Eq. (33)) similar to calculating the branching points. In this case however,
perturbation is present throughout the duration of the calculation. The branching points will thus disappear and
bifurcations will become a part of the solution, which can then be tracked by continuation. Furthermore, the fact of
detuning the force makes it possible to evaluate the detuning level at which localization phenomena first appear. Our
study focuses on the zero-diameter vibration mode, yet equivalent results can still be obtained for other vibration modes.
We assume that just the first force component is in fact disturbed, a case that yields

FðtÞ ¼ af ð1þE1,1;1,1;1,1ÞT cosðOtÞ (57)

where E1 represents the force detuning percentage. Throughout the remaining discussion, it will be considered that af ¼
1
4.

The simulations are launched with a 1% detuning level. It is easily observed in Fig. 16, that bifurcation of the E1 ¼ 0 case
(Fig. 11) has since been included in the curve generated by continuation, as was expected.

By increasing the detuning percentage, amplitudes also rise and as of a 26% detuning level, it is possible to identify a
solution uncorrelated with the primary solution, as in the case of localized excitation. The amplitudes have been
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represented in Figs. 16 and 17 for a 40% detuning level. This second family of solutions corresponds to a strongly localized
vibration mode; moreover, these secondary solutions merge with the primary solution for a detuning level in the vicinity
of 70%.

In this case, the closed curves appear for a detuning level of about 26%, which is quite significant. However, one has to
keep in mind that the appearance of closed curves is closely related to the damping ratio: a smaller damping ratio would
have cause the closed curves to appear at a smaller detuning level. Given that these closed curves contain stable zones
corresponding to a substantial vibration amplitude (at least equal to the amplitude of the case E1 ¼ 0), they must be taken
into account during structural design. A change in initial conditions or an operating shock could actually trigger such
solutions and place a heavy load on one of the substructures.

6. Conclusion

In the research presented herein, a calculation was performed of both the free and forced responses of a structure with
cyclic symmetry subjected to geometric nonlinearities. Setting up the system of equations, as discretized according to the
Ritz method, led to a hardening nonlinear system. The nonlinear modes as well as the forced system responses were
calculated using the harmonic balance method, while solution stability was determined by means of Floquet’s theory.
Besides the nonlinear modes originating from linear normal modes, other possible vibration modes were exposed; these
stemmed from natural nonlinear modes via bifurcation. Some of these bifurcated modes correspond to somewhat localized
vibration modes. Moreover, the presence of free solutions in the form of traveling waves has been underscored. These
solutions are, in turn, capable of bifurcating into a form of localized traveling wave. In the case of a localized excitation, in
addition to classical responses, a type of solution was identified in the form of closed curves. These closed curves lie
adjacent to the classical solutions as the force amplitude increases, thereby inducing the phenomenon of forced
localization. For an excitation on diameter modes, branching point type bifurcations were revealed, and these might also
correspond to stable and localized vibration modes. Lastly, in the case of excitation detuned with respect to the zero-
diameter mode, secondary solutions were discovered along with the forced localization phenomenon. This study has
served to utilize the complexity of responses for structures with cyclic symmetry subjected to geometric nonlinearities.
More specifically, we found closed curve solutions of potential importance during the design of these mechanical systems.
An estimation of these solutions, obtained through a loading level analysis of the various nonlinear FRF, could be improved
by conducting a systematic search for all solutions, e.g. by means of homotopy.
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