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Abstract

With an increase in the number of Linked Open Data datasets, insufficient interlinking quality can lead to a decrease in overall data
quality. Therefore, it is necessary to keep the interlinking quality as high as possible. One of the main ways to link datasets is to use
owl:sameAs links, i.e. to indicate that two things are the same. But with its strict semantics, there is a lot of misuse of owl:sameAs
in the wild. Indeed, identity is often relative and depends on the context of use. We therefore propose an approach that enables
considering the characteristics of involved datasets to interlink datasets thanks to owl:sameAs statements. The experimental results
performed on real-world datasets show that the proposed approach is promising.
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1. Introduction

Linked Data1 (LD) datasets, also called Knowledge Bases (KBs), use ontologies backed by Description logics
(DL) and OWL (see [9]) to define their schema. owl:sameAs2 links are the most commonly used links to link datasets
together and discover new knowledge. The role owl:sameAs from the OWL ontology language states that two things
(two individuals, instances or resources) are the same and that all statements about one instance are also true for the
other (the indiscernibility of identicals). In the Semantic Web field, retrieving all interchangeable knowledge between
two things is still a major challenge. For example, suppose we have two KBs, each containing an instance ‘Paris’, the
French capital. One can link these two instances thanks to the role owl:sameAs. Therefore, the knowledge about Paris
in the first KB can be used with Paris in the second KB.
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There are many ways to find such linksets (see Definition 2) of pairwise identical things between datasets. The
most obvious is by using OWL semantics itself, e.g. by using roles such as owl:hasKey, owl:FunctionalProperty,
owl:InverseFunctionalProperty, etc. Another way to find such links is to use frameworks based on similarity measures
between instances.

However, owl:sameAs has a strict semantics3 (see Table 1) and is proved to be often misused in the wild (see
[8]). A lot of owl:sameAs links are in fact inappropriate whether they are simply wrong, or because they are context-
dependent. For example, the city of Paris is geographically the same as the department of Paris, but they are adminis-
tratively different. So, in a geographic context, the statement holds, but in an administrative context it does not.

In this work we propose an approach to detect identity links between instances of two KBs. This approach takes
into account the structure of each KB which consists of the use of explicit (ontology axioms) and implicit (statistics
about properties) characteristics of properties.

The remainder of this work is structured as follows: in Sect. 2, we will see several facets of the identity problem.
In Sect. 4, we detail our proposition to improve instance matching quality. The Sect. 5 is about implementation and
results of our approach. Finally, in Sect. 6 we present the future works and our conclusions about our approach.

2. Related work

There are several ways to handle the identity problem. The first one is the historical way that has as a main goal
to retrieve (create) a maximum of good links. A second way is to find wrong identity links among existing ones. By
using either semantics or statistics, it is possible to find links that may be erroneous.

The term instance matching refers to the problem of finding equivalent resources. The goal is to produce links
between a source dataset and a target dataset. For each couple of instances, a similarity score is produced and if
the score is above some (user defined) threshold, the link is validated. Frameworks like Silk [19] or KnoFuss [14]
allow creating links between datasets after a configuration step. Ferraram et al. [6] published a complete survey and
more recently Achichi et al. [1] and Nentwig et al. [13] proposed complementary surveys. In Section 5, we compare
our approach with four such instance matching systems competing during OAEI 2017. Khiat and Mackeprang [12]
proposed I-Match that compute similarity between normalized strings thanks to NLP. Achichi et al. [2] proposed
Legato, a multistage instance matching system that first create vectors from instances by using NLP techniques and
then compute the correlation between vectors, and finally use a clustering algorithm to eliminate some false positives
candidates. In [11], the authors proposed an instance matching system that is looping between link discovery and
repairing, thus allowing reducing the number of wrong candidates. They used an external lexicon (like WordNet) to
increase the matching capabilities.

Identity link assessment approaches consist of checking if an existing link is true or false. Methods from those
approaches may also be used to find links. Guéret et al. [7] proposed to use classical network measures to assess
existing links. De Melo [5] proposed to use the unique name assumption within datasets (i.e. an instance has one
name within a dataset) to spot sets of instances linked by owl:sameAs where at least one link may be wrong. Next,
a linear programming algorithm is used to check if the link is wrong. In Papaleo et al. [15], the authors proposed a
logical approach that tries to detect logical conflicts by using semantics features like functional properties in small sub-
graphs containing the two involved instances to assess. Hence, this approach strongly relies on semantics. Paulheim
[16] proposed to use data mining methods. Links are represented in an embedded space, then an outlier detection
algorithm is used to detect links that may be wrong. Valdestilhas et al. [18] use a combination of semantics and graph
partitioning algorithms to detect erroneous transitive properties. Raad et al. [17] proposed to use community detection
on identity links network to detect erroneous links. Also using network structure, Idrissou et al. [10] proposed to
combine several network metrics to find wrong links across multiple datasets.

Our work aims at finding identity links by considering the involved datasets structures. In other words, we use explicit
characteristics (from the ontology) like functional properties, disjoint class axiom, i.e. all available semantics that can
help us in our task. We also use implicit properties, i.e. how properties are used in datasets. A property is explicitly

3 https://www.w3.org/TR/owl2-profiles/
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defined in the ontology by its domain, its range, the fact that it can have a literal value or an object value (i.e. another
IRI) and is implicitly defined within a dataset by the way it is used (e.g. how many instances use a given property?).
Those explicit and implicit features may be of great help to discover new identity links. Concerning the implicit
features, we propose to combine similarities function in conjunction with weights according to the use of each property
within datasets. For instances of a given concept, we use two types of weights. One representing the importance of a
property and one the discriminating power of this property.

Our work is complementary to the ones we have just seen. To the best of our knowledge, our approach is the first
that uses information of the dataset structure to such an extent.

3. Background and Notation

In this section, we give the preliminary background, and introduce the notation. For a more exhaustive background,
we refer the reader to [4].

In all the remainder of this article, KB, KBi denote KBs, C denotes a concept (i.e. a class or an instance type) and
R denotes a role (i.e. a property or predicate). R(a, b) denotes that an instance a has the role R with the value b. C(a)
denotes that a is an instance of the concept C. sameAs(a, b) denotes that the instance a is the same as 4 the instance b.
We also note S(KB) (resp. O(KB) and R(KB)) the set of subjects (resp. objects and roles) belonging to triples from
KB. Definition 1 corresponds to the input of our approach:

Definition 1. (Source and target knowledge bases) Let KBs and KBt be two RDF KBs such that KBs = 〈T1,A1〉
and KBt = 〈T2,A2〉. T1 and T2 are T-Boxes (see [4]), andA1 andA2 are A-Boxes (see [4]) such that T1 � T2
KBs and KBt are called respectively the source and the target KBs.

Therefore, for this approach, we require that the T-Box of the source KB be included in the T-Box of the target KB.
We need for instances in both KBs to share the same roles (i.e. properties) and have the same concepts (i.e. classes).
Indeed, in this work we do not deal with the ontology alignment problem for now. Moreover, if there is a need for
alignment, it is possible to use multiple tools that exist and that gives good results.

Definition 2 corresponds to the output of our approach:

Definition 2. (Linkset) Let LKBs,KBt (R) = {R(a, b)|a ∈ KBs ∧ b ∈ KBt} be a linkset between KBs and KBt for the
role R. LKBs,KBt (R) is thus the set of triples such that the subject comes from the source KB, the role is R and object is
in the target KB.

Example 1. If R = owl:sameAs, {s:London, s:Paris, s:New York} ⊂ S(KBs) and {t:London, t:Dublin, t:Paris} ⊂
S(KBt) then LKBs,KBt (R) = {〈s:London, t:London〉, 〈s:Paris, t:Paris〉}.

In the next section, we will detail our approach.

4. Approach

First, we will see an overview of the main algorithm in Sect. 4.1, and then a detailed description of the different
phases of our approach in Sect. 4.2.

4.1. Approach summary

Our approach to find if an owl:sameAs link can be created between two instances x1 and x2 can be summarized by
the following:

1. Find any semantic proof of identity. If there is one, stop there.
2. Otherwise, for each common role R between x1 and x2 (such that R(x1, o1) and R(x2, o2)):

4 https://www.w3.org/TR/owl-ref/#sameAs-def

Table 1. Examples of used semantics for equality
If Then

eq-trans
T (?x, owl:sameAs, ?y)
T (?y, owl:sameAs, ?z) T (?x, owl:sameAs, ?z)

prp-fp

T (?p, rd f :type,
owl:FunctionalProperty)

T (?x, ?p, ?y1)
T (?x, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

prp-ifp

T (?p, rd f :type,
owl:InverseFunctionalProperty)

T (?x1, ?p, ?y)
T (?x2, ?p, ?y)

T (?x1, owl:sameAs, ?x2)

cls-maxc2

T (?x, owl:maxCardinality,
“1”̂ x̂sd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?u, rd f :type, ?x)

T (?u, ?p, ?y1)
T (?u, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

(a) Compute classical similarity between objects of current common role (e.g. between o1 and o2) (see Algo-
rithm 2)

(b) Compute the weight of the role R (see Definition 5)
(c) Compute the discriminating power of the role-object pair 〈R, o1〉 (see Definition 7)
(d) Aggregate in S ubAggregation the similarity, the weight of the role R and the discriminating power of the

role-object pair 〈R, o1〉

3. Compute the weight of evidence between x1 and x2 in evidence (see Definition 8)
4. Aggregate all S ubAggregation variables and the evidence weight

In the following section, we will see more details about each step.

4.2. In-depth approach

There are two distinct phases when two instances are compared to know if they are the same and if an owl:sameAs
link must be created between them. The first one relies on owl:sameAs semantics. The second one is the heart of the
approach.

4.2.1. Direct semantic proof
The first step of our approach is to look for direct semantic proof of equality (or inequality) between the two in-

spected resources. Table 1 shows some examples of the semantics of owl:sameAs that have been used in our approach.
We basically search for any pattern corresponding to one of the cases contained in Table 1. Basically, if the conditions
in the If column holds (are true), then the column Then can be applied, i.e. we can explicitly add the triples it contained
in the KB.

Example 2. (Rule prp-fp from Table 1) Let us suppose we are assessing if the instances x1 and x2 are the same. If
we find that the role P is a functional property 5 (FunctionalProperty(P)) and P(s, x1) and P(s, x2) (either directly
in KB1 and KB2 or by inference), then we know for sure that sameAs(x1, x2) holds. In that case the main similarity
algorithm stops and return 1.

5 https://www.w3.org/TR/owl-ref/#FunctionalProperty-def
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Therefore, for this approach, we require that the T-Box of the source KB be included in the T-Box of the target KB.
We need for instances in both KBs to share the same roles (i.e. properties) and have the same concepts (i.e. classes).
Indeed, in this work we do not deal with the ontology alignment problem for now. Moreover, if there is a need for
alignment, it is possible to use multiple tools that exist and that gives good results.

Definition 2 corresponds to the output of our approach:

Definition 2. (Linkset) Let LKBs,KBt (R) = {R(a, b)|a ∈ KBs ∧ b ∈ KBt} be a linkset between KBs and KBt for the
role R. LKBs,KBt (R) is thus the set of triples such that the subject comes from the source KB, the role is R and object is
in the target KB.

Example 1. If R = owl:sameAs, {s:London, s:Paris, s:New York} ⊂ S(KBs) and {t:London, t:Dublin, t:Paris} ⊂
S(KBt) then LKBs,KBt (R) = {〈s:London, t:London〉, 〈s:Paris, t:Paris〉}.

In the next section, we will detail our approach.

4. Approach

First, we will see an overview of the main algorithm in Sect. 4.1, and then a detailed description of the different
phases of our approach in Sect. 4.2.

4.1. Approach summary

Our approach to find if an owl:sameAs link can be created between two instances x1 and x2 can be summarized by
the following:

1. Find any semantic proof of identity. If there is one, stop there.
2. Otherwise, for each common role R between x1 and x2 (such that R(x1, o1) and R(x2, o2)):

4 https://www.w3.org/TR/owl-ref/#sameAs-def

Table 1. Examples of used semantics for equality
If Then

eq-trans
T (?x, owl:sameAs, ?y)
T (?y, owl:sameAs, ?z) T (?x, owl:sameAs, ?z)

prp-fp

T (?p, rd f :type,
owl:FunctionalProperty)

T (?x, ?p, ?y1)
T (?x, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

prp-ifp

T (?p, rd f :type,
owl:InverseFunctionalProperty)

T (?x1, ?p, ?y)
T (?x2, ?p, ?y)

T (?x1, owl:sameAs, ?x2)

cls-maxc2

T (?x, owl:maxCardinality,
“1”̂ x̂sd:nonNegativeInteger)

T (?x, owl:onProperty, ?p)
T (?u, rd f :type, ?x)

T (?u, ?p, ?y1)
T (?u, ?p, ?y2)

T (?y1, owl:sameAs, ?y2)

(a) Compute classical similarity between objects of current common role (e.g. between o1 and o2) (see Algo-
rithm 2)

(b) Compute the weight of the role R (see Definition 5)
(c) Compute the discriminating power of the role-object pair 〈R, o1〉 (see Definition 7)
(d) Aggregate in S ubAggregation the similarity, the weight of the role R and the discriminating power of the

role-object pair 〈R, o1〉

3. Compute the weight of evidence between x1 and x2 in evidence (see Definition 8)
4. Aggregate all S ubAggregation variables and the evidence weight

In the following section, we will see more details about each step.

4.2. In-depth approach

There are two distinct phases when two instances are compared to know if they are the same and if an owl:sameAs
link must be created between them. The first one relies on owl:sameAs semantics. The second one is the heart of the
approach.

4.2.1. Direct semantic proof
The first step of our approach is to look for direct semantic proof of equality (or inequality) between the two in-

spected resources. Table 1 shows some examples of the semantics of owl:sameAs that have been used in our approach.
We basically search for any pattern corresponding to one of the cases contained in Table 1. Basically, if the conditions
in the If column holds (are true), then the column Then can be applied, i.e. we can explicitly add the triples it contained
in the KB.

Example 2. (Rule prp-fp from Table 1) Let us suppose we are assessing if the instances x1 and x2 are the same. If
we find that the role P is a functional property 5 (FunctionalProperty(P)) and P(s, x1) and P(s, x2) (either directly
in KB1 and KB2 or by inference), then we know for sure that sameAs(x1, x2) holds. In that case the main similarity
algorithm stops and return 1.

5 https://www.w3.org/TR/owl-ref/#FunctionalProperty-def
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If there is a proof that x1 and x2 are different, the main similarity algorithm stops and return 0. If no semantic clue
has been found, the main similarity algorithm continues to the next step.

Algorithm 1 illustrate our approach.

input : x1 ∈ KBs and x2 ∈ KBt (x1 and x2 are instances)
output: the similarity score

1 if IsS emProo f (x1, x2) then return S emProo f Value(x1, x2);
2 scores← [];
3 C ← maxC{depthKB(C) | C(x1) ∈ KBs ∧C(x2) ∈ KBt};
4 /* At worst, C = owl:Thing */

5 foreach R ∈ Rx1 ∩ Rx2 do
6 /* see Algorithm 2 for the sim function */

7 (maxS im, o)← max{sim(o1, o2) | (o1, o2) ∈ {o : R(x1, o)} × {o : R(x2, o)}};
8 // the max() function returns a tuple composed of o1 or o2 depending on which

one has the highest similarity score, and this score

9 subscore← Aggregation1(maxS im, (1 −WKBs (R,C)), (1 − DKBs (C,R, o)));
10 scores.Add(subscore);
11 end
12 /* The more information (triples) there is, the stronger the decision must be. w

represents this force. */

13 evidence← |Rx1∩Rx2 |
|Rx1 |+|Rx2 |−|Rx1∩Rx2 |

;

14 return Aggregation2(evidence, S ubAggregation(scores));
Algorithm 1: Calculate the similarity score between two instances

input : o1 ∈ KBs and o2 ∈ KBt

output: the similarity score between two objects

1 score← 0;
2 if termType(o1) � termType(o2) then return score;
3 // The termType() function returns a value between resource or literal, whether

the parameter is an RDF resource or a literal value. Blank nodes are ignored

for simplicity

4 if termType(o1) = resource then
5 if semantic proof that o1 = o2 then
6 score← 1;
7 else
8 score← stringS im( f ragment(o1), f ragment(o2));
9 else if dataType(o1) = dataType(o2) then

10 // The dataType() function returns the data type of a literal, e.g. string or

date.

11 score← simdataType(o1)(o1, o2);
12 else
13 score← stringS im(o1, o2);
14 return score;

Algorithm 2: the sim function

The IsS emProo f function (line 1 in Algorithm 1) returns a boolean. If a semantic proof of equality or inequality
is found, it return true. In the same line, S emProo f Value return either 1 or 0 (one if the evidence is in favor of
owl:sameAs, zero otherwise).

4.2.2. The use of properties
In this second step of our approach, there are two main ideas. The first one is that rarely occurring role (among

instances of a given concept) may be stronger to evaluate identity between two instances than an omnipresent role
(see Example 3). The second one is that a role-object couple that occurred less is more helpful to find an identity link
(see Example 4). We have been inspired by the fact that when looking for evidence we seek for a specificity, since
peculiarities narrow down the possibilities.

Example 3. If 90% of the People’s instances use the role name but only 8% of those instances use the role ownerOf,
then ownerOf might help more to determine (the absence of) an identity relation between two instances.

Example 4. Let’s say we have the following triples: town(a, t1) and town(b, t2). The discriminating power of the
values is important. Suppose we have 100 instances with the role-object 〈town, t1〉 but only 3 instances with the role-
object 〈town, t2〉, then evidence having the role-object 〈town, t2〉 are stronger than evidence having 〈town, t1〉, since
〈town, t2〉 enable to discriminate more instances. We name this the discriminating power of a role-object pair.

Hence, for each common role between the two instances x1 and x2, a classical similarity score is computed between
objects. For example, if we have country(x1, o1) and country(x2, o2), we compute the similarity sim(o1, o2)(∈ [0, 1]).
This similarity depends on the nature of o1 and o2 (IRIs, typed literals, etc.). We will see more details later. Each of
those similarities will be weighted based on intuitions explain in Example 3 and 4. More formally, before defining the
weight of a role, we need two preliminary definitions:

Definition 3. Let NSKB(C) = |{s : ∃(R, o) ∈ R(KB) × O(KB),R(s, o) ∈ KB ∧ C(s) ∈ KB}| the number of subjects
from KB that are of the concept C.

Example 5. In following examples, we will use this KB = {Woman(ada),Man(lennon),Woman(kahlo),
Man(obama),Man(einstein), age(lennon, 26), age(obama, 47), age(einstein, 26), age(kahlo, 37),
nationality(ada, brithish)}.

If C = Woman, then NSKB(Woman) = 2 (kahlo and ada).

Definition 4. Let NSKB(C,R) = |{s : ∃o ∈ O(KB),R(s, o) ∈ KB ∧ C(s) ∈ KB}| be the number of subjects of C
participating in triples having the role R in KB.

Example 6. With KB from Example 5, C = Woman and R = Age, then NSKB(Woman, Age) = 1 (only kahlo has an
age provided).

Now, we can define the weight of a role (as explain in Example 3):

Definition 5. (weight of a role) The weight of the role R on the concept C inKB is defined by WKB(R,C) = NSKB(C,R)
NSKB(C)

and WKB(R,C) ∈ [0, 1].

This weight WKB(R,C) represents the percentage of instances of a class (or concept) C having the role R in their
description.

Example 7. With KB from Example 5, then WKB(Age,Woman) = NSKB(Woman,Age)
NSKB(Woman) =

1
2 = 50%.

We will next define the second intuition seen in Example 4, that is the discriminating power of role-object pair:

Definition 6. Let NSKB(C,R, o) = |{s : ∃s,R(s, o) ∈ KB ∧ C(s) ∈ KB}| be the number of subjects of concept C
participating in triples having the role R and the object o in KB.

Example 8. With KB from Example 5, C = Man, R = Age and o = 26, then NSKB(Man, Age, 26) = 2 (einstein and
lennon).

Now, we can define the discriminating power:

Definition 7. (discriminating power) The discriminating power of a role-value pair 〈R, o〉 on the concept C in KB is
defined by DKB(C,R, o) = NSKB(C,R,o)

NSKB(C,R) and DKB(C,R, o) ∈ [0, 1].
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If there is a proof that x1 and x2 are different, the main similarity algorithm stops and return 0. If no semantic clue
has been found, the main similarity algorithm continues to the next step.

Algorithm 1 illustrate our approach.

input : x1 ∈ KBs and x2 ∈ KBt (x1 and x2 are instances)
output: the similarity score

1 if IsS emProo f (x1, x2) then return S emProo f Value(x1, x2);
2 scores← [];
3 C ← maxC{depthKB(C) | C(x1) ∈ KBs ∧C(x2) ∈ KBt};
4 /* At worst, C = owl:Thing */

5 foreach R ∈ Rx1 ∩ Rx2 do
6 /* see Algorithm 2 for the sim function */

7 (maxS im, o)← max{sim(o1, o2) | (o1, o2) ∈ {o : R(x1, o)} × {o : R(x2, o)}};
8 // the max() function returns a tuple composed of o1 or o2 depending on which

one has the highest similarity score, and this score

9 subscore← Aggregation1(maxS im, (1 −WKBs (R,C)), (1 − DKBs (C,R, o)));
10 scores.Add(subscore);
11 end
12 /* The more information (triples) there is, the stronger the decision must be. w

represents this force. */

13 evidence← |Rx1∩Rx2 |
|Rx1 |+|Rx2 |−|Rx1∩Rx2 |

;

14 return Aggregation2(evidence, S ubAggregation(scores));
Algorithm 1: Calculate the similarity score between two instances

input : o1 ∈ KBs and o2 ∈ KBt

output: the similarity score between two objects

1 score← 0;
2 if termType(o1) � termType(o2) then return score;
3 // The termType() function returns a value between resource or literal, whether

the parameter is an RDF resource or a literal value. Blank nodes are ignored

for simplicity

4 if termType(o1) = resource then
5 if semantic proof that o1 = o2 then
6 score← 1;
7 else
8 score← stringS im( f ragment(o1), f ragment(o2));
9 else if dataType(o1) = dataType(o2) then

10 // The dataType() function returns the data type of a literal, e.g. string or

date.

11 score← simdataType(o1)(o1, o2);
12 else
13 score← stringS im(o1, o2);
14 return score;

Algorithm 2: the sim function

The IsS emProo f function (line 1 in Algorithm 1) returns a boolean. If a semantic proof of equality or inequality
is found, it return true. In the same line, S emProo f Value return either 1 or 0 (one if the evidence is in favor of
owl:sameAs, zero otherwise).

4.2.2. The use of properties
In this second step of our approach, there are two main ideas. The first one is that rarely occurring role (among

instances of a given concept) may be stronger to evaluate identity between two instances than an omnipresent role
(see Example 3). The second one is that a role-object couple that occurred less is more helpful to find an identity link
(see Example 4). We have been inspired by the fact that when looking for evidence we seek for a specificity, since
peculiarities narrow down the possibilities.

Example 3. If 90% of the People’s instances use the role name but only 8% of those instances use the role ownerOf,
then ownerOf might help more to determine (the absence of) an identity relation between two instances.

Example 4. Let’s say we have the following triples: town(a, t1) and town(b, t2). The discriminating power of the
values is important. Suppose we have 100 instances with the role-object 〈town, t1〉 but only 3 instances with the role-
object 〈town, t2〉, then evidence having the role-object 〈town, t2〉 are stronger than evidence having 〈town, t1〉, since
〈town, t2〉 enable to discriminate more instances. We name this the discriminating power of a role-object pair.

Hence, for each common role between the two instances x1 and x2, a classical similarity score is computed between
objects. For example, if we have country(x1, o1) and country(x2, o2), we compute the similarity sim(o1, o2)(∈ [0, 1]).
This similarity depends on the nature of o1 and o2 (IRIs, typed literals, etc.). We will see more details later. Each of
those similarities will be weighted based on intuitions explain in Example 3 and 4. More formally, before defining the
weight of a role, we need two preliminary definitions:

Definition 3. Let NSKB(C) = |{s : ∃(R, o) ∈ R(KB) × O(KB),R(s, o) ∈ KB ∧ C(s) ∈ KB}| the number of subjects
from KB that are of the concept C.

Example 5. In following examples, we will use this KB = {Woman(ada),Man(lennon),Woman(kahlo),
Man(obama),Man(einstein), age(lennon, 26), age(obama, 47), age(einstein, 26), age(kahlo, 37),
nationality(ada, brithish)}.

If C = Woman, then NSKB(Woman) = 2 (kahlo and ada).

Definition 4. Let NSKB(C,R) = |{s : ∃o ∈ O(KB),R(s, o) ∈ KB ∧ C(s) ∈ KB}| be the number of subjects of C
participating in triples having the role R in KB.

Example 6. With KB from Example 5, C = Woman and R = Age, then NSKB(Woman, Age) = 1 (only kahlo has an
age provided).

Now, we can define the weight of a role (as explain in Example 3):

Definition 5. (weight of a role) The weight of the role R on the concept C inKB is defined by WKB(R,C) = NSKB(C,R)
NSKB(C)

and WKB(R,C) ∈ [0, 1].

This weight WKB(R,C) represents the percentage of instances of a class (or concept) C having the role R in their
description.

Example 7. With KB from Example 5, then WKB(Age,Woman) = NSKB(Woman,Age)
NSKB(Woman) =

1
2 = 50%.

We will next define the second intuition seen in Example 4, that is the discriminating power of role-object pair:

Definition 6. Let NSKB(C,R, o) = |{s : ∃s,R(s, o) ∈ KB ∧ C(s) ∈ KB}| be the number of subjects of concept C
participating in triples having the role R and the object o in KB.

Example 8. With KB from Example 5, C = Man, R = Age and o = 26, then NSKB(Man, Age, 26) = 2 (einstein and
lennon).

Now, we can define the discriminating power:

Definition 7. (discriminating power) The discriminating power of a role-value pair 〈R, o〉 on the concept C in KB is
defined by DKB(C,R, o) = NSKB(C,R,o)

NSKB(C,R) and DKB(C,R, o) ∈ [0, 1].
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The lower the number DKB(C,R, o), the more the role-object 〈R, o〉 makes it possible to differentiate between two
instances.

Example 9. With KB from Example 5, then
DKB(Man, Age, 26) = NSKB(Man,Age,26)

NSKB(Man,Age) =
|{lennon,einstein}|

|{lennon,einstein,obama}| =
2
3 = 66% and DKB(Man, Age, 47) = NSKB(Man,Age,47)

NSKBMan,Age =
|{obama}|

|{lennon,einstein,obama}| =
1
3 = 33%. In combination with the role Age and for Man instances, the object “47” selects only

one instance (obama) with its discriminating power of 33%, against two (lennon, einstein) for the object “26” with a
discriminating power of 66%.

To sum up, for each common role between two instances, we compute a similarity score weighted by the weight of
the role and the discriminating power of the role-object pair.

Finally, we need to aggregate those weighted similarity scores. In the aggregation process we take into account the
fact that the more evidence there is, the more trustworthy the result will be (see line 13 in Algorithm 1).

Example 10. Let’s say that we have three instances a, b and c where a is from KBs and b and c are from KBt. On
the one hand, if we have four evidence between a and b, and on the other hand, eight evidence between a and c then
we strengthen the second result. We give a bonus to the comparison with the more evidence to present.

Therefore, after aggregating all weighted similarity scores, we use a last weight to either penalize or reward the
result according to the number of common roles between the compared instances. To do this, we compute the following
weight:

Definition 8. (weight of evidence) evidence =
|Rx1∩Rx2 |

|Rx1 |+|Rx2 |−|Rx1∩Rx2 |
, where evidence ∈ [0, 1].

Example 11. If Rx1 = {rd f s:label, f oa f :name,dbo:birthPlace, dbo:birthDate}, Rx2 = {rd f s:label, dbo:birthDate,
dbo:deathDate} and Rx3 = {rd f s:label, f oa f :name, dbo:birthPlace, dbo:deathDate}, then Rx1 ∩ Rx2 = {rd f s:label,
dbo:birthDate}, evidencex1,x2 =

2
4+3−2 =

2
5 = 0.4 and Rx1 ∩ Rx3 = {rd f s:label, f oa f :name, dbo:birthPlace} and

evidencex1,x3 =
3

4+4−3 =
3
5 = 0.6. We can see in the second case that there is more information to support the

approach. x1 and x3 have more information to be compared than x1 and x2.

Some additional points need explanation. Line 1 from Algorithm 1 corresponds to the stage where we search for
direct semantic features. Furthermore, in line 3, we use the depthKB(C) function that is defined by the following:

Definition 9. (depth of a concept) Let depthKB(C) be the distance between the concept C and the concept T (i.e.
owl:Thing in RDF) in KB. depthKB(C) is called the depth of C.

By definition, ∀KB, depthKB(T ) = 0. (The Top concept is equivalent to owl:Thing in RDF, see [3] for more
details.)

Example 12. IfKB = dbo6 then depthdbo(Agent) = 1 and depthdbo(Biologist) = 4 since Agent is a direct sub concept
of owl:Thing and Biologist � S cientist � Person � Agent � owl:Thing.

We retrieve the deepest common concept between x1 and x2, i.e. the most specific. It is this concept that will be
used to compute the weight of the roles and the discriminating power of the role-object pairs. The idea is that if, for
example, two instances are scientists, we will obtain better results if we use the Scientist concept than the Human
concept.

Finally, Algorithm 2 shows how our approach handles similarity between two objects. The fragment function gives
the last part of an IRI, i.e. after the last / or #, to compare IRIs in last resort. We compare data types and if they
match we use an appropriate similarity measure (line 11), e.g. if they are both dates, then we use a similarity function
working with dates. If both are resources, we check for direct semantic proof (as we have seen it before) and if we do
not find anything we trivially compare IRIs. There has been no attempt to use recursivity in this part yet.

Furthermore, in the main algorithm (Algo. 1), there are three different aggregation functions (lines 9 and 14) that
are used. We used the mean for all three.

6 DBpedia ontology : http://wiki.dbpedia.org/services-resources/ontology

5. Experiments

In this section, to evaluate our approach, we will present two experiments performed on DBpedia/Wikidata and the
SPIMBENCH SANDBOX track from OAEI 2017 and then discuss their results.

5.1. Results

We have developed a prototype in C# that can be run either on Linux or Windows machines. It is also available
as a Docker container. We choose the open source library dotNetRDF7 to handle SPARQL, OWL and RDF parts.
All experiments are performed on a computer with an I7 processor (3.10 GHz) and 16 Go of RAM. All our code
and datasets can be found on this Github repository so our experiments are reproducible: https://github.com/
PHParis/im_prototype.

For each experiment, we have calculated the precision, recall and F-measure with result linkset as follows:

• True positive (tp) : number of alignments predicted (by our approach) that are actually true
• False positive ( f p) : number of alignments predicted and actually wrong
• False Negative ( f n) : number of true alignment not found among those predicted by our approach
• Precision = tp

tp+ f p

• Recall = tp
tp+ f n

• F-measure = 2×Precision×Recall
Precision+Recall

5.1.1. First experiment
For the first experiment, we performed an instance matching task on real-world and well-known datasets. Thus,

we used subsets of DBpedia and Wikidata. More precisely, we used DBpedia Wikidata8 in place of Wikidata since it
is expressed with DBpedia ontology. Hence, we respect the following condition from Definition 1: T1 � T2 (source
TBox must be a subset of target TBox). The version of DBpedia used is “2016-10” and the version of DBpedia
Wikidata is “03.30.2015”.

Now we describe how we built our two test KBs from real-world datasets. In the source dataset KBs, we have
selected instances of persons from DBpedia having at least 15 homonyms (according to rdfs:label) in Wikidata. We
arbitrarily chose 15 homonyms to have a sufficient challenge without having to recover too many instances (the scaling
of our approach is not our main concern at the moment). We queried all triples mentioning one of these instances to
construct the source dataset. In the target dataset KBt , we retrieved all homonyms (belonging to DBpedia Wikidata) of
instances from our DBpedia selection. For example, the instance dbpedia:John Williams has the label “John Williams”
and there are 88 distinct instances in Wikidata with the label “John Williams”. The DBpedia selection contains all
triples having dbpedia:John Williams as subject or object and the DBpedia Wikidata contains all triples having one
of the 88 instances as subject or object. From both source and target datasets, we obviously deleted owl:sameAs links
after having assessed them (none of them were erroneous). There were 36 owl:sameAs. Those links were then used
as a gold standard. The source KB contains 277 instances, 3468 triples and 36 candidate instances belonging to the
concept to be matched with the target KB. The target KB contains 1170 instances, 7667 triples and 552 candidate
instances belonging to the concept to be matched with the source KB.

After applying our approach (that took 12 seconds), we evaluated the generated linkset. We obtained a precision
and a recall of 91.7%. Moreover, our approach produced 33 true positives, 3 false positives and 3 false negatives.

Therefore, our approach works well on real-world data. Next, we go further and compare with other approaches.

5.1.2. Second experiment
The goal of this experiment is two folds. First, we want to compare our approach with state of the art approaches.

Secondly, other approaches we selected all use advanced terminology or structural comparison techniques (see Sect. 2)

7 https://github.com/dotnetrdf/dotnetrdf
8 http://wikidata.dbpedia.org/
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The lower the number DKB(C,R, o), the more the role-object 〈R, o〉 makes it possible to differentiate between two
instances.

Example 9. With KB from Example 5, then
DKB(Man, Age, 26) = NSKB(Man,Age,26)

NSKB(Man,Age) =
|{lennon,einstein}|

|{lennon,einstein,obama}| =
2
3 = 66% and DKB(Man, Age, 47) = NSKB(Man,Age,47)

NSKBMan,Age =
|{obama}|

|{lennon,einstein,obama}| =
1
3 = 33%. In combination with the role Age and for Man instances, the object “47” selects only

one instance (obama) with its discriminating power of 33%, against two (lennon, einstein) for the object “26” with a
discriminating power of 66%.

To sum up, for each common role between two instances, we compute a similarity score weighted by the weight of
the role and the discriminating power of the role-object pair.

Finally, we need to aggregate those weighted similarity scores. In the aggregation process we take into account the
fact that the more evidence there is, the more trustworthy the result will be (see line 13 in Algorithm 1).

Example 10. Let’s say that we have three instances a, b and c where a is from KBs and b and c are from KBt. On
the one hand, if we have four evidence between a and b, and on the other hand, eight evidence between a and c then
we strengthen the second result. We give a bonus to the comparison with the more evidence to present.

Therefore, after aggregating all weighted similarity scores, we use a last weight to either penalize or reward the
result according to the number of common roles between the compared instances. To do this, we compute the following
weight:

Definition 8. (weight of evidence) evidence =
|Rx1∩Rx2 |

|Rx1 |+|Rx2 |−|Rx1∩Rx2 |
, where evidence ∈ [0, 1].

Example 11. If Rx1 = {rd f s:label, f oa f :name,dbo:birthPlace, dbo:birthDate}, Rx2 = {rd f s:label, dbo:birthDate,
dbo:deathDate} and Rx3 = {rd f s:label, f oa f :name, dbo:birthPlace, dbo:deathDate}, then Rx1 ∩ Rx2 = {rd f s:label,
dbo:birthDate}, evidencex1,x2 =

2
4+3−2 =

2
5 = 0.4 and Rx1 ∩ Rx3 = {rd f s:label, f oa f :name, dbo:birthPlace} and

evidencex1,x3 =
3

4+4−3 =
3
5 = 0.6. We can see in the second case that there is more information to support the

approach. x1 and x3 have more information to be compared than x1 and x2.

Some additional points need explanation. Line 1 from Algorithm 1 corresponds to the stage where we search for
direct semantic features. Furthermore, in line 3, we use the depthKB(C) function that is defined by the following:

Definition 9. (depth of a concept) Let depthKB(C) be the distance between the concept C and the concept T (i.e.
owl:Thing in RDF) in KB. depthKB(C) is called the depth of C.

By definition, ∀KB, depthKB(T ) = 0. (The Top concept is equivalent to owl:Thing in RDF, see [3] for more
details.)

Example 12. IfKB = dbo6 then depthdbo(Agent) = 1 and depthdbo(Biologist) = 4 since Agent is a direct sub concept
of owl:Thing and Biologist � S cientist � Person � Agent � owl:Thing.

We retrieve the deepest common concept between x1 and x2, i.e. the most specific. It is this concept that will be
used to compute the weight of the roles and the discriminating power of the role-object pairs. The idea is that if, for
example, two instances are scientists, we will obtain better results if we use the Scientist concept than the Human
concept.

Finally, Algorithm 2 shows how our approach handles similarity between two objects. The fragment function gives
the last part of an IRI, i.e. after the last / or #, to compare IRIs in last resort. We compare data types and if they
match we use an appropriate similarity measure (line 11), e.g. if they are both dates, then we use a similarity function
working with dates. If both are resources, we check for direct semantic proof (as we have seen it before) and if we do
not find anything we trivially compare IRIs. There has been no attempt to use recursivity in this part yet.

Furthermore, in the main algorithm (Algo. 1), there are three different aggregation functions (lines 9 and 14) that
are used. We used the mean for all three.

6 DBpedia ontology : http://wiki.dbpedia.org/services-resources/ontology

5. Experiments

In this section, to evaluate our approach, we will present two experiments performed on DBpedia/Wikidata and the
SPIMBENCH SANDBOX track from OAEI 2017 and then discuss their results.

5.1. Results

We have developed a prototype in C# that can be run either on Linux or Windows machines. It is also available
as a Docker container. We choose the open source library dotNetRDF7 to handle SPARQL, OWL and RDF parts.
All experiments are performed on a computer with an I7 processor (3.10 GHz) and 16 Go of RAM. All our code
and datasets can be found on this Github repository so our experiments are reproducible: https://github.com/
PHParis/im_prototype.

For each experiment, we have calculated the precision, recall and F-measure with result linkset as follows:

• True positive (tp) : number of alignments predicted (by our approach) that are actually true
• False positive ( f p) : number of alignments predicted and actually wrong
• False Negative ( f n) : number of true alignment not found among those predicted by our approach
• Precision = tp

tp+ f p

• Recall = tp
tp+ f n

• F-measure = 2×Precision×Recall
Precision+Recall

5.1.1. First experiment
For the first experiment, we performed an instance matching task on real-world and well-known datasets. Thus,

we used subsets of DBpedia and Wikidata. More precisely, we used DBpedia Wikidata8 in place of Wikidata since it
is expressed with DBpedia ontology. Hence, we respect the following condition from Definition 1: T1 � T2 (source
TBox must be a subset of target TBox). The version of DBpedia used is “2016-10” and the version of DBpedia
Wikidata is “03.30.2015”.

Now we describe how we built our two test KBs from real-world datasets. In the source dataset KBs, we have
selected instances of persons from DBpedia having at least 15 homonyms (according to rdfs:label) in Wikidata. We
arbitrarily chose 15 homonyms to have a sufficient challenge without having to recover too many instances (the scaling
of our approach is not our main concern at the moment). We queried all triples mentioning one of these instances to
construct the source dataset. In the target dataset KBt , we retrieved all homonyms (belonging to DBpedia Wikidata) of
instances from our DBpedia selection. For example, the instance dbpedia:John Williams has the label “John Williams”
and there are 88 distinct instances in Wikidata with the label “John Williams”. The DBpedia selection contains all
triples having dbpedia:John Williams as subject or object and the DBpedia Wikidata contains all triples having one
of the 88 instances as subject or object. From both source and target datasets, we obviously deleted owl:sameAs links
after having assessed them (none of them were erroneous). There were 36 owl:sameAs. Those links were then used
as a gold standard. The source KB contains 277 instances, 3468 triples and 36 candidate instances belonging to the
concept to be matched with the target KB. The target KB contains 1170 instances, 7667 triples and 552 candidate
instances belonging to the concept to be matched with the source KB.

After applying our approach (that took 12 seconds), we evaluated the generated linkset. We obtained a precision
and a recall of 91.7%. Moreover, our approach produced 33 true positives, 3 false positives and 3 false negatives.

Therefore, our approach works well on real-world data. Next, we go further and compare with other approaches.

5.1.2. Second experiment
The goal of this experiment is two folds. First, we want to compare our approach with state of the art approaches.

Secondly, other approaches we selected all use advanced terminology or structural comparison techniques (see Sect. 2)

7 https://github.com/dotnetrdf/dotnetrdf
8 http://wikidata.dbpedia.org/
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to perform their task. Hence, we want to prove that a structure-based approach with simple string matching can
perform as well as these approaches that use more advanced techniques. To compare our approach with others (see
Sect. 2), we performed tests using the SPIMBENCH SANDBOX task from OAEI 20179. This task has a source
and a target dataset and a gold standard. A concept name is provided, so only the instances of this concept might be
linked. SPIMBENCH SANDBOX datasets are alterations of an original one through value-based, structure-based, and
semantics-aware transformations. The source KB contains 1432 instances, 10883 triples and 349 candidate instances
belonging to the concept to be matched with the target KB. The target KB contains 1453 instances, 10868 triples and
443 candidate instances belonging to the concept to be matched with the source KB.

Table 2. Comparison with other approaches

Participants Precision Recall F-Measure
SPIMBENCH Sandbox

AML 0.849 1.000 0.918
I-Match 0.854 0.997 0.920
Legato 0.980 0.730 0.840
LogMap 0.938 0.763 0.841
Our approach 0.854 0.996 0.920

Table 2 shows a comparison of our results with each participant of the OAEI 2017 Instance Matching Track for
the SPIMBENCH SANDBOX’s task. Moreover, our approach produced 298 true positives, 51 false positives and one
false negative.

5.2. Discussion

In the first experiment, results are good since we obtain 91.7% for all measures. Good links are well found, in-
dicating that our approach is promising. Precision and recall are the same because, several times, a wrong candidate
has been selected instead of the good one. This candidate selection issue is due to similarity scores that are too close
between the good candidate and the (wrongly) selected one. It seems that our aggregation functions (see Section 4.2.2)
are responsible for both true and false negative.

In the second experiment, for the SPIMBENCH SANDBOX dataset, our approach performed well since recall is
99.6% and precision 85.4%. We reached the same F-Measure as I-Match which was the best competitor on F-measure.
In the same way as in the first experiment, several times, a wrong candidate has been selected instead of the correct
one. The simple aggregation of the weights is responsible for most of the false positives. In addition, the use of more
advanced similarity calculation techniques could improve candidate selection and thus reduce the number of false
positives. For example, external KB or NLP techniques can improve comparison of strings.

One of the weaknesses of our approach we observed is the case where a wrong candidate is proposed with more
corresponding property/value pairs of lesser importance than the right candidate has corresponding property/value
pairs of importance. When instance descriptions are too close, our approach may not detect false positives.

There are several areas for improvement, like the three different aggregation functions as mentioned in the previous
section. We use a simple arithmetic mean and we must investigate other ways to aggregate the sub-scores (i.e. scores
for each common role from the loop line 5 in Algorithm 1) and the three weights (i.e. discriminating power and weight
of a role, and the quantification of information). Also, we focus on the source KB for computing the discriminating
power and weight of a role. It may be interesting to use both KBs in the process. Likewise, we use only one common
concept between the two instances, although to use all common concepts may strengthen the score. Scalability should
also be addressed, because if there are more than 1000 instances to match, our approach takes more than ten minutes
to complete. This is mainly due to the absence of any code optimization for the moment. We also need to improve the

9 http://islab.di.unimi.it/content/im oaei/2017/

post-processing part concerning the validation of matches found. In fact, for now, we simply select for each source
instance the best candidate in the target KB, but if the target does not contain an identical instance, then we produce
a false positive. Finally, roles that are not shared by instances (we are trying to match) are discarded, but they may
provide hints too. Unlike some other approaches, we do not use external resources as background knowledge. In
addition, some approaches perform post-processing to eliminate false positives. We could benefit from this last two
points, so our approach combining statistics on structure and semantics can be improved.

6. Conclusion

In this work, we have proposed a fully automatized approach to perform an instance matching task between two
Knowledge Bases sharing their T-Boxes. This approach uses semantics at its disposal, but also uses statistics about
roles and role-object pairs according to the most specific common concept between the compared instances.

The results show that our approach is a promising way towards better interlinking. The recall is good, which
means that our approach works well to find links. Nevertheless, there are some improvements that can be made on the
algorithm to better take into consideration the structure of the datasets, as discussed in the previous section. Especially
to address our false positive detection that can clearly do better. Thus, a first step could be to test other ways to
aggregate the different weights. In the future we may also investigate other ways to refine linkset we produced to have
fewer false positives results. In addition, more parallelization can improve both scalability and speed performance.
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to perform their task. Hence, we want to prove that a structure-based approach with simple string matching can
perform as well as these approaches that use more advanced techniques. To compare our approach with others (see
Sect. 2), we performed tests using the SPIMBENCH SANDBOX task from OAEI 20179. This task has a source
and a target dataset and a gold standard. A concept name is provided, so only the instances of this concept might be
linked. SPIMBENCH SANDBOX datasets are alterations of an original one through value-based, structure-based, and
semantics-aware transformations. The source KB contains 1432 instances, 10883 triples and 349 candidate instances
belonging to the concept to be matched with the target KB. The target KB contains 1453 instances, 10868 triples and
443 candidate instances belonging to the concept to be matched with the source KB.

Table 2. Comparison with other approaches

Participants Precision Recall F-Measure
SPIMBENCH Sandbox

AML 0.849 1.000 0.918
I-Match 0.854 0.997 0.920
Legato 0.980 0.730 0.840
LogMap 0.938 0.763 0.841
Our approach 0.854 0.996 0.920

Table 2 shows a comparison of our results with each participant of the OAEI 2017 Instance Matching Track for
the SPIMBENCH SANDBOX’s task. Moreover, our approach produced 298 true positives, 51 false positives and one
false negative.

5.2. Discussion

In the first experiment, results are good since we obtain 91.7% for all measures. Good links are well found, in-
dicating that our approach is promising. Precision and recall are the same because, several times, a wrong candidate
has been selected instead of the good one. This candidate selection issue is due to similarity scores that are too close
between the good candidate and the (wrongly) selected one. It seems that our aggregation functions (see Section 4.2.2)
are responsible for both true and false negative.

In the second experiment, for the SPIMBENCH SANDBOX dataset, our approach performed well since recall is
99.6% and precision 85.4%. We reached the same F-Measure as I-Match which was the best competitor on F-measure.
In the same way as in the first experiment, several times, a wrong candidate has been selected instead of the correct
one. The simple aggregation of the weights is responsible for most of the false positives. In addition, the use of more
advanced similarity calculation techniques could improve candidate selection and thus reduce the number of false
positives. For example, external KB or NLP techniques can improve comparison of strings.

One of the weaknesses of our approach we observed is the case where a wrong candidate is proposed with more
corresponding property/value pairs of lesser importance than the right candidate has corresponding property/value
pairs of importance. When instance descriptions are too close, our approach may not detect false positives.

There are several areas for improvement, like the three different aggregation functions as mentioned in the previous
section. We use a simple arithmetic mean and we must investigate other ways to aggregate the sub-scores (i.e. scores
for each common role from the loop line 5 in Algorithm 1) and the three weights (i.e. discriminating power and weight
of a role, and the quantification of information). Also, we focus on the source KB for computing the discriminating
power and weight of a role. It may be interesting to use both KBs in the process. Likewise, we use only one common
concept between the two instances, although to use all common concepts may strengthen the score. Scalability should
also be addressed, because if there are more than 1000 instances to match, our approach takes more than ten minutes
to complete. This is mainly due to the absence of any code optimization for the moment. We also need to improve the
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post-processing part concerning the validation of matches found. In fact, for now, we simply select for each source
instance the best candidate in the target KB, but if the target does not contain an identical instance, then we produce
a false positive. Finally, roles that are not shared by instances (we are trying to match) are discarded, but they may
provide hints too. Unlike some other approaches, we do not use external resources as background knowledge. In
addition, some approaches perform post-processing to eliminate false positives. We could benefit from this last two
points, so our approach combining statistics on structure and semantics can be improved.

6. Conclusion

In this work, we have proposed a fully automatized approach to perform an instance matching task between two
Knowledge Bases sharing their T-Boxes. This approach uses semantics at its disposal, but also uses statistics about
roles and role-object pairs according to the most specific common concept between the compared instances.

The results show that our approach is a promising way towards better interlinking. The recall is good, which
means that our approach works well to find links. Nevertheless, there are some improvements that can be made on the
algorithm to better take into consideration the structure of the datasets, as discussed in the previous section. Especially
to address our false positive detection that can clearly do better. Thus, a first step could be to test other ways to
aggregate the different weights. In the future we may also investigate other ways to refine linkset we produced to have
fewer false positives results. In addition, more parallelization can improve both scalability and speed performance.
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