Revealing the Conceptual Schemas of RDF Datasets - Archive ouverte HAL Access content directly
Conference Papers Year : 2019

Revealing the Conceptual Schemas of RDF Datasets

Abstract

RDF-based datasets, thanks to their semantic richness, variety and fine granularity, are increasingly used by both researchers and business communities. However, these datasets suffer a lack of completeness as the content evolves continuously and data contributors are loosely constrained by the vocabularies and schemes related to the data sources. Conceptual schemas have long been recognized as a key mechanism for understanding and dealing with complex real-world systems. In the context of the Web of Data and user-generated content, the conceptual schema is implicit. In fact, each data contributor has an implicit personal model that is not known by the other contributors. Consequently, revealing a meaningful conceptual schema is a challenging task that should take into account the data and the intended usage. In this paper, we propose a completeness-based approach for revealing conceptual schemas of RDF data. We combine quality evaluation and data mining approaches to find a conceptual schema for a dataset, this model meets user expectations regarding data completeness constraints. To achieve that, we propose LOD-CM; a web-based completeness demonstrator for linked datasets.

Domains

Web
Not file

Dates and versions

hal-02424277 , version 1 (26-12-2019)

Identifiers

Cite

Subhi Issa, Pierre-Henri Paris, Fayçal Hamdi, Samira Si-Said Cherfi. Revealing the Conceptual Schemas of RDF Datasets. 31st International Conference, CAiSE 2019, Jun 2019, Rome, Italy. pp.312-327, ⟨10.1007/978-3-030-21290-2_20⟩. ⟨hal-02424277⟩

Collections

CNAM CEDRIC-CNAM
94 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More