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Abstract

A hole in a graph is an induced cycle with at least 4 vertices. A graph is even-hole-
free if it does not contain a hole on an even number of vertices. A pyramid is a graph
made of three chordless paths P1 = a . . . b1, P2 = a . . . b2, P3 = a . . . b3 of length at
least 1, two of which have length at least 2, vertex-disjoint except at a, and such that
b1b2b3 is a triangle and no edges exist between the paths except those of the triangle
and the three edges incident with a.

We give a polynomial time algorithm to compute a maximum weighted independent
set in a even-hole-free graph that contains no pyramid as an induced subgraph. Our
result is based on a decomposition theorem and on bounding the number of minimal
separators. All our results hold for a slightly larger class of graphs, the class of (square,
prism, pyramid, theta, even wheel)-free graphs.

1 Introduction

In this article, graphs are finite and simple. A hole in a graph is an induced cycle with at
least 4 vertices. The length of a hole is the number of vertices in it. A graph G contains
a graph H if some induced subgraph of G is isomorphic to H. A graph G is H-free if it
does not contain H. When H is a set of graphs, G is H-free if it is H-free for all H in H.

The class of even-hole-free graphs was the object of much research (see [10] for a survey).
However, the complexity of computing a maximum independent set in an even-hole-free
graph is not known.
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d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR)
‡School of Computing, University of Leeds, UK and Faculty of Computer Science (RAF), Union Uni-

versity, Belgrade, Serbia. Partially supported by EPSRC grant EP/N0196660/1, and Serbian Ministry of
Education and Science projects 174033 and III44006.

1

ar
X

iv
:1

91
2.

11
24

6v
1 

 [
cs

.D
M

] 
 2

4 
D

ec
 2

01
9



Figure 1: Prism, pyramid, theta and wheel (dashed lines represent paths)

A pyramid is a graph made of three chordless paths P1 = a . . . b1, P2 = a . . . b2, P3 =
a . . . b3 of length at least 1, two of which have length at least 2, vertex-disjoint except at
a, and such that b1b2b3 is a triangle and no edges exist between the paths except those of
the triangle and the three edges incident with a. See Fig. 1.

Our main result is a polynomial time algorithm to compute a maximum weighted
independent set in an (even-hole, pyramid)-free graph. Our approach is by first proving
a decomposition theorem for the class of (even-hole, pyramid)-free graph. This theorem
might have other applications because the presence of a pyramid in an even-hole-free graphs
places significant restrictions on its structure. The graphs seems to ”organize itself” around
the pyramid, in a way that can likely be exploited algorithmically. Results in this direction
appear in Chudnovsky and Seymour [6]. So our result on the pyramid-free case might help
to understand the full class of even-hole-free graphs. We use our decomposition theorem to
prove that (even-hole, pyramid)-free graph contain polynomially many minimal separators
(to be defined in the next section). In fact, we prove this property for a slightly larger
class of graphs, namely the (theta, pyramid, prism, even wheel, square)-free graphs. And
as we explain in the next section, this property implies the existence of a polynomial time
algorithm to compute maximum weighted independent sets.

In section 2 we state formally our main results and motivate them further. In section 3,
we prove the decomposition theorem. In section 4, we give several properties of minimal
separators in our class of graphs. In section 5, we prove that graphs in our class contain
polynomially many minimal separators.

Notation

Let G be a graph. By a path we mean a chordless (or induced) path. When P is a path
in G, we denote by P ∗ the path induced by the internal vertices of P . When a and b are
vertices of a path P , we denote by aPb the subpath of P with ends a and b. A clique in a
graph is a set of pairwise adjacent vertices.

When A,B ⊆ V (G), we denote by NB(A) the set of vertices of B \A that have at least
one neighbor in A and N(A) means NV (G)(A). Note that NB(A) is disjoint from A. We
write N(a) instead of N({a}) and N [a] for {a} ∪N(a). We denote by G[A] the subgraph
of G induced by A. To avoid too heavy notation, since there is no risk of confusion, when
H is an induced subgraph of G, we write NH instead of NV (H).
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A vertex x is complete (resp. anticomplete) to A if x /∈ A and x is adjacent to all
vertices of A (resp. to no vertex of A). We say that A is complete (resp. anticomplete)
to B if every vertex of A is complete (resp. anticomplete) to B (note that this means in
particular that A and B are disjoint).

2 Results

Let G be a graph and a, b ∈ V (G). A set C ⊆ V (G) is an minimal (a, b)-separator if a and
b are in disctint components of G \C and C is minimal with this property. We say that C
is a minimal separator if C is a minimal (a, b)-separator for some pair a, b.

It is easy to check that a minimal separator in a graph G can be equivalently defined as
a set C ⊆ V (G) such that G\C has a connected component L and a connected component
R such that every vertex of C has neighbors in both L and R. Note that G\C has possibly
more connected components.

Say that a class C of graphs has the polynomial separator property if there exists bC
such that every graph G in C has at most |V (G)|bC minimal separators. As explained by
Chudnovsky, Pilipczuk, Pilipczuk and Thomassé in [5] (see also the end of Section 5), it
follows from results of Bouchité and Todinca [3, 4] that for any class of graphs, having
the polynomial separator property implies that the Maximum Weighted Independent Set
Problem can be solved in polynomial time.

We are therefore interested in finding classes of graphs where the number of minimal
separators is bounded by some polynomial. To gain insight on this question, let us survey
examples of graphs with exponentially many minimal separators.

For an integer k ≥ 1, the k-prism is the graph consisting of two cliques on k ver-
tices, and a k-edge matching between them. More precisely, the k-prism G has vertex set
{a1, . . . , ak, b1, . . . , bk}, each of the sets {a1, . . . , ak} and {b1, . . . , bk} is a clique, aibi ∈ E(G)
for every i ∈ {1, . . . , k}, and there are no other edges in G. See Fig. 2. As observed in [5],
it is easy to check that a k-prism has 2k − 2 minimal separators. This suggests that
not containing a big matching plays a role in bounding the number of minimal separa-
tors, and indeed a simple theorem can be proved in this direction. Call k-semi-induced
matching any graph whose vertex set can be partitoned into two sets X = {x1, . . . , xk}
and Y = {y1, . . . , yk} such that the only edges between X and Y are the edges xiyi
(i = 1, . . . , k). The edges among vertices of X and vertices of Y are unrestricted.

Theorem 2.1 For every k, every graph G on n vertices that contains no k-semi-induced
matching has at most O(n2k−2) minimal separators that can be enumerated in time O(n2k).

Proof. Let a and b be two non-adjacent vertices in a graph G that does not contain a
k-semi-induced matching, and let C be a minimal separator separating them. Call A and
B the components of G \ C that contain a and b respectively. By minimality of C, every
vertex in C has a neighbor in A. It is therefore well defined to consider an inclusion-wise
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Figure 2: k-prism, k-pyramid, k-theta

minimal subset XA of A such that C ⊆ N(XA). For every x ∈ XA, there exists a vertex
c ∈ C such that xc ∈ E(G) and no other vertex of XA is adjacent to c. For otherwise,
XA \ {x} would contradict the minimality of XA. It follows that G[XA ∪ C] contains an
|XA|-semi-induced matching, so |XA| < k. We may define a similar set XB, and we observe
that C = N(XA) ∩N(XB).

From the previous paragraph, the following algorithm enumerates all minimal sep-
arators of G: for every pair of sets XA, XB of cardinality less than k, compute C =
N(XA) ∩ N(XB) and check whether C is a minimal separator. Since

(
n
i

)
≤ ni, we have(

n
0

)
+ · · ·+

(
n

k−1
)
≤ knk−1, so the algorithm enumerates at most O(n2k−2) minimal separa-

tors in time O(n2k). 2

Results in other directions can be proved. Chudnovsky, Pilipczuk, Pilipczuk, and
Thomassé [5] proved a graph G that contains no k-prism and no hole of length at least 5
has at most |V (G)|k+2 minimal separators. But since we are interested in even-hole-free
graphs, we do not want to exclude odd holes.

In Fig. 2, variants of k-prims are shown. They are obtained from k-prisms by subdi-
viding the matching edges (once or twice) and contracting one or two of the cliques into a
single vertex. We call these graphs k-pyramids and k-thetas. They are all easily checked to
contain exponentially many minimal separators, and we do not define them more formally.

From these three examples, we can see that the so-called 3-path configurations are
maybe important to understand minimal separators. They are defined as being the pyra-
mids (that we already know) and the thetas and prisms that we define now (see Fig. 1).

A theta is a graph made of three internally vertex-disjoint chordless paths P1 = a . . . b,
P2 = a . . . b, P3 = a . . . b of length at least 2 and such that no edges exist between the paths
except the three edges incident with a and the three edges incident with b.

A prism is a graph made of three vertex-disjoint chordless paths P1 = a1 . . . b1, P2 =
a2 . . . b2, P3 = a3 . . . b3 of length at least 1, such that a1a2a3 and b1b2b3 are triangles and
no edges exist between the paths except those of the two triangles.

The examples of graphs with exponentially many separators that we have shown so far
all contain a theta, a pyramid or a prism. But excluding them is not enough to guaranty
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Figure 3: k-turtle, turtle and k-ladder

a polynomial number of minimum separators. In Fig. 3 a construction of graphs with no
theta, no pyramid and no prism with exponentially many minimal separator is shown.
We call this construction a k-turtle, and again it is easy to check that a k-turtle contains
exponentially many minimal separators.

The k-turtles suggest defining a turtle as a graph made of two internally vertex-disjoint
chordless paths P1 = u . . . v, P2 = u . . . v that form a hole. Moreover, there are two adjacent
vertices x, y not in the paths, such that x has at least three neighbors in P1 (and none
in P2) and y has at least three neighbors in P2 (and none in P1), see Fig. 3. A k-turtle
contains a turtle, in the same way as a k-prism contains a prism, a k-pyramid contains
a pyramid and a a k-theta contains a theta. In Fig. 3 is also represented a construction
that we call the k-ladder, that provides examples of even-hole-free graphs with maximum
degree 3 and exponentially many minimal separators.

Since we are not able to imagine examples of graphs with exponentially many minimal
separators containing no prism, pyramid, theta or turtle, we propose the following con-
jecture, that would be in some sense the best possible statement regarding bounding the
number of minimal separators.

Conjecture 2.2 There is a polynomial P such that every graph G that contains no prism,
pyramid, theta or turtle has at most P (|V (G)|) minimal separators.

Since we are interested in even-hole-free graphs, it is worth observing that every prism,
theta and turtle contains an even hole. For theta and prism, this is because at least two of
the three paths must have the same parity and therefore form an even hole. For turtles, it
is because every turtle contains an even wheel. Let us define them.

A wheel is a graph made of a hole H called the rim and a vertex v called the center
that has at least three neighbors in H (see Fig. 1). An even wheel is a wheel whose center
has an even number of neighbors in the rim. It is easy to check that every turtle contains
an even wheel, and that every even wheel contain an even hole.

5



A weakening of Conjecture 2.2 is therefore obtained by restricting it to (prism, pyramid,
theta, even wheel)-free graphs. Note that (prism, theta, even wheel)-free graphs have
been studied under the name of odd-signable graphs and they seem to capture essential
properties of even-hole-free graphs, for more about them see the survey of Vušković [10].
Interestingly, prisms, pyramids, thetas and wheels are called Truemper configurations and
they play an important role in many decomposition theorems for classes of graphs, see [11]
for a survey. But we were not able to prove that (prism, pyramid, theta, even wheel)-free
graphs have polynomially many minimal separators. However, we can prove that if we also
exclude squares (holes of length 4), then the number of minimal separators is polynomially
bounded.

We call C the class of (square, prism, pyramid, theta, even wheel)-free graphs. Observe
that C is a superclass of the class of (even hole, pyramid)-free graphs. Here is our main
result (proved in Section 5).

Theorem 2.3 Every graph in C on n vertices contains at most O(n8) minimal separators.
There is an algorithm of complexity O(n10) that enumerates them. Consequently, there
exists a polynomial time algorithm for the Maximum Weighted Independent Set restricted
to C.

To prove Theorem 2.3, we rely on a decomposition theorem for C. To state it, we need
terminology. When H is a hole in some graph and u is a vertex not in H with at least two
neighbors in H, we call u-sector of H any path of H of length at least 1, whose ends are
adjacent to u and whose internal vertices are not. Observe that H is edgewise partitioned
into its u-sectors. Let H be a hole in a graph and let u be a vertex not in H. We say that
u is major w.r.t. H if NH(u) is not included in a 3-vertex path of H. The decomposition
theorem is the following (proved in Section 3).

Theorem 2.4 Let G be a graph in C, H a hole in G and w a major vertex w.r.t. H. If C
is a connected component of G \N [w], then there exists a w-sector P = x . . . y of H such
that N(C) ⊆ {x, y} ∪ (N(w) \ V (H)).

Lower bounds for the number of minimal separators in C

For every integer k, there exits a graph in C with at least O(k2) minimal separators, and
this is the best lower bound that we have so far. A simple example of this phenomenon is a
chordless cycle of length k ≥ 5 (any pair of non-adjacent vertices is a minimal separator).
Another example Gk is maybe worth mentioning because it does not contain holes of
length greater than 5. Let us describe Gk. Consider four cliques X, Y , X ′ and Y ′,
each on k vertices. Set X = {x1, . . . , xk}, Y = {y1, . . . , yk}, X ′ = {x′1, . . . , x′k}, Y ′ =
{y′1, . . . , y′k}. Add a vertex z. Add all possible edges between z and X ∪ X ′. Add all
possible edges between Y and Y ′. For every i = 1, . . . , k, add all possible edges from xi to
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Figure 4: Graph G4 (edges of the cliques X, Y , X ′ and Y ′ are not represented)

{yk−i+1, yk−i+2, . . . , yk} and all possible edges from x′i to {y′k−i+1, y
′
k−i+2, . . . , y

′
k}. These

are all the vertices and edges of Gk, see Fig. 4 where G4 is represented.
It is straightforward to check that Gk ∈ C. To do so, it is convenient to note that

every hole H in Gk must go through z and contains exactly one vertex in each of the sets
X,X ′, Y and Y ′. So every hole in Gk has length 5. Since squares, even wheels, thetas and
prisms all contain even holes, the only obstruction that may exist in Gk is the pyramid.
But Gk cannot contain it since in a pyramid there exists a vertex whose neighborhood
contains three non-adjacent vertices, and this does not exist in Gk.

For every i ∈ {1, . . . , k}, set Ci = {xi, xi+1, . . . , xk} ∪ {yk−i+2, yk−i+3, . . . , yk}. Note
that for i ∈ {1, . . . , k}, y1 /∈ Ci and C1 ∩ Y = ∅. For every j ∈ {1, . . . , k}, set C ′j =
{x′j , x′j+1, . . . , x

′
k} ∪ {y′k−j+2, y

′
k−j+3, . . . , y

′
k}. It is now easy to check that Ci ∪ C ′j is a

minimal separator (separating z from y1) for every pair (i, j) in {1, . . . , k}2. Since |V (Gk)| =
4k + 1 and there are k2 pairs (i, j) in {1, . . . , k}2, Gk has O(k2) minimal separators.

Rankwidth and semi-induced matchings in C

One may suspect that graphs in C are very “simple” in some sense (in which case our
result would be less interesting). And it is not so easy to exhibit graphs from C that
are “complex”, so it is worth explaining here how to build such graphs. To measure the
complexity of a graph we use the notion of rankwidth, that is equivalent to the notion of
cliquewidth, in the sense that a class of graphs has unbounded rankwidth if and only if it
has unbounded cliquewidth (see [7] for more about cliquewidth).

To provide graphs in C of arbitrarily large rankwidth, it suffices to note that every
hole-free graph (better known as chordal graphs) is in C. Chordal graphs are known to
have unbounded rankwidth. But chordal graphs are in some sense “simple”: they are all
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complete graphs or have clique separators, and many problems can be solved in polynomial
time for them (see [11] for more about that).

In [1] Adler, Le, Müller, Radovanović, Trotignon and Vušković describe even-hole-free
graphs of arbitrarily large rankwidth. They are also diamond-free (where the diamond is
the graph on vertices a, b, c, d with all possible edges except ab) and they have no clique
separator. So, to the best of our knowledge, they are “complex”. The only problem is that
they are not in C because they contain pyramids. We now explain how to modify graphs
defined in [1] to obtain graphs in C.

Graphs defined in [1] all vertex-wise partition into a path P and a clique K. An example
is represented in Fig. 5, where |K| = 4 and P is represented as a circle around K. Every
vertex of K has neighbors in P and every vertex of P has at most one neighbor in K.
These graphs contain pyramids that are built as follows: take three vertices a, b, c of K
that induce a triangle, and consider neighbors a′, b′, c′ of a, b, c respectively in P . Suppose
that a′, b′, c′ are chosen such that a′Pc′ has no neighbor of a and c in its interior and b′ is
the unique neighbor of b in it. The pyramid is then formed by a′Pc′ and abc.

To avoid pyramids in graphs from [1], take such a graph G and apply the following
algorithm to it:

While there exist a 6-tuple (a, b, c, a′, b′, c′) as above, denote by x and y the two neigh-
bors of b′ in P . Remove b′ from P , replace it by a path xp1p2p3p4p5p6p7y and add the
following edges: bp1, bp4 and bp7. Note that the obtained graph is still vertex-wise parti-
tioned into a clique and a path, so that our procedure can be applied repeatedly.

Each time, the number of pyramids in the graph decreases so that the algorithm ter-
minates. From the proofs in [1], it is easy to check that we obtain graphs in C that have
unbounded rankwidth. We omit further details that can be found in [1].

We observe that graphs from [1] may contain arbitrarily large semi-induced matchings,
so that our main result cannot be a simple corollary of Theorem 2.1.

3 Decomposing graphs in C
Recall that when H is a hole in some graph and u is a vertex not in H with at least two
neighbors in H, we call u-sector of H any path of H of length at least 1, whose ends are
adjacent to u and whose internal vertices are not. Observe that H is edgewise partitioned
into its u-sectors.

Let H be a hole in a graph and let u be a vertex not in H. We say that u is major
w.r.t. H if NH(u) is not included in a 3-vertex path of H. We omit “w.r.t. H” when H is
clear from the context.

Lemma 3.1 In every graph in C, every major vertex u w.r.t. a hole H has at least five
neighbors in H or has exactly three neighbors in H that are pairwise non-adjacent.
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Figure 5: A graph from [1] (the clique contains 4 vertices)
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Proof. If u has exactly two neighbors in H, since these two neighbors are not included
in a 3-vertex path, they are non-adjacent. Hence, u and H form a theta, a contradiction.
If u has exactly three neighbors in H, since these are not included a 3-vertex path, they
are pairwise non-adjacent for otherwise u and H form a pyramid. If u has exactly four
neighbors in H, then u and H form an even wheel, a contradiction. 2

It follows from Lemma 3.1 that if u is major w.r.t. a hole H, then (H,u) is a wheel. We
will use this fact throughout the paper. A vertex that is not major with respect to some
hole H and still has neighbors in H is minor w.r.t. H.

Lemma 3.2 In a graph from C, every minor vertex u w.r.t. a hole H satisfies one of the
following.

• u has a unique neighbor in H (we then say that u is pending w.r.t. H).

• u has two neighbors in H which are adjacent (we then say that u is a cap w.r.t. H).

• u has three neighbors in H which induce a path xyz (we then say that u is a clone
of y w.r.t. H).

Proof. Otherwise, u has two non-adjacent neighbors in H, so u and H form a theta. 2

When H is hole and u a clone of y w.r.t. H, we denote by Hu\y the hole induced by
{u} ∪ V (H) \ {y}. Observe that y is a clone of u w.r.t. Hu\y.

Lemma 3.3 Let H be a hole in a graph G ∈ C and u be a clone of y w.r.t. H. Let v be a
major vertex w.r.t. H. Then, vu ∈ E(G) if and only if vy ∈ E(G). In particular, a vertex
is major w.r.t. H if and only if it is major w.r.t. Hu\y.

Proof. Suppose that v is adjacent to exactly one of u, y. Since v is major w.r.t. H, (H, v)
is a wheel. If (Hu\y, v) is also a wheel, then one of (H, v), (Hu\y, v) is an even wheel, a
contradiction. So, v has exactly two neighbors in Hu\y, and hence exactly three neighbors
in H. By Lemma 3.1 the neighbors of v in H are non-adjacent, but by Lemma 3.2, the
neighbors of v in Hu\y are adjacent, a contradiction. 2

Lemma 3.4 Let u and v be two non-adjacent major vertices w.r.t. a hole H of a graph
G ∈ C. Let P = u′ . . . u′′ be a u-sector of H. Then one of the following holds.

(i) P contains at most one neighbor of v, and if it has one, it is either u′ or u′′.

(ii) u′u′′ ∈ E(G) and v is adjacent to both u′ and u′′.

(iii) P contains at least 3 neighbors of v.

10



Proof. Let R = x . . . y be the path induced by V (H)\V (P ), with ends such that u′x ∈ E(G)
and u′′y ∈ E(G).

(1) u has a neighbor in the interior of R (in particular, R has length at least 2).

Otherwise, NH(u) ⊆ {u′, u′′, x, y}, contradicting Lemma 3.1. This proves (1).

Suppose first that P contains exactly one neighbor v′ of v. Suppose for a contradiction
that v′ is not an end of P . If vx ∈ E(G) then u′v′ /∈ E(G) because G is square-free.
Hence, V (P ) ∪ {u, v, x} induces a theta (if ux /∈ E(G)) or a pyramid (if ux ∈ E(G)). So,
vx /∈ E(G). Symmetrically, vy /∈ E(G). Hence, G contains a theta from u to v′: two paths
use vertices of P , and the third one goes through v, some neighbor of v in the interior of
R (which exists since v is major) and some neighbor of u in the interior of R, which exists
by (1). So, (i) holds.

Suppose now that P contains exactly two neighbors v′ and v′′ of v. If u′u′′ ∈ E(G),
then (ii) holds, so we may assume that u′u′′ /∈ E(G). Hence, u and P form a hole that we
denote by Hu. We have v′v′′ ∈ E(G) for otherwise, v and Hu form a theta. By Lemma 3.1,
v has at least five neighbors in H, so at least one of them is in the interior of R. Also, u
has a neighbor in the interior of R by (1). Hence, Hu together with a shortest path from
u to v with interior in the interior of R form a pyramid, a contradiction.

Finally, if P contains at least three neighbors of v, then (iii) holds. 2

Let H be a hole in a graph and let u and v be two vertice not in H. We say that u and
v are nested w.r.t. H if H contains two distinct vertices a and b such that one (a, b)-path
of H contains all neighbors of u in H, and the other one contains all neighbors of v in H.
Observe that u and v may both be adjacent to a or to b. Observe that under the assumption
that v has at least two neighbors in H (so that the notion of v-sector is defined), u and v
are nested if and only if there exists a v-sector that contains every neighbor of u in H. If
u is a cap, a pending vertex, or a vertex with no neighbor in H, then it is nested with all
other vertices not in H.

Lemma 3.5 Let H be a hole in a graph G ∈ C. If u and v are major or clones w.r.t. H
and are nested, then uv /∈ E(G).

Proof. Otherwise, let Hu be the hole formed by u and the u-sector of H that contains all
neighbors of v. Then one of (H, v) or (Hu, v) is an even wheel, a contradiction. 2

If u and v are two vertices not in H and not nested w.r.t. H, then they cross on H.

Lemma 3.6 Let H be a hole in a graph G ∈ C and let u and v be two vertice not in H. If
u and v cross, then one the following holds.

(i) H contains four vertices u′, u′′, v′ and v′′ such that:

• u′, v′, u′′ and v′′ are distinct and appear in this order along H;
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• u′, u′′ ∈ N(u);

• v′, v′′ ∈ N(v).

(ii) NH(u) = NH(v), NH(u) is an independent set and |NH(u)| = 3.

(iii) NH(u) = NH(v) and both u and v are clones w.r.t. H.

Proof. Since a vertex with no neighbor in H, a cap or a vertex pending w.r.t. H is nested
with any other vertex not in H, by Lemma 3.2, u and v are major or clones w.r.t. H.
Hence, consider two non-adjacent neighbors a, b of u in H. Since v is major or clone, v
has a neighbor in the interior of one (a, b)-path Pv of H. We suppose that a, b and Pv

are chosen subject to these properties (ab /∈ E(G), v has a neighbor in the interior of Pv)
and so that Pv is minimal. If v has neighbors in the interior of the other (a, b)-path of H,
then (i) holds.

Otherwise, NH(v) ⊆ V (Pv). If Pv is a u-sector, then u and v are nested, so suppose
that u has a neighbor u′ that is an internal vertex of Pv. By the minimality of Pv, NH(v) ⊆
{a, b, u′}. Hence, either v is a clone of u′ w.r.t. H, or by Lemma 3.1 applied to v, NH(v) =
{a, b, u′} and NH(v) is an independent set. So, if NH(u) ≥ 4, then (i) holds, and if
NH(u) = 3, then (ii) or (iii) holds. 2

Lemma 3.7 Let H be a hole in a graph G ∈ C and suppose that u and v are two major
vertices w.r.t. H. Then uv ∈ E(G) if and only if u and v cross.

Proof. If u and v are nested, then uv /∈ E(G) by Lemma 3.5. It remains to prove the
converse: if u and v cross, then they are adjacent. So suppose for a contradiction that they
are not adjacent.

We apply Lemma 3.6. Since u and v are major, (iii) does not hold. If (ii) holds, then G
contains a square, a contradiction. Hence we may assume that (i) holds: there exist in H
two neighbors u′, u′′ of u and two neighbors v′, v′′ of v such that u′, v′, u′′, v′′ are distinct
and appear in this order along H. We choose them so that the path P from u′ to u′′ in
H \ v′′ is minimal. We now break into two cases.

Case 1: P is not a u-sector.
So, let u′′′ be a neighbor of u in the interior of P . By the minimality of P , u′Pu′′′ and

u′′′Pu′′ are u-sectors and have no neighbor of v in their interior, so v′ = u′′′. Our goal in
this case is to show the existence of three paths R1, R2 and R3 forming a theta from u to v.
We set R1 = uv′v.

If v is adjacent to both u′ and u′′, then {u, v, u′, v′} induces a square, a contradiction.
So we may assume up to symmetry that v is not adjacent to u′′. W.l.o.g. we may assume
that v′′ is such that Q = v′ . . . v′′ is a v-sector of H (that contains u′′). By Lemma 3.4, Q
contains at least three neighbors of u. So, there exists a path R2 from u to v going through
v′′ and the interior of R2 contains no neighbors of v′.
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Let x be the neighbor of v′′ in H that is not in Q and let R be the path of H from x
to u′ that does not contain P .

We claim that v has a neighbor in the interior of R (which therefore has length at
least 2). Otherwise, NH(v) ⊆ {u′, v′, v′′, x}. By Lemma 3.1, NH(v) = {u′, v′, v′′} and
u′v′ /∈ E(G). So, {u, v, u′, v′} induces a square, a contradiction.

We claim that u has a neighbor in the interior of R. For suppose not. Since G contains
no even wheel, u has an odd number of neighbors in Q, and since it also has an odd number
of neighbors in H, u must be adjacent to x. Let Q′ = y . . . x be the u sector of H that
contains v′′. Since G is square-free, v is not adjacent to x or y. Hence, Q′ contains a unique
neighbor of v, that is in its interior, a contradiction to Lemma 3.4.

Now, by considering a path R3 from u to v with interior in the interior of R (which
exists from the two claims we just proved), we see that R1, R2 and R3 form a theta.

Case 2: P is a u-sector.
We apply Lemma 3.4 to P and we observe that outcomes (i) and (ii) do not hold, so

outcome (iii) holds: P contains at least three neighbors of v. It follows that there exist
two internally vertex disjoint paths R1 and R2, both from u to v, with interior in P and
such that V (R1) ∪ V (R2) induces a hole. Let x be the neighbor of u′ in H that is not in
P , and y be the neighbor of u′′ in H that is not in P . Let R be the path of H from x to y
that does not contain P .

We claim that u has a neighbor in the interior of R. Otherwise, NH(u) ⊆ {u′, u′′, x, y},
contradicting Lemma 3.1.

We claim that v has a neighbor in the interior of R. Otherwise, v′′ must be one of x or
y, say x up to symmetry. But since there is no even wheel in G, v has an odd number of
neighbors in P and in H, so v must be adjacent to y. Since G is square-free, v cannot be
adjacent to both u′, u′′, so suppose up to symmetry that is not adjacent to u′′. Hence, u′′

is the unique neighbor of u in some v-sector of H (moreover in its interior), a contradiction
to Lemma 3.4.

Now, by considering a path R3 from u to v with interior in the interior of R (which
exists from the two claims we just proved), we see that R1, R2 and R3 form a theta, a
contradiction. 2

Lemma 3.8 Let H be a hole in a graph G ∈ C. If u and v are non-adjacent vertices of
G \H that cross, then u and v are both clones w.r.t. H and they have exactly two common
neighbors on H.

Proof. Since a vertex with no neighbor in H, a cap or a pendant vertex is nested with any
other vertex outside H, by Lemma 3.2, u and v are major or clones. If they are both major,
there is a contradiction by Lemma 3.7. If u is a clone of y and v is major (or vice versa),
then by Lemma 3.3, vy /∈ E(G), and it follows that u and v are nested, a contradiction. If u
and v are both clones, then they have two or three common neighbors on H (because they
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cross). If they have three common neighbors, then G contains a square, a contradiction.
Hence, they have two common neighbors as claimed. 2

Lemma 3.9 Let H be a hole in a graph G ∈ C and let P = u . . . v be a path of length at
least 1, vertex-disjoint from H, and such that u and v have neighbors in H and no internal
vertex of P has neighbor in H. If u and v are nested, then one of the following holds (up
to a swap of u and v):

(i) P has length 1, u is major or is a clone, and NH(v) is an edge that contains exactly
one neighbor of u.

(ii) u is a major vertex or a clone, v is a cap and NH(v) ⊆ NH(u).

(iii) |NH(v)| = 1 and NH(v) ⊆ NH(u).

(iv) NH(u) ∪NH(v) is an edge of H.

Proof. By Lemma 3.2, u and v are major, clone, cap or pending. We may therefore consider
four cases.

Case 1. At least one of u and v is major.
Up to symmetry, we suppose that u is major.
Suppose that v is also major. We apply Lemma 3.7 to u and v. Since u and v are

nested, P has length at least 2. Hence G contains a theta, a contradiction. So, we may
assume that v is minor.

Suppose that v is a clone of some vertex x ∈ V (H). Since u and v are nested, ux /∈
E(G). By Lemma 3.5, P has length at least 2. So, NH(v) is included in some u-sector Q
of H and P and Q \ x form a theta, a contradiction.

Suppose that v is a cap and NH(v) = xy. If x and y are in the interior of some u-sector
Q of H, then P and Q form a pyramid. Hence, there exists a u-sector R = u′ . . . u′′ such
that w.l.o.g. x = u′ and y ∈ V (R). If y = u′′ then (ii) holds. If y 6= u′′, then P has length 1,
for otherwise P and R form a pyramid. Hence, (i) holds.

Suppose that v is pending. Then (iii) holds for otherwise NH(v) is in the interior of
some u-sector of H that together with P forms a theta.

Case 2. None of u, v is major, and at least one of u, v is a clone.
Up to symmetry, suppose that u is a clone of x.
Suppose that v is a clone of y. Since u and v are nested, we have x 6= y and xy /∈ E(G).

By Lemma 3.5, P has length at least 2, so P and H \ {x, y} form a theta from u to v, a
contradiction.

Suppose that v is a cap, and let yz be the two neighbors of v. If x ∈ {y, z}, then (ii)
holds, so suppose x /∈ {y, z}. Hence P and H \ x form a pyramid, unless (i) holds.

Suppose that v is pending. Then (iii) holds for otherwise H \ x and P form a theta.
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Case 3. None of u, v is major or a clone, and at least one of u, v is a cap.
Up to symmetry, suppose that u is a cap.
Suppose that v is also a cap. Then (iv) holds, for otherwise H and P form a prism or

an even wheel.
Suppose that v is pending. Then (iii) holds for otherwise H and P form a pyramid.

Case 4. Both u, v are pending vertices.
Then (iii) or (iv) holds, for otherwise H and P form a theta.

2

Lemma 3.10 Let G be a graph in C, H a hole in G and w a major vertex w.r.t. H.
Suppose that a,w′, b, w′′ are four distinct vertices of H that appear in this order along H
and such that w′, w′′ are adjacent to w. Then every path P of G \ w from a to b has an
internal vertex adjacent to w.

Proof. Consider a counter-example such that P is of minimum length. Note that P has
length at least 2. Let Ha (resp. Hb) be the path of H from w′ to w′′ that contains a (resp.
b). Let Hw′ (resp. Hw′′) be the path of H from a to b that contains w′ (resp. w′′).

(1) P ∗ is vertex-disjoint from V (H) ∪ {w}.
Since P is a counterexample, its interior contains no neighbor of w, and since a, b, w′

and w′′ are distinct, we have V (P ) ∩ {w′, w′′} = ∅. So, an internal vertex of P that is in
H would yield a smaller counterexample, a contradiction to the minimality of P . This
proves (1).

We set Q = P ∗ = u . . . v, where u is adjacent to a and v is adjacent to b (possibly,
u = v).

(2) u (resp. v) and w are nested.

Since P is a counterexample, u and w are non-adjacent. Since w is major, by Lemma 3.8,
u and w are nested. Similarly, v and w are nested. This proves (2).

(3) u and v are distinct and nested w.r.t. H.

By (2), NH(u) ⊆ V (Ha) and NH(v) ⊆ V (Hb). So, u and v are distinct (because a /∈ N(v))
and nested. This proves (3).

(4) We may assume that H ′ = auQvbHw′′a is a hole that contains all neighbors of w in H
except w′.

By the minimality of P , no internal vertex of Q has a neighbor in H∗a or in H∗b . It follows
that NH(Q∗) ⊆ {w′, w′′}.

Suppose first that NH(Q∗) = {w′, w′′}. Then, H together with a path from w′ to w′′

with interior in Q∗ form a theta from w′ to w′′, a contradiction.
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Suppose now that NH(Q∗) = ∅. Then, by (3), we may apply Lemma 3.9 to Q. Since
{a} ⊆ NH(u) ⊆ V (Ha) and {b} ⊆ NH(v) ⊆ V (Hb), (ii), (iii) and (iv) of Lemma 3.9 cannot
hold. So (i) of Lemma 3.9 must hold. Up to symmetry, we may therefore assume that w′

is the unique common neighbor of u and v on H and {b} = NH(v) \ {w′}. Since by (2) u
and w are nested, w′ is the unique neighbor of w in Hw′ . Also, a may be chosen as close a
possible to w′′ along Ha, so that H ′ = auQvbHw′′a is a hole that contains all neighbors of
w in H except w′.

Suppose finally that |NH(Q∗)| = 1. Up to symmetry we may assume NH(Q∗) = {w′}.
If w has a neighbor z in H∗w′ \w′, then suppose up to symmetry that it is in aHw′w

′. We see
that the four vertices a, z, w′ and w′′ appear in this order along H, so that a path from a
to w′ with interior in Q contradicts the minimality of P . It follows that w has no neighbor
in H∗w′ \ w′. We may choose a and b closest to w′′ along Ha and Hb respectively. Since
by (2) u and w are nested (and v and w are nested), this implies that H ′ = auQvbHw′′a is
a hole that contains all neighbors of w in H except w′. This proves (4).

If w has exactly three neighbors in H, then by Lemma 3.1 they are pairwise non-
adjacent and H ′ (from (4)) and w form a theta, a contradiction. So, w has at least five
neighbors in H, so that (H ′, w) is a wheel. But then, one of (H,w) or (H ′, w) is an even
wheel, a contradiction. 2

We can now prove Theorem 2.4 restated below.

Theorem 2.4 Let G be a graph in C, H a hole in G and w a major vertex w.r.t. H. If C
is a connected component of G \N [w], then there exists a w-sector P = x . . . y of H such
that N(C) ⊆ {x, y} ∪ (N(w) \ V (H)).

Proof. Set W = N [w]∩V (H) and Z = N [w] \V (H). Clearly, N(C) ⊆W ∪Z. We have to
prove that there exists a w-sector P = x . . . y of H such that NW (C) ⊆ {x, y}. Otherwise,
we are in one of the following cases.
Case 1: there exists a,w′, b, w′′ in W , appearing in this order along H, with a, b ∈ NW (C).
In this case, a path from a to b with interior in C contradicts Lemma 3.10.
Case 2: |W | = 3 and NW (C) = W = {x, y, z} (and by Lemma 3.1, x y and z are pairwise
non-adjacent). In this case, suppose first that C contains a vertex a in H \W . Up to
symmetry, we may assume that a is in the w-sector of H from x to y. But then, x, a, y
and z contradict Lemma 3.10 because C contains the interior of a path from a to z. Hence,
C ∩ V (H) = ∅. If some vertex v of C has more than one neighbor in {x, y, z}, then w and
v are contained in a square of G, a contradiction. So, every vertex of C has at most one
neighbor in W . Consider a path P with interior C and that is either from x to y, from y
to z, or from z to x. Suppose that P has minimum length among all such paths. Up to
symmetry, P = x . . . y, and by minimality, P contains no neighbor of z. It follows that P
and H from a theta from x to y. 2
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4 Proper separators

A separator in a graph is proper if it is minimal and not a clique. In view of Theorem 2.3,
we may restrict our attention to proper separators because it is known that in any graph G
there exists at most O(|V (G)|) minimal clique separators and that they can be enumrated
in time O(|V (G)||E(G)|), see [2] for details.

Our goal is to prove that a graph in C contains a “small” number of proper separators.
This goal is achieved in the next section. Here we prove a series of technical lemmas telling
where precisely the vertices of a proper separator are.

If C is a separator of G, a connected component D of G \C is full if every vertex of C
has a neighbor in D.

Lemma 4.1 If C is a proper separator of a graph G ∈ C, then G \ C has exactly two full
connected components.

Proof. Otherwise, let c1c2 be a non-edge in C and X, Y , Z be full components of G \ C.
There exits a theta from c1 to c2, made of three paths with interior in X, Y and Z
respectively. This is a contradiction. 2

In what follows, when C is a proper separator, we denote by L and R the two full
components of G \ C that exist by Lemma 4.1. We call a C-hole any hole H such that
V (H) ∩ C = {c1, c2} where c1, c2 are non-adjacent vertices, one component of H \ {c1, c2}
is in L and the other one is in R. We then say that H is a (C, c1, c2)-hole.

For a (C, c1, c2)-hole H, we use notation HL for the path of H from c1 to c2 with interior
in L and HR for the path of H from c1 to c2 with interior in R. We let l1 be the neighbor
of c1 in HL. We define similarly vertices r1, l2, and r2.

A C-hole H is clean w.r.t. C if every major vertex w.r.t. H is in C. The next lemma
shows that clean holes exist.

Lemma 4.2 Let C be a proper separator of a graph G ∈ C. If c1 and c2 are non-adjacent
vertices of C, then a shortest (C, c1, c2)-hole H is clean w.r.t. C

Proof. Consider a vertex v /∈ C that is major w.r.t H. If NH(v) ⊆ V (HL), then a
shorter (C, c1, c2)-hole exists (using v as a shortcut), a contradiction. Similarly, there is a
contradiction if NH(v) ⊆ V (HR). It follows that v has neighbors in both H∗L and H∗R, and
in particular in both L and R, a contradiction. This proves that H is clean w.r.t. C. 2

Let C be a proper separator of a graph G and H be a C-hole. A vertex in G is (C,H)-
heavy if it is major w.r.t. H and has neighbors in the interiors of both HL and HR. Observe
that a (C,H)-heavy vertex must be in C, because it has neighbors in both L and R.

Lemma 4.3 Let C be a proper separator of a graph G ∈ C. Let H and H ′ be two (C, c1, c2)-
holes that are clean w.r.t. C. A vertex in C is (C,H)-heavy if and only if it is (C,H ′)-heavy.
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Proof. Otherwise, suppose up to symmetry that some vertex v is (C,H)-heavy and not
(C,H ′)-heavy. Hence, v has a neighbor vL in the interior of HL and a neighbor vR in the
interior of HR.

(1) We may assume that v is a clone of c1 w.r.t. H ′.

The vertices c1, vL, c2, vR are distinct and appear in this order along H. By Lemma 3.10,
the path H ′L has an internal vertex adjacent to v. Similarly, H ′R has an internal vertex
adjacent to v. Since v is not (C,H ′)-heavy, the only possibility is that v is a clone of c1 or
c2 w.r.t. H ′, and up to symmetry, we suppose it is a clone of c1. This proves (1).

(2) We may assume that vL is an internal vertex of l1HLc2 (in particular, HL has length
at least 3).

Since v is not a clone w.r.t. H, NH(v) 6⊆ {c1, l1, r1}. Since by (1) vc2 /∈ E(G), v has a
neighbor in the interior of either l1HLc2 or r1HRc2. Up to symmetry, we may assume
that v has a neighbor in the interior of l1HLc2. Hence, vL can be chosen in the interior of
l1HLc2. This proves (2).

(3) l1 6= l′1.

Otherwise the vertices l1, vL, c2, vR are distinct and appear in this order along H. By
Lemma 3.10, the path l1H

′
Lc2 has an internal vertex adjacent to v, a contradiction to (1).

This proves (3).

(4) {c1} ⊆ NH(l′1) ⊆ {c1, l1}.
Otherwise l′1 has two non-adjacent neighbors in HL, and since H is clean w.r.t. C, by
Lemma 3.2, l′1 is a clone of l1 w.r.t. H. Hence, the hole Hl′1\l1 contains four distinct
vertices (namely l′1, vL, c2, vR). By Lemma 3.10, v has a neighbor in the interior of
l′1H

′
Lc2. This contradicts (1). This proves (4).

By (1), v is not adjacent to c2. It follows that c2 is an internal vertex of some v-sector
Q of H. We set Q = qL . . . qR with qL ∈ L and qR ∈ R. Note that by (2), qL 6= l1. Let x be
the vertex of H ′L with a neighbor in Q, closest to c1 along H ′L. Note that x exists because
of c2. We set S = l′1H

′
Lx.

(5) S has length at least 1.

Otherwise S has length zero, so x = l′1 and l′1 has a neighbor in Q. This contradicts (4).
This proves (5).

(6) S is vertex disjoint from H and the only edges between S and H are l′1c1, possibly l′1l1,
and the edges between x and Q.

By (3), l′1 /∈ V (H) and by (4), the only edges between l′1 and Q are l′1c1 and possibly l′1l1.
Note that by the definition of x, S is vertex disjoint from Q and x is the only vertex of
S with neighbors in Q. Suppose that S contains any vertex b of H or that there is any
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edge ab with a ∈ V (S), b ∈ V (H) and ab is not l′1c1, l′1l1 or an edge between x and Q.
Then consider the four distinct vertices of H: c2, qL, b and vR. We see that V (H ′L) ∪ {b}
contains a path P from c2 to b. By (1), P contains no internal vertex adjacent to v. This
contradicts Lemma 3.10. This proves (6).

By (5) and (6), S and H contradict Lemma 3.9. 2

By Lemma 4.3, for a vertex not in C, being heavy does not depend on the choice of
a particular hole, but only on the choice of C, c1 and c2. The notion of (C, c1, c2)-heavy
vertex is therefore relevant: a vertex is (C, c1, c2)-heavy if for some (or equivalently every)
clean (C, c1, c2)-hole H, it is (C,H)-heavy.

Until the end of the section, we do not recall in the statements of the lemmas that
we deal with a graph G in C, a proper separator C, a clean (C, c1, c2)-hole H with the
following notation: l1 is the neighbor of c1 in HL and l′1 is the neighbor of l1 in HL \ c1.
We define similarly vertices r1, r

′
1, l2, l

′
2, r2 and r′2.

For i = 1, 2, we denote by Li the set made of li and all the clones of li w.r.t. H. We
denote by Ri the set made of ri and all the clones of ri w.r.t. H. We denote by Ci the
set of vertices of G that are not (C, c1, c2)-heavy and have neighbors in both Li and Ri

(observe that ci ∈ Ci). Note that possibly L1 = L2 or R1 = R2 (not both since H is not
a C4). Observe that Li is possibly not included in L, because some vertices of Li can be
in C. Similarly, Ri is possibly not included in R. And Ci is possibly not included in C
because some vertices of Ci might be in L or in R (not in both, because as we will see, Ci

is clique and L is anticomplete to R).

Lemma 4.4 For i ∈ {1, 2}, Li, Ri and Ci are pairwise disjoint cliques. Moreover, Li is
anticomplete to Ri, and Ci is anticomplete to H \ {ci, li, ri}.

Proof. We prove the lemma for i = 1 (i = 2 is similar). Clearly, L1 and R1 are disjoint.
They are cliques for otherwise, G contains a square. By Lemma 3.5, L1 is anticomplete
to R1. It follows that C1 is disjoint from both L1 and R1.

Let us prove that C1 is anticomplete to H \ {c1, l1, r1}. Otherwise, let c ∈ C1 be a
vertex with some neighbor in H \ {c1, l1, r1}. Note that c 6= c1. Also, cc1 ∈ E(G) for
otherwise G contains a square (with c, c1, and neighbors of c in L1 and R1). Let l ∈ L1

and r ∈ R1 be neighbors of c (they exists by definition of C1). We see that c is major w.r.t.
H ′ = (Hl/l1)r/r1 . Hence, by Lemma 3.3 (applied twice) c is major w.r.t. H, and therefore
(C, c1, c2)-heavy, a contradiction to the definition of C1.

It remains to prove that C1 is a clique, so suppose for a contradiction that c and c′ are
non-adjacent vertices of C1. Let l, r be neighbors of c in L1, R1 respectively, and l′, r′ be
neighbors of c′ in L1, R1 respectively. If c and c′ have common neighbors in both L1 and
R1, then G contains a square, a contradiction. Hence, we may assume that l 6= l′ and that
cl′, c′l /∈ E(G).

If c and c′ have a common neighbor r′′ ∈ R1, then the paths r′′cl, r′′c′l′ and r′′r′1Pl′1
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form a pyramid. So, r 6= r′, cr′ and c′r /∈ E(G). Hence, the paths rcl, rc′l′ and P form a
prism. 2

Lemma 4.5 For i ∈ {1, 2}, Li, Ri and Ci are pairwise disjoint cliques. Moreover, Li is
anticomplete to Ri, and Ci is anticomplete to H \ {ci, li, ri}.

Proof. We prove the lemma for i = 1 (i = 2 is similar). Clearly, L1 and R1 are disjoint.
They are cliques for otherwise, G contains a square. By Lemma 3.5, L1 is anticomplete
to R1. It follows that C1 is disjoint from both L1 and R1.

Let us prove that C1 is anticomplete to H \ {c1, l1, r1}. Otherwise, let c ∈ C1 be a
vertex with some neighbor in H \ {c1, l1, r1}. Note that c 6= c1. Also, cc1 ∈ E(G) for
otherwise G contains a square (with c, c1, and neighbors of c in L1 and R1). Let l ∈ L1

be a neighbor of c (it exists by definition of C1). We set P = r′1HRc2HLl
′
1 (it has length

at least 1, and is induced by V (H) \ {l1, c1, r1}). So, c has a neighbor in P and we let x
be the neighbor of c in P closest to l′1 along P . We see that if cl1 /∈ E(G), then l 6= l1
and the hole cxP l′1l1c1c is the rim of an even wheel with center l, a contradiction. Hence,
cl1 ∈ E(G), and symmetrically cr1 ∈ E(G). It follows that c is major w.r.t. H and has
neighbors in both H∗L and H∗R, a contradiction to the definition of C1.

It remains to prove that C1 is a clique, so suppose for a contradiction that c and c′ are
non-adjacent vertices of C1. Let l, r be neighbors of c in L1, R1 respectively, and l′, r′ be
neighbors of c′ in L1, R1 respectively. If c and c′ have common neighbors in both L1 and
R1, then G contains a square, a contradiction. Hence, we may assume that l 6= l′ and that
cl′, c′l /∈ E(G).

If c and c′ have a common neighbor r′′ ∈ R1, then the paths r′′cl, r′′c′l′ and r′′r′1Pl′1
form a pyramid. So, r 6= r′, cr′ and c′r /∈ E(G). Hence, the paths rcl, rc′l′ and P form a
prism. 2

For i ∈ {1, 2}, an (L, i)-viaduct w.r.t. (C,H) is a path Q = uL . . . uR of G such that:

(i) V (Q∗) ∩ (V (H) ∪ Li ∪Ri) = ∅;

(ii) V (Q∗) is anticomplete to V (H \ ci);

(iii) C ∩ V (Q) = {uL};

(iv) uR ∈ Ri \ C (so possibly, uR = ri);

(v) one of the following holds:

• uL is major w.r.t. H, NH(uL) ⊆ V (HL), uLci ∈ E(G); or

• uL ∈ Li ∩ C.

For i ∈ {1, 2}, an (R, i)-viaduct w.r.t. (C,H) is a path Q = uL . . . uR of G such that:

20



(i) V (Q∗) ∩ (V (H) ∪ Li ∪Ri) = ∅;

(ii) V (Q∗) is anticomplete to V (H \ ci);

(iii) C ∩ V (Q) = {uR};

(iv) uL ∈ Li \ C (so possibly, uL = li);

(v) one of the following holds:

• uR is major w.r.t. H, NH(uR) ⊆ V (HR), uRci ∈ E(G); or

• uR ∈ Ri ∩ C.

We call viaduct any path that is an (L, i)-viaduct or an (R, i)-viaduct for i ∈ {1, 2}.

Lemma 4.6 For every i ∈ {1, 2}, every (L, i)-viaduct and (R, i)-viaduct has length at
least 2 and contains an odd number of neighbors of ci (at least 3).

Proof. Suppose Q = uL . . . uR is an (L, 1)-viaduct (the proof is similar for other types of
viaducts).

Since uL ∈ C and uR /∈ C, we have uL 6= uR. So Q has length at least 1, and suppose
for a contradiction that is has length 1. Then clearly uR 6= r1 and since uL and uR are
nested, by Lemma 3.9 applied to Q and H, and (i) is the only possible outcome. So, one
end of Q is a cap, a contradiction to the definition of viaducts (observe however that if u, v
are vertices like in outcome (i) Lemma 3.9, then uvr1 is possibly a viaduct of length 2). So
Q has length at least 2.

Observe that uL /∈ V (H) (while uR is either in V (H) or is a clone of r1). Let x
be the neighbor of uL in HL, closest to c2 along HL. Consider the hole J induced by
V (Q) ∪ V (xHLc2) ∪ (V (HR) \ {c1, r1}) (note that r1 may be in J , when r1 = uR). Now,
c1 /∈ V (J) and c1 contains two non-adjacent neighbors in J (namely uL and uR), hence,
by Lemmas 3.1 and 3.2, c is a clone or a major vertex w.r.t. J , and it therefore has an odd
number of neighbors in J (at least 3). 2

The potential of (C, c1, c2) is the number of (C, c1, c2)-heavy vertices. The main result
of this section is the following.

Lemma 4.7 Let C be a proper separator of a graph G ∈ C. Let c1 and c2 be non-adjacent
vertices of C, chosen such that the potential of (C, c1, c2) is maximum. Let H be a clean
(C, c1, c2)-hole. If c ∈ C \ {c1, c2}, then one of the following statements holds:

(i) c is (C,H)-heavy;

(ii) For some i ∈ {1, 2}, c has a neighbor in Li \ C and a neighbor in Ri \ C;

(iii) c is the end of some viaduct w.r.t. (C,H).
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Proof. Since C is a proper separator and L is connected, there exists a path QL = c . . . cL
such that V (QL \ c) ⊆ L and cL has neighbors in the interior of HL (possibly c = cL).
There exits a similar path QR = c . . . cR. We set Q = cLQLcQRcR and suppose that Q is
minimal (so QL and QR are shortest paths).

(1) We may assume that Q has length at least 1. In particular, cL and cR are nested w.r.t.
H.

Otherwise, Q = c = cL = cR. Since c has a neighbor in H∗L and in H∗R, it is either a major
vertex or a clone. If it is major, then it is heavy w.r.t. H and (i) holds. If it is a clone, it
must be a clone of c1 or c2, so (ii) holds. This proves (1).

(2) We may assume that c1 has neighbors in the interior of Q and c2 has no neighbors in
the interior of Q.

Suppose that both c1 and c2 have neighbors in the interior of Q. Then, H and a shortest
path from c1 to c2 with interior in the interior of Q form a theta, a contradiction.

So, suppose that none of c1, c2 have neighbors in the interior of Q. Since by (1) cL and
cR are nested w.r.t. H, we apply Lemma 3.9 to Q. Since cL has neighbors in the interior
of HL and cR has neighbors in the interior of HR, outcomes (ii), (iii) and (iv) cannot hold.

Hence outcome (i) holds. So Q = cLcR, c ∈ {cL, cR} and exactly one of c1 or c2 (say
c1) is a common neighbor of cL and cR, and up to symmetry, cL is major or clone of l1,
and cR is a cap. If c = cL, then cLcRr1 is an (L, 1)-viaduct and (iii) holds. If c = cR, then
since H is clean, cL cannot be major, so it is a clone, cL ∈ L1 \C, cr1 ∈ E(G) so (ii) holds.

Hence, we may assume that exactly one of c1 or c2 has neighbors in the interior of Q,
and up to symmetry, we may assume that it is c1. This proves (2).

(3) If cLc1 /∈ E(G), then NH(cL) = {l1}.
Let xL be the neighbor of c1 in Q, closest to cL along Q (xL exists by (2) and xL 6= cL by
assumption). Since cL and xL are nested (because xL has no neighbor in the interior of
HL), we may apply Lemma 3.9 to cLQxL. Since cL and xL have no common neighbor on
H, (i), (ii) and (iii) do not hold. Hence (iv) holds and NH(cL) = {l1}. This proves (3).

(4) If cL is a cap or a pending vertex, then {l1} ⊆ NH(cL) ⊆ {l1, c1}.
If cR is a cap or a pending vertex, then {r1} ⊆ NH(cR) ⊆ {r1, c1}.

If cLc1 /∈ E(G), then our claim holds by (3). Otherwise, cLc1 ∈ E(G), cL must be a cap
and NH(cL) = {c1, l1}. The proof is similar for the claim about cR. This proves (4).

(5) If cL is a clone or a major vertex w.r.t. H, then c1cL ∈ E(G) and either cL ∈ C or
cL ∈ L1 \ C.

The analogous statement holds for cR.

By symmetry, it suffices to prove the statement for cL, so assume that cL is a clone or a
major vertex w.r.t. H. By (3), cLc1 ∈ E(G). If cL is major then cL ∈ C because H is
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clean w.r.t. C. If cL is clone and cL /∈ C, then cL ∈ L1 \C because cL has no neighbors in
R. This proves (5).

(6) We may assume that cL ∈ L1 \ C or {l1} ⊆ NH(cL) ⊆ {l1, c1}, and cR ∈ R1 \ C or
{r1} ⊆ NH(cR) ⊆ {r1, c1}.
By symmetry it suffices to prove the statement about cL. If cL is a pending vertex or a cap,
then the result follows by (4). So, suppose that cL is a clone or a major vertex. By (5),
c1cL ∈ E(G) and either cL ∈ C or cL ∈ L1 \ C. We may assume that cL ∈ C, and hence
cR /∈ C. Note that by (1) and since c1cL ∈ E(G), if cL is a clone w.r.t. H, then it is a clone
of l1, and if it is major then NH(cL) ⊆ V (HL).

If cR is pending or cap w.r.t. H, then by (4), {r1} ⊆ N(cR) ∩ V (H) ⊆ {r1, c1} and
hence cLQcRr1 is an (L, 1)-viaduct and (iii) holds. So, we may assume that cR is a clone
or a major vertex w.r.t. H. By (5) and since cR /∈ C, it follows that cR ∈ R1. But then Q
is an (L, 1)-viaduct and (iii) holds. This proves (6).

By (6), {l1} ⊆ NH(cL) ⊆ {l′1, l1, c1} and {r1} ⊆ NH(cR) ⊆ {r′1, r1, c1}. So, V (Q) ∪
V (H) \ {c1} contains a hole that contains Q and c2, which we denote by J . Note that J is
a (C, c, c2)-hole.

(7) J is a clean w.r.t. C.

Otherwise, let d /∈ C be a vertex that is major w.r.t. J . By symmetry, we may assume
that d ∈ L.

Since d is major w.r.t. J and not major w.r.t. H (since H is clean), d must have a
neighbor in Q. Let dL (resp. dR) be the neighbor of d in Q that is closest to cL (resp. cR)
along Q. Note that dL, dR ∈ V (cLQc) since d ∈ L. If dLQdR is of length greater than 2,
then V (QL) ∪ {d} contains a path from c to cL that is shorter than QL, contradicting the
minimality of QL. So, dLQdR is of length at most 2.

Since d is major w.r.t. J , it follows that NJ(d) 6⊆ V (Q). Suppose that NJ(d) ⊆
V (Q) ∪ {c2}. So d is adjacent to c2. By Lemma 3.1, it follows that d has exactly three
neighbors in J that are furthermore pairwise non-adjacent, namely dL, dR and c2. But then
dLQdR and d form a square. Therefore d has a neighbor in HL \ {c1, c2}. By minimality of
QL, it follows that NQ(d) ⊆ {cL, c′L}, where c′L is the neighbor of cL in Q. By Lemma 3.1
applied to d and J , d has two non-adjacent neighbors in J \Q. Since V (J \Q) ⊆ V (H) and
d is not major w.r.t. H, it follows that d is a clone of some vertex d′ w.r.t. H, where d′ is
an internal vertex of J \Q (so d′ /∈ {c1, c2, l1} and d′ = l′1 is possibly only when cL is not a
clone). So, by Lemma 3.1, NQ(d) = {cL, c′L}. If cL ∈ L1, then (HcL\l1 , d) is an even wheel.
So NH(cL) ⊆ {l1, c1}. Note that by minimality of Q, no internal vertex of Q has a neighbor
in H \ {c1, c2}. Let c′1 be the neighbor of c1 in the interior of Q that is closest to cL along
Q (it exists by (2)). If NH(cL) = {l1}, then Hd\d′ and c′LQc′1 form a theta from d to c1. So
NH(cL) = {l1, c1}. Let D be the path from d to l1 contained in (H \ {d′, c2}) ∪ {d}. Then
D and cLQc′1 form an even wheel with center cL. This proves (7).
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(8) Let d ∈ C \ {c, c1, c2}. If d is (C,H)-heavy, then d is (C, J)-heavy.

For suppose that d is (C,H)-heavy but not (C, J)-heavy. So d is major w.r.t. H and has
neighbors in both H∗L and H∗R.

Suppose that d does not have a neighbor in J∗L. Then cL ∈ L1 \ C, {l1} ⊆ NHL
(d) ⊆

{l1, c1}, and d is not adjacent to cL. But then since d is major w.r.t. H, by Lemma 3.1, it
follows that HcL\l1 and d form either an even wheel with center d or a theta. So d has a
neighbor in J∗L, and by symmetry d has a neighbor in J∗R. Since d is not major w.r.t. J , it
follows that d is a clone of c or c2 w.r.t. J .

If d is a clone of c w.r.t. J , then NH(d) ⊆ {l1, c1, r1} contradicting the assumption that
d is major w.r.t. H. So d is a clone of c2 w.r.t. J .

Since H is of length greater than 4, w.l.o.g. HL is of length greater than 2. In particular,
J contains l2. Since d is major w.r.t. H and H contains l2 and c2, by Lemma 3.1, d has
at least five neighbors in H. It follows that d is adacent to l1 or r1. If d is adjacent to l1,
then cL ∈ L1 \ C and d is not adjacent to cL. But then (HcL\l1 , d) is an even wheel. So d
is not adjacent to l1 and hence NH(d) = {l2, c2, r2, r1, c1}. In particular, r1 6= r2, i.e. HR

is of length greater than 2. But then, we get a contradiction by a symmetric argument.
This proves (8).

To conclude the proof, by (7) J is clean w.r.t. C. Also, c1 has neighbor in J∗L and J∗R,
and is therefore major w.r.t. J or a clone of c. In this last case, cL ∈ L1 \ C, cR ∈ R1 \ C
and Q has length 2, so (ii) holds. Hence, we may assume that c1 is major w.r.t. J .

Note that c is not major w.r.t. H. By (8), we see that the number of (C, J)-heavy
vertices is greater than the number of (C,H)-heavy vertices. So, by Lemma 4.3, the
potential of (C, c, c2) is greater than then potential of (C, c1, c2), a contradiction to the
choice of c1 and c2. 2

Lemma 4.8 For i ∈ {1, 2}, there does not exist both an (L, i)-viaduct and an (R, i)-
viaduct. In particular, at least one of Li, Ri contains no vertex of C.

Proof. Suppose there exists an (L, 1)-viaduct P = uL . . . uR and an (R, 1)-viaduct Q =
vL . . . vR (the case where i = 2 is similar). Then, uL ∈ C, uR ∈ R1, vL ∈ L1 and vR ∈ C.
Note that NH(uL) ⊆ V (HL) and NH(vR) ⊆ V (HR).

(1) V (P \ uL) and V (Q \ vR) are disjoint and anticomplete. Moreover, uLvR /∈ E(G).

The first claim is because L and R are connected components of G \C and V (P \uL) ⊆ R
and V (Q \ vR) ⊆ L.

Since uL and vR are nested and both major or clones w.r.t. H, uLvR /∈ E(G) follows
from Lemma 3.5. This proves (1).

Let xL be the neighbor of uL in vLl
′
1HLc2, closest to vL along this path. Let yL be

the neighbor of uL in vLl
′
1HLc2, closest to c2 along this path. Note that xL and yL exist

and are distinct from the definition of viaducts and Lemma 4.6. (but possibly, xL = vL,
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yL = l′1 and xLyL ∈ E(G) when uL is a clone w.r.t. H). Let xR be the neighbor of vR
in uRr

′
1HRc2, closest to uR along this path. Let yR be the neighbor of vR in uRr

′
1HRc2,

closest to c2 along this path.
If xL 6= vL, we set SL = uLxLHLl

′
1vL. If xL = vL we set SL = uLvL. If xR 6= uR, we

set SR = vRxRHLr
′
1uR. If xR = uR we set SR = vRuR.

By (1), J = uLSLvLQvRSRuRPuL is a cycle whose only possible chords are edges from
uL to Q \ vL and from vR to P \ uR. And such chords exist for otherwise, J is a hole and
by Lemma 4.6, c1 has an even number of neighbors in J .

Up to the symmetry between P and Q, we suppose that vR has a neighbor in P \ uR
and let p be the neighbor of vR in P closest to uL along P (note that by (1), p 6= uL).

If uL has a neighbor in Q \ vL, then let q be the neighbor of uL in Q closest to vR
along Q (note that by (1), q 6= vR). We see that the three paths vRpPuL, vRQquL and
vRyRHRc2HLyLuL form theta, a contradiction. Hence, uL has no neighbor in Q \ vL.

If xLyL /∈ E(G), then the three paths vRpPuL, vRQvLSLxLuL and vRyRHRc2HLyLuL
form a theta. If xLyL ∈ E(G), then xL = vL and yL = l′1, so the three paths vRpPuL,
vRQvL and vRyRHRc2HLl

′
1 form a pyramid. In every case, there is a contradiction. 2

Lemma 4.9 Let c1, c2, and H be as in Lemma 4.7. Let i ∈ {1, 2}.

• Suppose Ri∩C = ∅. Then there exists a vertex c ∈ Ci such that for all x ∈ Ci, x ∈ C
if and only if NLi(c) ⊆ NLi(x).

• Suppose Li∩C = ∅. Then there exists a vertex c ∈ Ci such that for all x ∈ Ci, x ∈ C
if and only if NRi(c) ⊆ NRi(x).

Proof. By symmetry, it is enough to prove the first claim for i = 1, so suppose R1 ∩C = ∅.
Note that C1 ∩ C 6= ∅ since c1 ∈ C1. Let c ∈ C1 ∩ C be such that NL1(c) is minimal
(inclusion wise). By Lemma 4.5, NH(c) ⊆ {c1, l1, r1}, and hence by Lemma 4.7 applied to
c, c has a neighbor l in L1 \ C and a neighbor r in R1 \ C. Let x ∈ C1.

If NL1(c) ⊆ NL1(x), then x is adjacent to l ∈ L1 \ C ⊆ L and to some vertex of
R1 = R1 \ C ⊆ R. Hence, x ∈ C.

Conversely, suppose that x /∈ C and NL1(c) 6⊆ NL1(x). This means that c has a
neighbor y in L1 that is not adjacent to x. If x has a neighbor z in L1 \N(c), then xzycx
is a square by Lemma 4.5, a contradiction. Hence, NL1(x) ( NL1(c), contradicting the
choice of c. 2

5 The main proof

We describe two algorithms AL,L and AL,R that enumerate some proper separators of an
input graph G. Note that these algorithms can be applied to any graph. Algorithm AL,L
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is described in Table 1. Algorithm AL,R is very similar to AL,L, only steps 9.–14. slightly
differ (the roles of L2 and R2 are swapped). In Table 2 we indicate what are these steps.

Lemma 5.1 Let G be a graph in C. If we run the two algorithms AL,L and AL,R on G,
then the output is the list of all proper separators of G and the running time is at most
O(|V (G)|10).

Proof. Because of step 14., the algorithm obviously outputs a list of proper separators
of G. Conversely, consider a proper separator D, and let us check that at least one of AL,L

or AL,R outputs D.
Let c1, c2 be vertices in D such that the potential of (D, c1, c2) is maximum. At some

point, in step 1., the algorithm considers the pair of vertices (c1, c2) and correctly puts c1
and c2 in C. At this step, C ⊆ D.

Let J be a shortest (D, c1, c2)-hole. Note that by Lemma 4.2, J is clean. We use the
notation l1, r1, l2, r2 as in section 4. At some point in step 2., the algorithm considers the
4-tuple (l1, r1, l2, r2).

In step 3., we claim that all (D, c1, c2)-heavy vertices are put in C. Indeed, let v be such
a (D, c1, c2)-heavy vertex. Note that by Lemma 4.3, v is (D,J)-heavy and hence c1 and
c2 do not belong to the same v-sector of J . By Theorem 2.4 applied to J and v, vertices
c1 and c2 are in different components of G \ (N [v] \ {c1, c2}). Note that all (D,J)-heavy
vertices are obviously in D, since they have neighbors in both L and R. Hence, at this
step, we have C ⊆ D. Note that if l1 say is put in C at this step, then l1 is adjacent to
some vertex of R, a contradiction, so it is correct to discard C. There is a similar argument
for r1, l2, r2.

We claim that in step 4. a clean (D, c1, c2)-hole is computed. Indeed, by Lemma 4.7
applied to J , all vertices of D are either heavy (and these are already in C), or adjacent to
c1 or c2 from definitions of viaducts and by Lemma 4.5. So, when we compute the paths,
all vertices of D are removed. Note that the paths exist, because of J . Hence, V (H∗L) ⊆ L
and V (H∗R) ⊆ R showing that H is a hole. In particular, it is correct to discard C when
H is not a hole. Clearly, H is a (D, c1, c2)-hole. Since H and J both go through c1, l1,
r1, c2, l2, r2 and J is a shortest (D, c1, c2)-hole, the length of H is the same as the length
of J , and hence H is also a shortest (D, c1, c2)-hole. So, by Lemma 4.2, H is clean w.r.t.
D. Note that H and J are potentially different holes, but they both go through the same
vertices c1, l1, r1, c2, l2, r2 and they have the same heavy vertices by Lemma 4.3.

Since H is clean, in step 5. it is correct to put in C every vertex that is major w.r.t. H.
We still have C ⊆ D.

In step 8., we know by Lemma 4.5 (and since H is not a square) that discarding C is
correct whenever we have to do so.

Now, by Lemma 4.8 and the symmetry between L and R we may assume that R1∩D =
∅. More precisely, if R1 ∩D 6= ∅ then L1 ∩D = ∅, so at some other step of enumeration,
the 4-tuple (r1, l1, r2, l2) (and not (l1, r1, l2, r2)) is considered, so that R1 ∩D = ∅.
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1. Enumerate all pairs of distinct and non-adjacent vertices (c1, c2) of G.
Set C = {c1, c2}.

2. Enumerate all 4-tuple of vertices (l1, r1, l2, r2) such that {l1, c1, r1} and
{l2, c2, r2} both induce a path of length 2 and {l1, l2} is anticomplete to
{r1, r2}. Note that possibly l1 = l2 or r1 = r2.

3. Add to C every vertex v such that c1 and c2 are in two distinct connected
components of G \ (N [v] \ {c1, c2}). If {l1, r1, l2, r2} ∩ C 6= ∅, discard C.

4. In G\((C∪N(c1)∪N(c2))\{l1, r1, l2, r2}), compute a shortest path HL from
l1 to l2 and a shortest path HR from r1 to r2. Set H = c1r1HRr2c2l2HLl1c1.
If H is not a hole, discard C.

5. Add to C every vertex that is major w.r.t. H.

6. Compute the set L1 of clones of l1 w.r.t. H and add l1 to L1. Compute
similar sets R1, L2 and R2.

7. Compute the set C1 of vertices that have neighbors in both L1 and R1 and
that are not major w.r.t. H. Note that c1 ∈ C1. Compute a similar set C2.

8. Check that L1, C1, R1, L2, C2, R2 are disjoint cliques, except that possibly
exactly one of the equalities L1 = L2 and R1 = R2 holds. If this check fails,
discard C.

9. Enumerate all pairs of vertices c′1 ∈ C1, c
′
2 ∈ C2.

10. Add to C all vertices x from C1 such that NL1(c′1) ⊆ NL1(x).

11. Add to C all vertices x from C2 such that NL2(c′2) ⊆ NL2(x).

12. Add to C every vertex c ∈ L1 such that there exists a path Q = c . . . v
with the following properties: v ∈ R1, V (Q) ∩C = ∅, V (Q∗) ∩ (V (H) ∪
Li ∪Ri) = ∅ and Q∗ is anticomplete to H \ c1.

13. Add to C every vertex c ∈ L2 such that there exists a path Q = c . . . v
with the following properties: v ∈ R2, V (Q) ∩C = ∅, V (Q∗) ∩ (V (H) ∪
L2 ∪R2) = ∅ and Q∗ is anticomplete to H \ c2.

14. Check whether C is proper separator of G. If not, discard C. Otherwise
return C, and go to the next step of enumeration (so step 1., 2. or 9.).

Table 1: Algorithm AL,L
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9. Enumerate all pairs of vertices c′1 ∈ C1, c
′
2 ∈ C2.

10. Add to C all vertices x from C1 such that NL1(c′1) ⊆ NL1(x).

11. Add to C all vertices x from C2 such that NR2(c′2) ⊆ NR2(x).

12. Add to C every vertex c ∈ L1 such that there exists a path Q = c . . . v
with the following properties: v ∈ R1, V (Q) ∩C = ∅, V (Q∗) ∩ (V (H) ∪
Li ∪Ri) = ∅ and Q∗ is anticomplete to H \ c1.

13. Add to C every vertex c ∈ R2 such that there exists a path Q = c . . . v
with the following properties: v ∈ L2, V (Q) ∩ C = ∅, V (Q∗) ∩ (V (H) ∪
L2 ∪R2) = ∅ and Q∗ is anticomplete to H \ c2.

14. Check whether C is proper separator of G. If not, discard C. Otherwise
return C, and go to the next step of enumeration (so step 1., 2. or 9.).

Table 2: Algorithm AL,R (only steps 9.–14. are described)

By Lemma 4.8, we may consider two cases:

• Case 1: R1 ∩D and R2 ∩D are empty (algorithm AL,L).

• Case 2: R1 ∩D and L2 ∩D are empty (algorithm AL,R).

We shall prove that in each case, the algorithm that is indicated above outputs D. The
cases being similar, we just handle Case 1, so we suppose that R1 ∩ D and R2 ∩ D are
empty. Hence, by Lemma 4.9 there exists a vertex c′1 ∈ C1 such that for all x ∈ C1, x ∈ D
if and only if NL1(c′1) ⊆ NL1(x), and there exists a similar vertex c′2 ∈ C2. At some point,
in step 9., the vertices c′1, c

′
2 will be considered. And by Lemma 4.9, steps 10. and 11.

correctly put in C the sets C1 ∩D and C2 ∩D.
At this step of the algorithm, all major vertices and vertices of C1 ∩D and C2 ∩D are

in C. The only vertices in D \ C are therefore in L1 and L2. Let c be a vertex in C ∩ L1.
By Lemma 4.7, there exists a viaduct with end c, so that in step 12. a path Q is detected
and c is correctly added to C. Conversely, if some path Q is detected in step 12., then
c ∈ D. For otherwise, since R1 ∩ D = ∅, Q is a path from L to R, so it must contain a
vertex of D. Since all vertices of D \ (L1 ∪ L2) are in C and therefore not in Q, they are
not used by Q, so there is a contradiction.

Similarly, in step 13., D ∩ L2 is put in C.
Now, C = D. Hence, in step 14., C is detected as a proper separator and the algorithm

outputs D as claimed.
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Complexity analysis
The enumeration of all vertices takes time O(n8), and for each of them, all the com-

putations that we do rely on connectivity checks that can be implemented to run in time
O(n2) with BFS. The total running time is therefore O(n10). 2

We can now prove Theorem 2.3, restated below.

Theorem 2.3 Every graph in C on n vertices contains at most O(n8) minimal separators.
There is an algorithm of complexity O(n10) that enumerates them. Consequently, there
exists a polynomial time algorithm for the Maximum Weighted Independent Set restricted
to C.

Proof. For each of the 8-tuple of vertices that is considered by algorithms AL,L and AL,L,
each algorithm outputs at most one proper separator. Hence, there is at most O(n8) such
separators. As explained at the beginning of Section 4, non-proper minimal separators are
all clique separators, and there are at most O(n) and they can be enumerated in time O(n3).
In Section 2, it is explained why this implies that the Maximum Weighted Independent
Set restricted to C can be solved in polynomial time.

2

Complexity of MWIS in C

We do not recall here the definition of a potential maximal clique, see [4]. A potential
maximal clique in a graph G is a subset of V (G) with special properties. We denote by
m the number of edges in G, by p the number of potential maximal cliques in G and by s
be the number of minimal separators in G. In [4], it is proved that p ≤ O(ns2 + ns + 1)
(Proposition 22) and that, given the list of minimal separators, the potential maximal
cliques of G can be listed in time O(n2ms2) (Theorem 23). In [9], based on [8], it is proved
that, given the list of potential maximal cliques, the MWIS problem can be solved in time
O(n5mp) in any graph (Proposition 1). By Theorem 2.3, s ≤ O(n8), so p ≤ O(n17). Hence,
in C, the MWIS problem can be solved in time O(n24).
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