
HAL Id: hal-02424055
https://hal.science/hal-02424055

Submitted on 26 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Immunization Strategy Using Overlapping
Nodes and Its Neighborhoods

Manish Kumar, Anurag Singh, Hocine Cherifi

To cite this version:
Manish Kumar, Anurag Singh, Hocine Cherifi. An Efficient Immunization Strategy Using Overlapping
Nodes and Its Neighborhoods. Companion of the The Web Conference 2018, Apr 2018, Lyon, France.
pp.1269-1275, �10.1145/3184558.3191566�. �hal-02424055�

https://hal.science/hal-02424055
https://hal.archives-ouvertes.fr


An Efficient Immunization Strategy Using Overlapping Nodes
and Its Neighborhoods

Manish Kumar
Department of Computer Science &

Engineering
National Institute of Technology

Delhi, India
162211007@nitdelhi.ac.in

Anurag Singh
Department of Computer Science &

Engineering
National Institute of Technology

Delhi, India
anuragsg@nitdelhi.ac.in

Hocine Cherifi
LE2I UMR CNRS 6306
University of Burgundy

Dijon, France
hocine.cherifi@u-bourgogne.fr

ABSTRACT
When an epidemic occurs, it is often impossible to vaccinate the
entire population due to limited amount of resources. Therefore,
it is of prime interest to identify the set of influential spreaders to
immunize, in order to minimize both the cost of vaccine resource
and the disease spreading. While various strategies based on the
network topology have been introduced, few works consider the
influence of the community structure in the epidemic spreading pro-
cess. Nowadays, it is clear that many real-world networks exhibit
an overlapping community structure, in which nodes are allowed
to belong to more than one community. Previous work shows that
the numbers of communities to which a node belongs is a good
measure of its epidemic influence. In this work, we address the
effect of nodes in the neighborhood of the overlapping nodes on
epidemics spreading. The proposed immunization strategy provides
highly connected neighbors of overlapping nodes in the network
to immunize. The whole process requires information only at the
node level and is well suited to large-scale networks. Extensive
experiments on four real-world networks of diverse nature have
been performed. Comparisons with alternative local immunization
strategies using the fraction of the Largest Connected Component
(LCC) after immunization,show that the proposed method is much
more efficient. Additionally, it compares favorably to global mea-
sures such as degree and betweenness centrality.

CCS CONCEPTS
• Mathematics of Computing → Probability and Statistics; •
Graph Theory→ Centrality Measures; • Networks→Networks
with overlapping community structure;
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1 INTRODUCTION
In epidemiology, an outbreak is a sudden increase in occurrences
of a disease in a particular time and place. It may affect a small
and localized group or impact upon thousands of people across an
entire continent. The outbreaks of contagious diseases impose a
tenacious and major threat to the lives of people all over the world.
The impact of these diseases is immense and is felt across the world.
These diseases not only effect the health of individuals directly, but
also has an impact on societies, economies and political systems.
They may lead the victim countries into economic crisis. Before
these diseases turn into a critical state of affairs, it is required to
come up with appropriate actions on time to arrest it. In order to be
able to prevent the dreadful consequences of an infectious disease,
it is essential to have a deep understanding of the behavior of its
propagation [20, 24, 33] in the social groups. lt is a crucial issue to
come up with an approach to decelerate the contagion or to stop
it completely, if possible [25, 26, 28]. By vaccinating the people,
it is possible to protect them and prevent them to transmit the
disease among their contacts. But vaccination of entire population
is nearly impossible to achieve and is not always feasible due to
limited amount of vaccines and time. Thus targeted immunization
strategies are the essential techniques to arrest the epidemic effi-
ciently. An effective immunization strategy requires a mechanism
to identify the influential spreaders so that the epidemic can be ar-
rested by immunizing a small fraction of entire population[2, 3, 20].
To be able to find the central individuals and to study the spreading
trend of an infectious disease, we need a model that can be used to
mimic the population and epidemic process in this population.

A network representation can be used to model the disease
spreading process by considering nodes as individuals and edges as
interactions between them [8]. The diffusion process can occur on
networks of all kind such as social (e.g. epidemic), technological (e.g.
computer viruses), etc. Instead of occurring randomly, epidemics
tend to follow the structured pathways formed by the interactions
and connections of the nodes in the network [1, 19].

Immunization strategies can be classified into two categories:
global or local immunization strategy.
Global immunization strategies require knowledge of the entire
network in advance. Targeted immunization strategies based on
centrality measures, such as degree [29] and betweenness [27] are
typical examples of such strategies. In these methods a central-
ity value is computed for each node of the network. Then, all the
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nodes are ranked in descending order of their centrality values and
the higher central nodes are selected for immunization. Most of
the time it is very hard to get the precise information about the
nodes’ contacts, which makes the global immunization completely
impractical and unrealistic. On the other hand, local immunization
strategies [4, 7, 10, 13, 14, 30] are more or less agnostic about the
network structure. They require information only at node level to
find the targeted nodes for immunization. For example, random im-
munization, where nodes are selected at random for immunization
is the simplest local strategy. It does not require any information
about the network structure. As local immunization strategies use
only local information about the network they are preferred for
large-scale and especially real-world social networks where the
topologies are usually unknown.

According to recent research overlapping community struc-
ture, plays a crucial role in epidemic spreading [5, 6, 11–13, 15, 16,
23, 30, 31, 34]. Although, there is no clear definition of a com-
munity structure, it is very often apprehended as the division
of network vertices into subgroups (communities), where intra
community nodes are densely connected, but inter community
nodes are sparsely connected to each other. In networks, with non-
overlapping community structure a node belongs to a single commu-
nity, while it can be shared with different communities in networks
having overlapping community structures. Most real-world social
networks are structured in communities that are overlapping in
nature. For example, if we consider a population as a network, an
individual may belong to more than one circle, like friends circle,
family circle, classmates circle, etc. . Considering a network of ac-
tors, an actor may play in movies of various genres (Musical, Action,
Adventure, Comedy, Crime, Drama, Fantasy, Historical, etc).

In this paper, we propose an immunization method which has
advantage of the role of neighbors of the overlapping nodes in
epidemic dynamics. Since this method does not require complete
information of the network, we claim it to be a local immunization
method.

The rest of this paper is organized as follows: In section 2 we
recall briefly the related works. Section 3 introduces the proposed
immunization strategy. Section 4 presents experimental results to
evaluate its effectiveness as compared to both local alternative
immunization strategies as well as prominent global strategies.
Section 5 draws the conclusion.

2 RELATEDWORKS
The objective of targeted immunization strategies is to uncover
a set of the most influential nodes in a given network. Based on
the amount of information they need about the overall network
topology, they can be classified into two groups : Global and Lo-
cal. Immunization strategies that require information of the entire
network structure are said to be Global Strategies while strategies
requiring knowledge of network topology only at node level, are
classified as Local Strategies. The most widely known global strate-
gies together with alternative influent local strategies are recalled.
Indeed, they will be used in order to compare their efficiency with
the proposed strategy.

2.1 Global Immunization Strategies:
The immunization strategies in this class aim to assign a rank to
all the nodes in the network and to immunize them according to
their rank. Thus for each node of the network, a so-called centrality
measure reflecting its ability to propagate the disease is computed.
The ranks are assigned in decreasing order frommost central to less
central node. In these strategies knowledge of the entire network is
required because all the nodes are involved in the process. Usually,
global strategies perform better than local strategies because they
can use more information about the network topology. Degree and
Betweenness centrality are the most influential global strategies
that are used usually for comparative purposes.

2.1.1 Degree Immunization: The degree of a node is the
number of its immediate neighbors. Nodes having high degree
measures are considered to be more influential and are selected for
immunization [12] . In this method the degree of all the nodes in
the network are computed and they are assigned a rank based on
their degree. Nodes are then immunized in the decreasing order
of degree values. The degree immunization strategy is efficient in
scale-free networks even when a small percentage of population is
immunized[29].

2.1.2 Betweenness Immunization: Betweenness centrality
[27] of a node is defined as the number of shortest path between
every pair of nodes that passes through it. The intuitive way to
think about betweenness centrality of a node is the number of
times an information passes through a particular node, if it flows
through the network. In this strategy, the nodes are selected for
immunization based on their overall betweenness centrality. This
strategy is among the most efficient global strategy, however it
suffers from a high time complexity.

2.2 Local Immunization Strategies
Although global methods are effective for immunization, they re-
quire a high amount of information. This characteristic prohibit
their use in large scale real-world networks. Local immunization
strategies require less information and are computationally more
efficient. We recall two methods that try to target the most highly
connected nodes for immunization (Acquaintance immunization
and Threaded-Tree Immunization) and two methods that take ad-
vantage of the community structure to select the immunized nodes
(Community Bridge Finder and Membership Immunization).

2.2.1 Acquaintance Immunization: Acquaintance immuniza-
tion [7] refers to choosing a random fraction of the nodes and
looking for one of their neighbor or acquaintance at random. The
acquaintances are immunized rather than the originally chosen
nodes. This strategy is based on the fact that randomly selected
acquaintances possess more links than randomly selected nodes.
The Acquaintance immunization algorithm works as follows: first
a random node v0 is picked, and then one of its acquaintance, v1 is
picked at random. The nodes which are picked as acquaintances
at least n times are immunized. For n = 1 the acquaintances are
directly immunized. The strategy requires only information about
randomly selected nodes and their immediate neighborhood . It
identifies highly connected nodes without any information about
the global structure of the network.

Track: Mining Attributed Networks  WWW 2018, April 23-27, 2018, Lyon, France

1270



2.2.2 Threaded-Tree Immunization. Threaded-tree immu-
nization [4] targets the highly connected nodes by exploring the
neighborhood of randomly selected nodes. It assumes that high
degree nodes will appear more frequently in the neighborhoods.
The process begins with an initial node selected at random. It is
queried to get some neighbor nodes and then those neighbors are
queried instead. A record is made to log the inquiry frequency of
each node and the process above is performed recursively.The algo-
rithm performs as follows:
Step 1: Start from node i in the network. Query i to get n neighbors,
denoted by i1, i2, . . . , in ;

Step 2: Keep querying each node obtained above, and get n neigh-
bors of each of them.

Step 3: Repeat the iteration for t time steps. Record the inquiry
frequency of each node.

Step 4: Take m nodes queried most frequently and immunize
them.
It does not require global information about the network topology.
Indeed, each node needs to figure out only local information about
its neighborhood. This strategy is more effective than acquaintance
immunization, especially when few nodes are immunized.

2.2.3 Community Bridge Finder . The Community Bridge
Finder algorithm (CBF), proposed by Salathe et al. [30], is a random
walk based algorithm, aimed at identifying nodes connected to
multiple communities. It is based on the idea that the first node not
connecting back to already visited nodes of a current random walk
is more likely to belong to a different community.The algorithm
starts by selecting a random node. Then, a random path is followed
until a node is found that is not connected to more than one of the
previously visited nodes on the randomwalk. This node is identified
as a potential Community bridge. Two of its neighbors are then
selected at random. If none of them is connected to a previously
visited node, the potential community bridge is as a valid bridge.
It is immunized. This strategy does not use any information about
the network structure. Note it has been designed in the context of
non-overlapping communities.

2.2.4 Membership Immunization. The Membership immu-
nization [13] targets the so-called structural hubs. In a network
with overlapping community structure, structural hubs are the
overlapping nodes that belong to a high number of communities.
Through those nodes the epidemic can propagate easily to a greater
number of communities. When the community structure is known,
the overlapping nodes are immunized in descending order of their
Membership number, i.e., the number of communities to which they
belong. If the community structure is unknown, a local community
detection method is used to identify the overlapping nodes. This
strategy compares favorably with global strategies especially at
high infection rates and for dense communities.

2.2.5 RandomWalkOverlap Selection . RandomWalkOver-
lap Selection (RWOS) targets the overlapping nodes with high de-
gree [32] . With a list of overlapping nodes in hand, RWOS performs
a random-walk starting from a random node of the network. At
each step, if a visited node is in the list of overlapping nodes, it
is nominated as a target node for immunization, otherwise, the
random-walk proceeds. This process continues until the desired

immunization coverage is reached. In fact, this strategy try to im-
munize the overlapping nodes according to their degree centrality.
Indeed, the probability of visiting a node in a random walk is pro-
portional to its degree. As for membership immunization, if the
overlapping nodes are unknown, a local community detection algo-
rithm is used.

3 OVERLAP NEIGHBORHOOD
IMMUNIZATION

Many real-world networks, such as Internet, the World-Wide Web,
protein interaction networks exhibit an heterogeneous degree dis-
tribution. The vast majority of nodes have few connexions while a
small percentage of nodes are highly connected to their neighbors.
These hubs that have a huge amount of direct connections to other
nodes in the network are very influential spreaders and they need
to be identified and immunized. In community-structured networks,
overlapping nodes are also influential spreaders, even though they
may not have high degree. Indeed, they act as bridges between
communities. This is the reason why several methods have been
proposed that make use of overlapping nodes in order to control
epidemic spreading [13, 32] .

The proposed strategy Overlap Neighborhood also takes ad-
vantage of the overlapping nodes. Rather than immunizing them,
it selects immediate neighbors of overlapping nodes for immuniza-
tion. It is local, unaware of global knowledge of the network, and
in order to identify influential spreaders for immunization, it only
requires the information at the node level. The idea behind our
strategy is based on the definition of overlapping community - i.e.,
within community nodes are densely connected to each other as com-
pared to nodes in other communities.. Since, overlapping nodes are
part of more than one community, and real-world networks have
few hubs, there is higher probability that these hubs are neigh-
bors of the overlapping nodes in their respective communities. So,
through the overlapping nodes we can target these influential nodes
(nodes having high degrees) in their respective communities for
immunization. Targeting these hubs allows to brake the commu-
nities in smaller subgraph (need not to be connected). In order
to get a better understanding of the concept behind this strategy,
we refer to Fig 1. In this figure a toy network is used to explain
how overlapping nodes can help targeting the influential nodes
within the communities. Immunizing these nodes allows to break
the communities into small connected or disconnected components,
and consequently the all networks split in many components. In
Fig. 1 overlapping nodes are the nodes with red color. They belong
to the two communities represented by the dotted circles. Their
immediate neighbors are the nodes numbered (1, 8, 11, and 13). Ac-
cording to the definition of overlapping community structure, these
nodes tend to be the nodes with the higher degree value. If these
neighbors are immunized, the largest connected component in the
network is of size two. Note, it makes sense that being members of
multiple communities, overlapping nodes have high probability to
be connected to high degree nodes in several of their communities.
Given the network and the overlapping nodes, the proposed strat-
egy works as follows:
Step 1. Each overlapping nodes are queried to find its immediate
neighbors.
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Step 2. All the obtained neighbors are ranked according to their
degrees.
Step 3. Immunize the required fraction of these ranked nodes in
descending order of their degrees for immunization.

The algorithm in pseudo-code for the proposed strategy is reported
in Algorithm 1.

Algorithm 1 Overlap Neighborhood Immunization Algorithm
Require: Graph G , ListOfOverlappingNodes
Ensure: ListOfNodesToBeImmunized
1: khoplist = []
2: for i in range(len(ListOfOverlappingNodes)): do
3: khoplist = khoplist UNION G.neighbors(i)
4: end for
5: nodesdegree = Degree(khoplist)
6: sortedNeigOnDegree = sort(nodesdegree)
7: return sortedNeigOnDegree

4 EXPERIMENTAL RESULTS
In order to evaluate the proposed strategy experiments are con-
ducted with four real-world networks. Performances of various
immunization strategies are compared using the fraction of the
Largest Connected Component (LCC) that can be infected after
immunization of a given fraction of nodes. First, we describe briefly
the datasets, and then discuss the experimental results.

4.1 Description of datasets
Selecting appropriate datasets is essential to analyze the perfor-
mance of the various methods. As we want to evaluate global and
local immunization strategies, we need to restrict our attention
to networks with a size compatible with our computational
constraints. Unfortunately, this prohibits using available real-world
networks with ground-truth community structure. We have
selected 4 real-word datasets frequently used in the literature
(two collaboration networks among scientists, a communication
network and a technological network). As the community structure
of these networks is unknown, the Speaker Listener Label
Propagation Algorithm (SLPA) algorithm is used to uncover the
communities and the overlapping nodes [36]. Indeed, according
to recent studies SLPA is a fairly efficient algorithm [17, 35].
Structural properties of these datasets are described in (Table 1).
Power Grid: The Power grid network is an undirected, un-
weighted network representing the topology of the Western States
Power Grid of the United States. It consists of power plants and
substations as nodes, and the transmission lines between them
as edges. A power plant generates electricity and a substation
distributes it to the final consumers [9].
High Energy Physics - Theory: Arxiv HEP-TH collaboration
network is from the e-print arXiv and covers scientific collabora-
tions between authors of papers submitted to High Energy Physics
- Theory category. If an author i co-authored a paper with author j ,
the graph contains a undirected edge from i to j. If the paper is

co-authored by k authors this generates a completely connected
(sub)graph on k nodes. Naturally these networks contain multiple
communities representing various research topics and several
overlapping nodes for researchers whose research interests cover
various topics [18].
General Relativity and Quantum Cosmology (GR-QC): It is
also an Arxiv GR-QC collaboration network that covers scientific
collaborations between authors of papers submitted to General
Relativity and Quantum Cosmology category [18].
Enron Email: The Enron email communication network is one
of the few large example of real world email datasets available
for research. It covers all the email communication within a
dataset of around half million emails (made public by the Federal
Energy Regulatory Commission). Nodes of the network are
email addresses and edges in the network correspond to email
communication. Edges can be weighted by the number of emails
exchanged between two individuals. Additionally, directionality
can be used to separately analyze emails sent or emails received. In
our case, we use the undirected and unweighted version. We can
expect to find several communities corresponding to different roles
inside the company, as well as several overlapping nodes among
the coordinators of these communities [21, 22].

Table 1: Structural properties of real networks, including number of nodes
(N ), number of edges (E ), number of overlapping nodes (on), average degree
( < k > ) and number of clusters (Nc ).

Network N E on < k > Nc
Power grid 4941 6594 1323 2.66 425

GR-QC 5242 14496 1250 5.53 694
HEP-TH 9877 25998 1645 5.26 986

Enron email 36692 183831 3773 10.02 680

4.2 Results and discussion
In this section the proposed method is compared with two global
methods (degree and betweenness) and four local methods (acquain-
tance withn = 2, CBF, RWOS andmembership). For a given fraction
of immunized nodes the LCC fraction value after immunization
allows to compare the effectiveness of the various methods. Indeed
the LCC is the upper bound of the epidemic outbreak.
Fig. 2 reports the LCC fraction versus the fraction of immunized
nodes for the immunization strategies under study and the four
datasets. Results clearly show that we can generally distinguish
two classes of methods in terms of performances. The first class
is made of the global methods (betweeness and degree) together
with Overlap Neighborhood, while the second class regroup the
alternative local methods. Indeed, Overlap Neighborhood produces
LCC comparable to global strategies for all immunization coverage
values. Whatever the dataset, the first class of methods outperforms
the second one in a wide range of immunized fraction. These results
confirm our intuition that overlapping nodes are more likely to be
connected with the high degree nodes of their communities. Hence,
they allow to target the most central nodes (in terms of degree)
from the communities for immunization in their local neighborhood.
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Figure 1: Toy network example to show the steps used in the proposed immunization strategy.

This is the reason why performances are very similar to the degree
immunization strategy. Note, it is done without having knowledge
of the entire network topology. Whereas, for selecting the same
influential nodes, degree immunization needs to inspect the degree
of all the nodes. Overall, the proposed method targets the higher
degree nodes in the network with the only knowledge of its overlap-
ping nodes and local information about their neighborhood. Now,
we have a broad picture, let us look at the results in more details. Fig.
2 (a), reports the results for Enron-Email network. In this case we
can classify the methods into three classes of various efficiency. The
first class that contains the most efficient immunization strategies
contains Degree, Betweenness and Overlap Neighborhood. Note
that Degree and Overlap Neighborhood perform identically when
the fraction of immunized nodes immunized is lower than 7%, while
Betweenness is slightly more efficient. Above this value Overlap
Neighborhood and degree are more efficient than betweenness.
Acquaintance and CBF form a homogeneous second group with
very similar performances. Although, they are less efficient than
the first group their effect is noticeable. Finally, the third group is
composed with membership and RWOS. For this network both are
performing poorly.
Results of the experiments with the collaboration networks are
reported respectively in Fig. 2 (b) for the GR-QC network and Fig.
2 (c) for the HEP network. They are very consistent. Indeed, we
observe similar behavior of the immunization strategies for both
datasets. The most efficient method is betweenness when a small
fraction of nodes is immunized (until 10% for GR-QC and 12% for
HEP). It is closely followed by Overlap Neighborhood. Degree is
one step behind. When the fraction of immunized nodes increases
Overlap Neighborhood becomes the most efficient method. The
local methods (membership, acquaintance and CBF) are clearly less
performing even though their performances increases with the frac-
tion of nodes to be immunized. Acquaintance always outperforms
membership and CBS. These results suggest that highly connected

nodes are more important than bridges between communities to
prevent the epidemic spreading. RWOS is in between those two
extremes. When the fraction of immunized node is low, it behaves
like the global methods. As this fraction increases its behavior is
more similar than the other classical local immunization strategies.
Finally Fig. 2 (d) presents the simulation result for the Power Grid
network. In this case we can clearly consider two groups. The most
performing strategies composed by two local strategies (Overlap
Neighborhood and RWOS) and the two global strategies ( degree
and betweenness) and the less performing ones represented by
membership, acquaintance and CBF. Note that Overlap Neighbor-
hood that up to almost 6% of immunization the proposed strategy
outperforms all the local methods and it is almost similar to be-
tweenness. But above a fraction of 6% it even surpasses the per-
formance of betweenness. To summarize, Overlap Neighborhood
outperforms all the local strategies for which we have conducted
the experiments. Its performances are comparable to global im-
munization strategies such as degree and betweenness. When the
fraction of nodes to immunize increases it can even surpass the
performance of betweenness. All this is obtained with few efforts.
Indeed, there is no need of the global information about network
topology.One just has to know the overlapping nodes and their
neighborhood.

5 CONCLUSIONS
An immunization strategy taking advantage of the overlapping
community structure observed in many real-world networks is
proposed. It aims to target the highly connected neighbors of the
overlapping nodes for immunization. The so-called Overlap neigh-
borhood immunization method has been empirically evaluated with
four real-world networks. Experimental results are very promis-
ing. Indeed, they show the efficiency of the proposed strategy as
compared to both alternative local methods and global ones. In-
deed Overlap Neighborhood outperforms all the compared local
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(a) Enron Email (b) GR-QC

(c) High Energy Physics (d) Power Grid

Figure 2: Comparison of the LCC fraction in real networks for various immunizationmethods. Each point of the curves reports
the LCC fraction versus the fraction of immunized nodes. Each value represents the average of 500 runs per method

strategies. Additionally, it compares favorably with global centrality
methods such as degree and betweenness. Its main advantage is
that it is local and does not require the knowledge of the whole
network topology. The results confirm the importance of the com-
munity structure in order to design more efficient immunization
strategies. The results obtained so far are promising, but there is a
long way to go in order to get a clear idea of how the community
structures impact the spreading process. We need to extend this
preliminarywork in two directions. First of all, more experiments in-
volving new real-world datasets need to be done in order to confirm
the effectiveness of the proposed strategy. Synthetic benchmark
graph with controlled properties have to be used in order to get a
clearer understanding of the role of the overlapping nodes in the
epidemic process. The second direction is to conduct experiments
with various community detection algorithms in order to evaluate
the influence of the uncertainties linked to the identification of the
overlapping nodes.
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