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Cet article propose un modèle numérique homogénéisé d'éléments finis non locaux, similaire à la théorie du gradient II de Mindlin [1], pour évaluer la résistance à la compression des composites fibres longues carbone / époxy à l'échelle mésoscopique / structurelle. Le cadre de cette modélisation non locale est plus général que celui de [2] pour simuler le phénomène de microbuckling dans les composites UD et tissés. Le modèle numérique non local développé est implémenté dans le sous-programme User Elément (UEL) d'ABAQUS ©, ce qui permet de simuler le comportement de cas 2D et 3D. Un 2D élément non locale (NL U32) super-paramétrique continu (𝐶 1 ) est développé pour le cas élastique isotrope linéaire. Différents résultats de tests sont présentés pour valider le modèle FE non local pour les cas 2D, en comparant les résultats d'un élément non local homogénéisé avec un élément iso-paramétrique d'Abaqus et en comparant le comportement mécanique avec une microstructure composite 2D discrétisée à l'aide d'éléments classiques d'ABAQUS.

Introduction

The compressive failure of long carbon fiber composites is due to complex mechanisms. The knowledge of the phenomena is important for the design of composite structures [START_REF] Méchin | An experimental protocol to measure the parameters affecting the compressive strength of CFRP with a fibre micro-buckling failure criterion[END_REF], because during the design of composite parts, compressive strength and stiffness of laminates is assumed less than their tensile strength, which is not justified. Competing modes of compressive failure exist, including delamination, fiber failure and elastic-plastic microbuckling. 'Elastic microbuckling' is a local instability where the matrix deforms in simple shear, whereas 'Plastic microbuckling' is a shear buckling instability, which occurs at sufficiently large strains for the matrix to deform in non-linear manner [START_REF]Advances in applied mechanics[END_REF]. In general, the main parameters that influence the microbuckling and kink/shear band formation are: a) Matrix physical non-linearity and b) Presence of fiber initial wavy imperfection/undulation [START_REF] Wisnom | The effect of the specimen size on the bending strength of unidirectional carbon fiber-epoxy[END_REF][START_REF] Gardin | Microflambage des fibers dans un matériaux composite à fibers longues: analyse asymptotique 2-D[END_REF][START_REF] Cox | Failure mechanisms of 3D woven composites in tension, compression and bending[END_REF].

There are many articles in the literature regarding the modeling of composites compressive behavior, particularly the microbuckling phenomenon as a local instability of UD composites (local models: [START_REF] Rosen | Mechanics of Composite Strengthening, Fibre Composite Materials[END_REF][START_REF] Argon | Fracture of Composites[END_REF][START_REF] Budiansky | Compressive failure of fibre composite[END_REF]). Only few researchers modeled the mechanism at the structural / mesoscopic scale (Non-local models: [START_REF] Swanson | A micromechanics model for in-situ compression strength of fiber composite laminates[END_REF][START_REF] Grandidier | Microbuckling and strength in long-fiber composites: theory and experiments[END_REF][START_REF] Drapier | Structure effect and microbuckling[END_REF]). For example, Drapier et al. [START_REF] Drapier | Towards a numerical model of the compressive strength for long fiber composites[END_REF], proposed a 2D homogenized model (Eq. 1), which takes into account fiber initial alignment defects, matrix plasticity and structural parameters.

-∫ {𝑓𝐸 𝑓 𝑟 𝑔𝑓 𝟐 𝑣 ′′ 𝛿𝑣 ′′ + 𝑺 • 𝛿𝑬}𝑑Ω + 〈𝑭 • 𝛿𝒖〉 = 0 ∀𝛿𝒖 Ω (Eq. 1)

where, 𝑓 is fiber volume fraction, 𝐸 𝑓 is fiber Yong's modulus, 𝑟 𝑔𝑓 = √ 𝐼 𝑆 𝑓 is fiber gyration radius, 𝑣 ′′ is fiber curvature field, 𝑺 is Second Piola Kirchhoff stress tensor, 𝑬 is the Green Lagrange strain tensor.

The model is successful in predicting the elastic microbuckling modes, but the model is 2D and assumes that, the microbuckling is periodic in fiber direction, just one gradient in thickness direction is taken into account. Consequently, not possible to compare test results obtained with the complex real 3D structures. Moreover, the prediction of both the 'distribution' and 'amplitudes' of fiber initial imperfection is still not well known [START_REF] Drapier | A structural approach of plastic microbuckling in long fiber composites: comparison with theoretical and experimental results[END_REF]. Hence, it is necessary to extend the model of Drapier et al. [START_REF] Drapier | Towards a numerical model of the compressive strength for long fiber composites[END_REF]. The numerical tool should be able to apprehend instability in complex three-dimensional gradient situations such as near a hole edge and should take into account the distribution of defects at the structural scale. The other difficulty is in extending the theory to woven composites, where the wavelength of the microstructure interacts with instability. In addition, under complex loads, damage contributes to the modification of stiffness and non-linearities and influences both modes and critical loads.

Therefore, a new homogenized non-local finite element model is proposed, more general of [START_REF] Drapier | Towards a numerical model of the compressive strength for long fiber composites[END_REF] to simulate compressive behavior of composite materials at macro/mesoscopic scale, which permits to take into account the microstructural effects. The developed non-local numerical model is implemented in User Element (UEL) subroutine for analysis in ABAQUS ©, which permits to simulate the behavior of 2D and 3D cases. At present, a 2D continuous (𝐶 1 ) super-parametric nonlocal element (NL U32) is developed for linear isotropic elastic case (both the matrix and fiber is assumed to be isotropic and elastic) and validated with the ABAQUS © elements. Addition of nonlinearities (material and geometrical) is in progress and the validation will be done as soon as possible, and then extension to the development of 3D non-local element.

The theoretical and numerical parts of the model are presented in the section 2. Validation of the developed finite element for 2D case is performed by comparing results of homogenized non-local super-parametric element with one of the ABAQUS © iso-paramteric elements and then by comparing mechanical behavior/response with 2D composite microstructure, modelled using ABAQUS © elements as a final validation (section 3).

Homogenized non-local numerical model 2.1 Theoretical part

The energy of local bending corresponds to the first term in (Eq. 1). This term has been obtained by Gardin et al. [START_REF] Gardin | Microflambage des fibers dans un matériaux composite à fibers longues: analyse asymptotique 2-D[END_REF] with an asymptotic development. But, it is very restrictive, and corresponds to just UD ply under compression. Therefore, it is necessary to extend the model for more general realistic case, taking into account the fiber curvature field in more complex mesostructure, for example: 2D and 3D woven, where fiber curvature field is not only restricted in one direction, but are randomly oriented in multiple directions, during compression or torsion-compression, as shown in (Fig . 1): In the Mindlin's second order strain gradient theory [START_REF] Mindlin | Microstructure in linear elasticity[END_REF], both the curvature and strain generate an energy of deformation. Hence, this theory is used as a main reference to develop our homogenized nonlocal model. The kinematics is defined by the displacement field (classical), 𝒖 = 𝑢(𝑥, 𝑦, 𝑧)𝒆 (Eq. 3)

The new variables, 𝜿 = 𝜅 𝑖𝑗𝑘 , the fiber curvature field or higher order bending strains in multiple directions and 𝑪 𝑓 ̿̿̿ , the local fiber bending stiffness matrix are introduced which depends on the complex mesostructure. Therefore, using principle of virtual work (PVW), a new variational formulation of homogenized non-local numerical model in order to assess microbuckling problem at mesoscopic scale is written as (Eq. 4):

-∫ {𝜻 • 𝛿𝜿 + 𝑺 ∶ 𝛿𝑬}𝑑Ω + 〈𝑭 • (𝛿𝒖 , 𝛿𝜿) 〉 = 0 ∀𝛿𝒖 Ω→3𝐷 , ∀𝛿𝜿 (Eq. 4) 
Where, 𝜻 is distributed bending moment (DBM) due to the fiber curvature fields, which leads to bending of fiber. It is related to the local fiber bending stiffness matrix by a linear law (Eq. 5) as a first approximation, where, 𝑪 𝑓 ̿̿̿ contains a non-local parameters of the mesostructure material.

Tensors: 𝑺 is the Second Piola Kirchhoff stress tensor, 𝑬 is the Green Lagrange strain tensor, and 𝑭 is the generalized external load vector. The 1 st term in (Eq. 4) corresponds to 'internal fiber bending energy', 2 nd term corresponds to 'internal in-plane/classical strain energy' and 3 rd term corresponds to 'external efforts'. 𝜻 = 𝑪 𝑓 ̿̿̿ 𝜿 (Eq. 5)

The fiber bending energy term, ′ 𝜻 • 𝛿𝜿 = 𝑪 𝑓 ̿̿̿ 𝜿 𝛿𝜿 ′ can be written in 3D as follows (Eq. 6): Where, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽, 𝐾, 𝐿, 𝑀, 𝑁, 𝑂, 𝑃, 𝑄, 𝑅 are the non-local mesostructure material parameters. Berkache et al. [START_REF] Berkache | Construction of second gradient continuum models for random fibrous networks and analysis of size effects[END_REF] has proposed a methodology to identify these parameters with respect to Representative Volume Element (RVE) of woven materials.

[𝑪 𝒇 ̿̿̿ 𝜿 𝛿𝜿 ] 3𝐷 = 𝐴 𝜕 2 𝑢 𝜕𝑥 2 𝛿 ( 𝜕 2 𝑢 𝜕𝑥 2 ) + 𝐵 𝜕 2

Principle of Virtual work and Equilibrium Equations (2D):

In this part, the development is proposed just for 2D case. For the convenience of the derivation, curvatures (𝜿 = 𝜅 𝑖𝑗𝑘 ) is written as: Where, i and j, with (,) denotes the order of partial differentiation. Let 𝛿𝑢 𝑘 (𝑘 = 1,2) and 𝛿𝑢 𝑘, 𝑖𝑗 (𝑘 = 1,2) be the virtual displacements, and 𝛿𝜀 𝑖𝑗 , 𝛿𝜅 𝑖𝑗𝑘 be the associated virtual strains. Thus, the Internal Virtual Work (IVW) of 2D composite in the framework of plane stress and assumption of small strain, 𝜀 𝑖𝑗 = After performing integration by parts of both the terms in the above equation and using the principle of virtual work (PVW) for case of static analysis, the equilibrium equations (in weak form) of the homogenized nonlocal theory for analysis of compressive strength of the composite in 2D can be written as follows (Eq. 9): Π = 𝐼𝑉𝑊 + 𝐸𝑉𝑊 = 0 ∀𝛿𝒖 (Eq. 9)

𝜕 2 𝑢 𝜕𝑥 2 = 𝑢
where, External Virtual Work (EVW) is as follows (Eq. 10): where, 𝑘 = 1,2 𝑎𝑛𝑑 𝛾 = 𝑖, 𝑗.

𝐸𝑉𝑊 = -{ ∬ 𝐹 𝑘

Finite element part (Formulation of 2D Non-local element: NL U32)

The Lagrange elements (available in ABAQUS ©) are 𝐶 0 type continuous elements. The solution field variable (for ex: displacement, 𝑈), which is being approximated in Lagrange type of elements are only continuous between element, but not their derivatives. In order to solve the formulation of microbuckling problem using FEM accurately, it is must to have a 𝐶 1 type continuous element (Hermit type), in order to capture the distribution of displacement and micro rotation of fibre at mesoscopic level.

It is also important to note that, the strain gradient quantities are the second order spatial derivatives of displacement. If we use a reference element, it is necessary to link the first and second order derivatives between two coordinate systems (global and local). Consequently, interpolation of geometry should permit to establish this link (Jacobi for first and second derivate). Therefore, a new non-local super parametric element (NL U32) is formulated, similar to Bogner-Fox-Schmit rectangle [START_REF] Bogner | The Generation of Inter-element Compatible Stiffness and Mass Matrices by the Use of Interpolation Formulas[END_REF] as shown in (Fig. 2), where the degrees of freedom (D.O.F) of the element is not only the displacements, but also their derivatives. b) Geometry :

𝑥 ≅ ∑ 𝑁 𝑗 (𝑒) ( 9 𝑗=1 𝜉, 𝜂)𝑥 𝑖 ; 𝑦 ≅ ∑ 𝑁 𝑗 (𝑒) ( 9 𝑗=1
𝜉, 𝜂)𝑦 𝑖 i) Complete 2 nd order biquadratic polynomial is chosen to build 9 interpolation functions (𝑁 𝑗 ) for geometry in order to calculate the second derivatives in Jacobi, as discussed earlier.

The numerical integration is performed by using (4x4) Gauss quadrature rule. At present, the element is developed in order to take into account a non-linear behavior of stress and micro moment. User material subroutine, UMAT is associated with UEL subroutine which permits to integrate hardening of matrix or damage. The geometrical non-linearity requires addition of the classical terms:

-∬ 𝑆 𝑖𝑗 • { 𝑢 𝑖, 𝑗 𝛿𝑢 𝑗, 𝑖 } + 𝑆 𝑖𝑗 • { 𝑢 𝑗, 𝑖 𝛿𝑢 𝑖, 𝑗 } 𝑑𝜔 𝜔→2𝐷 (Eq. 12)

Results

Validation of NL U32 element

In order to compare the accuracy and validate Non-Local element (NL U32) for linear elastic isotropic case, results are compared with ABAQUS © linear plane stress element (CPS4), as it is much more convenient reference element at the moment, since it is also built with plane stress formulation. From (Fig. 4), it can be observed that, similar response and difference in solution is very less compared to ABAQUS © CPS4 element when local fiber bending stiffness matrix, 𝑪 𝑓 ̿̿̿ parameters (ABCDEF) varied up to 1500 𝑀𝑃𝑎 • 𝑚𝑚 2 . But, significant difference in solution is observed compared to CPS4 element when ABCDEF value is increased above 1500 𝑀𝑃𝑎 • 𝑚𝑚 2 (see Fig. 5). Much stiffer response can be observed with NL U32 compared to continuum solid CPS4. This is because, for lower order of 𝑪 𝑓 ̿̿̿ (≤ 10 3 ), the order of bending energy (𝜿 𝑻 𝑪 𝑓 ̿̿̿ 𝜿) becomes lower compared to classical strain energy (𝜺 𝑻 𝑫 ̿ 𝜺), since the order of curvatures is also lower. Consequently, bending energy has negligible contribution to the total energy. So, we tend to obtain similar solution as classical plane stress solution. But, for higher order of 𝑪 𝑓 ̿̿̿ (> 10 3 ), the order of bending energy becomes similar or higher compared to the classical strain energy. Consequently, we can observe significant difference in solution for ABCDEF >1500 𝑀𝑃𝑎 • 𝑚𝑚 2 . The level of stiffness which generates an effect, can be estimated (but not shown here), and we have also obtained the value of 1500 𝑀𝑃𝑎 • 𝑚𝑚 2 . In conclusion, in order to have non-local effects in this particular solution, it is necessary to have 𝑪 𝑓 ̿̿̿ parameters value > 10 3 . This clearly explains the influence of 𝑪 𝑓 ̿̿̿ parameters value on the solution. In future, it is necessary to obtain proper values for ABCDEF in correspondence to a composite mesostructure. It is also important to note that, the choice of interpolation functions, integration rule for both ABAQUS © CPS4 and NL U32 elements are different, which can also cause difference in solution, especially near the points of loading. However, the global response obtained with NL U32 is almost similar compared to ABAQUS © CPS4 element, which validates the nonlocal element for linear isotropic elastic case.

Mesh Convergence study:

In order to evaluate the convergence of the solution obtained with NL U32 element against mesh size, various mesh size of: 𝑛𝑜. 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑛 = 8, 32, 66, 128, 276, 512 is chosen. The material properties are same as previous case, except that the two values of ABCDEF is chosen: 15 𝑀𝑃𝑎 • 𝑚𝑚 2 and 1500000 𝑀𝑃𝑎 • 𝑚𝑚 2 . The solution is compared with ABAQUS © CPS4 element. We can observe from (Fig. 6), that as the mesh size (n) is increased, we tend to obtain an asymptotic or converged solution for both NL U32 element and ABAQUS © CPS4 element. As discussed earlier, for lower values of ABCDEF with increase in mesh size, we tend to obtain similar solution as classical plane stress element CPS4 and for higher values of ABCDEF, quite significant difference can be observed. However, the convergence is obtained with increase in mesh size. This confirms that for finer mesh, we will obtain a good converged solution with NL U32 element. Tab. 1. Material parameters of UD ply [START_REF] Drapier | Structure effect and microbuckling[END_REF] It is important to note that, for UD ply, since there is just one gradient (𝑣 ′′ = 𝜕 2 𝑣 𝜕𝑥 2 ) along thickness direction, as in case of [START_REF] Drapier | Towards a numerical model of the compressive strength for long fiber composites[END_REF], just one parameter (D) of local bending stiffness matrix, 𝑪 𝒇 ̿̿̿ is considered, values for other parameters (ABCEF) is assigned very low compared to parameter D in homogenous non-local model. From (Fig. 8) and (Fig. 9), it is evident that the results (displacements: 𝑢, 𝑣) obtained from homogenous non-local model is in close comparison with the results of heterogeneous model of ABAQUS © for the case of UD composite subjected to bending. The slight difference between two solutions are clearly due to the addition of non-local terms and choice of interpolation functions (for displacement and geometry) in homogenous non-local model. With this validation, it can be concluded that the homogenized non-local model (implemented in NL U32 element) can be used for analysis of UD composites (linear isotropic elastic cases).

Conclusion

A homogenized non-local finite element model has been proposed, similar to Mindlin' second gradient theory [START_REF] Mindlin | Microstructure in linear elasticity[END_REF] and the first numerical developments have been initiated. The framework of this nonlocal modeling is more general that of [START_REF] Drapier | Towards a numerical model of the compressive strength for long fiber composites[END_REF] to assess microbuckling phenomenon in UD and complex composites (carbon/epoxy long fiber) at the structural/mesoscopic scale. The developed non-local numerical model is implemented in User Element (UEL) subroutine for analysis in ABAQUS ©, thereby developing a 2D 𝐶 1 continuous non-local super-parametric element (NL U32)

for linear isotropic elastic case. Various tests results are presented to validate the capability of NL U32 element in comparison with ABAQUS © iso-parametric plane stress element (CPS4) and also to understand the influence of 𝑪 𝑓 ̿̿̿ parameters. In addition, as a final check for validation, the nonlocal homogenous 2D model implemented in NL U32 is compared with complete 2D UD heterogeneous composite structure, modeled using ABAQUS © CPS4 element. From all the test cases, good results are obtained in comparison with the reference chosen, thereby validating the capability of non-local element (NL U32).
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  1 + 𝑣(𝑥, 𝑦, 𝑧)𝒆 2 + 𝑤(𝑥, 𝑦, 𝑧)𝒆 3 and the generalized fiber curvature field is defined by, 𝜿 :

							𝜿 = [	𝜕 2 𝑢 𝜕𝑥 2 ,	𝜕 2 𝑢 𝜕𝑦 2 ,	𝜕 2 𝑢 𝜕𝑥𝜕𝑦	,	𝜕 2 𝑣 𝜕𝑥 2 ,	𝜕 2 𝑣 𝜕𝑦 2 ,	𝜕 2 𝑣 𝜕𝑥𝜕𝑦	2𝐷 ]						(Eq. 2)
	𝜿 = [	𝜕 2 𝑢 𝜕𝑥 2 ,	𝜕 2 𝑢 𝜕𝑦 2 ,	𝜕 2 𝑢 𝜕𝑧 2 ,	𝜕 2 𝑢 𝜕𝑥𝜕𝑦	,	𝜕 2 𝑢 𝜕𝑥𝜕𝑧	,	𝜕 2 𝑢 𝜕𝑦𝜕𝑧	,	𝜕 2 𝑣 𝜕𝑥 2 ,	𝜕 2 𝑣 𝜕𝑦 2 ,	𝜕 2 𝑣 𝜕𝑧 2 ,	𝜕 2 𝑣 𝜕𝑥𝜕𝑦	,	𝜕 2 𝑣 𝜕𝑥𝜕𝑧	,	𝜕 2 𝑣 𝜕𝑦𝜕𝑧	,	𝜕 2 𝑤 𝜕𝑥 2 ,	𝜕 2 𝑤 𝜕𝑦 2 ,	𝜕 2 𝑤 𝜕𝑧 2 ,	𝜕 2 𝑤 𝜕𝑥𝜕𝑦	,	𝜕 2 𝑤 𝜕𝑥𝜕𝑧	,	𝜕 2 𝑤 𝜕𝑦𝜕𝑧	]	3𝐷

  1, 𝑖𝑖 ;

	𝜕 2 𝑢 𝜕𝑦 2 = 𝑢 1, 𝑗𝑗 ;	𝜕 2 𝑣 𝜕𝑥 2 = 𝑢 2, 𝑖𝑖 ;	𝜕 2 𝑣 𝜕𝑦 2 = 𝑢 2, 𝑗𝑗 ;	𝜕 2 𝑢 𝜕𝑥𝜕𝑦	= 𝑢 1, 𝑖𝑗 ;	𝜕 2 𝑣 𝜕𝑥𝜕𝑦	= 𝑢 2, 𝑖𝑗	(Eq. 7)

  𝑚 𝑘 is Couple force on the edge/surface of the plane/body; 𝐶 𝜏 is Couple spread on the edge of the plane/body, only normal at the edge of plate and 𝑃 is contributions of concentrated load at the corner/edge. Consequently, the local equilibrium equations in strong form and the boundary conditions can be written as follows (Eq. 11):-𝑆 𝑖𝑗 • 𝑛 𝑗 = -𝑓 𝑘 ; 𝜁 𝑖𝑗𝑘 • 𝑛 𝛾 • 𝑛 𝛾 = -𝐶 𝜏 ; 𝜁 𝑖𝑗𝑘, 𝑗 • 𝑛 𝛾 + 𝑢 𝑘 𝑜𝑟 𝑆 𝑖𝑗 • 𝑛 𝑗 ; 𝑖𝑖) 𝑢 𝑘 ,𝑖 𝑜𝑟 𝜁 𝑖𝑗𝑘 • 𝑛 𝛾 • 𝑛 𝛾

		𝑆	𝜕𝛿𝑢 𝑘 𝜕𝑛	𝑑𝑆	}	(Eq. 10)
	Equilibrium equations (Strong Form):			
	a) Domain(𝜔):			
		𝑆 𝑖𝑗, 𝑗 = -𝐹 𝑘 and 𝜁 𝑖𝑗𝑘, 𝑗𝑖 = -∑ 𝑀 𝑘	∀𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 ∈ 𝜔
	b) Boundary(S):			
			∑ 8 𝑖=1 𝜕𝑆 𝜕𝜁 𝑡𝑖	= -∑ 𝑚 𝑘
		∀𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 ∈ 𝑆	(Eq. 11)
	Boundary conditions (BC) on S:			
	Specify:	𝑖)			

• 𝛿𝑢 𝑘 𝑑𝜔 𝜔 + ∮ 𝑓 𝑘 • 𝛿𝑢 𝑘 𝑑𝑆 + 𝑆 + ∑ 𝑃 𝛿𝑢 𝑘 + ∑ ∬ 𝑀 𝑘 • 𝛿𝑢 𝑘 ,𝑖 𝑑𝜔 + 𝜔 ∑ ∮ 𝑚 𝑘 • 𝛿𝑢 𝑘 ,𝑖 𝑑𝑆 𝑆 + ∮ 𝐶 𝜏 • with 𝑘 = 1,2 and 𝛾 = 𝑖 𝑜𝑟 𝑗, where, 𝐹 𝑘 is Body/Volume force; 𝑓 𝑘 is Traction/surface force; 𝑀 𝑘 is Couple force on the plane/body;

  The values of 𝑪 𝑓 ̿̿̿ parameters (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹) is unknown for NL U32 element. Therefore, it is important to understand the influence of these parameters on the solution. Hence, 𝑪 𝑓 ̿̿̿ parameters value are varied and kept constant in all the cases. Results of only few relevant test cases are presented here. Material properties for CPS4 element: Elastic Young's modulus, 𝐸 = 2.0𝐸5 𝑀𝑃𝑎, Poisson's ratio, 𝜈 = 0.3

and thickness, 𝑡 = 1𝑚𝑚. For NL U32 element, material properties are: Matrix Young's modulus, 𝐸 𝑚 = 2.0𝐸5 𝑀𝑃𝑎, Poisson's ratio, 𝜈 𝑚 = 0.3, thickness, 𝑡 = 1𝑚𝑚, the values for parameters of local fiber bending stiffness matrix 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹: started with initial guess of low value, 0.15 𝑀𝑃𝑎 • 𝑚𝑚

2 

and varied with the order of 100. Analysis is performed on a rectangular plate (100 x 50 mm), meshed with 276 Elements (312 nodes).

Test Case: Compression