
HAL Id: hal-02424007
https://hal.science/hal-02424007

Submitted on 26 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Highlighting the Container Memory Consolidation
Problems in Linux

Francis Laniel, Damien Carver, Julien Sopena, Franck Wajsburt, Jonathan
Lejeune, Marc Shapiro

To cite this version:
Francis Laniel, Damien Carver, Julien Sopena, Franck Wajsburt, Jonathan Lejeune, et al.. Highlight-
ing the Container Memory Consolidation Problems in Linux. NCA 2019 - 18th IEEE International
Symposium on Network Computing and Applications, Sep 2019, Cambridge, United States. pp.1-4,
�10.1109/NCA.2019.8935034�. �hal-02424007�

https://hal.science/hal-02424007
https://hal.archives-ouvertes.fr


Highlighting container memory consolidation
problem in Linux

Francis Laniel‡, Damien Carver‡, Julien Sopena‡, Franck Wajsburt∗, Jonathan Lejeune‡ and Marc Shapiro‡
‡Sorbonne Université, CNRS, Inria, LIP6, DELYS Team, F-75005 Paris, France

∗Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
∗‡firstname.lastname@lip6.fr

Abstract—The container mechanism supports server consoli-
dation; to ensure memory performance isolation, Linux relies on
static memory limits. However, this results in poor performance,
because an application needs are dynamic. In this article we will
show current problems with memory consolidation for containers
in Linux.

Index Terms—Linux, container, memory, memory consolida-
tion

I. INTRODUCTION

This paper is about showing the problem of memory con-
solidation for containers in Linux.

Logical servers are consolidated by running several of them
on a single physical machine, thereby saving money. The
logical servers should remain mutually isolated, i.e. execution
of one logical server should not impact any other.

One popular consolidation mechanism, in Linux is called
“containers” [1]–[4]. A container is a group of processes
isolated from the others. Containers are advantageous for
security (e.g. a file that belongs to a container can not be
read from another), deployment (e.g. running a container is as
simple as running a shell command) and resource control (e.g.
a container can be restricted to, say, a specific CPU core) [5].

This article focuses specifically on container memory con-
solidation, which consists of multiplexing the physical mem-
ory of the machine across the virtual memory demands of all
containers. Memory consolidation can be effective if, at every
point in time, the total memory demands of all containers is
less than the available physical memory, which is the common
case, because data center utilization usually remains well under
100% [6], [7].

The classical virtual memory mechanism ensures security
isolation. However, it is insufficient for memory performance
isolation (ensuring to each container enough memory for
it to perform well) because it does not stop one container
from starving the others of physical memory. Furthermore,
the metrics available to the kernel (e.g. frequency of page
faults, I/O requests, use of CPU cycle, etc.) are not suitable for
performance isolation, because they are not directly relevant
to performance as experienced from the application perspec-
tive, which is better characterized by, for instance latency or
throughput.

To avoid a container starving the others, the system admin-
istrator can limit the total amount of its physical memory. If it
would exceed its limit, some of its memory will be reclaimed,

making it available to others. In practice, the kernel tends
to reclaim preferably from the file page cache; this causes
a performance decrease for containers that access files [8].
The limits to container size are static, and do not adapt to the
containers’ dynamic behaviors. This is problematic, because it
is challenging to estimate the optimal amount of memory for
an application to execute smoothly [9], [10].

Our main contribution consists in an experimental demon-
stration of the limitations of the existing Linux mechanisms.

We organize the remainder of our paper as follows. Sec-
tion II presents some technical background. Section III shows
the issues with existing Linux mechanisms. Finally, we con-
clude and discuss future work in Section IV.

II. TECHNICAL BACKGROUND

A container is represented using the Linux cgroup mech-
anism [11]–[14]. A cgroup is a set of processes whose
collective usage of resources is limited. In particular, the total
amount of physical memory used across all the processes
of a memory cgroup is capped by the max and soft
limits described hereafter. In the rest of this section, we study
how Linux manages the memory of containers under memory
pressure, i.e. when free physical memory is scarce.

A. No limits

When no limits are set and under memory pressure, memory
will be reclaimed from all containers. If containers have differ-
ent memory needs, the kernel will allocate memory to satisfy
them, even as their needs change during execution. Indeed, if a
container uses, at some moment of its execution, less memory
than earlier the kernel will reallocate the unused memory
to another container. This constitutes memory consolidation;
however there will not be memory performance isolation.
Indeed, if a container uses less its memory it will lose it,
because it will be reclaimed. In summary, when no limits are
set, memory consolidation occurs at the expense of memory
performance isolation.

B. The max and soft limit mechanism

Linux has two mechanisms to control memory reclamation
of containers. The first is the max limit; a container will not
be allocated a memory footprint larger than its max limit, even
if there exists unused memory elsewhere. If a process needs
physical memory, and its container has already reached its max



limit, the kernel may reallocate memory from another process
of the same container, but not from another container. This
mechanism avoids situations where some containers would
starve the others.

The soft limit is similar to the max limit, except that it is
active only when there is memory pressure and it is only best-
effort. The intent is that the system administrator will set a
soft limit approximating the container’s Working Set (WS)
size [15]. Unfortunately, it is hard to estimate WS size [9],
[10].

In other words, the size of a container is limited to its
soft limit when there is memory pressure, otherwise, to its
max limit. However, these limits are not directly related to
the containers’ current memory needs; they may be higher
(impeding memory consolidation) or lower (impeding memory
performance isolation).

III. MEMORY CONSOLIDATION VS. MEMORY
PERFORMANCE ISOLATION

A. Reference experiment

In order to demonstrate the issues experimentally, we first
run a reference experiment. This experiment consists of ex-
ecuting a benchmark, detailed hereafter, to obtain reference
number for throughput and memory footprint . The throughput
was obtained from the benchmark output while memory and
inputs were collected by docker. We measure the max
throughput, under high offered load, to be 800 transactions
per second. The reference memory footprint was measured
to be 2.8GB. These numbers are pictured in Figure 1 to
Figure 3 as horizontal green lines. In the scenario that we will
describe in next section, the high offered load corresponds to
the generation of 800 transactions per second. We defined low
offered load as what is required to reach 200 transactions per
second. This number is showed as horizontal black line in
Figure 1a to Figure 3a.

B. Experimental scenario

We run an experiment whose goal is to show that without
limits there is no memory performance isolation, and that
the max and soft limits impede memory consolidation. Our
experimental scenario has two containers, A and B, which
run an OLTP workload and experience changes in activity.
We expect that, when both containers have high offered
load, memory performance isolation should occur. When one
container has high offered load and the other has low offered
load or is stopped, memory consolidation should allow it to
reach its reference performance. Specifically, the experiment
has 6 steps:
ϕ1 A and B both have high offered loads. Containers will

bring database records in memory but physical memory
available is inferior to databases’ sizes. So, there will be
memory pressure. Containers will then have to access the
disk so their throughputs will be low.

ϕ2 The high offered load continues for A, and it decreases
for B. If memory consolidation is effective A should be

able to take memory from B, and increase its throughput
to the reference value.

ϕ3 B has high offered load. This step is similar to step 1. So,
containers will have a low throughput.

ϕ4 Both containers have low offered loads. We expect that
they will be able to answer to all the transactions.

ϕ5 B has high offered load, not A. This step is symmetric to
step 2.

ϕ6 A is completely stopped. B still has high offered load. We
expect B to perform the same as the reference.

Each step of the scenario lasts for 180 seconds.

C. Experimental environment

Our experimental machine is a workstation with an In-
tel®Xeon®E5-1603 clocked at 2.8GHz, 8GB of DDR3 and
a SSD. To create memory pressure, we run our experiments in
a virtual machine (VM) restricted to 4 CPU cores and 3GB
of memory.

We use qemu 2.8.1 as VM hypervisor, docker
18.09.6 and its python library docker-py 3.7.2 to
manage containers. Our containers execute the benchmark
sysbench oltp. We modified this benchmark to dynami-
cally change the rate of transactions generated. The benchmark
makes request to a database managed by mysql 5.7. We run
our experiments on Linux 4.19.

Our two containers (A and B) run with 2 cores each. They
each read a database of 4GB. Since our VM has only 3GB
of memory, the two databases will not fit in memory and some
accesses to those databases will not be cached by Linux page
cache resulting in physical I/O, which heavily decrease the
throughput.

Then, we run the scenario described in Section III-B 10
times and compute the mean and standard deviation every
second. Each point in curves depicted in Figure 1, Figure 2
and Figure 3 is the mean and its associated standard deviation
for this second across the 10 runs.

D. Experiment with no limits set

We run the experiment described in Section III-B without
setting any limits. By doing so, we wish to demonstrate that
all containers are reclaimed equally, and there is no memory
performance isolation. Our results are depicted in Figure 1.

Figure 1a shows the containers’ throughputs over time and
Figure 1b depicts their memory footprints. In Figure 1a, the
throughput of a container that has high offered load increases
at the expense of one with low offered load (ϕ2 and ϕ5).
Figure 1b shows that the memory footprint of the container
with high offered load increases, while the container with low
offered load shrinks. Memory consolidation is taking place
but imperfectly, since an active container never reaches the
reference level of performance. When A stops, B’s footprint
grows, so its performance increases, reaching the reference
level (ϕ6). When both containers have high offered loads they
have the same throughput because they have the same memory
footprint, due to the lack of memory performance isolation (ϕ1

and ϕ3).



0 500 1,000
0

200

400

600

800

Time (seconds)

Tr
an

sa
ct

io
ns

pe
r

se
co

nd

A B High offered load Low offered load

(a) Throughput

0 500 1,000
0

1

2

3
·109

Time (seconds)

M
em

or
y

(b
yt

es
)

A B Reference

(b) Physical memory footprint

Fig. 1: No limits set

0 500 1,000
0

200

400

600

800

Time (seconds)

Tr
an

sa
ct

io
ns

pe
r

se
co

nd

(a) Throughput

0 500 1,000
0

1

2

3
·109

Time (seconds)

M
em

or
y

(b
yt

es
)

A’s max limit B’s max limit

(b) Physical memory footprint

Fig. 2: Max limits set to 1.8GB (A) and 1GB (B)

0 500 1,000
0

200

400

600

800

Time (seconds)

Tr
an

sa
ct

io
ns

pe
r

se
co

nd

(a) Throughput

0 500 1,000
0

1

2

3
·109

Time (seconds)

M
em

or
y

(b
yt

es
)

A’s soft limit B’s soft limit

(b) Physical memory footprint

Fig. 3: Soft limits set to 1.8GB (A) and 1GB (B)



E. Experiment with max limit

We demonstrate that max limit impedes memory consoli-
dation, by running the same experiment with max limits set
to 1.8GB for A and 1GB for B. Those values were chosen
such that their total equals the reference memory footprint.

In Figure 2a, A has better performance than B. This can
be explained by looking at Figure 2b. Because the memory
footprints reach the max limits, A has more memory than
B; therefore it will be able to answer more requests (ϕ1 and
ϕ3). Figure 2b shows that there is no memory consolidation,
because even when B has low offered load, A’s memory
footprint does not increase, and it never reaches the reference
level (ϕ2). Conversely, when A has low offered load and B
has high offered load, B’s memory does not grow, because
of its max limit (ϕ5). Therefore, B reaches only 500 to 550
transactions per second. Worst, when A stops, B is not able
to expand its memory footprint and experiences little increase
in performance (ϕ6).

To conclude, with the max limit there is memory perfor-
mance isolation, since A acquires more memory than B, but
memory consolidation is impeded.

F. Experiment with soft limit

Under memory pressure, the soft limit has a similar effect
to the max limit, also impeding memory consolidation. We
show this behavior by executing the experiment using soft
limits. Figure 3 shows that the results are nearly the same
as above. This is expected because during our experiment
there is memory pressure, and containers will tend to remain
under the soft limits, which equal the previous max limits.
Note however how, in ϕ6, B’s footprint increases; because
A was stopped, relaxing memory pressure, the soft limit
mechanism is not activated anymore, allowing B to increase
its memory allocation.

To summarize, the soft limit mechanism supports memory
performance isolation (B has less memory than A) under
memory pressure. This limits memory consolidation but when
memory pressure disappears, memory consolidation becomes
effective again.

G. Summary

Our study shows that the existing mechanisms are not
effective at memory consolidation and memory performance
isolation. Without limits, there is weak memory consolidation
but no memory performance isolation. The max limit supports
memory performance isolation, but impedes memory consol-
idation. The soft limit is analogous to the max limit under
memory pressure, but when memory is plentiful it does enable
memory consolidation. We summarize these results in Table
I.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we showed the issues of memory consolidation
vs. memory performance isolation for existing mechanisms
with containers. Our experiments showed without limits, there
is a weak memory consolidation, but no memory performance

Mechanism used Memory consolidation Memory performance isolation
no limits weak no
max limit no yes
soft limit no yes

TABLE I: Summary of memory consolidation and memory
performance isolation of existing mechanisms

isolation since containers have the same memory footprints.
The max limit offers memory performance isolation but con-
solidation is impeded. The soft limit, which activates only
under memory pressure, acts similarly to the max limit.

In future work, we will extend the soft limit mechanism to
consolidate memory. Our mechanism will be based on applica-
tive probe to give information about containers performance
to the kernel.

REFERENCES

[1] Amazon, “Amazon Elastic Container Service.” [Online]. Available:
https://aws.amazon.com/ecs/?nc1=h_ls

[2] Microsoft, “Microsoft Web App for Containers.” [Online]. Available:
https://azure.microsoft.com/en-us/services/app-service/containers/

[3] Alibaba, “Alibaba Container Service.” [Online]. Avail-
able: https://www.alibabacloud.com/product/container-service?spm=
a2c5t.10695662.1996646101.searchclickresult.55a3212bnXyv1v

[4] OVH, “OVH Kubernetes.” [Online]. Available: https://www.ovh.com/fr/
kubernetes/

[5] Docker Inc., “What is a Container?” [Online]. Available: https:
//www.docker.com/resources/what-container

[6] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: eliminating
server idle power,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 1, p. 205, Mar. 2009. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2528521.1508269

[7] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter
as a Computer: An Introduction to the Design of Warehouse-
Scale Machines, Second edition,” Synthesis Lectures on
Computer Architecture, vol. 8, no. 3, pp. 1–154, Jul. 2013.
[Online]. Available: http://www.morganclaypool.com/doi/abs/10.2200/
S00516ED2V01Y201306CAC024

[8] The kernel development community, “Concepts overview.” [On-
line]. Available: https://www.kernel.org/doc/html/latest/admin-guide/
mm/concepts.html

[9] B. Gregg, “Working Set Size Estimation,” Feb. 2018. [Online].
Available: http://www.brendangregg.com/wss.html

[10] V. Nitu, A. Kocharyan, H. Yaya, A. Tchana, D. Hagimont,
and H. Astsatryan, “Working Set Size Estimation Techniques in
Virtualized Environments: One Size Does not Fit All,” Proceedings
of the ACM on Measurement and Analysis of Computing Systems,
vol. 2, no. 1, pp. 1–22, Apr. 2018. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=3203302.3179422

[11] K. Hiroyu, “Cgroup And Memory Resource Controller,” Nov.
2008. [Online]. Available: https://www.static.linuxfound.org/jp_uploads/
seminar20081119/CgroupMemcgMaster.pdf

[12] Rami Rosen, “Namespace and cgroups, the basis of Linux containers,”
Seville, Spain, Feb. 2016. [Online]. Available: https://www.netdevconf.
org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf

[13] Linux, “Memory Resource Controller.” [Online]. Available: https:
//www.kernel.org/doc/Documentation/cgroup-v1/memory.txt

[14] Zhenyun Zhuang, Cuong Tran, J. Weng, H. Ramachandra, and
B. Sridharan, “Taming memory related performance pitfalls in
linux Cgroups,” in 2017 International Conference on Computing,
Networking and Communications (ICNC). Silicon Valley, CA,
USA: IEEE, Jan. 2017, pp. 531–535. [Online]. Available: http:
//ieeexplore.ieee.org/document/7876184/

[15] P. J. Denning, “The working set model for program behavior,” in
Proceedings of the ACM symposium on Operating System Principles -
SOSP ’67. Not Known: ACM Press, 1967, pp. 15.1–15.12. [Online].
Available: http://portal.acm.org/citation.cfm?doid=800001.811670


