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Abstract
Community structure is one of the most relevant features encountered in numerous
real-world applications of networked systems. Despite the tremendous effort of a large
interdisciplinary community of scientists working on this subject over the past few
decades to characterize, model, and analyze communities, more investigations are
needed in order to better understand the impact of community structure and its
dynamics on networked systems. Here, we first focus on generative models of
communities in complex networks and their role in developing strong foundation for
community detection algorithms. We discuss modularity and the use of modularity
maximization as the basis for community detection. Then, we follow with an overview
of the Stochastic Block Model and its different variants as well as inference of
community structures from such models. Next, we focus on time evolving networks,
where existing nodes and links can disappear, and in parallel new nodes and links may
be introduced. The extraction of communities under such circumstances poses an
interesting and non-trivial problem that has gained considerable interest over the last
decade. We briefly discuss considerable advances made in this field recently. Finally, we
focus on immunization strategies essential for targeting the influential spreaders of
epidemics in modular networks. Their main goal is to select and immunize a small
proportion of individuals from the whole network to control the diffusion process.
Various strategies have emerged over the years suggesting different ways to immunize
nodes in networks with overlapping and non-overlapping community structure. We
first discuss stochastic strategies that require little or no information about the network
topology at the expense of their performance. Then, we introduce deterministic
strategies that have proven to be very efficient in controlling the epidemic outbreaks,
but require complete knowledge of the network.

Keywords: Community detection, Stochastic block model, Time evolving networks,
Immunization, Centrality, Epidemic spreading

Introduction
Complex systems are found to be naturally partitioned into multiple modules or com-
munities. In the network representation, these modules are usually described as groups
of densely connected nodes with sparse connections to the nodes of other groups.
When a node can belong to a single community the community structure is said to
be non-overlapping, while in overlapping communities a node can belong to multi-
ple communities. In this position paper, in the following three subsequent sections, we

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0238-9&domain=pdf
http://orcid.org/0000-0002-0307-6743
mailto: boleslaw.szymanski@gmail.com
mailto: szymab@rpi.edu
http://creativecommons.org/licenses/by/4.0/


Cherifi et al. Applied Network Science           (2019) 4:117 Page 2 of 35

discuss three fundamental questions tied to the community structure of networks: gen-
erative models, communities in time evolving networks and immunization techniques in
networks with modular structure.
The next section reviews the work on generative models for communities in complex

networks and their role in developing strong foundation for community detection algo-
rithms. We start with modularity which is an elegant and general metric for community
quality, and which has also been used as the basis for community detection algorithms
by modularity maximization (Newman 2006b; Clauset et al. 2004; Blondel et al. 2008;
Chen et al. 2014a). This method was recently proven (Newman 2016c) to be equivalent
to maximum likelihood methods for the planted partition. More generally, the recovery
of stochastic block model finds the latent partition of networks nodes into the communi-
ties which are equal to or correlate with the truth communities used for generation of the
given network.
The stochastic block model also serves as an important tool for the evaluation of com-

munity detection results, including the diagnosis of the resolution limit on community
sizes and determining the number of communities in a network.We review several widely
used random graph models and introduce the definitions of the stochastic block model
and its variants.We also described some recent results in this area. The first one presented
in Lu and Szymanski (2020) discovers sufficient and necessary conditions for modular-
ity maximization to suffer from resolution limit effects and proposes a new algorithm
designed to avoid those conditions. Another one, presented in Lu and Szymanski (2019),
uses one parameter to indicate if the assortative or disassortative structure is sought by
the inference algorithm. This approach enables the algorithm to avoid being trapped at
the inferior local optimal partitions, improving both computation time and the quality of
the recovered community structure.
“Time evolving communities” section focuses on the time evolution of complex

systems, study of which has been enabled by the rapid increase in the amount of
publicly available data, including time stamped and/or time dependent data. The net-
work representation of such systems naturally corresponds to time evolving networks,
where existing nodes and links can disappear and, in parallel if needed, new nodes
and links may be introduced. The extraction of communities under such circum-
stances poses an interesting and non-trivial problem that has gained considerable
interest over the last decade. Over time, communities might grow or shrink in size,
may split into smaller communities or merge together forming larger ones, abso-
lutely new communities may also emerge, and old ones can disappear. Keeping track
of a rapidly changing community embedded in a noisy network can be challenging,
especially when the time resolution of the available data is low. Nevertheless, consid-
erable advances have been made in this field over the years, which we shall briefly
discuss.
The following section focuses on immunization strategies designed for modular net-

works. It is motivated by the importance of prevention of epidemic whose outbreaks,
such as diseases, represent a serious threat to human lives and could have a dra-
matic impact on the society (Wang et al. 2016; Helbing et al. 2015). Immunization
through vaccination permits to protect individuals and prevent the propagation of
contamination to their neighbors. As mass vaccination is not possible when there is
limited dose of vaccines designing efficient immunization strategy is a crucial issue.
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Immunization strategies are the essential techniques to target the influential spreaders
in networks. Their main goal is to select and immunize a small proportion of individ-
uals from the whole network to control the spread of epidemics. To do so they rely
on various properties of the network topology. For example, the network degree dis-
tribution has been extensively studied. Indeed, as real-world contact networks exhibit
a power-law degree distribution, targeting preferentially high degree nodes appears to
be an effective strategy. Community structure is also a well-known property of social
networks. Recent studies have shown that it affects the dynamics of epidemics, and
that it needs to be considered to design tailored epidemic control strategies (New-
man 2006a; Salathé and Jones 2010; Gong et al. 2013; Restrepo et al. 2008; Ghalmane
et al. 2018). This section presents an overview of recent and influential works on this
issue.

The generativemodels of communities in complex networks
Model definition

Erdős–Rényi model

The Erdős–Rényi (ER) random graph (Erdos and Renyi 1959) is perhaps one of the earliest
works on random graph models. It has two closely related definitions. Given a set of n
nodes and m edges, one variant of the ER model randomly connects m pairs of different
nodes. This process generates a collection of unique graphs of exactly n nodes and m
edges, each of them being generated uniformly at random.
The other variant of ER model (Gilbert 1959) specifies the probability of forming an

edge between every pair of different nodes. According to this definition, each pair of
nodes is connected with a probability p independently at random. By the law of large
numbers, as the number of nodes in such random graph tends to infinity, the number of
generated edges approaches

(n
2
)
p. The likelihood of generating a network G of n nodes

andm edges is

P[G]= pm (1 − p)(
n
2)−m (1)

Since every edge is generated randomly with the same probability p, the degree of any
particular node in the ER model follows the Binomial distribution.

Configurationmodel

Similar to the ER model, the configuration model (Molloy and Reed 1995) assumes that
the edges are placed randomly between the nodes. The randomization conducted by the
configuration model always preserves the pre-defined node degree which can be repre-
sented as the number of adjacent half-links or stubs. The network generation process keep
randomly pairing every two stubs to create an edge until no stub remains. Hence, the con-
figuration model produces an ensemble of graphs with the same degree sequence. The
number of edges between different nodes i and j averaged over all the graphs generated
in this way is equal to kikj

2m for sufficiently large m where kl is the degree of node l and the
number of edgesm = 1

2
∑

l kl. The configuration model is considered a benchmark in the
calculation of modularity (Newman 2016c), a commonly used quality metric for network
partitions. Given a partition of network nodes into communities, modularity compares
the number of edges observed in each community with the corresponding expected num-
ber in the graphs generated by the configuration model with the same degree sequence,
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which is given as

Q = 1
2m

∑

r

∑

{i,j}∈r

(
Aij − kikj

2m

)
=

∑

r

[
mr
m

−
( κr
2m

)2]
, (2)

where {i, j} ∈ r denotes every pair of nodes inside community r, mr is the number of
edges with both endpoints inside the community r, κr is the sum of the degrees of nodes
in community r.
It is worth noting that the network generated by the configuration model does not

exclude the self-loop edges, each of which connects a node to itself and the multi-links
which are the multiple edges between the same pair of nodes. However, when the num-
ber of nodes approaches infinity, the density of self-loops and multi-links in the network
generated by the configuration model tends to zero.
Unlike the pre-defined node degrees in the configuration model, the expected node

degrees in the ER model are all the same, which are rarely observed in real graphs. Thus,
the graphs produced by the configuration model are more realistic than the ER graphs
thanks to the node degree variations.

Stochastic blockmodel

Standard SBM. The standard stochastic block model (Holland et al. 1983) is a gener-
ative model of the graph in which nodes are organized as blocks and edges are placed
between nodes independently at random. In the standard stochastic block model, each
node i in the network is associated with a block assignment gi. The number of edges
between nodes i and j is independently distributed. It follows a Bernoulli distribution
with mean ωgi,gj , a parameter which depends only on the block assignments of two end-
points. Thus, the standard stochastic block model is parameterized by a matrix� = {ωrs}
whose component ωrs denotes the probability of forming an edge between a node in
block r and the other node in block s. Given the block assignment {gi} and the edge
probability matrix �, the likelihood of generating an undirected unweighted network
G is

P[G|{gi},�]=
∏

i<j

(
ωgigj

)Aij (1 − ωgigj
)1−Aij (3)

where Aij ∈ {0, 1} denotes the number of edges between nodes i and j. The standard
stochastic block model can be used in a priori block model setting, where the block
assignments are pre-defined, and the objective is to estimate �. It can also be used in
the posteriori block model setting, which estimates � and the block assignments {gi}
simultaneously.
In the posteriori block modeling setting, the number of blocks in SBM is usually speci-

fied in prior to applying the statistical inference such as maximum likelihood estimation
(MLE) to the model. This is because the maximum likelihood generating the observed
graph always increases by assuming more blocks. When every node forms one single
block, the MLE obtains ω̂gigj = 1 if there is one edge between nodes i and j and ω̂gigj = 0
otherwise, leading to the maximum likelihood P[G|{gi},�]= 1. But such specification
of the model does not have any practical usage. On the other hand, when there is only
one block, the � matrix becomes a scalar value and the standard SBM reduces to the
ER model. Therefore, it is also an important task to find the number of SBM blocks in a
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network.

Degree-corrected SBM. Since the standard stochastic block model considers nodes
in the same block statistically indistinguishable in terms of the probability of forming
edges, the degree heterogeneity is ignored. However, real-world networks typically dis-
play broad degree distributions. The lack of degree heterogeneity makes the standard
stochastic block model unsuitable for applications to many realistic networks. Therefore,
the degree-corrected stochastic blockmodel (Karrer and Newman 2011) incorporates the
degree heterogeneity, assuming that the number of edges between any pair of nodes i and
j follows the Poisson distribution with mean ωgi,gjθiθj where θl is a model parameter asso-
ciated with each node l. In an unweighted undirected multi-graph, after ignoring all terms
independent of the model parameters, the log-likelihood simplifies to

logP[G|{gi}, {θi},�]= 1
2

∑

ij

[
Aij log

(
ωgi,gjθiθj

) − ωgi,gjθiθj
]

(4)

where Aij is the number of edges between different nodes i and j for i �= j; for the sim-
plicity of the expression, the model defines Aii = 2k for any node i with k self-loop edges.
Given a partition of the network, i.e., the block assignments {gi}, the posterior maximum
likelihood estimates of θi and ωrs are

θ̂i = ki
κgi

, ω̂rs = mrs, (5)

where κr = ∑
i∈r ki is the sum of the degrees of all nodes in a block r, and mrs is the

total number of edges between blocks r and s, or twice the number of edges in r if r = s.
Plugging in the maximum likelihood estimates above and skipping the irrelevant terms,
the log-likelihood of the degree-corrected stochastic block model can be simplified as

logP[G|{gi}]=
∑

rs
mrs log

mrs
κrκs

. (6)

It is worth mentioning that the degree-corrected stochastic block model assumes that the
number of edges between any two nodes follows the Poisson distribution. In the standard
stochastic blockmodel where the number of edges draws from the Bernoulli, it is rare that
the edge probability is close to 1, because most real networks are often sparse. A Bernoulli
random variable with a small mean is well approximated by a Poisson random variable
(Perry and Wolfe 2012), which makes the Poisson distribution a good replacement here
for the number of edges between two nodes.

Planted partitionmodel

The standard planted partition model (McSherry 2001; Condon and Karp 2001) is a spe-
cial case of the standard stochastic block model. The network generated by the planted
partition model includes an edge between any two nodes in the same block with a prob-
ability p and an edge between any two nodes across different blocks with a probability q.
When p > q, the network generated by the planted partition model has an assortative
structure; otherwise, when p < q, themodel generates networks with disassortative struc-
ture, which corresponds to the bi-partite networks (Asratian et al. 1998) when only two
blocks exist.
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Similar to the degree-correction of the standard stochastic block model, the standard
planted partition model can be extended to its degree-corrected version. In the degree-
corrected planted partition model (Newman 2016c), the number of edges between any
two nodes i and j follows the Poisson distribution with mean ωgi,gj

kikj
2m where ωgi,gj = ω1 if

gi = gj or otherwise ωgi,gj = ω0. Given the block assignments {gi} and parameters ω0 and
ω1, the log-likelihood of generating a particular graph is

logP[G|{gi}, {ω1,ω0}] = 1
2

∑

ij

[
Aij log

(
ωgi,gj

kikj
2m

)
− ωgi,gj

kikj
2m

]
(7)

which, after a small amount of manipulation, can be re-written as

logP[G|{gi}, {ω1,ω0}]= B

⎡

⎣ 1
2m

∑

r

∑

{i,j}∈r

(
Aij − γ

kikj
2m

)⎤

⎦ + const. (8)

where {i, j} ∈ r denotes every pair of nodes in block r, the terms B = m log ω1
ω0

and
γ = ω1−ω0

logω1−logω0
are independent of the block assignments {gi}. Comparing Eq. 8 with the

definition of generalized modularity of Reichardt and Bornholdt (2006), maximizing the
log-likelihood of the degree-corrected planted partition model is equivalent to maximiz-
ing the generalized modularity with a specific resolution parameter γ . This equivalence
result shows thatmaximizing generalizedmodularity tends to find communities of similar
statistical properties. In realistic networks where edges are heterogeneously distributed
within different communities, however, there may not be a single resolution parameter γ

sufficient to avoid the resolution limit anomaly (Fortunato and Barthelemy 2007; Lu and
Szymanski 2020). As a result, small well-formed communities are likely to be merged into
inappropriate large groups, while large well-formed communities spread across smaller
ones.

Model inference

Despite of being widely used for community detection, modularity maximization is prov-
ably NP-Hard (Brandes et al. 2016) that implies that any algorithm based on this approach
may fail on some inputs. It also suffers from the resolution limit anomaly in which the
well-formed dense communities get merged into a large cluster or the loose commu-
nity inappropriately splits into multiple smaller clusters to increase the modularity. An
alternative approach for community detection is the statistical inference to fit the gener-
ative model to the observed network data. Such approach assumes the observed network
is produced by a random graph model with a pre-defined partition of the network as
the model parameter. In general, the statistical inference aims at recovering the partition
which maximizes the likelihood of the random graph model generating the observed net-
work data. In this section, we introduce the inference methods for the generative graph
models which usually requires selecting the number of blocks and discuss their con-
nection to the traditional modularity optimizations and the resolution limit anomaly in
“Relation to modularity resolution limit” section.

Selecting the number of communities

The stochastic block model and its variants do not specify the number of communities in
the network. In general, the likelihood of these models increases as the number of com-
munities grows. Thus, maximizing the likelihood of the model produces the trivial results
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where every node becomes a single community. Therefore, one needs to specify the num-
ber of communities for these random graph models. One approach is to find the number
of communities by the statistical inference (Riolo et al. 2017; Newman and Reiner 2016).
Alternatively, according to the Occam’s Razor, the model inference process should take
into account the complexity of the model, which can be measured by the model descrip-
tion length (Peixoto 2012). Other work (Peixoto 2017) also uses the Bayesian model
selection to determine the number of the communities in a network. Ghasemian et al.
(2019) provides a detailed discussion of commonly used approaches to select the number
of communities for random graph models.

Monte CarloMarkov chain

The simplest Markov Chain Monte Carlo approach is to propose moving each node from
its original block into one of the B blocks randomly, which easily satisfies the require-
ments of ergodicity and detailed balance because any block assignment can be reached
from the current block assignment with finite and aperiodic expected number of steps.
However, considering the size of the partition space O

(
NK )

for a network with N nodes
and K blocks, the naive MCMC approach is not practical. Therefore, (Peixoto 2014) pro-
poses the optimized Markov Chain Monte Carlo (MCMC) algorithm with the greedy
heuristic to infer the block assignment. Initially, every node in the network is assigned to
one random block independently. Then, one attempts to move a node from block r to s
with a probability conditioned on its neighbor’s block assignment t

p(r → s|t) = mts + ε
∑

s mts + εB
.

In the above, ε > 0 is a free parameter to fulfill the ergodicity condition such that any
block assignment can be reached from the current block assignment with the finite and
aperiodic expected number of steps. When ε tends to ∞, the proposed function reduces
to the naive schemewhich assigns random block to the current node. However, such naive
scheme is inefficient. Indeed, the possibility of current node being assigned to the correct
block assignment is very low, thus, such assignment does not increase the log-likelihood
in most cases. Consequently, the assignments are rejected very frequently, wasting the
computational resource. By applying a relatively small ε, the assignment selected by the
function proposed above is more likely to get accepted. The intuition behind this func-
tion is that, given that there are many edges across blocks s and t, a node with many
neighbors in block t is likely to be assigned to block s. Thus, the function proposed above
is more likely to be accepted, avoiding the computational cost wasted by many rejected
assignments.
To ensure the detailed balance, each proposed move is accepted with a probability a in

the Metropolis-Hastings fashion (Metropolis et al. 1953) given by

a = min
{
exp(�L)

∑
t ntp(s → r|t)

∑
t ntp(r → s|t)

}
, (9)

where �L is the change of log-likelihood after the move and the node of the proposed
move has nt neighbors in block t.
In Lu and Szymanski (2019), the authors observe that the current versions of stochastic

block model randomly search through the large space of potential solutions contain-
ing both assortative and disassortative structures. Consequently, inference algorithms
using these models are often trapped in a solution unsuitable for the user and it takes
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them long time to escape. To address this issue, the authors of Lu and Szymanski (2019)
apply a simple constraint on nodes’ internal degree ratio in the objective function. This
approach is independent of the inference algorithm. The resulting algorithm reliably finds
assortative or disassortative structure as directed by the value of a single parameter. The
paper contains the results of validation of the model experimentally by testing its perfor-
mance on several real and synthetic networks. The experiments show that the inference
of degree-corrected stochastic block model quickly converges to the desired assortative
or disassortative structure. In contrast, the inference of degree-corrected stochastic block
model gets often trapped at the inferior local optimal partitions.

Modularity optimizationmethod

Newman (2016c) proposes an iterative algorithm to find the optimal values of �, g that
maximize the log-likelihood of the degree-corrected planted partition model. Newman
(2016c) also shows the maximum likelihood estimates of the block assignments g = {gi}
is equivalent to maximizing the generalized modularity

Q(γ ) = 1
2m

∑

ij

(
Aij − γ

kikj
2m

)
δgi,gj (10)

which is given as a function of γ , a positive parameter known as the resolution parameter.
The algorithm repeats the following two steps until convergence:

• Given the values of � = {ω1,ω0}, find the optimal block assignment gmaximizing
the log-likelihood of degree-corrected planted partition model defined in Eq. 7. This
is equivalent to maximizing the generalized modularity Q(γ ) with a γ = ω1−ω0

logω1−logω0
,

gnew = argmax
g

logP(A|�, g) = argmax
g

Q(γ )

• After updating g, find the � = {ω1,ω0} under the current block assignment g by the
maximum likelihood estimation,

�new = argmax
�

logP(A|�, g)

Relation tomodularity resolution limit

Themaximization of the generalizedmodularity is equivalent to themaximum-likelihood
estimation (MLE) of the degree-corrected planted partition model on the same graph
(Newman 2016c). Hence, the partition of the network which most likely generates the
observed network also maximizes the generalized modularity with a particular resolu-
tion parameter. However, in the planted partition model, all communities have similar
statistical properties, which is unusual in practical application.
In Lu and Szymanski (2020), the authors answer the important question about the

performance of the generalized modularity on the networks generated by the stochastic
block model that can generate more realistic networks with heterogeneous communi-
ties. First, these authors establish an asymptotic theoretical upper and lower bounds
on the resolution parameter of generalized modularity bridging the gap between the
literature on the resolutions limits of modularity-based community detection (Fortu-
nato and Barthelemy 2007) and the random graph models. They also show that com-
munities with different densities can still be detected by maximizing the generalized
modularity when the resolution parameter is within the established range. Otherwise,
when this parameter is larger than the upper bound established in this paper, some
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well-formed communities are likely to be spread among multiple clusters. In the oppo-
site case when the resolution parameter is lower than the bound presented in the
paper, some communities are inappropriately merged into one large component. The
conclusion is that the generalized modularity resolution limits arise when a network
contains a subgraph whose lower bound is higher than the upper bound of another
subgraph because in such a case any resolution parameter will be either above the
upper bound of latter subgraph or below the lower bound of the former subgraph
or both.
To address the above mentioned problem, the authors of Lu and Szymanski (2020)

introduce a progressive agglomerative heuristic algorithm that systematically increases
the resolution parameter. The algorithm recursively splits the resulting clusters of the
previous level to detect smaller communities. As the recursion proceeds, the algo-
rithm gradually increases the resolution parameter for high-resolution community
detection in local subgraphs of the network. The algorithm proceeds until the final
partition is no longer statistically significant. This approach avoids getting trapped
by the resolution limit and does not require multiple re-computing of the resolution
parameter (Newman 2016c), which can be computationally prohibitively costly for large
networks.

Time evolving communities
As mentioned in the “Introduction” section, one of the challenging problems related
to communities is given by the partitioning of time evolving networks. Here we briefly
overview the most widely used methodologies and important advances related to this
area. A very nice survey providing a more in depth description of the various approaches
with formal definitions, algorithms, etc. was recently published by Rossetti and Cazabet
in Ref. Rossetti and Cazabet (2018).

Snapshot based approaches

Probably the most simple approach is to define snapshots, corresponding to static graphs,
representing the state of the evolving network at a given time point, and to apply a
static community finding method to the subsequent snapshots (Hopcroft et al. 2004;
Asur et al. 2007; Palla et al. 2007; Greene et al. 2010; Rosvall and Bergstrom 2010;
Bródka et al. 2013). The communities found in the neighboring time steps then have
to be matched with each other somehow. One of the basic ideas is to use the Jaccard-
index for measuring the relative overlap between the communities, and match the pairs
in the decreasing order of the Jaccard-index (Palla et al. 2007). Naturally, the Jaccard-
index can be replaced by any other similarity measure such as e.g., the normalized
mutual information (Danon et al. 2005; Lancichinetti et al. 2009), the adjusted mutual
information (Amelio and Pizzuti 2017), or any advanced information based similarity in
general.
The advantage of this approach is that it is conceptually simple, and one can use basi-

cally any community finding method on the static snapshots. The drawback is that the
matching part can become technically complicated under certain circumstances. First of
all, if there are O(Nc) communities found in a given snapshot, in principle we need to
evaluate the chosen similarity function O(N2

c ) times for every pair of subsequent snap-
shots. Moreover, for similarity measures based on solely memberships (without taking
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into account e.g., the link structure of the communities) it is not uncommon for a com-
munityCi(t) at time step t to have two or evenmore corresponding communitiesCj(t+1)
at time step t + 1 with equal similarity to Ci(t) simply because the membership values
can take only integer numbers. Thus, when choosing the most similar community from
the next time step as the image of Ci(t) at t + 1, we might run into the problem of having
multiple equally similar candidates. Another problem is that a large community at t can
have a non-zero similarity with many different communities at t + 1, and thus, if we fol-
low the merging and splitting processes between the communities without any restriction
on the minimal similarity, the lineage of the evolving community structure can become
extremely subtle and complicated. Of course, using a minimum similarity threshold can
make the picture clearer, however, at the cost of the introduction of an extra parame-
ter to the method. Last but not least, in case we are using a static community finding
method that allows overlaps between the communities, finding the best match between
the subsequent time steps can become even more tricky (Palla et al. 2007). For the above
reasons, the introduction of more specialized community finding methods targeted at
time dependent networks was very well motivated.

Evolutionary algorithms

The key idea behind these approaches is to provide a unified framework in which the
inference of communities at a given time step t can take into account information about
the network structure at other time steps as well. One of the first methods pointing in
this direction was suggested in Chakrabarti et al. (2006), where the goal was to opti-
mize both for ’point wise’ precise communities reflecting the modular structure of the
network at any given time point t, and for keeping the change in the community struc-
ture between two subsequent time steps as low as possible. This was achieved in a
rather general framework, where a cost function is introduced composed of two parts,
the first related to the accuracy of the communities located at the different time steps,
and the second term corresponding to the ’historical cost’, depending on the similar-
ity of the partitions at subsequent time steps. The second term also involves a user
defined parameter (a simple multiplicative factor) with which we can balance the trade-
off between lowering the point-wise accuracy and gaining smoothness of evolution in
time. In Chakrabarti et al. (2006) the method is used with hierarchical clustering and k-
means clustering together with historical costs specifically using the nature of the applied
clustering.
In principle, the above framework can be used with any static community finding algo-

rithm combined with a suitable similarity measure between communities. E.g., in Chi et
al. (2007) spectral clustering techniques are used to uncover the communities, whereas in
Ref. Lin et al. (2008), the community finding is based on optimizing the Kullback–Leibler
divergence between the actual network structure and the one predicted based on com-
munity memberships. The advantage of this latter approach is that the historical costs can
also be formulated as the Kullback–Leibler divergence between the consecutive commu-
nity partitions, providing a unified formulation for both type of costs, and also allowing
for a probabilistic interpretation of the optimization problem (Lin et al. 2008). Further
methods similar in nature were proposed in Refs. Zhou et al. (2007); Tang et al. (2008);
Folino and Pizzuti (2010); Sun et al. (2010); Gong et al. (2012); Kawadia and Sreenivasan
(2012); Crane and Dempsey (2015); Görke et al. (2013).
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Another quite general framework for evolutionary community finding was proposed
in Mucha et al. (2010), based on the concept of multislice networks. In such systems,
the network structure can be organized into layers, where the layers represent different
types of connections between the same nodes such as e.g., social media connections, e-
mail connections and personal acquaintances between the same people. By taking any
community finding approach in general that is suitable for detecting communities in
multiple levels simultaneously, the same method can be also applied to evolutionary
community finding if we represent the time evolving network as a multislice network,
where the different layers correspond to the subsequent time steps during the time evo-
lution. The solution offered in Mucha et al. (2010) is based on modularity, however as
mentioned above, the generality of the framework allows any further multislice methods
as well.
A further general problem class into which the challenge of evolutionary clustering

fits naturally is given by consensus clustering (Lancichinetti and Fortunato 2012). The
basic idea of consensus clustering is to apply multiple different clustering methods to the
same network, and then bring the found (presumably different) partitions to consensus,
resulting in stable, relevant communities even for stochastic community findingmethods.
However, this approach is also very suitable for evolutionary clustering when the setup is
modified as follows. First, based on the time evolving network data, following the well-
known concept of sliding time windows, a number of time frames are defined, where each
frame corresponds to the aggregation of a certain number of consecutive time steps in
the original data, and also the neighboring time frames show a significant overlap with
each other to ensure stability and a smooth time evolution of the communities. Next, a
static community finding algorithm is applied to the subsequent time frames, and then the
obtained results are brought to consensus, again, over sliding windows of a fixed length
(Lancichinetti and Fortunato 2012).
Generative models such as the stochastic block model can also provide very interesting

solutions for evolutionary clustering. In Ref. Yang et al. (2009) the concept of the dynamic
stochastic block model is introduced, where in addition to the usual group member-
ship probabilities and membership dependent linking probabilities, further probabilistic
transition matrices are considered for describing the evolution of node memberships
between the subsequent time steps. A more general formulation of the model is given
in Peixoto (2015) with the help of a layered stochastic block model, where the layers can
naturally correspond to time steps in case of a dynamic network, however the approach
can handle general multilayer networks as well. Important results on the detectability
thresholds for the dynamic stochastic block model are presented in Ghasemian et al.
(2016) based on the cavity method, while in Peixoto and Rosvall (2017), the concept of
higher order Markov chains (and thus, the possibility for memory effects) are success-
fully incorporated into the framework of dynamic stochastic block models. A common
feature of the above methods is that the results are obtained via Bayesian inference,
which in practice is usually implemented with the help of a Markov chain Monte Carlo
algorithms (Yang et al. 2009; Peixoto 2015; Peixoto and Rosvall 2017).
Stochastic block models can be also successful in the analysis of systems where the net-

work structure itself should also be generated from time dependent (and possibly noisy)
signals. In Hoffmann et al. (2018), an end-to-end community detection algorithm is pro-
posed, avoiding the extraction a sequence of point estimates for the links, and providing
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an inference of the stochastic blocks directly from the raw data. In parallel, the stochas-
tic block model framework can be also used for a joint reconstruction of the network
structure and the communities from time varying functional data (Peixoto 2019), where
synergistic effects were reported, as the inferred blocks improved the reconstruction
accuracy of the links, which in turn also made accuracy of the inferred communities
better.

Incremental clustering, online community finding and predicting community evolution

In case of the previously mentioned methods, we assumed a ’complete knowledge’ about
the time evolution of the system at least on the level of the input data, thus, when inferring
the communities at a given time step, information about the network structure coming
from later time steps was also available, and could be made use of. A somewhat more
restrictive setup is where at a given time point only the data corresponding to previous
time steps can be used. Such scenario could be when small but fast changes occur in a
large network, and our aim is to always give the currently best partitioning of the network
into communities, which however is also likely to be quite similar to the partitioning in
the previous time steps. The concept of incremental clustering fits to this setup in a natu-
ral manner (Aynaud et al. 2013), where instead of running the community finding method
of our choice ’from scratch’ on the current snap shot of the studied network, we consider
the changes in the network structure and update the communities from the previous time
step. A method following this approach was proposed in Ning et al. (2010) based on spec-
tral clustering, while in Bansal et al. (2011); Görke et al. (2010) modularity optimization
techniques were used for a similar purpose. However, further static community finding
methods such as the label propagation approach can also be adapted to this framework
as shown in Xie et al. (2013), and the problem of overlapping communities can also be
handled (Cazabet et al. 2010). Additional incremental clustering techniques can be found
in Refs. Duan et al. (2012); Falkowski et al. (2008); Nguyen et al. (2011); Cazabet and
Amblard (2011); Görke et al. (2012); Ma and Huang (2013); Lee et al. (2014); Zakrzewska
and Bader (2015).
An idea closely related to incremental clustering is given by the concept of online clus-

tering in dynamical networks (Aggarwal and Yu 2005). This framework considers large
networks updated in a stream fashion, where changes in the communities are detected
online, separated from offline community detection and exploratory querying. A some-
what different strategy for online community finding is proposed in Zanghi et al. (2008)
based on expectation-maximization and the stochastic block model, and further methods
are proposed in Refs Rossetti et al. (2017); Tan et al. (2014).
A closely related problem to the above described ’instantaneous’ community detection

methods is given by the challenge of predicting the future changes in communities for
time evolving systems. The first results in this direction were related to the prediction of
whether a community will grow and/or survive, or instead will disappear (Kairam et al.
2012; Patil et al. 2013). In Goldberg et al. (2011) also the predicted life span and the con-
nection between the life span and structural properties of the communities were studied.
Beside the ’ultimate fate’ and life span, predicting the occurrence of change events for
communities is also a relevant problem, where the usage of machine learning techniques
is a natural idea. The basic idea is to build classifiers that can predict certain type of events
based on various community features (Bródka et al. 2012; Gliwa et al. 2013; Takaffoli et
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al. 2013). A detailed study of the problem together with a thorough testing of methods on
multiple real datasets is presented in Saganowski et al. (2015).

Immunization strategies
Various strategies have emerged over the years suggesting different ways to immunize
nodes (Lü et al. 2016). Yet, finding even more highly effective strategies must be pur-
sued since any improvement can play a major role in saving human lives and resources.
Immunizing nodes at random is the simplest approach. This strategy has proven to be
impractical since it requires a large proportion of nodes to be immunized to mitigate
the epidemic spreading. To solve this problem, researchers try to come up with the best
possible way to immunize a small number of key nodes using various topological fea-
tures of networks. Up to now, these immunization strategies fall into two categories:
stochastic and deterministic. In stochastic strategies, targeted nodes are identified by col-
lecting information locally from randomly selected nodes in the network. They are totally
agnostic about the full network structure. The most popular strategy in this category
is the so-called Acquaintance immunization. It aims to vaccinate nodes which are ran-
domly picked several times among the neighbors of randomly selected nodes. There
is obviously a high chance that nodes with high degree are selected by the acquain-
tance strategy. Deterministic strategies, on the other hand, assume the knowledge of
the whole network. These strategies determine the succession in which nodes of a net-
work should be immunized to mitigate the epidemic spreading. They rank all nodes
according to a given centrality measure. From high to low, nodes are targeted based
on their rank. Deterministic strategies have proven to be very efficient in controlling
the epidemic outbreaks. Their only drawback is their high requirement of the global
topology of the network. This makes them impractical in large scale networks. Stochas-
tic strategies, however, have the advantage of requiring only little information of the
network at the expense of their performance, which is lower as compared to the deter-
ministic immunization. The standard centrality measures designed for complex networks
with non-modular structure highlight different characteristics of the nodes depending
upon their objective criteria. The Degree-based strategy targets highly connected nodes
(hubs). The immunization of hubs results in a big reduction in network density which
reduces the epidemic diffusion. It is a very efficient strategy in scale-free networks due
to the power law degree distribution. The Closeness-based immunization strategy selects
nodes with least average propagation length in the network as the most influential
spreaders. Targeting these nodes may increase the average paths length in the net-
work, hence the decrease of the epidemic propagation. Further, the Betweenness-based
strategy immunizes nodes with maximum fraction of shortest paths passing through it.
These nodes may have a considerable influence in networks in terms of controlling the
information flow. Therefore, immunizing these nodes can stop the diffusion between
many vertices due to their bridging role in the largest number of paths. Despite the
efficiency of these popular immunization strategies (Degree, Closeness and Betweenness-
based strategies) on targeting influential nodes, they exhibit some limitations when
applied to networks with community structure. According to recent research, community
structure strongly affects the epidemic spreading process. Thus, the design of immu-
nization strategies needs to take into consideration the community structure. Stochastic
as well as deterministic strategies using information of the community structure have
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been proposed. They can be classified into two groups according to the commu-
nity structure model they use. The first group of strategies uses the non-overlapping
community structure features. The second group is based on the overlapping commu-
nity structure properties. The most widely known stochastic strategies together with
deterministic strategies using advantageously the community structure are recalled in
this section.

Stochastic strategies

Stochastic immunization strategies focus on using information at the node level. They
identify target nodes without knowledge of the full network structure. That makes them
computationally more efficient and more practical in large networks as compared to the
deterministic strategies. Roughly speaking, these strategies target either the nodes linking
the communities (Bridges) or the highly connected nodes (Hubs) or the overlapping nodes
using little or no information about the network topology.
Some researchers assume that bridges are the most influential spreaders. These nodes

can propagate the epidemic to the entire network because of their connectivity with
various modules. They have then a global influence on the whole network and their
immunization can prevent the effective diffusion to the different parts of the network.
The Community Bridge Finder CBF (Salathé and Jones 2010) is an immunization strat-
egy aiming to target the bridge nodes. It is based upon a random-walk algorithm. The
community hubs are also believed to have a strong local influence in their communi-
ties. Based on this assumption the Degree Community Bridge Finder DCBF (Gong 2014)
and the Bridge-Hub Detector BHD (Gong et al. 2013) are two immunization strate-
gies, which targets bridge nodes with high connections for immunization. The selected
bridge nodes in this case play also the role of hubs. The former strategy is a varia-
tion of the CBF, while the latter one is based on expanding friendship circles during a
random walk. Other researchers try to highlight the importance of overlapping nodes
in terms of the epidemic spreading dynamics. Random-Walk Overlap Selection RWOS
strategy (Taghavian et al. 2017) is proposed to select the overlapping nodes according
to a random-based algorithm. These key nodes can play a major role in epidemic dif-
fusion due to their membership to multiple communities. In the following, we present
a brief overview of the three stochastic strategies based on non-overlapping commu-
nity structure and the one tailored for networks with overlapping community structure
(refer to Fig. 1).

Fig. 1 Stochastic immunization methods
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Algorithms

Community Bridge Finder (CBF)
Immunization interventions of highly connected individuals are not always enough to

protect networks from large-scale epidemics. Indeed, targeting individuals bridging com-
munities is sometimes more effective than simply immunizing nodes with high degrees.
The goal of the CBF strategy (Salathé and Jones 2010) is to identify nodes acting as
bridges between communities. This strategy is based on random walks. It works as
follows:
Step 1. Select a random node vi=0.
Step 2. Follow a random walk with the condition that a node has not been visited by the

random path before.
Step 3. At each node vi>=2, check if it is connected to more than one visited nodes. If

there is just one connection, vi−1 is considered as a potential bridge.
Step 4. Select two random neighboring nodes of vi other than vi−1. If both nodes have

no connections to the previously visited nodes, the node vi−1 is then marked as a bridge
and it is immunized. Otherwise, a random walk is taken back at vi−1.
This strategy has been compared to the Acquaintance strategy defined as follows. At

each step, a node is picked at random and one of its acquaintances is randomly selected,
then nodes which are picked as acquaintances n times are immunized. Extensive experi-
ments were conducted on synthetic and real-world networks using SIR epidemic model.
Results show that CBF outperforms mostly the Acquaintance strategy. Its best perfor-
mance is obtained in networks with strong community structure (few inter community
links).
Degree Community Bridge Finder (DCBF)
DCBF (Gong 2014) is a variant of the CBF strategy. The goal of this strategy is to

target bridges with large amount of connections. This strategy incorporates the same
steps as described in the CBF algorithm. The difference is that nodes are not ran-
domly chosen among all the possible nodes during the random walk, but according to
their degree from high to low. Two additional checks are also implemented in DCBF
to decrease the computation time of the algorithm. First, the number of nodes vis-
ited in a running path is kept at the length of ten. Also, the number of visits by all
random paths is recorded for each node. The node is immunized when the number
of visits k is equal to a certain number (k = 2). DCBF has been tested on syn-
thetic networks with various modularity values. After running the SIR epidemic model
simulations, results demonstrate that DCBF performs better than the CBF algorithm
in controlling outbreaks. Its performance gets higher in networks with strong com-
munity structure (when the modularity is very high Q > 0.84). Indeed, outbreaks
are restricted locally inside communities in this case. DCBF could then target highly
connected nodes in local communities, while CBF is able to identify only the bridge
nodes.
Bridge-Hub Detector (BHD)
Communities are characterized by the heterogeneity in the connections among nodes

bridging various communities. Based on this idea, BHD (Gong et al. 2013) aims to identify
bridge hub nodes as targets for immunization. It is based on expanding friendship circles
of visited nodes and works as follows
Step 1. Select a random node vi=0.
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Step 2. Follow a random walk with the condition that a node has not been visited by the
random path before.
Step 3. Let vi>=2 be the node visited after i steps, and fi be the set of its neighbors. The

node vi is considered as an immunization target if there is at least one node that does
not take part of the set Fi−1 and that it not linked to any node in Fi−1, where Fi−1 =
f0

⋃
f1

⋃
f2

⋃
...

⋃
ft−1. Otherwise, the randomwalkmoves on from vi, and the friendship

circle will be updated to Fi = Fi−1
⋃

fi.
Step 4. Among the nodes in fi, one node vH is randomly picked for immunization that

do not belong and cannot be connected back to Fi−1.
At the end of this procedure, a pair of nodes, a bridge and a bridge hub nodes are

selected for immunization. This is via friendship circles of randomly visited nodes. BHD
was tested on simulated and empirical data constructed from Facebook network of five
US universities using the SIR model. It results in a smaller epidemic size as compared to
the Acquaintance and CBF strategies. In terms of computational time, Acquaintance is
the fastest algorithm, followed by CBF and BHD.
Random-Walk Overlap Selection (RWOS)
Overlapping nodes do not necessarily have high centralitymeasures, yet, they can have a

major effect in spreading epidemics from one community to another. Indeed, these nodes
have access to multiple communities in the network. The RWOS strategy (Taghavian et
al. 2017) is designed to target the overlapping nodes for immunization according to a
random walk. It can be specified as follows:
Step 1. Define the list of overlapping nodes.
Step 2. Select randomly a node of the network and run a random walk.
Step 3. Each visited node is nominated as a target for immunization if it belongs to the

overlapping set of nodes. This process continues until reaching the desired immunization
coverage.
This strategy targets highly connected overlapping nodes for immunization. It is based

on the idea that the probability of visiting any node in a random path is proportional
to the node degree. RWOS has been investigated on synthetic and real-world networks.
The standard SIR epidemic model was run on these networks. Results show that RWOS
outperforms CBF and BHD strategies in terms of the epidemic size. It performs some-
times even better than membership strategy (where nodes are immunized according to
the number of communities they belong to). Moreover, its performance gets better in
networks with strong community structure and higher membership values. Note that it
uses more information about the community structure. Indeed, one needs to know the
overlapping nodes.

Discussion

The stochastic strategies have been investigated on both simulated networks (Lanci-
chinetti et al. 2008; Orman et al. 2013) with different community structure, and real-world
networks. Overall, results show that stochastic strategies based on the community struc-
ture are more efficient than the standard stochastic strategies. Results show that generally
BHD and DCBF are more efficient than the CBF strategy. However, BHD strategy dis-
plays the best performance among the other strategies. Moreover, the difference between
their performances increases when the modularity is high, so the communities are well
separated from each other. Thus, the outbreaks stay restricted in local communities.
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Consequently, immunizing bridges is not an effective way to control the spreading of
epidemics. That explains the poor performance of CBF in networks with strong commu-
nity structure. DCBF may at least identify relatively highly connected bridge nodes which
can cause extensive spreading of epidemics. In addition, BHD is capable of identifying
bridge nodes with high number of inter-community links. Therefore, the effectiveness of
BHD can be attributed to the better identification of the influential spreaders as com-
pared to the CBF and DCBF. All these three strategies do not take into account the
overlaps between communities. On the other hand, RWOS strategy which immunizes
overlapping nodes results in smaller epidemic size as compared to the other stochastic
strategies in all the networks. Furthermore, its performance enhances while increasing
the membership degree of overlapping nodes. Thus, overlapping nodes play a major role
in spreading infection from one community to another even if they are not necessarily
highly connected.

Deterministic strategies

Deterministic strategies target nodes by ranking them following a given centrality mea-
sure. The centrality of a node reflects its ability to propagate the disease. The procedure
of deterministic strategies can be specified as follows
Step 1. Select a given centrality measure.
Step 2. Compute the centrality for each node of the network.
Step 3. Rank nodes in decreasing order from the most to the less central node.
Step 4. Target a proportion of nodes with high ranks for immunization.

These strategies require the knowledge of the whole network because all the nodes are
involved in the process. We now give an overview of some recent deterministic strategies
designed for modular networks. They are classified into different categories according to
their immunization goals (refer to Fig. 2).

Non-overlapping community structure

A plethora of deterministic immunization strategies are developed to identify vital nodes
in networks with community structure. They can be classified into three categories
(global, local, global and local) in networks with non-overlapping structure. The first type
of strategies highlights nodes with outer connections towards foreign communities. They
target bridge nodes, which can have a significant global influence on other nodes of the
network. The second category tends to identify nodes with the highest local influence in
their own communities. Some strategies target hubs for immunization because of their
strong influence on nodes of their neighborhoods, while others immunize nodes located
in the core of the community. The strategies belonging to the third category immunize
both types of nodes. They select nodes having both local and global influence in the
network.

Global strategies

Bridges can be viewed as individuals that connect different subgroups of nodes in net-
works. They can let the epidemic outbreaks move from one module to another through
their inter-community connections. Therefore, they have a major global influence in the
entire network. Series of strategies have been proposed to select these critical nodes for
immunization. The Module-based strategy (Mod strategy) (Masuda 2009) is proposed



Cherifi et al. Applied Network Science           (2019) 4:117 Page 18 of 35

Fig. 2 Deterministic immunization methods

to highlight the bridge nodes between communities. It is based on an approximated
calculation of the eigenvector centrality of the coarse-grained network (called also the
meta-graph). In this network the communities are represented simply by nodes, and
the links are weighted by the number of links between the two communities. It can be
specified as follows.

Module-based strategy (Mod strategy): Mod strategy was proposed by Masuda et al.
(2009). Given the community structure of the original network, this strategy is applied
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on the coarse-grained network. Where each community is represented by a single node,
and edges are weighted by the number of links shared by two neighboring communities.
It targets nodes maximizing the following measure

Modi = 2ũK
∑

I �=K
dkI ũI (11)

Where ũK represents the eigenvector corresponding to the Kth community. dkI is the
number of inter-community links that exist between node k and the Ith community.
The first term of this measure (i.e., 2ũK ) quantifies the importance of the community
that the node k belongs to, whereas the second quantity (i.e.,

∑
I �=K dkI ũI ) measures its

connectivity to other important communities. After immunizing all the bridge nodes, the
remaining nodes are ranked according to their degree. This method preferentially targets
globally important nodes having important inter-community links rather than commu-
nity hubs that are locally important. The effectiveness of the Mod strategy is tested by
applying it on synthetic and real-world networks of various nature. Results show that it is
in most cases more efficient than Degree, Betweenness and Ress strategy (an eigenvector
based strategy (Restrepo et al. 2008)) in networks with modular structure.

Boundary Vicinity Algorithm (BVA): Different from the above method, Mantzaris
(2014) proposed the Boundary Vicinity AlgorithmBVA. This strategy ranks nodes accord-
ing to their vicinity to bridge nodes (boundary nodes) of each community. It is defined as
follows
Step 1. Define the set of communities of the network.
Step 2. Extract the set of bridges which connects communities.
Step 3. Run a number of random walkers of a chosen fixed number of steps from each

bridge node. Then, the number of visits to each node is counted.
This measure quantifies the ability of a given node to propagate epidemics across

bridges towards different communities. Using the SI epidemic model, the authors show
that the BVA strategy outperforms the Betweenness-based strategy in terms of the epi-
demic size.

Yoshida et al. proposed the Inverse Vector Density (IVD) (Yoshida and Yamada 2017).
It is another immunization strategy that do not require the community labels of nodes.
This is by constructing a vector representation of nodes based on the modularity quality
measure. The IVD immunizes nodes with small number of nearby node vectors which are
identified as bridges. This strategy performs better than the Betweenness-based strategy
in terms of the Largest Connected Component (LCC). Bridgeness strategy is proposed
by Jensen et al. Jensen et al. (2015). It is based on the Betweenness centrality while con-
sidering only shortest paths between nodes belonging to different communities. This
strategy highlights nodes that connect different regions of a network. Using both syn-
thetic and real-world networks, the Bridgeness strategy is shown to be globally more
effective than the Betweenness-based strategy to identify bridge nodes. Different from
the above methods, the Number of Neighboring Community (NNC) (Ghalmane et al.
2018) selects nodes which are connected to the larger number of foreign communities,
regardless of the amount of their inter-community links. It ranks nodes according to the
number of neighboring communities that they can reach through at least one link. Indeed,
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nodes with high number of neighboring communities are able to disseminate information
across the entire network. Experimental results show that the Number of Neighboring
Communities strategy outperforms the Degree and the Betweenness-based strategies in
terms of the epidemic size. It performs also better than some community-based strate-
gies such as the Community Inbetweenness, CbM strategies (see their definition in
“Global and local strategies” section). This is particularly true in networks with a com-
munity structure of medium strength (i.e., when the proportion of intra-community links
is of the same order than the proportion of inter-community links). M. Kitromilidis et al.
(2018) propose to redefine the traditional centrality measures to characterize the influ-
ence ofWestern artists. This global strategy is based on computing the standard centrality
measures by considering only the inter-community links of the networks. Their idea is
based on the fact that influential artists usually have connections beyond their artistic
movement. The Global Betweenness and Closeness strategies are compared to their clas-
sical versions. They were tested on a painter collaboration network. Experimental results
show that the Global strategies allow to highlight some influential nodes who might have
been missed as they do not necessary rank high in the standard measure based strategies.

Local strategies

Hubs represent the high degree nodes with the larger amount of connections that
greatly exceed the average. They are a consequence of the scale-free degree distribution
observed in real-world networks. In modular networks, such nodes can be found in
all the communities. They have then a strong local influence on the nodes of their
own communities. Newman proposed the Community centrality (Newman 2006a) to
identify nodes that plays a central role inside communities in terms of the number of
connections. These nodes are responsible for the maximum information flow inside
their communities. He et al. proposed the Super node strategy (He et al. 2015) that can
immunize nodes with the highest intra-community links (or with highest k-core index)
belonging to various communities. Both strategies are described as follows:

Community centrality (CC):Newman proposed a slightly different formulation of the
modularity. The Community centrality (Newman 2006a) is derived from the eigenvectors
of the modularity matrix. The modularity matrix is divided into two projections. The first
dimension represents the positive eigenvectors of the modularity matrix while the second
dimension represents the negative ones. Thus, the modularity can be written in terms of
these vectors as follows:

Q =
c∑

k=1
|Xk|2 −

c∑

k=1
|Yk |2 (12)

where c is the number of communities. X and Y are the community eigenvectors in both
dimensions. The ith node in the community k is represented by two vectors xi and yi (the
ith rows of Xk and Yk respectively).
The magnitude of a node vector |xi| specifies how central the node i is in its community

in terms of the number of connections. Thus, the node i has a large positive contribution
to the modularity when this measure is large. On the other hand, a higher value of |yi|
means that the node i has many connections to other nodes from foreign communities.
Therefore, the Community centrality is defined to be equal to the vector magnitude |xi|.
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It measures the strength with which a given node i is assigned to its community. This
measure has been tested in a co-authorship network between scientists. Results show
that it is not well correlated with the degree centrality. Moreover, some nodes with high
Community centrality measure have relatively low degree. However, they have more con-
nections with nodes of their communities. Thus, nodes with high Community centrality
value play a central role in the spreading process in their local neighborhood.

Super node strategy: This strategy starts by ranking communities in decreasing order
according to their size. After that, the node with the largest inner degree is selected
from the largest community. Then, the node with the highest inner degree in the second
largest community and which do not have any connections with the previous communi-
ties is selected as the second spreader. Note that there is only one previous community
for the second spreader. After visiting all the communities of the network, this process
is restarted again until achieving the desired number of immunized nodes. The goal of
this method is to select multiple spreaders from different communities in a balanced way.
SIR simulations are performed in both synthetic and real-world networks. Experimental
results show that the Super node strategy results in a smaller epidemic size as compared
to the Degree-based strategy. Additionally, Super node strategy proved also its efficiency
while using the k-shell decomposition method in the process of finding the influential
spreaders in each community.

Global and local strategies

The immunization strategies in this category tend to target nodes that have both local
and global influence. They combine the various aspects of the previous strategies to
select the most influential nodes in the network. These nodes are supposed to be the
main spreaders in their communities which can also disseminate the epidemics towards
other modules of the network. Community Inbetweenness (Chan et al. 2009) together
with the CbC strategy (Zhao et al. 2015) select the Hub-bridge nodes for immunization.
They can be defined as follows:

Community Inbetweenness strategy: The classical betweenness needs to solve the
shortest path problem of all pairs, what makes it unfeasible in large networks. Community
Inbetweenness strategy (Chan et al. 2009) is proposed to solve this problem. It is based on
an entropy-basedmeasure which approximates the betweenness centrality. It ranks nodes
based solely on community information. This strategy evaluates node importance accord-
ing to the proportion of its surrounding links in addition to the external links connecting
it with foreign communities. The Community Inbetweenness centrality CCI is defined as
follows:

CCI(i) = ki
∑

c∈C
pi→c log

(
1

pi→c

)
(13)

Where ki is the degree of node i. pi→c is the proportion of links connecting node i to
the community c ∈ C. C is the set of non-overlapping communities. Community Inbe-
tweenness tends to select nodes with high connectivity and with more links to different
communities. It is based on the idea that nodes with high betweenness measure are usu-
ally located between densely connected modules. These nodes are also targeted by the
standard betweenness centrality. Simulation results on real-world networks show that
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this strategy is more efficient than the betweenness based strategy in terms of computa-
tional performance. Both strategies are also tested with the SIR model in Ghalmane et al.
(2018) to compare their epidemic size. Results show that Community Inbetweenness per-
forms almost as well as the betweenness in networks with strong community structure. It
is however more efficient in networks with loose community structure.
Community-based Centrality ((CbC): This strategy selects nodes for immunization

according to their links characteristics and the size of their communities. It targets nodes
that have a big impact in their communities and that can spread epidemics to nodes from
other communities. It is based on a measure that evaluates the importance of node i via
the following formula:

CbCi =
m∑

c=1
dic

Sc
N

(14)

Where dic is the number of links between node i and other nodes in community c, m is
the number of communities in the network, Sc is the number of nodes in community
c, and N is the size of the network. Simulation results using the SIR model show that
CbC outperforms some traditional measures such as Degree and K-shell. Moreover, CbC
can also better reflect nodes importance as compared to Closeness, Betweenness and
Eigenvector centralities, with much lower computational complexity.

Comm strategy was proposed by Gupta et al. (2015, 2016). The aim of this strategy is
to target nodes that are at the same time hubs in their communities and bridges towards
other communities. It ranks nodes according to a degree-based measure. This measure
is a weighted combination of the number of intra-community links and the square of the
number of the inter-community links, which accounts for importance of bridge nodes.
Results on synthetic and real-world networks show that the Comm strategy is more
effective or at least works as well as Module-based immunization strategy, Degree and
Betweenness based strategies. Community-based Mediator (CbM) (Tulu et al. 2018) is
another strategy that takes into account the internal and external density of each node.
They represent the proportion of the intra and the inter-community links of a given node
respectively. This strategy is based on the entropy using both densities. It uses this infor-
mation to select individuals that can propagate the epidemic in their community from
internal density and in other communities from external density. Experimental results
demonstrate that nodes with high CbM value have a more noteworthy effect to spread
epidemics in networks than nodes having a high CbC, Betweenness, Degree, PageRank
or Eigenvector value. Luo et al. (2016) proposed also the k-shell with community strategy
designed for networks exhibiting a community structure. It is based on the idea that the
location of a node has a big impact on the spreading process. It is a variation of the k-
shell decomposition strategy, in which decomposition method is applied to the intra and
the inter-community links separately. The goal is to select for immunization hubs and
bridges that are located in the core of the network. Results of SIR simulations performed
on Facebook network show that it outperforms the traditional k-shell decomposition, the
Betweenness and Degree based strategies. Salavati et al. (2019) proposed an improved
version of the Closeness-based strategy designed for modular networks. It decreases also
the high computational complexity of the standard closeness method. The so-called Gate-
way Local Rank strategy GLR starts by ignoring the connections between communities.
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Then, in each community one critical node is extracted using the betweenness centrality.
After that, one node with the highest inter-community links is also extracted from each
community. In the last step, nodes are ranked based on the sum of their shortest paths
with the extracted core and bridge nodes instead of computing their shortest paths using
all the nodes of the network. Experiments on synthetic and real-world networks using the
SIR diffusion model demonstrate the effectiveness the GLR strategy in comparison with
the Closeness, Degree, Betweenness and k-shell based strategies. Berahmand et al. (2018)
proposed the Degree and Clustering coefficient and Location strategyDCL. It immunizes
the best spreaders based on a combination of the degree and the inverse cluster coeffi-
cient of a given node. The latter two measures are also combined with the degree of its
neighbors and the common links between the node and its neighbors to define the loca-
tion of a node (whether it is in the core or the periphery of the community). This strategy
allows identifying low-degree bridges and some critical hub nodes. Comparisons based
on the SIR and the SI models reveal that the proposed method outperforms the well-
known strategies such us the Degree, Betweenness, Eigenvector, PageRank and the k-shell
based strategies. The Community Hub-Bridge strategy (Ghalmane et al. 2018) is based on
a linear measure. It is a weighted combination of the number of intra-community links
and the number inter-community links. The first term of this measure is weighted by the
size of the community. The aim of this is to prioritize the immunization of hubs located
in large communities due to their big influence. The second term of the expression is
weighted by the number of neighboring communities to target in priority bridges having
many connections with multiple communities. According to SIR simulations performed
on synthetic and real-world networks, this strategy is more efficient than the Number of
Neighboring Communities, Community Inbetweenness, CBM and Comm strategies. It is
particularly suited for networks with strong community structure (having a small propor-
tion of inter-community connections). The Weighted Community Hub-Bridge strategy
(Ghalmane et al. 2018) is another variant of the previous strategy. It is based on a lin-
ear measure weighted also by the density of the inter-community links. It is weighted
such that, in networks with strong community structure, more importance is granted to
bridges while in networks with loose community structure more importance is given to
the local community hubs. Experimental results show that it outperforms the previous
strategy namely in networks with loose community structure.

Modular centrality

The above-mentioned immunization strategies are based on measures that quantify
either the global influence of nodes by selecting bridge nodes, or the local influence of
nodes by targeting community hub nodes. Other centrality measures highlight nodes
having both local and global influence for immunization. The modular centrality consid-
ers two types of influences for a node in a modular network: A local influence on the
nodes belonging to its own community through the intra-community links, and a global
influence on the nodes of the other communities through the inter-community links.
Therefore, in this approach, centrality measures are not represented by a simple scalar
value but rather by a two-dimensional vector, the so calledModular centrality (Ghalmane
et al. 2019). Its first component measures the local influence of the node, while the second
component measures its global influence. The Modular centrality is computed follow-
ing two steps. The global component of the vector is computed on the global network
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obtained by removing all the intra-community links from the original network. Remain-
ing isolated nodes are also removed. The local component is computed on the local
graph obtained by removing all the inter-community links from the original network. The
Modular centrality is computed according to the following algorithm:
Step 1. Choose a standard centrality measure β .
Step 2. Remove all the inter-community edges from the original network G to obtain

the set of communities C forming the local network Gl.
Step 3. Compute the local measure βL for each node in its own community.
Step 4. Remove all the intra-community edges from the original network to reveal the

set of connected components S formed by the inter-community links.
Step 5. Form the global network Gg based on the union of all the connected compo-

nents. Isolated nodes are removed from this network and their global centrality value is
set to 0.
Step 6. Compute the global measure βG of the nodes linking the communities based on

each component of the global network.
Step 7. Add βL and βG to the Modular centrality vector BM.
This approach allows to redefine all the standard centrality measures designed for non-

modular networks to networks with non-overlapping community structure. A series of
experiments have been performed on both real-world and synthetic networks using the
SIR model in order to investigate the efficiency of the Modular centrality. Results show
that the Local measure is more efficient in networks with strong community structure,
while Global measure performs better in networks with a weak community structure.
Furthermore, the measure that combines both components outperforms the local, the
global and the classical measure. Recently this work has been extended to networks with
non-overlapping community structure (Ghalmane et al. 2019).

Discussion

Comparing with stochastic immunization strategies, the epidemic size of deterministic
strategies (e.g., Comm, CbM, CBH,WCBH and NNC) outperforms CBF and BHDmeth-
ods in all the networks. Indeed, stochastic strategies only seek current node’s information,
while deterministic strategies require the access to the whole network structure. That
explains why the performance of stochastic strategies is usually far from the deterministic
ones. To compare the performance of deterministic strategies, we consider two extreme
cases: Networks with well-defined community structure and networks with weak com-
munity structure. In the first case, the communities are very separated from each other.
Hence, there are few inter-community connections between the different modules of the
network. The local strategies have proven to be more efficient than the global strate-
gies in such networks. The Super node strategy outperforms some global strategies such
as the global betweenness method. Actually, there is a great chance that the epidemic
stays confined inside the communities because of the small number of inter-community
links. Therefore, immunizing hub nodes or community core nodes may appear as the
most efficient way to stop the epidemic diffusion in networks with strong community
structure. In networks with medium or unclear community structure, there are a large
amount of inter-community connections in the network. The epidemic in this case can
move easily from one community to another. Thus, bridge nodes may play a major role
in the diffusion process. That explains the efficiency of the global strategies as compared



Cherifi et al. Applied Network Science           (2019) 4:117 Page 25 of 35

to the local ones in these networks. The Number of Neighboring Communities (NNC)
for instance is more efficient than the local degree and the super node strategies. The
combination-based strategies, on the other hand, target both type of nodes. They are
overall more efficient than both local and global strategies in networks with different
structures. Some strategies such as CbM, CBH and WCBH outperform the super node,
the local and the global betweenness and degree-based strategies. Furthermore, WCBM
has proven to be more efficient than some other combination-based strategies (e.g.,
Comm, CbM and CbC). This strategy uses different level of information about the topo-
logical properties of the community structure such as the size of communities, the num-
ber of neighboring communities of each node and the proportion of inter-community
links of each community. Thus, it uses more information about the community struc-
ture as compared to the other strategies. Therefore, the performance of the immu-
nization strategies increases when more information about the community structure
is used.
These assumptions led to the introduction of the Modular centrality, which is a bi-

dimensional vector measuring both local and global influence of each node in the
network. This approach investigated for some classical centrality measures (Degree,
Betweenness, Closeness and Eigenvector) shows that the Local measure is more effi-
cient in networks with strong community structure, while the Global measure performs
better in networks with loose community structure. Moreover, the performance of rank-
ing strategies combining both components of the Modular centrality is more efficient
than using only one component. Furthermore, better results were even obtained by
using more information related to the topological properties of the community structure.
These experimental results of theModular centrality confirm the ones obtained with the
alternative deterministic strategies.

Overlapping community structure

Communities can often overlap in real-world networks. In this case, nodes can belong to
more than one community at once. Identifying such overlapping nodes is crucial for con-
trolling the epidemic spreading. These nodes can extend the epidemic diffusion across all
communities to which they belong. Some strategies select these nodes for immunization.
Hebert et al. Hébert-Dufresne et al. (2013) proposed a straightforward strategy which
directly counts the membership number of each node in the network. Chakraborty et
al. (2016) analyze how immunization based on the membership number of overlapping
nodes affect the largest connected component size. OverlapNeighborhood ON (Kumar
et al. 2018) is another strategy that targets the neighbors of the overlapping nodes for
immunization. It is based on the idea that overlapping nodes are connected to many hub
nodes located in the different communities to which they belong. The Membership and
OverlapNeighborhood strategies are defined as follows:
Membership strategy: This strategy (Hébert-Dufresne et al. 2013) is applied to net-

works with overlapping modular structure. It is based on a measure that counts simply
the number of communities to which a node belongs. If the membership of a node i is
greater than 1, i.e., this node belongs to an overlapping region in the network. Experi-
mental results using the SIR model have shown that this strategy outperforms degree,
coreness and betweenness-based strategies in networks with denser communities and by
using a higher infection rates.
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OverlapNeighborhood strategy (ON): This method (Kumar et al. 2018) selects imme-
diate neighbors of overlapping nodes as the top influential spreaders. Its main objective
is to select the most highly connected nodes using a limited amount of information at the
community level. Indeed, there is a high probability that nodes with very high connec-
tions are neighbors to overlapping nodes since they are part of more than one community.
This is also due to the power-law degree distribution in real-world networks. The simu-
lation results revealed that this method outperforms CBF, BHD and RWOS methods. It
performs better or as good as Degree and Betweenness centrality based methods using
less information about the overall network.
The Overlapping constraint coefficient (OC) (Wei et al. 2018) is an immunization

strategy that highlights the influential nodes based on the multiplication of twomeasures.
The first measure represents the membership of a given node which quantifies its propa-
gation capacity. So, the more communities a node belongs to, the more communities the
node can influence. The second measure represents the network constraint coefficient
of the node, which quantifies its propagation speed in the communities. SIR simulations
demonstrate that the Overlapping constraint coefficient strategy outperforms the Degree,
Betweenness, Closeness and the k-shell based strategies. The Influence Maximization
based on Label Propagation Algorithm (IM-LPA) (Zhao et al. 2016) is another strategy
designed for networks with overlapping communities. It is based on an improved version
of the Label propagation algorithm (Raghavan et al. 2007). It operates in two phases: the
seeding phase and the label propagation phase. At the beginning of the seeding phase,
the set of seed nodes is empty and all the nodes of the network are considered as candi-
date nodes. After that, the node with the highest degree is added to the seed set and all
its neighbors are removed from the candidate node set. This process is repeated until the
candidate node set becomes empty. This phase guarantees that the selected seed nodes
are independent from each other. In the label propagation phase, each seed node is asso-
ciated with a unique label. Then, the labels expand from the seed nodes until covering all
the other nodes of the network. Nodes may have several labels. Thus, they can belong to
several communities. At the end of this process, the centrality of each node can be mea-
sured by the number of nodes associated to its label. Nodes with the highest measure
can propagate the epidemics to a large set of nodes of their communities. The Inde-
pendent cascade diffusion model (IC) was performed on both synthetic and real-world
networks. Results demonstrate the efficiency of the IM-LPA strategy in identifying the
influential spreaders as compared to the Degree, Betweenness, Closeness, K-shell and
PageRank-based strategies.

Summary and conclusions
In complex networks, community structures are widely observed. Despite the fact that
this property is well-recognized, it is very often ignored when it comes to use it in order to
develop new techniques in the field. In this paper, we consider three hot topics linked to
the community structure of complex networks. First one focuses on the fundamental issue
of community detection in static networks. The second one discusses the same issue but
for temporal networks. Finally, the third one examines immunization strategies designed
for modular networks.
After the “Introduction” section, the second section focuses on static networks in which

detecting communities can be viewed as partitioning of the network into clusters in which
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the nodes are more densely connected to each other than to the nodes in the rest of
the network. In this section, we look at community detection based on this fundamental
assumption about community structure.
In summary, the current state of the art in this area is as follows. One systematic

approach to community detection is to select a metric of community quality and maxi-
mize it. Several of such metrics (Chen et al. 2014b; Lu et al. 2018; Lewis et al. 2010; Simon
1991; Porter et al. 2009; Reichardt and Bornholdt 2006) are variants or improvements
based on the modularity metric of community structure that measures the difference
between the observed fraction of edges within a community and this fraction expected
in a random graph with the same number of nodes and the same degree sequence.
That gave raise to modularity maximization (Newman 2006b) as one of the state-of-the-
art methods for community detection. However, it suffers from the so-called resolution
limit problem (Fortunato and Barthelemy 2007; Lancichinetti and Fortunato 2011), a ten-
dency of standard modularity to increase when some small well-formed communities are
combined into inappropriate large clusters, while some large well-formed communities
are spread among smaller ones. Some of the above mentioned variants of the modularity
function have been proposed to either resolve this problem (Chen et al. 2014b; Lu et al.
2018) or to enable detection of communities at different scales (Lewis et al. 2010; Simon
1991; Porter et al. 2009). A popular choice for the latter is the generalized modularity of
Reichardt and Bornholdt (2006), which scales the discovered community sizes accord-
ing to a simple resolution parameter. This parameter is not fixed in the definition of the
generalized modularity. Hence, many approaches (Porter et al. 2009; Mucha et al. 2010;
Traag et al. 2013) try different values of the resolution parameter to find proper com-
munity structures in the real networks. When the resolution parameter is set as one, the
generalized modularity reduces to the traditional modularity. Another drawback of this
approach is that the stochastic block model requires the selection of the number of com-
munities, because selecting a large number of blocks always leads to a high likelihood of
generating the observed network. Another drawback of this approach is that the stochas-
tic block model requires the selection of the number of communities, because selecting a
large number of blocks always leads to a high likelihood of generating the observed net-
work. Therefore, recent works (Riolo et al. 2017; Newman and Reiner 2016; Peixoto 2017)
adopt Bayes model selection to find the appropriate number of communities in a network.
According to Occam’s Razor, this approach also minimizes the description length (MDL)
of the block model (Peixoto 2012; 2017) so that community detection algorithm finds the
most suitable number of communities.
An extension of this model (Karrer and Newman 2011) introduces the so-called degree-

corrected stochastic block model in which the node degrees are also used as parameters,
making the expected node degree in the model equivalent to the observed node degree.
Since the nodes in the same community tend to have broad degree distributions, this
simple yet effective extension of node degrees improves the performance of the models
for statistical inference of community structure in the real-world networks. The degree-
corrected planted partition model is a special case of the degree-corrected stochastic
block model.
Recently, Newman (2016c) proved partial equivalence of the two approaches by show-

ing that modularity maximization is equivalent to the maximum-likelihood estimation
(MLE) of the degree-corrected planted partition model on the same graph. Lu and
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Szymanski (2020) established an asymptotic theoretical upper and lower bounds on the
resolution parameter of generalized modularity. When the upper bound larger than the
lower one then we know that there is a resolution parameter that avoids modularity reso-
lution problem in the corresponding network. The open question now is how to proceed
if the upper bound is smaller than the lower one.
An alternative approach to metric maximization is the statistical inference that fit the

generativemodel to the observed network data. Such approach assumes the observed net-
work is produced by a random graphmodel with a pre-defined partition of the network as
the model parameter. In general, the statistical inference aims at recovering the partition
which maximizes the likelihood of the random graph model generating the observed net-
work data. One widely used generative model for community structure is the stochastic
block model (Karrer and Newman 2011) where nodes are organized as blocks and edges
are placed between the nodes independently at random, with a probability depending on
the block assignments of the endpoints. The weakness of this approach is that the model
considers nodes in the same block statistically indistinguishable from each other, so the
most likely block assignment often groups the nodes of similar degrees in a block, result-
ing in lower and higher-degree blocks, rather than the traditional community structures.
Moreover, the inference is actually much more complicated than maximizing general-
ized modularity. One of the reasons is that the current versions of stochastic block model
searches through the large space of potential solutions containing both assortative and
disassortative structures (Peel et al. 2017). Consequently, inference algorithms using these
models are often trapped in a solution unsuitable for the user and it takes them long time
to escape. To address this issue, the authors of Lu and Szymanski (2019) apply a simple
constraint on nodes internal degree ratio in the objective function.
Despite the significant progress made towards community detection using fundamental

properties of the communities, provably optimal algorithms are still beyond our reach
for the modularity maximization based approaches. The current open question is how to
proceed if for the network in question no single resolution parameter exists that will allow
modularity maximization to avoid anomalies. There is a simple test, introduced in Lu and
Szymanski (2020), that allows for detecting such cases.
In the third section of the paper, we briefly overview the most popular approaches

and recent advances in the field of evolving community detection. Nowadays, the
availability of time stamped or time dependent data on networked systems is becom-
ing widespread, hence the scientific interest towards the study of time evolving
networks is increasing. Locating communities in time dependent networks is a
non-trivial and challenging problem, with an impressive number of proposed different
solutions.
A relatively straightforward idea is to represent the time evolving network as a sequence

of static snap-shots, and apply one of the well-known static community detection algo-
rithms on the series of static graphs, as was done in Refs. Hopcroft et al. (2004); Asur et
al. (2007); Palla et al. (2007); Greene et al. (2010); Rosvall and Bergstrom (2010); Bródka
et al. (2013). Naturally, the obtained communities have to be matched at subsequent time
steps in order to obtain time evolving clusters. The advantage of this approach is that
basically any static community finding method can be used, however the drawback is that
the matching part can become complicated and the threads of the evolving communities
may turn needlessly intricate.
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In contrast to snap-shot based methods, the concept of evolutionary algorithms treats
the inference of the time dependent communities in a unified framework. Indeed, in this
case, the structure of a community at a given time step t can be influenced by information
coming from other time steps as well (Chakrabarti et al. 2006; Chi et al. 2007; Lin et al.
2008; Zhou et al. 2007; Tang et al. 2008; Folino and Pizzuti 2010; Sun et al. 2010; Gong
et al. 2012; Kawadia and Sreenivasan 2012; Crane and Dempsey 2015; Görke et al. 2013).
A popular approach along this line is to formulate the aim for a smooth evolution over
time together with the goal of obtaining precise communities reflecting the true modular
structure of the network at any time point as an optimization problem. Further methods
following a similar track are based on multislice networks (Mucha et al. 2010), consensus
clustering (Lancichinetti and Fortunato 2012), or generative models such as the stochastic
block model (Yang et al. 2009; Peixoto 2015; Ghasemian et al. 2016; Peixoto and Rosvall
2017; Hoffmann et al. 2018; Peixoto 2019).
A closely related idea to the above is given by incremental clustering (Aynaud et al.

2013; Ning et al. 2010; Bansal et al. 2011; Görke et al. 2010; Xie et al. 2013; Cazabet et al.
2010; Duan et al. 2012; Falkowski et al. 2008; Nguyen et al. 2011; Cazabet and Amblard
2011; Görke et al. 2012;Ma andHuang 2013; Lee et al. 2014; Zakrzewska and Bader 2015),
where only the time steps relatively in the past are taken into account when extracting
the communities at a given date t . Although this is somewhat a more restrictive setup
compared to evolutionary clustering, the advantage of this approach is that it enables in
principle the online clustering of networks (Aggarwal and Yu 2005; Zanghi et al. 2008;
Rossetti et al. 2017; Tan et al. 2014). Besides online community detection, the concept of
forecasting the future events and changes in time dependent communities is also gaining
considerable interest (Kairam et al. 2012; Patil et al. 2013; Goldberg et al. 2011; Bródka et
al. 2012; Gliwa et al. 2013; Takaffoli et al. 2013; Saganowski et al. 2015).
Partly due to the large number of different methods, providing a well-controlled bench-

mark system on which the proposed algorithms can be tested and compared has become
a very important challenge as well. However, this problem is relevant also from other
perspectives, such as e.g., measuring the quality of the obtained evolving communities.
A number of important first steps have already been made in this direction, such as the
introduction of the time dependent version of the static Girvan-Newman benchmark
(Girvan andNewman 2002) in Ref. Lin et al. (2008), the dynamicmodification of the static
LFR benchmark (Lancichinetti et al. 2008) in Ref. Greene et al. (2010), and the proposi-
tion of a benchmark based on a time evolving stochastic block model in Ref. Granell et al.
(2015). Furthermore, the problem can be also brought into a more general context with
the concept of multilayer community benchmarks (Bazzi et al. 2016), while tailor made
benchmarks specific for a given problem or method can be also well motivated (Rossetti
2017).
Nevertheless, how to measure and compare the performance of evolutionary com-

munity finding algorithms is a highly non-trivial question, related to which further
advances can be expected in the future. What makes the problem especially dif-
ficult is the rather diverse nature of both the time evolving networks and of the
applied methods. There are systems where we find quite large variations in the
network structure across subsequent time steps, whereas other networks show a
gradual, significantly smoother evolution in time; and in respect of the proposed
algorithms, there are methods concentrating more on the accuracy of the obtained
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communities, whereas others focus instead on the smoothness and coherence of
the evolution. Based on that, defining e.g., a quality function analogous to modu-
larity is far from trivial, and bringing the field to a common ground in terms of
benchmarks and comparison provide interesting and important challenges for the
future.
In the fourth section, we look at how the community structure affects the diffusion pro-

cess of epidemics, and how to use information about the community structure in order
to design effective immunization strategies to control epidemics in modular networks.
We can distinguish two main approaches to solve this issue. The first is the stochastic
approach beneficial when little is known about the full network structure or when the
networks are too large to compute features for each nodes. However in general, the sec-
ond approach of using the deterministic strategies outperforms the non-deterministic
strategies.
Overall, the works presented above demonstrate that it is important to consider the

community structure of real-world networks to develop more suitable immunization
strategies. Some stochastic strategies are designed to target the nodes linking the com-
munities (bridges) because such nodes connect to many parts of the network. Others
concentrate on the highly connected nodes (hub). A third type of strategy targets bridges
and hubs. Globally their effectiveness depends of the community structure strength.
Indeed, the best strategies are the ones that give more importance to the hubs when
there is a small proportion of links between the communities. But when the proportion
of inter community links increases, it is better to immunize the bridge nodes first. So,
there is a need for new stochastic strategies that can adapt to both situations and can
be tuned according to the community structure strength. In fact, the performance of
stochastic strategies increases when additional knowledge about the community struc-
ture of the network is utilized by the algorithm. Globally, deterministic strategies are
more sophisticated than stochastic strategies. since they can easily exploit knowledge
about the network topology. We classified them into three categories. Local strategies
concentrate on the information into the communities, while global strategies use the
information between the communities. Finally global and local strategies exploit both
type of knowledge. We observe the same behavior that the one observed with stochastic
strategies. Indeed, local strategies outperform the global strategies in networks with well-
defined community structure while global strategies are more effective in networks with
loose community structure. Strategies exploiting both aspects perform generally better.
Indeed, they incorporate in their definition additional information about the community
structure as compared to local or global strategies. Finally, we believe that the modu-
lar centrality framework is very promising. It gives a clear idea of how to use both local
and global knowledge of the community structure. Additionally, as there is no constraint
about the centrality used and the way to combine both dimensions, there is room for
improvement.
In networks with overlapping communities, immunization strategies take also into

account the overlapping nodes which belong to multiple communities. These strategies
show the importance of these nodes, and show also their ability in terms of the spread
of infections. The OC strategy has proven to be the most effective deterministic strat-
egy based on overlapping nodes. Indeed, this strategy considers other information about
the community structure as compared to the membership, OverlapNeighborhood and
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the IM-LPA strategies. It is a combination-based method. It targets nodes having access
to multiple communities and with high propagation speed in these communities. The
stochastic strategy RWOS compares well with its alternatives. However we cannot call it
a pure stochastic strategy, because the overlapping nodes need to be known or estimated.
All of these works give us a sense of directions for designing new immunization strate-

gies tailored to the network topology. The community structure cannot be ignored and
much more knowledge about the formation of the communities and of their main fea-
tures (Orman et al. 2012) need to be uncovered and integrated into the immunization
strategies in order to better identify the influential nodes. One of the main challenge is to
initiate research concerning semi stochastic strategies such as RWOS. Indeed, stochastic
strategies are the ones that are the more suitable when the network is partially unknown,
or too large to uncover its community structure. However, adding information about
the community structure make them more effective. That is why the main stream of
improvement is in between the effectiveness of the deterministic strategies and the
computational efficiency of the stochastic strategies.
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