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Abstract: In this work, we consider the time-harmonic Galbrun’s equation under spherical
symmetry in the context of the wave propagation in the Sun without flow and rotation, and
neglecting the perturbations to the gravitational potential. The model parameters are taken from
the solar model S for the interior of the Sun, and we introduce the model AtmoCAI (ideal atmospheric
behavior with constant adiabatic index) to extend them into the atmosphere. This atmospheric
extension is based on the model Atmo used for the scalar wave propagation where, in addition, we
assume a constant adiabatic index in the atmosphere. Due to the spherical symmetry, by writing
the original equation in a vector spherical harmonic basis, we obtain the ODE for the modal radial
and tangential coefficients of the unknown displacements. We then construct the outgoing modal
solutions, the 3D Green’s kernel, and radiation boundary conditions. The construction is justified
by indicial and asymptotic analysis of the modal radial ODE. While the singular set in the presence
of attenuation only consists of the origin, our analysis shows that without attenuation, there are also
other singular points which, however, have positive indicial exponents. Our asymptotic analysis
makes appear the correct wavenumber and the high-order terms of the oscillatory phase function,
which we use to characterize outgoing solutions. The radiation boundary conditions are built for the
modal radial ODE and then derived for the initial equation. We approximate them under different
hypothesis and propose some formulations that are independent of the horizontal wavenumber and
can thus easily be applied for 3D problems.

Key-words: vectorial helioseismology, Galbrun’s equation, outgoing solutions, radiation bound-
ary conditions, indicial analysis, Green tensor, Whittaker functions, Coulomb potential



Solutions sortantes et conditions de radiation pour l'équation des
ondes vectorielles en héliosismologie avec un modèle

d'atmosphère idéal

Résumé : Dans ce travail, nous considérons l’équation harmonique de Galbrun en symétrie sphérique
pour la propagation d’ondes dans le soleil, sans flot ni rotation, et en négligeant les perturbations du po-
tentiel de gravité. Les paramètres sont extraits du modèle S pour l’intérieur du soleil, et nous introduisons
un modèle AtmoCAI (comportement atmosphérique idéal avec un indice adiabatique constant) pour leur
extension dans l’atmosphère solaire. Cette extension est basée sur le modèle Atmo utilisé dans le cas
scalaire, que nous enrichissons en prenant l’indice adiabatique constant. De part la symétrie sphérique,
en écrivant le problème dans une base harmonique sphérique vectorielle, nous obtenons l’EDO modale
pour les coefficients radiaux et tangentiels du déplacement. Nous construisons les solutions sortantes
modales, le noyau de Green en 3D et obtenons des conditions aux limites de radiation. La construction
est motivée par l’analyse indicielle et asymptotique de l’EDO radiale modale. En présence d’atténuation,
la seule singularité est á l’origine, alors que dans le cas sans atténuation, nous identifions les autres sin-
gularités qui, cependant, ont un exposant indiciel positif. Notre analyse asymptotique fait apparaître
un nombre d’onde approprié et les termes d’ordres élevés de la phase, qui nous servent à caractériser
les solutions sortantes. Les conditions aux limites de radiation sont construites pour l’EDO modale puis
étendues au problème initial. Nous les approximons sous différentes hypothèses et proposons plusieurs
approximations independantes du nombre d’onde horizontal qui peuvent être facilement utilisées pour les
problèmes 3D.

Mots-clés : équations vectorielles pour l’héliosismologie, équantion de Galbrun, solutions sortantes,
conditions aux limites absorbantes, analyse indicielle, tenseur de Green, fonctions de Whittaker, potentiel
de Coulomb
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1 Introduction

In this work, we consider a version of the time-harmonic Galbrun’s equation under spherical symmetry
for applications in helioseismology. We carry out indicial and asymptotic analysis in order to define
outgoing solutions and radiation boundary conditions. The adiabatic wave motion due to a time-harmonic
perturbation of frequency ω/(2π) is modeled by the vector field ξ(x, ω) ∈ R3 on top of a stationary
background (i.e., the physical parameters do not vary with the time), and solves the following form of
the Galbrun’s equation,

−ρ0

(
ω2 + 2iω Γ

)
ξ + P(ξ) + ρ0(ξ · ∇)∇Φ0 = f in R3 , (1.1)

where we omit the space dependency for clarity. Here, Φ0 denotes the background gravity potential that
satisfies,

∆Φ0 = 4πGρ0 , (1.2)

where G is the gravitational constant. The operator P is defined as

Pξ = −∇
[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇[(ξ · ∇)p0] + (ξ · ∇)∇p0 , (1.3)

Here, we ignore flows, rotation and the perturbations due to the gravitational potential using the Cowling
approximation [14]. The stationary background is characterized as a hydrodynamical system and is given
in terms of the following scalar quantities that depend only on the position x: the density ρ0, the pressure
p0, the attenuation Γ and the adiabatic index γ, and the background is further assumed to be spherically
symmetric. While we have in mind solar applications, (1.1) is also employed in aeroacoustics to describe
the propagation of the acoustic sound produced by an aircraft engine in the presence of (air) flow around
this engine, see [33, 24]. One particularity of (1.1) is that the unknown ξ is a Lagrangian displacement in
terms of an Eulerian variable x, such that this formulation is also called Eulerian-Lagrangian description
of the perturbation. The Galbrun’s equation was introduced by Galbrun in [19] in the 1930s, and re-
derived by Poirée in [30]; we refer to [33] for a brief history of the equation and to [24] for a more recent
derivation in the context of aeroacoustics. The derivation of the equation in the context of stellar physics
is given by [26, Eqn 28-30].

For application in helioseismology, the unknown ξ(x, ω) represents the displacement of the solar
material observed at the (geometrical) position x ∈ R3 in the photosphere (the Sun’s surface layer),
cf. [21, Section 2.3], [8, Eqn 4–5] and [22, Eqn 5]. The projection along a line-of-sight l̂ ∈ R3 of the
solution ξ (corresponding to a stochastic source f), −iω ξ · l̂, simulates the line-of-sight Dopplergrams
which are crucial input data for time-distance helioseismology, cf. [22, Eqn 15] and [9, Eqn 3]. In our
specific problem, up to 500 km above the “surface” of the Sun, the background quantities are given by
the model S of [12]. To establish to model parameters in the atmosphere after this height of 500 km, we
introduce the AtmoCAI model (ideal atmospheric behavior with constant adiabatic index) which is built
from the model Atmo employed in [17, 3, 5, 6] for the atmosphere when studying a scalar wave equation
for helioseismology. While the model Atmo determines the extension of the parameters such that (i) the
sound speed c0 and attenuation Γ are constant in the atmosphere, (ii) the density ρ0 is exponentially
decaying in the atmosphere, the vectorial equation needs additional specifications to extend p0, γ and
Φ′0, see our discussion in Section 3.

While the oscillations in the Sun are driven by stochastic convection below the surface, the main input
for time-distance helioseismology is the expectation value of the cross-covariance which is a deterministic
quantity that can be estimated numerically from the deterministic Green’s kernel of (1.1). The main
task is to numerically compute a suitable Green’s function of (1.1). To complicate the matter, the
phenomenon occurs in an infinite spatial domain. Depending on the purposes of the analysis, suitable
boundary conditions have to be imposed to obtain uniqueness of solutions, which also comes as a necessity
for numerical resolution based on domain discretization, which requires the finiteness of domain. With
this general goal discussed, there are three main groups of results obtained in our work, which also serve
as its novelty.

1. We provide a global analysis of the resulting radial ODE. In particular, we carry out a detailed indicial
analysis of the coefficients both in the presence and absence of attenuation, and an asymptotic analysis
at infinity. We show that the singular sets are all regular singular. While the singular set in the presence
of attenuation only consists of the origin, our analysis shows that without attenuation, there are also

Inria
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other singular points which however have positive indicial exponents, cf. Table 1. Only the indicial
roots at the origin were studied in the litterature by [35] (for ` > 0) under more restrictive hypothesis
on the background coefficients. The asymptotic analysis provides a means to define outgoing solution,
and characterizes the oscillator behavior of such a solution. In particular, our analysis makes appear
an appropriate wavenumber (given in (9.12)) and the high-order terms of the oscillatory phase function
(see (9.22) and (9.27)).

2. We construct the modal radial Green’s kernel, from which we obtain the outgoing 3D Green’s kernel
in (9.89). This quantity is the main ingredient to compute Born sensitivity kernels that are used
in helioseismology in order to interpret the observations. See for example [21, 8] for a discussion in
Cartesian geometry (small patch of the Sun) and [9] in spherical.

3. Regarding boundary conditions, our work extends the RBCs from [5, 6, 4] to the vectorial case in
a spherically symmetric background, and thus also benefits from the ODE techniques of [2]. We
obtain low-order radiation boundary conditions both in modal form (i.e. for the coefficient of the
decomposition in vector spherical harmonics) and in 3D form. They are built by approximating the
square root of the operator and keeping the terms up to order r−2. However, we noticed numerically
that including the gravity term that is of order r−3 greatly improves the accuracy of the boundary
conditions. Physically, surface gravity waves (f-mode) are located in the first megameters below the
surface while acoustic modes (p-mode) propagate deeper in the solar interior. It could explain the
importance of this term in the quality of the approximate boundary conditions. We propose several
boundary conditions under the hypothesis of small wavenumber or small angle of incidence by including
or not the gravity term.

Before the work of [20, 17], a common practice was to impose a free-surface boundary condition
at the surface of the Sun (Lagrangian pressure perturbation vanishes on the surface) [10], which is
adequate for describing trapped waves and waves at low-frequencies, but is however not suitable for high-
frequencies at which waves can propagate to infinity. To describe the infinite phenomenon, most results
in helioseismology work with a scalar wave equation with a new unknown u = ρ0c2

0∇ · ξ, that solves,

−∇ ·
(

1

ρ0
∇u
)
− σ2

ρ0 c2
0

u = source term , (1.4)

where c0 denotes the sound speed and σ2 = (ω2 + 2iω Γ). This is obtained from (1.1) under simplifying
assumptions, cf. [20, 17, 3, 5, 6]. [20] uses the model Atmo to extend the model S up to 4 Mm above the
surface of the Sun, allowing the use of the Sommerfeld condition, ∂nu = iσ/c∞ u, thus with wavenumber
σ/c∞ at the boundary, with c∞ the constant value of the sound speed in the atmosphere. This approach
increases the computational domain and thus the computational cost. Also working with the scalar
equation (1.4), new radiation boundary conditions (RBC) are constructed in [3] under the Atmo extension,
which allow for an exponential decay of the background density in the atmosphere, and placement of the
artificial boundary right after the end of the model S (500 km above the surface). These conditions are
called non-local, small-angle approximation (SAI) and high-frequency (HF) approximation. The non-
local and SAI results directly from the factorization of the scalar wave operator and provide satisfactory
results. On the other hand, the HF families are obtained from approximation of the non-local condition
with (σ/c0)−1 as the small quantity. Low-order HF conditions, while offering lower precision, have the
advantage of being readily implementable in 3D or non-spherical geometry and even in the time-domain,
without the intervention of tangential derivatives. We also refer to [23] for another technique to truncate
the discretization domain using perfectly matched layers, which is also the approach taken by [24, 15] for
the vectorial equation.

While the theoretical question of characterizing outgoing solutions is interesting in its own right,
understanding the asymptotic behavior of the exact outgoing solution allows to calculate the correct
dominant oscillatory behavior of the solution. In particular, solutions are approximately described at in-
finity by spherical waves whose propagation speed is described by a pertinent wavenumber. Working with
the right wavenumber has direct repercussion in high-order approximations of the non-local condition,
i.e., the HF families. The radiation conditions in [17, 3] are justified theoretically in [5, 6, 1] by using
long-range scattering theory for Schrödinger equation. Additionally, [5, 6] also identify the appropriate
wavenumbers which in fact also depends on the density scale height in the atmosphere, and thus offers
a better performance for high-frequency approximations of the non-local condition, as shown in [5, 6, 4].

RR n° 9335
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In a different setting, working with the vectorial equations, based on the work of [18, section 3.3 p. 89] in
the absence of flow, [34, 33, 29] apply a non-reflective condition, which takes the form of an impedance
condition relating the Lagrangian pressure perturbation to the normal direction of the displacement, and
is equivalent to ∇ · ξ = i(σ/c∞) ξ · n, see Subsection 10.3.3 for further discussion. As mentioned above,
this is the wavenumber associated to a uniform (i.e., constant) background, and this condition should
work well under this assumption. However, in order to work with the Atmo assumptions, one would expect
the wavenumber to also depend on the rate of decay in the atmosphere of the density background, as
shown in our work.

The report is organized as follows. After some discussion on the Galbrun’s equation and more precise
statement of our working assumptions in Sections 2 and 3, we write the unknown displacement ξ in the
vectorial spherical harmonic basis, and we obtain the decoupled systems in Section 4, cf. Proposition 3.
These systems are solved by the radial and the tangential coefficients of ξ in the aforementioned basis.
It is shown that the solution of the vectorial equation is completely determined by its radial coefficient.
We also reduce the radial modal ODE into a Schrödinger form, called conjugate modal radial equation,
which facilitates the construction of outgoing solution. In order to construct the outgoing solution,
we carry out an analysis of singularity in Section 7 and an asymptotic analysis in Section 8 for the
coefficients of the modal ODE. These ingredients are used in the construction of the modal Green’s
kernel in Subsection 9.1.4 and of the 3D Green’s kernel in Subsection 9.2. The analysis of this section
also makes appear the appropriate wavenumber, given by (9.12), which controls the oscillations of the
outgoing solution at infinity (under AtmoCAI assumption). In Section 10, we follow the same procedure
as in [5] to construct the nonlocal RBC and its low-order SAI and HF approximations. These are first
obtained for the modal conjugate radial unknown in Subsection 10.1 and then obtained for the radial
coefficients and tangential ones in Subsection 10.2. We also put these into 3D forms in Subsection 10.3,
that can be applied in a direct 3D discretization of equation (1.1).

2 Notations

In this section, we review the main notation and quantities that are used throughout the report.

We denote by
√

the square root branch that uses the argument branch [0, 2π) while (·)1/2 uses
the argument branch (−π, π].

2.1 Physical parameters and scaled variables

We consider the propagation of time-harmonic waves in the Sun defined by

• R� is the Sun’s radius, with approximation R� = 695.510× 106 m.

• R is the (non-scaled) position along the Sun’s radius.

• r is the scaled radius position such that r = R/R�.

• ra denotes the scaled position at which the solar atmosphere begins, given in the model S by
ra = 1.000 712 6, which corresponds to about 4.96× 105 m above R�.

• ω is the angular frequency.

• ξ is the Lagrange vectorial displacement perturbation.

• Φ0 is the background gravity potential given from (1.2).

Therefore, in the following of the document, we mostly work with the scaled radius, such that r = 1
corresponds to the solar position R�.

Next, the physical parameters are considered as radial quantities, only varying with the radius, they
are extracted from the model S of [12].

• c0 is the scaled background velocity (also referred to as sound speed or wave speed), shown in
Figure 1a. Here, we work with the scaled quantity, c0 = c0/R� given in s−1, with c0 the original
solar sound speed in m s−1 given in model S.
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Outgoing solutions in vectorial helioseismology 9

• ρ0 is the background density given in kg m−3.

• γ is the adiabatic index, in the model S, γ is not constant, except in the atmosphere and

1 < γ < 2 , (2.1)

as illustrated in Figure 3.

• Γ is the attenuation coefficient.

• p0 is the scalar pressure field.

• G is the gravitational constant, G = 6.674 08× 10−11 m3 kg−1 s−2.

• σ is the complex frequency that encodes the attenuation such that

σ = ω

√
1 + 2i

Γ

ω
. (2.2)

We also refer Remark 13 for the dimensionless of the coefficients of our working ODE.

Attenuation model For the representation of Γ, it commonly follows the power law

Γ(ω) = Γ0

∣∣∣∣ ωω0

∣∣∣∣2 β , (2.3)

with, cf. [20, Eqn. 79],

Γ0

2π
= 4.29 µHz ,

ω0

2π
= 3 mHz , β = 5.77 . (2.4)

As an alternative, one can also consider a constant attenuation model with

Γ

2π
= 20 µHz , constant attenuation as an alternative to the power law. (2.5)

Scale height functions Scale height functions are defined as the derivative of the logarithmic of the
model parameter. These are defined for the density, the velocity and the adiabatic index, such that

α ( = αρ0) = −ρ
′
0

ρ0
,

αc0 = −c′0
c0
,

αγ = −γ
′

γ
.

(2.6)

2.2 Numerical representation

The values of the physical parameters are given, point-wise, in the model S from [12]. Because we also
need the derivative of the parameters (via the scale height), we first create a spline representation of the
parameters, which are then explicitly defined, including their derivatives. Namely, from the couples (r,
values) given in model S, we deduce a basis of cubic splines, where we guarantee that the error between
the spline representation and the original model is less than 0.1%. The partition of the interval is not
homogeneous, in order to have the slowest number of splines as possible. In Appendix F, we provide
the resulting representation. In Figures 1 to 3, we illustrate the physical quantities. In particular, we
observe that the profiles are relatively stable at the beginning, while drastic changes appear near the
surface region.
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(a) Velocity pro�le from model S.
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1010

1012
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α
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(b) α = −ρ′/ρ pro�le from model S.

Figure 1: Profiles of the solar parameters with the model S. In our analysis, we consider the scaled velocity
c0 = c0/R�, given in terms of the scaled radius r = R/R�.
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(a) Derivative of the velocity given by model S.
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(b) Pro�le of r/c0 from model S.

Figure 2: Quantities used for the analysis associated with the solar model S. In our analysis, we consider
the scaled velocity c0 = c0/R�, given in terms of the scaled radius r = R/R�, therefore, we have
R/c0 = r/c0.

0 0.5R� R�

1.2

1.4

1.6

R

γ

(a) Solar adiabatic index γ from model S.

0.95R� R�

1.2

1.4

1.6

R

γ

(b) Zoom near R = R� for the Solar adiabatic
index γ

Figure 3: Adiabatic index profile extracted from the solar model S.

2.3 Surface operators and vector spherical harmonics

2.3.1 Coordinate systems and derivatives

The Cartesian basis is denoted by e1, e2, e3. The spherical basis is denoted er, eθ, eφ, with 0 ≤ φ < 2π
and 0 ≤ θ < π, such that

er = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3 ,

eθ = cos θ cosφ e1 + cos θ sinφ e2 − sin θ e3 ,

eφ = − sinφ e1 + cosφ e2 .

(2.7)

For a scalar f , we have

∇f = ∂rf er +
∂θf

r
eθ +

∂φf

r sin θ
eφ

∆f =
1

r2
∂r(r

2∂rf) +
1

r2 sin θ
∂θ(sin θ ∂θf) +

1

r2 sin θ2
∂2
φ f .

(2.8)
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Outgoing solutions in vectorial helioseismology 11

For a vector v, we have
v = vr er + vθ eθ + vφ eφ , (2.9)

∇ · v =
1

r2
∂r
(
r2 vr

)
+
∂θ(sin θ vθ)

r sin θ
+

∂φvφ
r sin θ

. (2.10)

The material derivative is defined such that

(v · ∇)F =
(
v · ∇Fr −

vθ Fθ
r
− vφ Fφ

r

)
er

+
(
v · ∇Fθ −

vφ Fφ
r

cot θ +
vθ Fr
r

)
eθ

+
(
v · ∇Fφ +

vφ Fr
r

+
vφ Fθ
r

cot θ
)
eφ

(2.11)

Remark 1. Another way to think about material derivative is using

(v · ∇)F︸ ︷︷ ︸
material derivative of F along v

= ∇F ·︸︷︷︸
tensor contraction

v . (2.12)

The gradient of a vector F in spherical coordinates is

∇F =
(
∂rFr

)
er ⊗ er +

(∂θFr
r
− Fθ

r

)
er ⊗ eθ +

( ∂φFr
r sin θ

− Fφ
r

)
er ⊗ eφ

+
(
∂rFθ

)
eθ ⊗ er +

(∂θFθ
r

+
Fr
r

)
eθ ⊗ eθ +

( ∂φFθ
r sin θ

− Fφ
r

cot θ
)
eθ ⊗ eφ

+
(
∂rFφ

)
eφ ⊗ er +

(∂θFφ
r

)
eφ ⊗ eθ +

( ∂φFφ
r sin θ

+
Fr
r

+
Fθ
r

cot θ
)
eφ ⊗ eφ .

(2.13)

Contracting with v = vrer + vθeθ + vφeφ to the right gives

∇F · v =
(
vr ∂rFr + vθ

∂θFr
r
− vθ

Fθ
r

+ vφ
∂φFr
r sin θ

− vφ
Fφ
r

)
er

+
(
vr ∂rFθ + vθ

∂θFθ
r

+ vθ
Fr
r

+ vφ
∂φFθ
r sin θ

− vφ
Fφ
r

cot θ
)
eθ

+
(
vr∂rFφ + vθ

∂θFφ
r

+ vφ
∂φFφ
r sin θ

+ vφ
Fr
r

+ vφ
Fθ
r

cot θ
)
eφ

=
(

(v · ∇)Fr − vθ
Fθ
r
− vφ

Fφ
r

)
er

+
(

(v · ∇)Fθ + vθ
Fr
r
− vφ

Fφ
r

cot θ
)
eθ

+
(

(v · ∇)Fφ + vφ
Fr
r

+ vφ
Fθ
r

cot θ
)
eφ .

(2.14)

4

2.3.2 Surface differential operators

The unit sphere is referred to by S2, along which we have

∇S2f := ∂θf eθ +
∂φf

sin θ
eφ , (2.15a)

∇S2 · v :=
∂θ(sin θ vθ)

sin θ
+
∂φvφ
sin θ

, (2.15b)

∆S2f =
1

sin θ
∂θ(sin θ ∂θf) +

1

sin θ2
∂2
φ f , (2.15c)

curlS2f := −n×∇S2f , (2.15d)
curlS2v = n · curl v . (2.15e)

In addition, we have that
∇S2 · curlS2f = 0 ,

curlS2 ∇S2 = 0 ,

∆S2 = ∇S2 · ∇S2 = −curlS2 curlS2 f .

(2.16)
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12 Barucq, Faucher, Fournier, Gizon & Pham

2.3.3 Spherical harmonics

The spherical basis is of dimension 2`+ 1, cf. [28, 9.3.1] or [28, Theorem 9.11 p. 238], and comprises of

Ym
` (θ, φ) :=

√
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

P
|m|
` (cos θ) eimφ , ` ∈ N,m = −`, . . . , ` . (2.17)

It has property
∆S2Ym

` = −`(`+ 1) Ym
` . (2.18)

Remark 2. As in [28, Remark 9.12], we also use the notation

Ym
` (x̂) (2.19)

for x̂ the unit vector with spherical coordinates θ, φ. 4

Vector spherical harmonics These are defined by, see [28, Eqn. 9.56, Section 9.3.3] or [27, Definition
3.336, p. 107],

Pm` (x̂) = Ym
` (x̂) er ,

Cm
` (x̂) =

1√
`(`+ 1)

curlS2Ym
` = − 1√

`(`+ 1)
er ×∇S2Ym

` , ` = 1, 2, . . . ,

Bm
` (x̂) =

1√
`(`+ 1)

∇S2Ym
` , ` = 1, 2, . . . .

(2.20)

We note that Cm
` can also be written as,

Cm
` = −er ×Bm

` . (2.21)

They have the following properties.

1. Properties with the divergence and the curl,

∇S2 ·Cm
` = 0 , (2.22)

and

∇S2 ·Bm
` =

1√
`(`+ 1)

∇S2 · ∇S2Ym
` =

1√
`(`+ 1)

∆S2Ym
` = −

√
`(`+ 1)Ym

` . (2.23)

2. From their definitions, they are point-wise perpendicular, cf. [27, Eqn. 3.132].

3. The following set
Cm
` , B

m
` , ` = 1, 2, . . . , m = −`, . . . , ` , (2.24)

forms a complete orthonormal basis for the set of tangent vectors1 L2
t (S2), cf. [28, Lemma 9.15 p.

241].

4. Together with the fact that Ym
` for ` = 0, 1, . . . and m = −`, . . . , ` forms a complete orthonormal

basis for L2(S2), cf. [28, 9.11],

P0
0 , C

m
` , B

m
` , ` = 1, 2, . . . , m = −`, . . . , ` (2.26)

forms a complete orthonormal basis for L2(S2)3, the space of surface vectors on the unit sphere S2

whose components are L2(S2).
1For a bounded domain with C2 connected boundary ∂Ω, the space of surface tangential vector �elds in L2(∂Ω) is

de�ned as, cf. [28, Eqn. 3.13],

L2
t (∂Ω) :=

{
u ∈ L2(∂Ω)3

∣∣ ν∂Ω · u = 0 almost everywhere on ∂Ω
}
. (2.25)
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Outgoing solutions in vectorial helioseismology 13

3 Equations of motion for model S+AtmoCAI

We have introduced the main equation for the propagation of time-harmonic waves, in terms of the
Lagrangian perturbation ξ:

−ρ0

(
ω2 + 2iω Γ

)
ξ + P(ξ) + ρ0(ξ · ∇)∇Φ0 = f , in R3, (3.1)

with
Pξ = −∇

[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇[(ξ · ∇)p0] + (ξ · ∇)∇p0 , (3.2)

and
∆Φ0 = 4πGρ0 . (3.3)

As mentioned in the introduction, we work in a context of helioseismplogy and take a simplification
of the full Galbun’s equation see Remark 3. We detail in Assumption 1 the simplification involved.

Remark 3 (Full Galbrun’s equation). The original equation in time-harmonic regime from Lyndell-Bell’s
paper [26, Eqn. 17, 28-30], also called Galbrun’s equation is

ρ0

(
iσ + v0 · ∇

)2
ξ + Rξ + Pξ + Gξ = f , (3.4)

where ξ is the Lagrangian perturbation to the background, and

1. the operator P is defined as,

Pξ = −∇
[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇[(ξ · ∇)p0] + (ξ · ∇)∇p0 , (3.5)

2. the complete gravity operator G (in the opposite sign convention2 to [26, Eqn. 23]) is defined as

Gξ = ρ0∇S(ξ) + ρ0 (ξ · ∇)∇(Φ0) , (3.6)

with the perturbation in gravitational potential S satisfying the relation,

∆S(ξ) = −4πG∇ · (ρ0ξ) , (3.7)

and
∆Φ0 = 4πGρ0 . (3.8)

Since the fundamental solution for the Laplacian is − 1
4π|x| , we have

Φ0(x) = −G
∫

ρ0(y)

|x− y|
dy . (3.9)

3. The rotation operator R around axis in Ω direction, is given as,

Rξ := 2ρ0 Ω× (iω + v0 · ∇)ξ
Coriolis force

+ ρ0 Ω× (Ω× ξ)
Centrifugal force

. (3.10)

4

Remark 4. The following quantity denotes the Eulerian perturbations of the density, fluid pressure,
and gravitational potential denoted respectively by δE

ρ , δE
p , see, e.g., [24, Eqn 1.66,1.68 p.30], [11, Eqn.

3.44,3.45,3.41, 3.50 p. 50-51],

δEρ = −∇ · (ρ0 ξ) = −(∇ρ0) · ξ − ρ0∇ · ξ ; (3.11a)

δEp = −ξ · ∇p0 +
γ p0

ρ0

(
δE
ρ + ξ · ∇ρ0

)
= −ξ · ∇p0 − ρ0 c2

0∇ · ξ ; (3.11b)

δEΦ = S(ξ) ⇒ ∆ δEΦ = 4πG δEρ . (3.11c)

4
2In [26, Eqn. 23], Gξ = −ρ0∇S̃(ξ) − ρ0 (ξ · ∇)∇φ̃0 where φ̃0 = −Φ0 and S̃ = −S.
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14 Barucq, Faucher, Fournier, Gizon & Pham

3.1 Assumptions

In order to work with the problem made of (3.1) and (3.2) instead of the full equation (3.4), we have the
following set of assumptions.

Assumption 1 (General assumption). In our study, we assume that

1. We assume that there is no rotation involved, Ω = 0.

2. We work in a region where there is no flow, that is v0 = 0.

3. The first term in the gravity is ignored (i.e., no perturbation in gravity), such that we leave out
S(ξ).

From these three assumptions, (3.4) and (3.5) reduce to (3.1) and (3.2).

Assumption 2. We further assume that,

1. the background parameters ρ0 and p0 have a radial dependence, thus

∇p0 = (∂rp0) er = p′0 er . (3.12)

2. The adiabatic equation of state for the parameters ρ0, p0 and c0 with γ the adiabatic index is given
by

c2
0 ρ0 = γ p0 . (3.13)

3. We assume that the external source f is of compact support.

3.1.1 Representation in the interior of the Sun: model S

In the interior of the Sun, we follow model S, illustrated in Figures 1 and 2. The physical quantities ρ0,
c0, p0 and Φ0 are radial, and the hydrostatic support reduces to

p′0 = −ρ0 Φ′0 , r ≤ ra . (3.14)

See Subsection 3.3 and Remark 5 below for more discussion on the hydrostatic equilibrium in the interior.
The background sound speed in model S sastifies the following assumption,

Assumption 3.
r 7→ r

c0(r)
is strictly increasing on [0 , ra]. (3.15)

In fact, in the model S, the sound speed c0 increases slightly close to the center of the Sun before it takes
on a steep decrease as one moves towards the surface, see Figure 1. However, the function r 7→ r/c0(r)
is strictly increasing on [0 , ra] as observed in Figure 2.

3.1.2 Representation in the solar atmosphere: model AtmoCAI

We define the AtmoCAI, also called ideal atmospheric behavior with constant adiabatic background. At
500 km above the surface of the Sun, which coincides the end of the model S, the density ρ0 is imposed
to be exponentially decaying and the background sound speed c0 and adiabatic index γ are extended by
constants. The extension of the fluid pressure p0 follows by maintaining the adiabatic condition in the
atmosphere.

Definition 1 (Model AtmoCAI). In the atmosphere region, described by r ≥ ra, the model AtmoCAI defines
the physical parameters such that:

1. the sound speed c0 is constant,

2. the adiabatic coefficient γ is constant,

3. ρ0 is exponentially decreasing, such that the density scale height αρ0(= α) is constant.
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Outgoing solutions in vectorial helioseismology 15

Remark 5. We note that the hydrostatic support, in particular in its radial version (3.14), is not com-
patible with the assumption that ρ0 is exponentially decreasing. In particular in this case, equation (4.12)
does not hold. 4

Remark 6 (model AtmoHE). We also have the option of assuming hydrostatic equilibrium in the atmo-
sphere, at the expense of letting go the assumption of constant adiabatic index in the atmosphere. This
model is called AtmoHE. 4

3.2 Equivalent forms of the operator P

Proposition 1. The operator P defined in (3.2) can also be written as

Pξ = ∇
[
(1− γ)p0∇ · ξ

]
− p0∇(∇ · ξ) − ∇[(ξ · ∇)p0] + (ξ · ∇)∇p0 (3.16a)

= −∇
[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇tξ · ∇p0 (3.16b)

= −∇ · τ , (3.16c)

with
τ := (γ − 1) p0 (∇ · ξ) I3×3 + p0∇tξ , (3.17)

where I3×3 is the identity matrix.

Here, (3.16a) corresponds to [26, Eq. (25)], and (3.16b) is [24, Eq (1.65), p.30].

Proof. Starting from (3.2), since p0∇∇ · ξ = ∇(p0∇ · ξ)− (∇p0)(∇ · ξ), we can rewrite

∇
[
(1− γ)p0∇ · ξ

]
− p0∇(∇ · ξ) = −∇

[
γp0∇ · ξ

]
+ (∇p0)(∇ · ξ) . (3.18)

Next, we compare with [24, Eq. (1.65) p.30],

∇tξ · ∇p0 =

3∑
i=1

(
∂xjπiξ

)
(∂xip0

)
=

3∑
i=1

∂xj
[
(πiξ)(∂xip0)

]
− (πiξ)

(
∂xj∂xip0

)
= ∂xj

3∑
i=1

(πiξ)(∂xip0) +

3∑
i=1

(πiξ)
(
∂xi∂xjp0

)
.

In the second term, we have interchanged the order of differentiation, and use the definition of the material
derivative in the Cartesian coordinates,

(ξ · ∇)∇p0 =

3∑
i=1

(πiξ)
(
∂xi∂xjp0

)
=

3∑
i=1

(πiξ)
(
∂xj∂xip0

)
⇒ (ξ · ∇)∇p0 = ξ · ∇∇︸︷︷︸

Hessian

p0 = = (∇∇p0) · ξ .
(3.19)

As a result, we have,
∇tξ · ∇p0 = ∇

[
ξ · ∇p0

]
− (ξ · ∇)∇p0 , (3.20)

and P can be written as

Pξ = −∇
[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇tξ · ∇p0 . (3.21)

We now define
τ := (γ − 1) p0∇ · ξ I3×3 + p0∇tξ , (3.22)
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where I3×3 is the 3× 3 identity matrix. We consider ∇ · τ , we have (∇tξ)ij = ∂iξj and

∇ ·
(
p0∇tξ

)
=

3∑
j=1

∂j
(
p0∇tξ

)
ij

=

3∑
j=1

∂j
(
p0 ∂iξj

)
=

3∑
j=1

(
∂jp0

)
∂iξj +

3∑
j=1

p0 ∂j(∂iξj
)

= (∇tξ) · ∇p0 + p0∇ · ∇tξ
= (∇tξ) · ∇p0 + p0∇∇ · ξ .

In the last equality, we have assumed that ξ is regular enough for interchanging the order of integration,
in order to obtain

∇ · ∇tξ =

3∑
j=1

∂j(∂iξj
)

=

3∑
j=1

∂i(∂jξj
)

= ∇∇ · ξ . (3.23)

The above calculation gives

∇ · τ = ∇
(
(γ − 1) p0∇ · ξ

)
+ ∇ ·

(
p0∇tξ

)
= ∇

(
(γ − 1) p0∇ · ξ

)
+ (∇tξ) · ∇p0 + p0∇∇ · ξ . (3.24)

We next use (3.18), which gives

∇
[
(γ − 1)p0∇ · ξ

]
+ p0∇(∇ · ξ) = ∇

[
γp0∇ · ξ

]
− (∇p0)(∇ · ξ) , (3.25)

to group together the first and third term in the right-hand-side of (3.24),

∇ · τ = ∇
[
γp0∇ · ξ

]
− (∇p0)(∇ · ξ) + (∇tξ) · ∇p0 .

As a result of the above calculation, we can write P as

P = −∇ · τ , with τ := (γ − 1) p0 (∇ · ξ) I3×3 + p0∇tξ . (3.26)

3.3 Hydrostatic equilibrium (for the interior)

Following3 [11, Eqn. 3.30 p. 48], the equation of motion of a background at equilibrium without flow
and with only gravity as external force reduces to the equation of hydrostatic support,

∇p0 = −ρ0∇Φ0 . (3.29)

Then, one can further rewrite (3.4), in particular by writing the term Pξ + Gξ in terms of Eulerian
perturbation δEρ . This is the Equation (3.43) of [11].

Proposition 2. Given the hydrostatic equilibrium (3.29), the operator P defined in (3.2) and the
full gravity operator G defined in (3.6) can be written in terms of the Eulerian perturbation quantities
(3.11) as,

Pξ + Gξ = ∇δE
p + δEρ∇Φ0 + ρ0∇δEΦ . (3.30)

As a result of this, with Eulerian perturbations δE• defined in (3.11), the Galbrun’s equation (3.1) can

3The Euler's equation with adiabatic state for the background in Eulerian quantities, cf. [24, Eqn 1.14-1.17 p. 22] with
exterior force (in this case gravity) F0 := −ρ0∇Φ0 is

∂tρ0 + ∇ · (ρv) = 0 , Convervation of mass,

∂r(ρ0 v0) + ∇ · (ρv ⊗ v + p0 Id) = −ρ0∇Φ0 , Equation of motion,

γ p0 = ρ0 c2
0 , Adiabatic equation of state.

(3.27)

At equilibrium, and assuming no background �ow (v0 = 0), then

∇ · (ρv) = 0 , ∇p0 = −ρ0∇Φ0 , γ p0 = ρ0 c2
0 . (3.28)

In particular, the equation of motion (3.27) takes the form of (3.29).
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be written as
−ρ0 σ

2 ξ + ∇δEp + δEρ ∇Φ0 + ρ0∇δEΦ = f

⇒ −ρ0 σ
2 ξ + ∇δEp − δEρ

∇p0

ρ0
+ ρ0∇δEΦ = f .

(3.31)

Proof. Taking the gradient on both sides of (3.29)

∇∇p0 = −∇(ρ0∇Φ0)

⇒ ∇∇p0 = −(∇ρ0)⊗ (∇Φ0) − ρ0∇∇Φ0

⇒ ξ · ∇∇p0 = −ξ ·
[
(∇ρ0)⊗ (∇Φ0)

]
− ρ0ξ · ∇∇Φ0 .

(3.32)

From (3.19), we have
(ξ · ∇)∇p0 = ξ · ∇∇︸︷︷︸

Hessian

p0 = (∇∇p0) · ξ , (3.33)

and thus,
(ξ · ∇)∇p0 + ξ ·

[
(∇ρ0)⊗ (∇Φ0)

]
+ (ρ0ξ) · ∇∇Φ0 = 0 . (3.34)

Next, the first and third terms in the defining expression (3.2) of P combined can be expressed in
terms of δEp ,

Pξ = −∇
[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇[(ξ · ∇)p0] + (ξ · ∇)∇p0

= ∇δE
p + (∇p0)(∇ · ξ) + (ξ · ∇)∇p0

(3.25)
= ∇δE

p + (−ρ0∇Φ0)(∇ · ξ) + (ξ · ∇)∇p0

(3.25)
= ∇δE

p + δEρ∇Φ0 + ξ · (∇ρ0)⊗ (∇Φ0) + (ξ · ∇)∇p0 .

For the last equality we have used

(−ρ0∇Φ0)(∇ · ξ) = −(ρ0∇ · ξ) (∇Φ0) = −∇ · (ρ0ξ) (∇Φ0) + (∇ρ0) · ξ(∇Φ0)

⇒ (−ρ0∇Φ0)(∇ · ξ) = δEρ∇Φ0 + ξ · (∇ρ0)⊗ (∇Φ0) .

On the other hand, in the notation of the Eulerian gravity perturbation(3.11c), the full gravity operator
G defined in (3.11) is written as

Gξ = ρ0∇δEΦ + ρ0 (ξ · ∇)∇(Φ0) ,

such that,
Pξ + Gξ =∇δE

p + δEρ∇Φ0 + ρ0∇δEΦ
+ ξ · (∇ρ0)⊗ (∇Φ0) + (ξ · ∇)∇p0 + ρ0 (ξ · ∇)∇(Φ0)︸ ︷︷ ︸

=0 due to (3.34)

. (3.35)

4 Galbrun equation in spherical symmetry

4.1 Decompositions of ξ

We write the displacement ξ and source f in basis made up of vector spherical harmonics Pm` , Bm
` and

Cm
` introduced in (2.20),

ξ = ξr + ξh , (4.1)

where

ξr(r x̂) = πrξ = a0
0(r)P0

0 +

∞∑
`=1

∑̀
m=−`

am` (r)Pm` (x̂) ;

ξh = πθξ + πφξ =

∞∑
`=1

∑̀
m=−`

bm` (r)Bm
` (x̂) +

∞∑
`=1

∑̀
m=−`

cm` (r)Cm
` (x̂), .
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Remark 7. To alleviate the notation in the harmonic expansion, we use the convention that

B0
0 = C0

0 = 0 . (4.2)

and thus all of the coefficients tangential coefficients at ` = 0 are zero,

b00 = c00 = 0 . (4.3)

4

We have (using convention in Remark 7),

∇ · ξ =
1

r2
∂r (r2πrξ) +

1

r
∇S2 · ξh

=

∞∑
`=0

∑
m=−`

[ (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
` .

(4.4)

Here, in the first term we have used πrξ = am` Ym
` . In the second term, we used (2.22) and (2.23).

We also have a similar decomposition for the source f (using convention in Remark 7)

f =
∞∑
`=0

∑̀
m=−`

fm` (r)Pm` (x̂) +
∞∑
`=0

∑̀
m=−`

gm` (r)Bm
` (x̂) +

∞∑
`=0

∑̀
m=−`

hm` (r)Cm
` (x̂) . (4.5)

4.2 Decomposition of P
We decompose

Pξ = −∇
[
γ p0∇ · ξ

]
+ (∇p0)(∇ · ξ) − ∇[(ξ · ∇)p0] + (ξ · ∇)∇p0 (4.6)

in the basis of vector spherical harmonics. We also follow the convention in Remark 7.
• Consider the second term in Pξ. Using (4.4), the second term in Pξ can be written as

(∇p0)∇ · ξ =

∞∑
`=0

∑
m=−`

p′0

[
(r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
` er .

• Consider the first term in Pξ

∇
[
γp0∇ · ξ

]
= ∇

∞∑
`=0

∑
m=−`

γp0

[ (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
`

=

∞∑
`=0

∑
m=−`

Ym
` ∇

[
γp0

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)]
+

∞∑
`=0

∑
m=−`

γp0

[ (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
∇Ym

`

=

∞∑
`=0

∑
m=−`

∂r

[
γp0

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)]
Ym
` er +

∞∑
`=0

∑
m=−`

γp0

r

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)
∇S2Ym

` .

• Consider the fourth term in Pξ. This is the material derivative of vector ∇p0 = p′0er in the direction
ξ.

(ξ · ∇)∇p0 = (ξ · ∇) (p′0 er)

= (ξ · ∇p′0) er +
(πθξ) p′0

r
eθ +

(πφξ) p′0
r

eφ

= p′′0 (ξ · er) er +
p′0
r

[
(πθξ) eθ + (πφξ) eφ

]
.

Thus the fourth term in Pξ is

(ξ · ∇)∇p0 = p′′0ξr +
p′0
r
ξh . (4.7)
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• Consider the third term in Pξ. Since

(ξ · ∇) p0 = p′0ξ · er = p′0ξr =

∞∑
`=0

∑̀
m=−`

p′0 a
m
` Ym

` , (4.8)

we have

∇(p′0 a
m
` Ym

` ) = (∇p′0a
m
` )Ym

` + p′0a
m
` ∇Ym

` = (∇p′0a
m
` )Ym

` +
p′0a

m
`

r
∇S2Ym

`

= (p′0a
m
` )′Ym

` er +
p′0a

m
`

r
∇S2Ym

` .

As a result of this, the third term in Pξ is written as

−∇[(ξ · ∇) p0] = −
∞∑
`=0

∑̀
m=−`

(p′0a
m
` )′Ym

` er −
∞∑
`=0

∑̀
m=−`

p′0a
m
`

r
∇S2Ym

` . (4.9)

By assembling the terms, we obtain

P ξ =−
∞∑
`=0

∑
m=−`

∂r

[
γp0

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)]
Ym
` er

−
∞∑
`=0

∑
m=−`

γp0

r

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)
∇S2Ym

`

+

∞∑
`=0

∑
m=−`

p′0

[
(r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
` er

+ p′′0ξr +
p′0
r
ξh

−
∞∑
`=0

∑̀
m=−`

(p′0a
m
` )′Ym

` er −
∞∑
`=0

∑̀
m=−`

p′0a
m
`

r
∇S2Ym

` .

(4.10)

4.3 Gravitational contribution

Following (4.7),

Gξ = ρ0 (ξ · ∇)∇(Φ0) = ρ0 Φ′′0 ξr + ρ0
Φ′0
r

ξh , (4.11)

we further obtain explicit the expressions of Φ′′0 and Φ′0 by using equation

∆Φ0 = 4πGρ0. (4.12)

Under the radial assumption, the left-hand-side reduces to

∆Φ0 = Φ′′0 +
2

r
Φ′0 =

1

r2
(r2 Φ′)′ . (4.13)

Thus (1.2) is written as
1

r2
(r2 Φ′0)′ = 4πGρ0 . (4.14)

From (4.14), for both the atmosphere and interior of the Sun, we have

Φ′0 =
4πG

r2

∫ r

0

s2ρ0(s) ds , (4.15)

and

Φ′′0 = 4πGρ0 −
2

r
Φ′0 . (4.16)
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4.3.1 In the interior of the Sun

We recall from (3.14)

p′0 − ρ0 Φ′0 = 0 , r ≤ ra ⇒ p′′0 − ρ′0 Φ′0 − ρ0 Φ′′0 = 0 . (4.17)

In addition to expression (4.15) and (4.16), in the interior of the Sun, the first and second-order radial
derivatives of Φ0 are also written as,

Φ′0 =
p′0
ρ0

, Φ′′0 =
p′′0
ρ0
− ρ′0
ρ0

Φ′0 =
p′′0
ρ0
− ρ′0
ρ0

p′0
ρ0
. (4.18)

4.3.2 In the atmosphere with model AtmoCAI

We have assumed that ρ0 decreases exponentially for r ≥ ra, i.e.

ρ0(r) = ρ0(ra) e−αρ0 (r−ra) , r ≥ ra , constant αρ0 > 0 . (4.19)

Since

∂r

(
−e
−αρ0s

(αρ0)3

(
(αρ0 s)

2 + 2 sαρ0 + 2
))

= s2 eαρ0 s ,

for r ≥ ra, we have

Φ′0(r) =
G

r2

∫ r

0

s2ρ0(s) ds

=
4πG

r2

∫ ra

0

s2ρ0(s) ds +
4πG

r2
ρ0(ra) eαρ0ra

∫ r

ra

s2 e−αρ0 r ds

=
4πG

r2

∫ ra

0

s2ρ0(s) ds +
4πG

r2
ρ0(ra)

(
e−αρ0 (s−ra)

(αρ0)3

(
(αρ0 s)

2 + 2 sαρ0 + 2
) ∣∣∣ra

r

)
.

This means that Φ′0 is a sum of a multiple of r−2 and a term that is exponentially decaying at ∞.

Lemma 1. Under the assumption (4.19) i.e. ρ0 decreases exponentially in r ≥ ra, with Φ0 defined
by (1.2) and r ≥ ra, we have

Φ′0(r) =
G

r2
m − 4πGρ0(ra)

e−αρ0 (r−ra)

r2

(αρ0 r)
2 + 2 rαρ0 + 2

(αρ0)3
, (4.20)

where the constant m (depending on ra and αρ0),

m := 4π

∫ ra

0

s2ρ0(s) ds + 4π ρ0(ra)
(αρ0 ra)2 + 2 raαρ0 + 2

(αρ0)3
. (4.21)

Remark 8. We note that the first term in the definition (4.21) of m

4π

∫ ra

0

s2ρ0(s) ds

is the mass of the Sun until the beginning of the atmosphere, while the second term which can be written
as

4π ρ0(ra)
(αρ0 ra)2 + 2 raαρ0 + 2

(αρ0)3
=

∫ ∞
ra

s2ρ0(s) ds ,

can be considered as the exterior mass of the Sun (to infinity). In this way, the constant m is the mass
of the ‘infinite’ Sun. 4
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4.4 System of ODEs

We employ the convention in Remark 7. Putting together result of (4.10) for Pξ and (4.11) for Gξ, we
obtain
∞∑
`=0

∑̀
m=−`

fm` (r) Ym
` er +

∞∑
`=0

∑̀
m=−`

gm` (r)√
`(`+ 1)

∇S2Ym
` +

∞∑
`=0

∑̀
m=−`

hm` (r)√
`(`+ 1)

(−er ×∇S2Ym
` )

= −ρ0 σ
2 ξ

−
∞∑
`=0

∑
m=−`

∂r

[
γp0

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)]
Ym
` er −

∞∑
`=0

∑
m=−`

γp0

r

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)
∇S2Ym

`

+

∞∑
`=0

∑
m=−`

p′0

[
(r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
` er

+ (p′′0 + ρ0 Φ′′0) ξr +
p′0 + ρ0 Φ′0

r
ξh

−
∞∑
`=0

∑̀
m=−`

(p′0a
m
` )′Ym

` er −
∞∑
`=0

∑̀
m=−`

p′0a
m
`

r
∇S2Ym

` .

(4.22)
In particular, the coefficient of Ym

` er is

− ρ0 σ
2 ξr − ∂r

[
γp0

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)]
+ p′0

[
(r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
+ ρ0 Φ′′0 a

m
` + p′′0a

m
` − (p′0a

m
` )′︸ ︷︷ ︸

−p′0 ∂ra
m
`

.

ODE in the radial direction obtained as coefficients of Ym
` er in (4.22),

(−σ2 ρ0 + ρ0 Φ′′0) am` − ∂r

[
γp0

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)]
+ p′0

[
(r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
− p′0 ∂ra

m
` = fm` .

(4.23)

ODE in the tangential direction obtained as coefficients of ∇S2Ym
` in (4.22),

− σ2ρ0
bm`√
`(`+ 1)

− γp0

r

( (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

)
+

p′0 + ρ0 Φ′0
r

bm`√
`(`+ 1)

− p′0 a
m
`

r
=

gm`√
`(`+ 1)

,

(4.24)

and coefficients of −er ×∇S2Ym
`(

− σ2ρ0 +
p′0 + ρ0Φ′0

r

) cm`√
`(`+ 1)

=
hm`√
`(`+ 1)

. (4.25)

Equation (4.25) implies that

cm` =
hm` (r)

−σ2ρ0 +
p′0 + ρ0Φ′0

r

, r ≥ ra

cm` =
hm` (r)

−σ2 ρ0(r)
r < ra ,

(4.26)

RR n° 9335



22 Barucq, Faucher, Fournier, Gizon & Pham

For the equation in the interior, we have used the relation (3.14), which gives that p′0 + ρ0Φ′0 = 0
for r ≤ ra. See also Remark 9 for the equation at ` = 0.

For the rest of the work, we will focus on am` and bm` . Using the identities

(r2am
l )′

r2
=

2

r
am

l + ∂ra
m
l ;

∂r

[
γp0

(r2am
l )′

r2

]
= ∂r

[γp0

r2
(2ram

l + r2∂ra
m
l )
]

= ∂r

[
γp0(

2

r
am

l + ∂ra
m
l )

]
= (γp0)′

(
2

r
am

l + ∂ra
m
l

)
+ γp0

(
− 2

r2
am

l +
2

r
∂ra

m
l + ∂2

ra
m
l

)
=
[
(γp0)′

2

r
− γp0

2

r2

]
am

l +
[
(γp0)′ +

2

r
γp0

]
∂ra

m
l + γp0 ∂

2
ra

m
l ,

we rewrite (4.23) and (4.24) in matrix form,

0 =

(
−γp0 0

0 0

)
∂2
r

 am`
bm`√
`(`+1)


+

−(γp0)′ − 2γp0

r

γp0

r
`(`+ 1)

−γp0

r
0

 ∂r

 am`
bm`√
`(`+1)



+

−σ
2ρ0 + ρ0Φ′′0 −

2(γp0)′

r
+

2γ0p0

r2
+

2p′0
r

`(`+ 1)

(
−p′0 + (γp0)′

r
− γp0

r2

)
−2γp0

r2
− p′0

r
−σ2ρ0 +

γp0

r2
`(`+ 1) +

p′0 + ρ0Φ′0
r


(

am`
bm`√
`(`+1)

)
.

(4.27)
Dividing both sides of (4.27) by γ p0 , we obtain

1

γ p0

 fm`
gm`√
`(`+1)

 =

(
−1 0
0 0

)
∂2
r

 am`
bm`√
`(`+1)

 +

−
(γp0)′

γp0
− 2

r

`(`+ 1)

r

−1

r
0

 ∂r

(
am`
bm`√
`(`+1)

)

+


−σ

2ρ0

γp0
+
ρ0Φ′′0
γp0

− 2

r

(γp0)′

γp0
+

2

r2
+

2

rγ

p′0
p0

`(`+ 1)

(
1

r

[
− 1

γ

p′0
p0

+
(γp0)′

γp0

]
− 1

r2

)
− 2

r2
− 1

rγ

p′0
p0

−σ2 ρ0

γp0
+
`(`+ 1)

r2
+

1

r γ

(
p′0
p0

+ ρ0
Φ′0
p0

)


 am`
bm`√
`(`+1)

 .

(4.28)

For convenience, we define matrix B and C so that (4.28) is written as

1

γ p0

 fm`
gm`√
`(`+1)

 =

(
−1 0
0 0

)
∂2
r

 am`
bm`√
`(`+1)

 + B ∂r

 am`
bm`√
`(`+1)

 + C

 am`
bm`√
`(`+1)

 . (4.29)

Remark 9 (Radial equation at ` = 0). We note that for ` = 0 (recall the convention in Remark 7),

b00 = c00 = g0
0 = h0

0 = 0 . (4.30)

Equation (4.23) is only in terms of a0
0,

(
− σ2 ρ0 + ρ0 Φ′′0

)
a0

0 − ∂r

(γp0

r2
∂r(r

2a0
0)
)

+
p′0
r2
∂r(r

2a0
0) − p′0 ∂ra

0
0 = f0

0 . (4.31)
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Following the same algebraic steps as above, or equivalently taking the first row of (4.28) (or equivalently
(4.29)) at ` = 0, we arrive at

−∂2
r a

0
0 +

(
2αp0

− 2

r

)
∂r a

0
0 + C11 a

0
0 = 0 . (4.32)

4
We next rewrite (4.29) in terms of the various scale height functions introduced in (2.6),

α ( = αρ0) = −ρ
′
0

ρ0
, αc0 := −c′0

c0
, αγ := −γ

′

γ
,

4.4.1 In the interior of the Sun

Using hydrostatic equilibrium (3.14), the last term in the component C22 vanishes. Additionally, in using
the adiabatic equation of state, one can replace γp0 by c2

0ρ0, or vice versa. With these two ingredients,
one can rewrite (4.28) as

1

γ p0

 fm`
gm`√
`(`+1)

 =

(
−1 0
0 0

)
∂2
r

 am`
bm`√
`(`+1)

 +

−
(γp0)′

γp0
− 2

r

`(`+ 1)

r

−1

r
0

 ∂r

 am`
bm`√
`(`+1)



+


−σ

2

c2
0

+
Φ′′0
c2
0

− 2

r

(γp0)′

γp0
+

2

r2
+

2

rγ

p′0
p0

`(`+ 1)

(
1

r

[
− 1

γ

p′0
p0

+
(γp0)′

γp0

]
− 1

r2

)
− 2

r2
− 1

rγ

p′0
p0

−σ
2

c2
0

+
`(`+ 1)

r2


 am`

bm`√
`(`+1)

 .

(4.33)
In terms of the scale height functions (2.6), system (4.33) takes the following form. We note that the

adiabatic exponent γ is not constant here.

In the interior of the Sun, for r ≤ ra, the system (4.29) has the following explicit form

1

γ p0

 fm`
gm`√
`(`+1)

 =

(
−1 0
0 0

)
∂2
r

 am`
bm`√
`(`+1)



+

2αc0 + α − 2

r

`(`+ 1)

r

−1

r
0

 ∂r

 am`
bm`√
`(`+1)

 +C

 am`
bm`√
`(`+1)

 ,

(4.34)

where

C11 = −σ
2

c2
0

+
Φ′′0
c2
0

+ 2
αγp0

r
+

2

r2
− 2

αp0

rγ
; (4.35a)

C12 = `(`+ 1)

(
αp0

r γ
− αγp0

r
− 1

r2

)
; (4.35b)

C21 = − 2

r2
+

1

rγ
αp0

; (4.35c)

C22 = −σ
2

c2
0

+
`(`+ 1)

r2
. (4.35d)

4.4.2 In the atmosphere with model AtmoCAI

In the atmosphere, γ and c0 are constant. With the assumption of ideal atmospheric pressure, the scale
height associated the background density α is constant, while the other scale heights are zeros. We have

(c2
0 ρ0)′ = c2

0 ρ
′
0 .
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From the equation of state (3.13),
ρ0

γp0
=

ω2

c2
0

, we have

p′0
p0

=
(γ p0)′

γ p0
=

c2
0 ρ
′
0

c2
0 ρ0

=
ρ′0
ρ0

= −α . (4.36)

This means that p0 decays exponentially at the same rate as ρ0 for r ≥ ra. To treat the term with Φ′′0
we use (4.16),

ρ0Φ′′0
γp0

=
ρ0 (4πGρ0 − 2

rΦ′0)

γp0
=

ρ0 4πGρ0

c2
0 ρ0

− 2

rc2
0

Φ′0 =
4πG

c2
0

ρ0 −
2

c2
0

Φ′0
r
. (4.37)

In the atmosphere,

0 =

(
−1 0
0 0

)
∂2
r

 am`
bm`√
`(`+1)

 +

α − 2
r

`(`+1)
r

− 1
r 0

 ∂r

 am`
bm`√
`(`+1)

 + C

 am`
bm`√
`(`+1)

 , (4.38)

where

C11 = −σ
2

c2
0

+
Φ′′0
c2
0

+
2

r
α +

2

r2
− 2

r

α

γ
(4.39a)

= −σ
2

c2
0

+
2

r

(
α− α

γ

)
+

2

r2
− 2

c2
0

Φ′0
r

+
4πG

c2
0

ρ0 ; (4.39b)

C12 = `(`+ 1)

(
1

r

(
−α +

α

γ

)
− 1

r2

)
; (4.39c)

C21 = − 2

r2
+

1

r

α

γ
; (4.39d)

C22 = −σ
2

c2
0

− α

γ

1

r
+
`(`+ 1)

r2
+

Φ′0
c2
0

1

r
. (4.39e)

4.5 Decoupled system

After the simplification in Subsection 4.4.1 and Subsection 4.4.2, the system of equation (with unknowns
am` and bm` )(4.38) for the atmosphere, and (4.34) for the interior can be unified as

1

γp0

 fm`
gm`√
`(`+1)

 =

(
−1 0
0 0

)
∂2
r

(
am`

b̃m`

)
+

2αc0 + α − 2
r

`(`+1)
r

− 1
r 0

 ∂r

(
am`

b̃m`

)

+

(
C11 C12

− 2
r2 +

2αc0
+α− αγ
rγ C22

)(
am`

b̃m`

)
,

(4.40)

with C11, C12 and C22 given by (4.35) for the interior and by (4.39) for the atmosphere. We note that in
the atmosphere r ≥ ra,

αc0 = αγ = 0 , r ≥ ra . (4.41)

Proposition 3. With the scale height quantities α• defined in (2.6), the radial coefficient a(r) =
am` (r) solves the ODE (

q̂`(r) ∂
2
r + q`(r) ∂r + q̃`(r)

)
am` = fm` (r) . (4.42)

where the right-hand side is given as

fm` = − C12

C22

gm`
γ p0

√
`(`+ 1)

− `(`+ 1)

r
∂r

(
1

C22

gm`
γ p0

√
`(`+ 1)

)
+

fm`
γ p0

, (4.43)
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and coefficients,

q̂`(r) = −1 +
`(`+ 1)

r2 C22
; (4.44a)

q`(r) = αγp0
− 2

r
+

C12

r C22
+
`(`+ 1)

r

(
1

r C22

)′
+
`(`+ 1)

r

(
2

r
− αp0

γ

)
1

rC22
; (4.44b)

q̃`(r) = C11 +

(
2

r
− αp0

γ

)
C12

r C22
+
`(`+ 1)

r

[(
2

r
− αp0

γ

)
1

rC22

]′
; (4.44c)

(4.44d)

The tangential coefficent bm` is obtained by

bm`√
`(`+ 1)

=
1

r

1

C22
∂ra

m
` +

(
2

r
− αp0

γ

)
1

rC22
am` +

1

C22

gm`
γ p0

√
`(`+ 1)

. (4.45)

Remark 10 (Radial equation at ` = 0). As a continuation of Remark 9, the ODE (4.42) is consistent
at ` = 0, i.e. evaluated at ` = 0, it gives back (4.32). Note that C12|`=0 = 0 and C22|`=0 = −σ

2

c20
. 4

Remark 11 (In the atmo). Another equivalent form of the above equations can be obtained by writing
αp0 = 2αc0 + α − αγ . For convenience, in using (4.41), we note here the form taken by expression
(4.44b) and (4.44c) in the atmosphere, i.e. for r ≥ ra,

q`(r) = α − 2

r
+

1

r

C12

C22
+
`(`+ 1)

r

[( 1

r C22

)′
+

(
2

r
− α

γ

)
1

rC22

]
;

q̃`(r) = C11 +
`(`+ 1)

r

[(
2

r
− α

γ

)
1

rC22

]′
+

(
2

r
− α

γ

)
C12

rC22
.

(4.46)

The tangential coefficent bm` is obtained by

bm` =

√
`(`+ 1)

r

1

C22
∂ra +

(
2

r
− α

γ

) √
`(`+ 1)

rC22
a . (4.47)

4

Proof. We use the second equation of (4.40) to eliminate bm` from am` .

− 1

r
∂ra

m
` +

(
− 2

r2
+

2αc0 + α − αγ
rγ

)
am` + C22 b̃

m
` =

gm`
γ p0

√
`(`+ 1)

⇒ b̃ =
1

r

1

C22
∂ra

m
` +

(
2

r
− 2αc0 + α − αγ

γ

)
1

rC22
am` +

1

C22

gm`
γ p0

√
`(`+ 1)

.

Thus

C12 b̃ =
1

r

C12

C22
∂ra

m
` +

(
2

r
− 2αc0 + α − αγ

γ

)
C12

r C22
am` +

C12

C22

gm`
γ p0

√
`(`+ 1)

(4.48)

and

∂r b̃ =

(
1

r C22

)′
∂ra +

(
1

r C22

)
∂2
ra +

[(
2

r
− 2αc0 + α − αγ

γ

)
1

rC22

]′
a

+

(
2

r
− 2αc0 + α − αγ

γ

)
1

rC22
∂ra + ∂r

(
1

C22

gm`
γ p0

√
`(`+ 1)

)
.

(4.49)
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Explicit expressions of the coefficients in the interior The derivation is given in Appendix A.
We introduce the notation,

k0 =
σ

c0
. (4.50)

Lemma 2. For ` > 0, for r ≤ ra,

C ′22

C22
= −2

r
+ r2 2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

+ r
2σ2

σ2 r2 − `(`+ 1)c2
0

. (4.51)

Proposition 4. For r ≤ ra, the coefficients of the ODE (7.12) are given by the following expressions.

1. The coefficient of the first order term has the form,

r2C22q̂ = k2
0 r

2 . (4.52)

r C22 q(r) = −αγp0

σ2

c2
0

r + 2
σ2

c2
0

− `(`+ 1)
r
(
2 σ2

c20
αc0 + iω (2Γ)′

c20

)
+ 2σ

2

c20

σ2

c20
r2 − `(`+ 1)

, (4.53)

or equivalently

r C22 q(r)

k2
0

= −αγp0
r + 2 − `(`+ 1)

k2
0

2αc0 r + iω (2Γ)′

c20

1
k20
r + 2

r2 − `(`+1)
k20

. (4.54)

2. The coefficient of the 0th-term is given by,

r2 C22 q̃(r) = − σ2

c2
0

(−σ2 + Φ′′0)

c2
0

r2 + 2
σ2

c2
0

(
αp0r

γ
− αγp0

r − 1

)
− `(`+ 1)

σ2

c2
0

+ `(`+ 1)
Φ′0
c2
0

(
− Φ′0

c2
0

+ αρ0

)

− `(`+ 1)

(
2 − αp0

γ
r

) r
(
2 σ2

c20
αc0 + iω (2Γ)′

c20

)
+ 2σ

2

c20

σ2

c20
r2 − `(`+ 1)

.

(4.55)

A form entirely in terms of ρ0, c0 and Φ0 , and k0 is given as

r2 C22 q̃(r)

k2
0

=

(
k2

0 −
Φ′′0
c2
0

)
r2 + 2 r

(
Φ′0
c2
0

− αρ0 − 2αc0

)
− 2− `(`+ 1)

+
`(`+ 1)

k2
0

Φ′0
c2
0

(
αρ0 −

Φ′0
c2
0

)

− `(`+ 1)

k2
0

(
2 − Φ′0

c2
0

r

) 2αc0 r + 2 + i ω
k20

(2Γ)′

c20
r

r2 − `(`+1)
k20

.

(4.56)

Explicit expressions of the coefficient in the atmosphere The derivation is given in Appendix B.
We introduce the notation

Ehe := − αρ0
γ

+
Φ′0
c2
0

. (4.57)
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Proposition 5. In r ≥ ra, the coefficients of the ODE (7.12) are given by,

r2 C22 q̂(r) = r(k2
0 r − Ehe) , (4.58)

r2 C22 q(r) = (αρ0r − 2) (−k2
0 r + Ehe)

+ `(`+ 1)
(k2

0)′ r2 + 2 k2
0 r − (Ehe + r

Φ′′0
c20

)

−k2
0r

2 + `(`+ 1) + rEhe

,
(4.59)

and

r2 C22 q̃(r)

=
(
k2

0 r
2 − rEhe

) (
k2

0 −
Φ′′0
c2
0

)
+ 2

(
k2

0r
2 − rEhe

) (
−αρ0

r
+
αρ0
r γ
− 1

r2

)
+ `(`+ 1)

(
−k2

0 +
Φ′′0
c2
0

)
− `(`+ 1)

αρ0
γ

(
αρ0
γ
− αρ0

)

+ `(`+ 1)

(
2

r
− αρ0

γ

) (k2
0)′ r2 + 2 k2

0 r −
(
Ehe + r

Φ′′0
c20

)
−k2

0r
2 + `(`+ 1) + rEhe

.

(4.60)

4.6 Reduction to a Schrödinger equation

We first recall that the coefficient a = am` of the radial part of ξ solves the ODE (4.42)

q̂`(r) ∂
2
ra + q`(r) ∂ra + q̃`(r) a = fm` (r) . (4.61)

We first normalize the first coefficient, so that a(r) = am` (r) solves

−∂2
ra + h`(r) ∂ra + g`(r) a = − fm` (r)

q̂`(r)
(4.62)

with function h`(r) and g`(r) defined as

h`(r) := −q`(r)
q̂`(r)

, g`(r) := − q̃`(r)
q̂`(r)

. (4.63)

We need to remove the first-order term,

Proposition 6. The ODE

q̂`(r) ∂
2
ra + q`(r) ∂ra + q̃`(r) a = fm` (r) . (4.64)

is equivalent to the conjugate ODE

−∂2
r ã + V`(r) ã = −e−

1
2

∫ r h fm` (r)

q̂`(r)
(4.65)

with unknown
ã(r) := e−

1
2

∫
h`a(r) . (4.66)

In the above expression, the new potential V is given as,

V`(r) =
1

4
h2
`(r) −

1

2
∂rh`(r) + g`(r) . (4.67)

Proof. For lightness of notation, in the current exposition, we drop the subscript ` from the coefficients.
We have

∂r e
1
2

∫
h(s) ds =

h(r)

2
e

1
2

∫
h(s) ds ⇒ ∂2

r e
1
2

∫
h(s) ds =

h2

4
e
∫
h +

∂rh

2
e
∫
h∂rh. (4.68)
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Thus
∂ra = ∂r

(
ã e

1
2

∫
h(s) ds

)
= e

1
2

∫
h(s) ds

(
∂rã +

h(r)

2
ã

)
, (4.69)

and

−∂2
ra = −e

1
2

∫
h(s) ds ∂2

r ã − 2

(
∂re

1
2

∫
h(s) ds

)
∂rã − ã ∂2

re
1
2

∫
h(s) ds

= e
1
2

∫
h(s) ds

(
− ∂2

r ã − h(r) ∂rã −
h2

4
ã − ∂rh

2
ã
)
.

Substitute a by a = ãe
1
2

∫
h and the above identities into the ODE (4.62),

−∂2
ra + h ∂ra + g a = 0 ,

we obtain the conjugate ODE satisfied by ã

e
1
2

∫
h
(
− ∂2

r ã − h(r) ∂rã−
[

1

2
∂rh +

1

4
h2

]
ã + h ∂rã +

1

2
h2ã + g ã

)
= − fm` (r)

q̂`(r)
.

After dividing both sides by e
1
2

∫
h, we obtain,

−∂2
r ã +

(1

4
h2 − 1

2
∂rh + g

)
ã = −e−

1
2

∫ r h fm` (r)

q̂`(r)
.

Explicit expressions for coefficients in the interior For brevity of notation, we use (σ2)′ rather
than iω(2Γ)′. For the derivative of h, we use

(k2
0)′ =

(
σ2

c2
0

)′
=

(σ2)′

c2
0

+ 2
σ2

c2
0

αc0 = k2
0

(
(σ2)′

σ2
+ 2αc0

)
, (4.70)

and (
1

k2
0

)′
= − 1

k4
0

(k2
0)′ = − 1

k2
0

(
(σ2)′

σ2
+ 2αc0

)
. (4.71)

Proposition 7. For r ≤ ra, we have

h = αγp0
− 2

r
+
`(`+ 1)

k2
0

2αc0 r + (σ2)′

σ2 r + 2

r3 − `(`+1)
k20

r
, (4.72)

h′ = α′γp0
− 2

r2
+
`(`+ 1)

k2
0

2αc0 + 2α′c0r + (σ2)′

σ2 +

(
(σ2)′′

σ2 −
(

(σ2)′

σ2

)2
)
r

r3 − `(`+1)
k20

r

− `(`+ 1)

k2
0

2αc0 r + (σ2)′

σ2 r + 2(
r3 − `(`+1)

k20
r
)2

(
3r2 − `(`+1)

k20
+ `(`+1)

k20
r
(

2αc0 + (σ2)′

σ2

))

− `(`+ 1)

k2
0

(
(σ2)′

σ2
+ 2αc0

)
2αc0 r + (σ2)′

σ2 r + 2

r3 − `(`+1)
k20

r
,

(4.73)
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and

g = − k2
0 +

Φ′′0
c2
0

− 2

r

(
Φ′0
c2
0

− αρ0 − 2αc0

)
+

2 + `(`+ 1)

r2

− `(`+ 1)

k2
0

Φ′0
c2
0

(
αρ0 −

Φ′0
c2
0

)
1

r2
+
`(`+ 1)

k2
0

(
2

r2
− Φ′0

c2
0

1

r

)
2αc0 r + 2 + (σ2)′

σ2 r

r2 − `(`+1)
k20

.

(4.74)

Explicit expressions for coefficients in the atmosphere The derivation is given in Appendix B.

Proposition 8. For r ≥ ra, we have

h = αρ0 −
2

r
+ `(`+ 1)

(k2
0)′ r2 + 2 k2

0 r − Ehe − r
Φ′′0
c20(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

, (4.75)

g = −k2
0 +

2 (αρ0 −
αρ0
γ )

r
+

2

r2
+ `(`+ 1)

k2
0 +

αρ0
γ

(
αρ0
γ − αρ0

)
− Φ′′0

c20

k2
0 r

2 − r Ehe

(4.76a)

+
Φ′′0
c2
0

+ `(`+ 1)

(
2

r
− αρ0

γ

) (k2
0)′ r2 + 2 k2

0 r − Ehe − r
Φ′′0
c20(

k2
0r

2 − `(`+ 1) − rEhe) (k2
0 r

2 − r Ehe)
, (4.76b)

and, under the hypothesis of constant attenuation,

h′ =
2

r2
+ `(`+ 1)

2 k2
0 − 4πG

c20
r ρ′0 − 2

Φ′0
c20

1
r(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

,

−
`(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

) (
2 k2

0 r − Ehe − r
Φ′′0
c20

)(
2k2

0r
2 − `(`+ 1) − 2rEhe

)
(
k2

0r
2 − `(`+ 1) − rEhe

)2
(k2

0 r
2 − r Ehe)2

.

(4.77)

5 Alternative to obtain the system of equations in the solar in-
terior

Another way to solve the Galbrun equation in the interior of the Sun is to work directly with the form
of the equation (3.31) given in Proposition 2 under the assumption of hydrostatic equilibrium (3.14).

− ρ0 σ
2 ξ + ∇δp + δρ∇Φ0 = f ; (5.1a)

δρ = −(∇ρ0) · ξ − ρ0∇ · ξ ; (5.1b)

δp = −ξ · ∇p0 − ρ0 c2
0∇ · ξ . (5.1c)

Here we ignore the perturbation in gravitation potential δEΦ. For the rest of this section, to alleviate the
notation, we will drop the superscript E from the Eulerian perturbation δE• . The main ideas are from
[11]. The main difference is that instead of working with vector harmonic bases ( Pm` , Cm

` , and Bm
` cf.

(2.20)), the equation is rewritten in terms of only scalar unknowns and thus have the usual harmonic
expansion in Ym

` .

We first make some initial remarks on the special feature of (5.1a). Decompose the unknown ξ and
the external source into the radial component and tangential one,

ξ = ξr er + ξh , ξr := ξ · er ;

f = frer + fh , fr := f · er .
(5.2)
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We also decompose ∇ into radial and tangential component, in particular for a scalar function f ,

∇f = (∂rf) er +
1

r
∇S2f .

The decomposition of (5.1a) along er and tangential one gives, after dividing both sides by ρ0,

− σ2 ξr +
1

ρ0
∂r δp +

δρ
ρ0

Φ′0 =
fr
ρ0

; (5.3a)

− σ2 ξh +
1

r ρ0
∇S2δp +

δρ
ρ0 r
∇S2Φ0 =

fh
ρ0
. (5.3b)

Under spherical symmetry of the background, we solve for scalar unknowns which can be represented in
harmonic expansion; in particular,

ξr(x) =

∞∑
`=0

∑̀
m=−`

am` (r) Ym
` (θ, φ) ;

δρ(x) =

∞∑
`=0

∑
m=−`

d`(r) Ym
` (θ, φ) , δp(x) =

∞∑
`=0

∑
m=−`

e`(r) Ym
` (θ, φ) .

(5.4)

With ∇S2Φ0 = 0 under spherical symmetry assumption, and if fh = 0, then (5.3b) implies that the
tangential part ξh exists solely along ∇S2Ym

` , i.e. for some tm` (r),

ξh =
1

σ2

∞∑
`=0

∑
m=−`

tm` (r) ∇S2Ym
` (θ, φ) . (5.5)

Assumptions In addition to symmetric background ρ0, γ and c0, we assume that the radial and
tangential divergence part of the source can be represented in harmonic expansion, i.e.

fr = f · er , fh = f − frer , f̃h := ∇S2 · fh ;

fr =

∞∑
`=0

∑̀
m=−`

fm` (r) Ym
` (θ, φ) , f̃h =

∞∑
`=0

∑̀
m=−`

[fh]m` (r) Ym
` (θ, φ) .

(5.6)

5.1 Approach 1 - A �rst order system

Given known quantities
ρ0 , c0 , p0 , Φ0 (5.7)

Thus we look for unknowns
ξ , δp , δρ (5.8)

which solves (5.1), and with the property,

ξr = ξ · er , ξh = ξ − ξrer , ξ̃h := ∇S2 · ξh ;

ξr =

∞∑
`=0

∑̀
m=−`

am` (r) Ym
` (θ, φ) , ξ̃h =

∞∑
`=0

∑̀
m=−`

b̃m` (r) Ym
` (θ, φ) .

(5.9)

Step 1 By taking the difference of the last two equations in (5.1), we obtain an equivalent system, which
under spherical symmetry simplifes to

− σ2 ξr +
1

ρ0
∂rδp +

δρ
ρ0

Φ′0 =
fr
ρ0

; (5.10a)

− σ2 ξh +
1

r ρ0
∇S2δp =

fh
ρ0

; (5.10b)

δρ = −ρ′0 ξr − ρ0

(
∂rξr +

2

r
ξr +

1

r
∇S2 · ξh

)
(5.10c)

c2
0δρ − δp = ξr ·

(
p′0 − c2

0ρ
′
0

)
. (5.10d)
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In the second-to-last equality, we have used ∇ · ξ = ∂rξr + 2
r ξr + 1

r∇S2 · ξh.

Step 2 : Take ∇S2 · of (5.10b)

−σ2∇S2 · ξh +
1

r ρ0
∆S2δp =

∇S2 · fh
p0

. (5.11)

We can use (5.10c) to eliminate ∇S2 · ξh from (5.11) and obtain

σ2

(
1

ρ0
δρ +

ρ′0
ρ0

ξr + ∂rξr +
2

r
ξr

)
+

1

r2 ρ0
∆S2δp =

∇S2 · fh
r p0

. (5.12)

Step 3 : We will use (5.12) together with (5.10a) and (5.10d) to solve for the three scalar unknowns ξr,
δρ and δp. Obtain equations in terms of the coefficients of the harmonic expansions of these unknowns,
listed in order of (5.10a), (5.12) and (5.10d),

∞∑
`=0

∑̀
m=−`

(
−σ2 am` (r) +

1

ρ0
∂re

m
` +

Φ′0
ρ0

dm`

)
Ym
` =

1

ρ0

∞∑
`=0

∑̀
m=−`

fm` Ym
` ; (5.13a)

∞∑
`=0

∑̀
m=−`

(
σ2

(
1

ρ0
dm` +

ρ′0
ρ0
am` + ∂ra

m
` +

2

r
am`

)
− `(`+ 1)

r2 ρ0
em`

)
Ym
` =

1

r ρ0

∞∑
`=0

∑̀
m=−`

[fh]m` Ym
` ;

(5.13b)
∞∑
`=0

∑̀
m=−`

(
−c2

0 d
m
` + em` +

(
p′0 − c2

0 ρ
′
0

)
am`
)

Ym
` = 0. (5.13c)

In the second equation, we have used ∆S2Ym
` = −`(`+ 1)Ym

` . We thus obtain a first order equation


1

ρ0
0 0

0 σ2 0

0 0 0

 ∂r

em`am`
dm`

 +



0 −σ2 Φ′0
ρ0

− `(`+ 1)

r2 p0
σ2

(
ρ′0
ρ0

+
2

r

)
σ2

ρ0

1

c2
0

p′0
c2
0

− ρ′0 −1


em`am`
dm`

 =
1

r ρ0

 r fm`

[fh]m`

0

 (5.14)

We can further eliminate dm`

A ∂r

(
em`

am`

)
+ B

(
em`

am`

)
=

1

r ρ0

(
r fm`

[fh]m`

)
(5.15)

with

A =

 1

ρ0
0

0 σ2

 , B =


1

c2
0

Φ′0
ρ0

−σ2 +
Φ′0
ρ0

(
p′0
c2
0

− ρ′0

)
σ2

ρ0c2
0

− `(`+ 1)

r2 p0
σ2

(
p′0
ρ0c2

0

+
2

r

)
 . (5.16)

Remark 12. Defining the buoyancy frequency N as

N2 = Φ′0

(
p′0
γp0
− ρ′0
ρ0

)
, (5.17)

and the characteristic acoustic frequency Sl (also called Lamb frequency by [35]) by

S2
l =

`(`+ 1)c2
0

r2
, (5.18)
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we can rewrite the matrix B as

B =


− p′0
γp0ρ0

N2 − σ2

1

ρ0c2
0

(
σ2 − S2

l

)
σ2

(
p′0
γp0

+
2

r

)
 , (5.19)

where we have used the hydrostatic equilibrium ρ0Φ′0 + p′0 = 0 and adiabaticity ρ0c2
0 = γp0. This system

is equivalent to Eqs.(4.61) and (4.62) in [11] and Eqs. (14.2) (14.3) in [35]. 4

5.1.1 Recovering the decoupled ODE for the radial displacement

As a sanity check, we rederive the scalar wave equation satisfied by the radial displacement from the
system (5.15). For simplicity we consider the homogeneous equations. From the second line of the
system one gets

eml =
ρ0c2

0σ
2

S2
l − σ2

(
∂ra

m
l +

(
p′0
γp0

+
2

r

)
aml

)
, (5.20)

while the first line can be written as

1

ρ0
∂re

m
l −

p′0
γp0ρ0

eml + (N2 − σ2)aml = 0. (5.21)

Combining these two equations gives

1

ρ0
∂r

[
ρ0c2

0σ
2

S2
l − σ2

(
∂ra

m
l +

(
p′0
γp0

+
2

r

)
aml

)]
− p′0
γp0ρ0

[
ρ0c2

0σ
2

S2
l − σ2

(
∂ra

m
l +

(
p′0
γp0

+
2

r

)
aml

)]
+ (N2 − σ2)aml = 0, (5.22)

which is the second order equation satisfied by the coefficients aml that we want to write on the form

A∂2
ra
m
l +B∂ra

m
l + Caml = 0. (5.23)

The coefficient A is given by

A =
c2
0σ

2

S2
l − σ2

=
σ2

C22
. (5.24)

To evaluate B, we need to compute

1

ρ0
∂r

(
ρ0c2

0σ
2

S2
l − σ2

)
=

1

ρ0

∂r
(
ρ0c2

0σ
2
)

S2
l − σ2

− c2
0σ

2∂r(S
2
l − σ2)

(S2
l − σ2)2

(5.25)

=
−αc2

0σ
2 + 2c0c′0σ

2 + 2iωc2
0Γ′

S2
l − σ2

+
c2
0σ

2
(
2iωΓ′ + 2S2

l

(
αc0 + 1

r

))
(S2
l − σ2)2

, (5.26)

where we used that

∂r
(
S2
l

)
= `(`+ 1)

(
2c0c′0
r2
− 2c2

0

r3

)
= −2S2

l

(
αc0 +

1

r

)
. (5.27)

Thus,

rC22(r)B = rC22(r)

(
1

ρ0
∂r

(
ρ0c2

0σ
2

S2
l − σ2

)
+

2

r

c2
0σ

2

S2
l − σ2

)
(5.28)

= r
(
−ασ2 − 2αc0σ

2 + 2iωΓ′
)

+
σ2
(
2iωΓ′r + 2S2

l (αc0r + 1)
)

(S2
l − σ2)

+ 2σ2, (5.29)

= −αγp0
σ2r + 2iωΓ′r

S2
l

S2
l − σ2

+
2σ2S2

l (αc0r + 1)

(S2
l − σ2)

+ 2σ2, (5.30)
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where we used the relation between the different scale heights (6.3). Replacing S2
l by its definition (5.18),

it follows that

rC22(r)B = −αγp0
σ2r + 2σ2 − `(`+ 1)c2

0

r
(
2σ2αc0 + 2iωΓ′

)
+ 2σ2

σ2r2 − `(`+ 1)c2
0

, (5.31)

= rC22(r)q(r)c2
0, (5.32)

where the expression for rC22q is given by (4.53).
The coefficient C is given by

C =
1

ρ0
∂r

[(
ρ0c2

0σ
2

S2
l − σ2

)(
p′0
γp0

+
2

r

)]
− p′0
γp0ρ0

[
ρ0c2

0σ
2

S2
l − σ2

(
p′0
γp0

+
2

r

)]
+ (N2 − σ2) (5.33)

=
1

ρ0
∂r

[
ρ0c2

0σ
2

S2
l − σ2

](
p′0
γp0

+
2

r

)
+

c2
0σ

2

S2
l − σ2

(
p′′0
γp0

+
αγp0p′0
γp0

− 2

r2

)
− p′0c2

0σ
2

γp0(S2
l − σ2)

(
p′0
γp0

+
2

r

)
− σ2 + Φ′0

(
p′0
γp0
− ρ′0
ρ0

)
. (5.34)

Using the previous computation for rC22B, we obtain

r2C22(r)C =

(
−αγp0

σ2r +
αp0

γ
σ2r + 2iωΓ′r

S2
l

S2
l − σ2

+
2σ2S2

l (αc0r + 1)

S2
l − σ2

)(
p′0
γp0

r + 2

)
(5.35)

+ σ2

(
p′′0
γp0

r2 +
αγp0

p′0
γp0

r2 − 2

)
− σ2r2S

2
l − σ2

c2
0

+ Φ′0

(
−αp0

γ
+ αρ0

)
r2S

2
l − σ2

c2
0

. (5.36)

It follows that

r2C22(r)C =
σ2r2

c2
0

(
−σ2 + Φ′′0

)
+ 2σ2

(
−rαγp0

+
αp0

γ
r − 1

)
+

(
2− αp0r

γ

)
S2
l

2σ2(1 + αc0r) + 2iωΓ′r
S2
l − σ2

+ `(`+ 1)

(
−σ2 + Φ′0

(
−αp0

γ
+ αρ0

))
, (5.37)

where we gathered and simplified the terms of order r2 using the definition of Φ′0 and Φ′′0 from (6.9) and
(6.11) and used the definition of Sl ((5.18)) for the last term. Replacing Sl and using (6.9) to introduce
Φ′0

r2C22(r)C =
σ2r2

c2
0

(
−σ2 + Φ′′0

)
+ 2σ2

(
−rαγp0

+
αp0

γ
r − 1

)
− `(`+ 1)

(
2− αp0

r

γ

)
2r
(
σ2αc0 + iωΓ′

)
+ 2σ2

σ2r2 − `(`+ 1)
+ `(`+ 1)

(
−σ2 + Φ′0

(
−Φ′0

c2
0

+ αρ0

))
,

(5.38)

= r2C22(r)c2
0q̃(r). (5.39)

The expression of r2C22q̃ is given by (4.55). The obtained decoupled system is thus the same than the
one derived in Subsection 4.4.1.

5.1.2 Decoupled system satisfied by the pressure

We can proceed in a similar manner than in the previous section, in order to eliminate the radial dis-
placement and obtain a decoupled ODE for the Lagrangian perturbation of the pressure δp. We first
express the coefficient aml as a function of eml using the second line of the system (5.15)

aml =
1

ρ0(σ2 −N2)
∂re

m
l −

p′0
γp0ρ0(σ2 −N2)

eml . (5.40)

Here, we suppose for simplicity that Γ 6= 0 so that the term (σ2 −N2) does not vanish. Then the second
line becomes

σ2

ρ0(σ2 −N2)
∂2
re
m
l + σ2∂r

(
1

ρ0(σ2 −N2)

)
∂re

m
l − σ2∂r

(
p′0

γp0ρ0(σ2 −N2)

)
eml (5.41)

− σ2p′0
γp0ρ0(σ2 −N2)

eml +
1

ρ0c2
0

(σ2 − S2
l )eml +

σ2

ρ0(σ2 −N2)

(
p′0
γp0

+
2

r

)(
∂re

m
l −

p′0
γp0

eml

)
= 0. (5.42)
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Multiplying by ρ0(σ2 −N2) leads to

∂2
re
m
l +

(
αρ0 −

(σ2 −N2)′

σ2 −N2
− αp0

γ
+

2

r

)
∂re

m
l (5.43)

+

(
∂r

(
p′0
γp0

)
+

p′0
γp0

(
αρ0 −

(σ2 −N2)′

σ2 −N2
− 1− p′0

γp0
− 2

r

)
+
σ2 −N2

σ2c2
0

(
σ2 − S2

l

))
eml = 0. (5.44)

This is a second order ODE satisfied by the Lagrangian perturbation of the pressure. This corresponds
to the scalar problem proposed by [20] for which the boundary conditions were proposed in [3, 17] and
which was studied theoretically in [5, 6]. The main difference is the incorporation of the gravity term.
One can recover the equation from [20] by setting N2 = 0 and p′0 = 0 in (5.44).

From the knowledge of eml , one can recover the radial part of the displacement using (5.40) and the
horizontal part from (4.45). In the framework of [20] (without gravity), these coefficients are given by

aml =
1

ρ0σ2
∂re

m
l , (5.45)

bml =

√
`(`+ 1)

k2
h − k2

0

∂r
(
r2aml

)
r3

, (5.46)

where kh =
√
`(`+ 1)/r is the horizontal wavenumber and k2

0 = σ2/c2
0 is the local wavenumber. Note that

in the presence of attenuation the denominator never vanishes and the coefficient bml can be computed.

5.2 Approach 2 - a second order system

From the form of δρ in (5.10c), which is similar for δp, the radial equations of motion are in terms of
unknowns of ξr and ∇S2 · ξh. Recall the definition of the radial and the tangential divergence of the
tangential part,

fr = f · er , fh = f − fr er , ξ̃h := ∇S2 · fh ;

ξr = ξ · er , ξh = ξ − ξr er , ξ̃h := ∇S2 · ξh .

Taking ∇S2 · of the tangential equation (5.3b) provides another equation in these two variables.

−ρ0 σ
2∇S2 · ξh +

1

r
∆S2δp = ∇S2 · fh ,

which, in terms of ξ̃h and f̃h, is

−ρ0 σ
2 ξ̃h +

1

r
∆S2δp = f̃h . (5.47)

In this approach, one solely works with two scalar unknowns ξr and ξ̃h. The similarity as in Approach
1 is that they are both scalar unknowns, and are supposed to have an expansion in spherical harmonics.
At the end, we will identify the resulting system with (4.33).

To solve for ξr and ξ̃h, we use the above equation together with the radial part of the equation of
motion,

− σ2 ξr +
1

ρ0
∂rδp +

δρ
ρ0

Φ′0 =
fr
ρ0
, (5.48a)

− σ2 ξ̃h +
1

r ρ0
∆S2δp =

f̃h
ρ0
, (5.48b)

with

δρ = −
(

p′0 +
2ρ0

r

)
ξr − ρ0 ∂rξr −

ρ0

r
ξ̃h ; (5.49a)

δp = −
(

p′0 +
2 ρ0 c2

0

r

)
ξr − ρ0 c2

0 ∂rξr −
ρ0 c2

0

r
ξ̃h . (5.49b)
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We next obtain explicit equation for the coefficients am` and b̃m` .

We first consider the tangential equation (5.48b). From (5.49b), using ∆S2Ym
` = −`(` + 1) Ym

` , we
have

1

ρ0
∆S2 δp =

∞∑
`=0

∑̀
m=−`

`(`+ 1)

((
p′0
ρ0

+
2 c2

0

r

)
am` + c2

0 ∂ra
m
` +

c2
0

r
b̂m`

)
Ym
` . (5.50)

Substituting this expression into (5.48b), we obtain

∞∑
`=0

∑̀
m=−`

((
−σ2 +

`(`+ 1) c2
0

r2

)
b̂m` +

`(`+ 1)

r

(
p′0
ρ0

+
2 c2

0

r

)
am`

+
`(`+ 1)

r
c2
0∂ra

m
`

)
Ym
` =

∞∑
`=0

∑̀
m=−`

[fh]m`
ρ0

Ym
` .

(5.51)

Dividing both sides by c2
0, we have, on each mode (`,m) the equation (which does not depend on m)(

−σ
2

c2
0

+
`(`+ 1)

r2

)
b̂m` +

`(`+ 1)

r

(
p′0

c2
0 ρ0

+
2

r

)
am` +

`(`+ 1)

r
∂ra

m
` =

[fh]m`
c2
0 ρ0

; (5.52)

We now consider the radial equation (5.48a). From (5.49b), we have

1

ρ0
∂rδp = −

(
p′′0
ρ0

+
1

ρ0

(
2ρ0 c2

0

r

)′)
ξr −

(ρ0 c2
0)′

ρ0
∂rξr −

1

ρ0

(
ρ0 c2

0

r

)′
ξ̃h

−
(

p′0
ρ0

+
2 c2

0

r

)
∂rξr − c2

0 ∂
2
r ξr −

c2
0

r
∂r ξ̃h

= −

(
p′′0
ρ

+
1

ρ0

(
2ρ0 c2

0

r

)′)
ξr −

(
p′0
ρ0

+
2 c2

0

r
+

(ρ0 c2
0)′

ρ0

)
∂rξr

− c2
0 ∂

2
r ξr −

c2
0

r
∂r ξ̃h −

1

ρ0

(
ρ0 c2

0

r

)′
ξ̃h .

(5.53)

We further expand the derivative of
(
ρ0c20
r

)′
,

1

ρ0
∂rδp = −

(
p′′0
ρ

+
2(ρ0 c2

0)′

ρ0 r
− 2c2

0

r2

)
ξr −

(
p′0
ρ0

+
2 c2

0

r
+

(ρ0 c2
0)′

ρ0

)
∂rξr

− c2
0 ∂

2
r ξr −

c2
0

r
∂r ξ̃h −

(
(ρ0 c2

0)′

r ρ0
− c2

0

r2

)
ξ̃h .

(5.54)

On the other hand, from (5.49a),

Φ′0
ρ0
δρ = −Φ′0

ρ0

(
p′0 +

2ρ0

r

)
ξr − Φ′0 ∂rξr −

Φ′0
r
ξ̃h .

Substitute the above expressions for 1
ρ0
∂rδp and Φ′0

ρ0
δρ into (5.48a), we obtain the following equations (as

coefficients of Ym
` on each level),

−c2
0 ∂

2
ra
m
` −

(
σ2 +

p′′0
ρ

+
2(ρ0 c2

0)′

ρ0 r
− 2c2

0

r2
+

Φ′0
ρ0

(
p′0 +

2ρ0

r

))
am`

−
(p′0
ρ0

+
2 c2

0

r
+

(ρ0 c2
0)′

ρ0
+ Φ′0

)
∂ra

m
` −

c2
0

r
∂r b̂

m
` −

(
(ρ0 c2

0)′

r ρ0
− c2

0

r2
+

Φ′0
r

)
b̂m` =

fr
ρ0
.

(5.55)

Taking the derivative of the hydrostatic equilibrium identity (3.14), we have

Φ′0 = −p0

ρ0
⇒ Φ′0

c2
0

= − p′0
c2
0ρ0

= − 1

γ

p′0
p0

; Φ′′0 + ρ′0 Φ′0 + p′′0 = 0 , (5.56)
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and using this to simplify the coefficient of am` in (5.55) and dividing both sides from c2
0, we obtain

− ∂2
ra
m
` +

(
− σ2

c2
0

+
Φ′′0
c2
0

− 2(ρ0 c2
0)′

c2
0 ρ0 r

+
2

r2
+

2

r γ

p′0
p0

)
am` −

(2

r
+

(ρ0 c2
0)′

c2
0 ρ0

)
∂ra

m
`

− 1

r
∂r b̂

m
` +

(
− (ρ0 c2

0)′

r c2
0 ρ0

+
1

r2
+

1

r γ

p′0
p0

)
b̂m` =

fr
c2
0 ρ0

.

(5.57)

Identification with (4.33) We will compare the system comprising of (5.57) and (5.52) in unknown
am` and b̂m` , with system (4.33) given by the main approach which uses directly the vector harmonic
basis. The am` and fm` are exactly the same between the two sections. On the other hand, using (4.4),
the coefficient bm` in Section 4 can be related to the b̂m` , by

−
√
`(`+ 1) bm` = b̂m` , −

√
`(`+ 1) gm` = [fh]m` . (5.58)

With this identification, we replace c2
0ρ0 by γp0, then the two systems of equations are identical.

6 Computation of the vectorial quantities

In this section, we provide the numerical steps for the computation of the different quantities involved in
the vectorial potential with spherical symmetry, derived in Section 4. In particular, to compute V` from
Proposition 6, we need q̃`, q̂` and q` of (4.44), that depend on the derivative of the coefficients C given
in (4.35). Namely, those coefficients involve the derivative of the physical parameters, in particular,

α′c0 , α′γp0
, α′p0

and α′ρ0 . (6.1)

These can be difficult to obtain numerically as, for instance, we loose accuracy if simply using a finite-
difference scheme onto the parameters given by the model S. Note that in our implementation, we first
represent the models via cubic splines, see Appendix F.

In the following, we investigate how to efficiently calculate the coefficients. For the sake of clarity, we
drop the index ` that indicates the dependency with mode in the coefficients, and give in Subsection 6.3
two approaches to compute the potential V` in the interior of the Sun. In Subsection 6.4, we give the
computational steps in the atmosphere. From discussion in Appendix D.1, we need to assume the a priori
computation of α′ρ0 and α′c0 .

6.1 Relation between scale heights

Let us first give the relation between the scale height associated to p0 and γ p0. From the adiabatic
equation of state given in (3.13), we have

(γp0)′

γp0
=

c2′
0 ρ0

γp0
+

c2
0 ρ
′
0

γp0
=

(c2
0)′

c2
0

+
ρ′0
ρ0
. (6.2)

It means that

αγp0 = − (γp0)′

γp0
= 2αc0 + αρ0 . (6.3)

The above identity also gives

γ′

γ
+

p′0
p0

= −2αc0 − αρ0 ⇒ p′0
p0

= −2αc0 − αρ0 −
γ′

γ
= −2αc0 − αρ0 + αγ , (6.4)

hence

αp0 = −p′0
p0

= 2αc0 + αρ0 − αγ . (6.5)

We can take the derivatives on both sides of (6.5), we obtain

p′′0
p0
−
(

p′0
p0

)2

= −2α′c0 − α
′
ρ0 + α′γ , (6.6)
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such that
p′′0
p0

= −2α′c0 + α′γ − α′ρ0 + (2αc0 + αρ0 − αγ)2 . (6.7)

6.2 Relation among parameters under the hydrostatic assumption

We recall the hydrostatic equilibrium identity (3.14) in the interior of the Sun,

p′0 + ρ0 Φ′0 = 0 . (6.8)

Equivalently, we have,

Φ′0 = −p′0
ρ0

= −p′0
p0

p0

ρ0
⇒ Φ′0 = αp0

c2
0

γ
. (6.9)

By applying the derivative to the hydrostatic equilibrium identity (6.8),

ρ0 Φ′′0 + ρ′0Φ′0 = −p′′0 ⇒ Φ′′0 = −p′′0
ρ0
− ρ′0
ρ0

Φ′0 , (6.10)

we have

Φ′′0 = −p′′0
p0

c2
0

γ
+ αρ0 Φ′0 . (6.11)

In addition, from the definition of Φ0 from (1.2) and (4.13),

Φ′′0 +
2

r
Φ′0 = 4πGρ0 ⇔ 1

r2

(
r2 Φ′0

)′
= 4πGρ0 . (6.12)

On the other, from (6.10), we can replace Φ′0 by (6.8) and Φ′′0 by (6.12), such that

Φ′0 = −p′0
ρ0

; (6.13a)

Φ′′0 = 4πGρ0 −
2

r
Φ′0 ⇒ Φ′′0 = 4πGρ0 +

2

r

p′0
ρ0
. (6.13b)

Therefore, we have

p′′0 + ρ′0 Φ′0 + ρ0 Φ′′0 = p′′0 − ρ′0
p′0
ρ0

+ ρ0

(
4πGρ0 +

2

r

p′0
ρ0

)
= p′′0 +

(
2

r
+ αρ0

)
p′0 + 4πGρ2

0

= p′′0 + (2 log r − log ρ0)
′

p′0 + 4πGρ2
0 .

(6.14)

In the last equality, we have used the definition of αρ0 = −ρ
′
0

ρ0
= −(log ρ0)′. Thus, we obtain

p′′0 + (2 log r − log ρ0)
′

p′0 + 4πGρ2
0 = 0 (6.15a)

⇔ p′′0 +

(
2

r
+ αρ0

)
p′0 + 4πGρ2

0 = 0 . (6.15b)

We now multiply by e2 log r− log ρ0 ,

e2 log r− log ρ0
(
p′′0 + (2 log r − log ρ0)

′
p′0
)

+ 4πGρ2
0 e

2 log r− log ρ0 = 0, (6.16)

this gives (
e2 log r− log ρ0 p′0)′ = −4πGρ2

0 e
2 log r− log ρ0 (6.17)

On the other hand, since

e2 log r− log ρ0 =
r2

ρ0
, (6.18)
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we obtain the following ODE for p0, (
r2

ρ0
p′0

)′
= 4πGρ2

0

r2

ρ0
, (6.19)

which simplifies to (
r2

ρ0
p′0

)′
= 4πGρ0 r

2 . (6.20)

6.3 Computational steps for V` in the interior

We recall the given quantities from model S are ρ0, c0 and γ. Additionally, we also have a choice for
attenuation, either constant or from the power law, see Section 2. To compute the potential V` and the
coefficients of the radial ODE (4.42), we give the following steps, which are computed for all positions r.

1. Start from the given background quantities c0, ρ0, γ and Γ.

2. Compute p0 using (3.13): p0 = c2
0 ρ0 γ

−1.

3. Compute the scale height functions (e.g., using finite-difference formulas or from a cubic spline
representation of the models, see Appendix F):

αρ0 and αc0 , (6.21)

and their derivatives,
α′ρ0 and α′c0 . (6.22)

4. Compute the derivatives of the attenuation: Γ′ and Γ′′.

5. The complex frequency given by

σ = ω

(
1 + i

2Γ

ω

)1/2

, (6.23)

and we also need the derivatives of σ:

(σ2)′ = iω (2Γ)′ , (6.24a)

(σ2)′′ = iω (2Γ)′′ , (6.24b)

σ′ =
1

2

(σ2)′

σ
, (6.24c)(

σ2

c2
0

)′
= 2

σ2

c2
0

αc0 +
(σ2)′

c2
0

, (6.24d)(
σ2

c2
0

)′′
= 2

(
σ2

c2
0

)′
αc0 + 2

(
σ2

c2
0

)
α′c0 +

(σ2)′′

c2
0

+ 2
(σ2)′

c2
0

αc0 . (6.24e)

Instead of calculating αγ and its derivative directly from the data of model S, we only assume the
inverse scale height and its derivative for c0 and ρ0, and exploit the hydrostatic condition and the ODE
(4.16) satisfied by Φ0, and/or the ODE (6.20) for p0.

6. Compute the weight mass,

M(r) :=

∫ r

0

s2 ρ0(s) ds . (6.25)

7. We use it with (4.15) and (4.16) to obtain Φ′0 and Φ′′0 ,

Φ′0(r) := 4πG
M(r)

r2
; (6.26a)

Φ′′0(r) := 4πGρ0(r) − 2
Φ′0(r)

r
, (6.26b)
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8. Compute the derivatives of p0 using (6.20),

p′0 = − ρ0(r) Φ′0(r) ; (6.27a)

p′′0 = −
(

2

r
+ αρ0

)
p′0 − 4πGρ2

0 . (6.27b)

9. We can now compute the scale heights with the relations

αp0

(
= −p′0

p0

)
= Φ′0

ρ0

p0
= Φ′0

γ

c2
0

; (6.28a)

αγp0
= 2αc0 + αρ0 ; (6.28b)

αγ = αγp0
− αp0

. (6.28c)

10. Compute their derivatives

α′p0
= −p′′0

p0
+ α2

p0
= −(2 r−1 + α)αp0

4πG
ρ0 γ

c2
0

+ α2
p0

; (6.29a)

α′γp0
= 2α′c0 + α′ρ0 . (6.29b)

11. Compute (
αp0

γ

)′
(6.28a)

=

(
Φ′0
c2
0

)′
=

Φ′′0
c2
0

+ 2
Φ′0
c2
0

αc0 . (6.30)

Remaining steps

6. We calculate r2C22(r)q(r) , r2C22(r)q(r) and r2C22q̃(r) by the expression given by Proposition 4.

7. If we work with the conjugate ODE, then h, h′ and g are calculated directly using Proposition 7.
The potential V`(r) is given by

V` =
1

4
h2 − 1

2
h′ + g . (6.31)

Remark 13 (Dimensionless of the coefficents of the ODE). In our current convention, we work with the
scaled radius thus dimensionless, and the scaled velocity of unit s−1. All of the components of matrix B
and C, cf. (4.29), and as a result of this, the coefficients of the radial ODE q̂, q̃, q or the scaled version
r2 C22(r) q̂, r2 C22(r) q̃, r2 C22(r) q, are dimensionless. Since r and all of the inverse scale heights α• are
dimensionless, it remains to verify terms such as

σ2

c2
0

,
Φ′′0
c2
0

,
Φ′0
c2
0

. (6.32)

The dimensionless of the first term is clear since both the scaled velocity and σ have unit s−1. Since
the scaled radius is dimensionaless, integration or differentiation with respect to this variable does not
change units. For this reason, Φ′0 and Φ′′0 have the same unit as Φ0. To determine the unit of Φ0, we
can consider (4.14), from which it is defined. In this way, Φ0 has the same unit as the right-hand-side,
4πGρ0. Using the value given in (6.33h), G is 6.674 08× 10−8 cm3 g−1 s−2, on the other hand ρ0 in the
model S is given in g cm−3. Thus their product is in s−2. Thus Φ0, Φ′0 and Φ′′0 in the current convention
take on units s−2. As a result of this, all of the expression in (6.32) are dimensionless. 4

6.4 Computational steps for V` in the atmosphere

In the atmosphere with model AtmoCAI, the steps are simpler as the sound speed, adiabatic coefficient
and density scale height are constant. In addition, we can readily obtain the value of the parameters,
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extracted from the end of model S, such that

ra = 1.000 712 6 , (6.33a)

ρ0(ra) = 3.062 97× 10−9 g cm−3 , (6.33b)
αρ0 = 6636.41 , (6.33c)

γ(ra) = 1.640 921 1 , (6.33d)

p0(ra) = 9.455 763 9× 101 Pa = 9.455 763 9× 102 dyn/cm2 , (6.33e)

c0(ra) =
6.8569× 105

R�
= 9.8588× 10−6 s−1 , (6.33f)

G = 6.674 08× 10−11 m3 kg−1 s−2 (6.33g)

= 6.674 08× 10−8 cm3 g−1 s−2 . (6.33h)

We have the following steps for the computation of the potential in the atmosphere.

1. Compute the derivative of the background gravitational potential Φ′0(r),

m = 4π

∫ ra

0

s2ρ0(s) ds + 4π ρ0(ra)
(αρ0 ra)2 + 2 ra αρ0 + 2

α3
,

Φ′0(r) =
G

r2
m − 4πGρ0(ra)

e−αρ0 (r−ra)

r2

(αρ0 r)
2 + 2 r αρ0 + 2

α3
ρ0

,

Φ′′0(r)
(4.16)

= 4πGρ0 −
2

r
Φ′0(r) .

(6.34)

2. We calculate r2C22(r)q(r) , r2C22(r)q(r) and r2C22q̃(r) by the expression given by Proposition 5.

3. If we work with the conjugate ODE, then h, h′ and g are calculated directly using Proposition 8.
The potential V`(r) is given by

V` =
1

4
h2 − 1

2
h′ + g . (6.35)

7 Analysis of the modal ODE: indicial roots

In Section 4, we have established that the Galbrun’s equation (1.1) for the model parameters S+AtmoCAI
reduces to solving (4.42), which we recall for convenience, this is from Proposition 6:(

q̂`(r) ∂
2
r + q`(r) ∂r + q̃`(r)

)
am` = fm` (r) , (7.1)

for the radial coefficient am` , with q`, q̃` and q̂` given in (4.44). This equation is equivalent to the conjugate
radial ODE (

− ∂2
r + V`(r)

)
ãm` = −e−

1
2

∫ r
0
h`(r) f

m
` (r)

q̂`(r)
, (7.2)

where the modal potential V` is given in terms of function h`(r) and g`(r) as

V`(r) =
1

4
h2
`(r) −

1

2
∂rh`(r) + g`(r) , (7.3)

with

h`(r) = −q`(r)
q̂`(r)

, g`(r) = − q̃`(r)
q̂`(r)

,

given in Proposition 3. The coefficients ãm` = ã` are called the conjugate radial coefficients and are related
to the original radial coefficients am` by

am` (r) = ãm` (r) e
1
2

∫ r
0
h`(r) . (7.4)
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Due to the independence of m, we will drop the index m from all of the quantities.
In this section, we study the local behavior of the coefficients of (7.1) and (7.2). We show that the

coefficients of (7.1) contain at most two singular points, and both of which are regular singular. When
there is attenuation, Γ > 0, V` only has one singularity at r = 0. Without attenuation, Γ = 0, V` has two
singularities: at r = 0 and at a point called r?i,ω,`. Then, the asymptotic behavior at infinity is studied in
Section 8.

Let us first note that, as we study the regularity of the coefficients of the ODE, it suffices to consider
the version of (7.1) with zero right-hand side,

q̂(r) ∂2
ra + q(r) ∂ra + q̃(r) a = 0 . (7.5)

In fact, due to the form of the coefficients, it is simpler to study the regularity after multiplying both
sides of (7.5) by r2C22, we refer to Subsection 6.3 for more details (see (D.16) and (D.23)). We have

r2 C22(r) q̂(r) ∂2
ra + r2 C22 q(r) ∂ra + r2 C22 q̃(r) a = 0 , (7.6)

where C22 is given in (4.35).
We first recall the classification of the singular points from [13, Theorem 4 p. 164] or [32, Section 1.1].

Definition 2 (Classification of the singular points). A point r = r0 is a singularity of finite order of
(7.6), if it is a pole of finite order of q(r)q̂(r) or q̃(r)

q̂(r) . In particular, r = r0 is a regular singular point if q(r)q̂(r)

has a pole at r = r0 of at most first order and q̃(r)
q̂(r) has a pole at r = r0 of at most second order. In

that case, we can define the indicial roots or characteristics exponent (denoted by λ) as the roots of the
indicial equation

λ (λ − 1) + η λ+ η̃ = 0 , (7.7)

whose coefficients are given by

η := lim
r→r0

(r − r0)
q(r)

q̂(r)
, η̃ := lim

r→r0
(r − r0)2 q̃(r)

q̂(r)
. (7.8)

In the following, we distinguish the case of the interior of the sun and of the atmosphere, with (Γ 6= 0)
and without attenuation (Γ = 0). Our main results are given in Propositions 10, 11, 14 and 15, and
summarized in Table 1.

Indicial exponent λ for the
Singular point Radial ODE

λ±
Conjugate radial ODE

λ̃± = λ± − 1
2η, cf. (7.125)

0 Γ ≥ 0
` = 0 −2 , 1 η = 2

` > 0 −`− 2, `− 1 η = 4

r?i,ω,`, cf. (7.19)
Γ = 0

0 < ` ≤ `?ω, cf. (7.20) 0, r?i,ω,` + 1 η = −r?i,ω,`
r?a1,ω, cf. (7.60) ω < ω∗a1, cf. (7.83)

and Assumption 5
0 η

r?a2,ω,`, cf. (7.65) ` > `?a,ω , cf. (7.71) 0 , 2 η = −1

Table 1: Sets of singular points for the modal radial equation (7.1) and conjugate one (7.2). This table
summarizes the results obtained from Propositions 10, 11, 14 and 15. The indexes a and i of the singular
points r? indicate if it is located in the interior of the Sun or in the atmosphere, respectively. The indexes
ω and ` indicate the dependency of the points with frequency and mode, respectively.

7.1 Indicial roots analysis at ` = 0

Following Remarks 9 and 10, due to the simplicity of the equation at ` = 0, cf. (4.32), we can study
directly,

−∂2
r a0 +

(
2αp0 −

2

r

)
∂r a0 +

(
−σ

2

c2
0

+
Φ′′0
c2
0

+ 2
αγp0

r
+

2

r2
− 2

αp0

rγ

)
a0 = 0 . (7.9)
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It leads at the fact that r = 0 is the only singular point on [0,∞), with indicial equation,

s(s− 1) + 2s − 2 = 0 . (7.10)

Consequently, the associated indicial exponents are

−2 and 1 , indicial exponents at ` = 0. (7.11)

7.2 Indicial analysis in the interior of the Sun for positive `

We consider (7.6) in the interior of the Sun, that is for r ≤ ra, where the physical parameters are given
by the model S of [12], that we pictured in Figures 1 and 2. From the expression of the coefficients of
Subsection 6.3, (D.16) and (D.23), we note that the only possible singularities are at r = 0, at the root
of r2C22q̂ and the roots of C22.

σ2

c2
0

r2 ∂2
ra + r2 C22(r) q(r) ∂ra + r2 C22(r) q̃(r) a = 0 , (7.12)

or

r2 ∂2
ra +

c2
0

σ2
r2 C22(r) q(r) ∂ra +

c2
0

σ2
r2 C22(r) q̃(r) a = 0 . (7.13)

From their derivation in Subsection 6.3, (D.13) and (D.16), we have

C22(r) = −σ
2

c2
0

+
`(`+ 1)

r2
⇒ r2 C22(r) q̂(r) = −r2 C22(r) + `(`+ 1) =

σ2

c2
0

r2 . (7.14)

Therefore, from the discussion of regular singularity and Frobenius method, we need to investigate the
regularity of

c2
0

σ2
C22 q and

c2
0

σ2
r2 C22 q̃ . (7.15)

We recall the explicit expression of coefficients of ODE (7.12), given in Proposition 4.

r C22 q(r)

k2
0

= −αγp0
r + 2 − `(`+ 1)

k2
0

2αc0 r + iω (2Γ)′

c20

1
k20
r + 2

r2 − `(`+1)
k20

. (7.16)

and
r2 C22 q̃(r)

k2
0

=

(
k2

0 −
Φ′′0
c2
0

)
r2 + 2 r

(
Φ′0
c2
0

− αρ0 − 2αc0

)
− 2− `(`+ 1)

+
`(`+ 1)

k2
0

Φ′0
c2
0

(
αρ0 −

Φ′0
c2
0

)

− `(`+ 1)

k2
0

(
2 − Φ′0

c2
0

r

) 2αc0 r + 2 + i ω
k20

(2Γ)′

c20
r

r2 − `(`+1)
k20

.

(7.17)

If we assume that the background quantities are regular enough at r = 0 (see, e.g., assumption
(7.26)), from the above expressions of the coefficients, we note that the only possible singular points in
the coefficients of (7.12) are r = 0 and the zeros of the algebraic equation on r ≥ 0,

C22(r) = 0 ⇔ r =
c0(r)

ω

√
`(`+ 1) ⇔ r

c0(r)
=

√
`(`+ 1)

ω
. (7.18)

– When Γ 6= 0, ω is complex and the roots of (7.18) are complex. In this case, since we consider the
ODE (7.6) on R+, the only singular point of the coefficients of (7.6) is at r = 0.
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– When Γ = 0, (7.18) has real roots. Model S+Atmo satisfies assumption Assumption 3,

r 7→ r

c0(r)
is increasing on [0, ra] ,

as illustrated in Figure 2b. Under this assumption, equation (7.18) has at most one zero. For each `
and ω, denote by r?i,ω,` the unique zero to (7.18), if it exists,

r?i,ω,` =
c0(r?i,ω,`)

ω

√
`(`+ 1) ⇔

r?i,ω,`
c0(r?i,ω,`)

=

√
`(`+ 1)

ω
. (7.19)

The existence is discussed in the Proposition 9.

We define

`?ω := −1

2
+

√
ω2 r2

a

c0(ra)2
+

1

4
. (7.20)

Proposition 9. Under Assumption 3 and the continuity of r 7→ c0(r), when Γ = 0, at each fixed
ω > 0, we have the following equivalence

Equation (7.18) has a unique zero on (0, ra) ⇔ ` ≤ `?ω . (7.21)

Proof. Statement (⇒) Suppose equation (7.18) has a zero on (0, ra), then by the above discussion it is
unique and is denoted by r?i,ω,`. We have

r?i,ω,` =
c0(r?i,ω,`)

ω

√
`(`+ 1) ⇔

r?i,ω,`
c0(r?i,ω,`)

=

√
`(`+ 1)

ω
.

Since r?i,ω,` ≤ ra, and r 7→ r
c0(r) is a strictly increasing function, this implies√

`(`+ 1)

ω
=

r?i,ω,`
c0(r?i,ω,`)

≤ ra
c0(ra)

. (7.22)

This leads to

ra
c0(ra)

≥
√
`(`+ 1)

ω
⇔ r2

a

c2
0(ra)

ω2 +
1

4
≥
(
` +

1

2

)2

⇔ `?ω ≥ ` . (7.23)

Statement (⇐) Suppose ` ≤ `?ω. It suffices to consider the existence statement. We consider function

f : r 7→ r − c0(r)

ω

√
`(`+ 1) . (7.24)

Under the current assumption, from the equivalence in (7.23), we have readily that f(ra) ≥ 0. On the
other hand, since c0 > 0, f(0) < 0. By the continuity of r 7→ f(r), this implies that f(r) = 0 has at least
one zero on (0, ra).

Remark 14. Using the solar parameters given by the model S, the values can be explicitly obtained and
we have

ra
c0(ra)

' 1.015× 105s for model S. (7.25)

In solar applications, the frequency is usually given in mHz and we study the first hundreds of modes. For
instance, at 1 mHz, `?ω = 637. We further illustrate the position of the singularity in Subsection 7.5.1.
On the other hand, this singularity does not exist when we consider attenuation, which is the case in
applications. 4

We next verify that the points r = 0 and r?i,ω,`, with ` > 0 defined in (7.18) are indeed regular
singularities and calculate the corresponding indicial exponents.
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Proposition 10 (Singularities at r = 0). We work under the assumption,

Γ, c0, αρ0 , αc0 , αγ and their derivatives are regular on [0,∞). (7.26)

1. The origin r = 0 is a regular singular point of the ODE (7.5) on r ≤ ra, with indicial equation

s (s − 1) + η0 s + η̃0 = 0 (7.27)

with

η0 = lim
r→0

r
c2
0

σ2
C22(r) q(r) =

{
2 for ` = 0 ,

4 for ` > 0 ,
(7.28)

and

η̃0 = lim
r→0

r2 c2
0

σ2
C22(r) q̃(r) =

{
−2 , ` = 0

2 − `(`+ 1) ` > 0 .
(7.29)

The indicial exponents are given by

λ+
0 = ` − 1 , λ−0 = −` − 2 , for ` > 0 , (7.30)

and
λ−0 = −2 , λ+

0 = 1 , for ` = 0. (7.31)

2. When ` = 0, in the cases with or without attenuation, r = 0 is the only singular point of (7.5)
on 0 ≤ r ≤ ra, with indicial equation (7.38b).

3. When Γ > 0, r = 0 is the only real regular singular point on (7.5) on [0, ra] for all `.

Proof. It suffices to consider the case for ` > 0. From Proposition 4, we have r C22 q with

r C22(r) q(r) = 4
σ2(0)

c2
0(0)

+ O(r) , r → 0 , ` > 0 , (7.32)

and

r C22(r) q(r) = 2
σ2(0)

c2
0(0)

+ O(r) , r → 0 , ` > 0 . (7.33)

From here, we obtain readily the value of η0 in (7.28).

Also from Proposition 4, we have r2 C22 q̃ are regular at r = 0 and for ` > 0,

r2 C22(r) q̃(r)

k2
0

= 2− `(`+ 1) +
`(`+ 1)

k2
0

(
−
(

Φ′0
c2
0

)2

+αρ0
Φ′0
c2
0

)
+ O(r) , r → 0 . (7.34)

The zero-th coefficient η̃0 is then

η̃0 = 2 − `(`+ 1) +
`(`+ 1)

k2
0

(
−
(

Φ′0
c2
0

)2

+αρ0
Φ′0
c2
0

)
. (7.35)

It remains to calculate Φ′0(0). From (4.15), we have

Φ′(r) = 4πG
M(r)

r2
, M(r) =

∫ r

0

s2 ρ0(s) ds .

Using l’Hopital’s rule, we obtain

Φ′0(0) = 4πG lim
r→0

M′(r)
2r

= 4πG lim
r→0

r2 ρ0(r)

2r
= 0 . (7.36)

Consequently, (7.35) simplifies to
η̃0 = 2 − `(`+ 1) . (7.37)
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Consequently, the indicial equation (7.27) at r = 0 of ODE (7.5) takes the following explicit form

s2 + 3 s + 2− `(`+ 1) = 0 ` > 0 (7.38a)

s2 + s − 2 = 0 , ` = 0 . (7.38b)

For ` > 0, the discriminant of the quadratic form (7.27) is then

∆ = 32 − 4η̃0 = 1 + 4 `(`+ 1) = 4(` + 1
2 )2 .

Thus the indicial exponents at r = 0 are given by (7.30):

λ±0 := −3

2
± (`+

1

2
) , ` > 0 . (7.39)

Remark 15. From the above calculation, we can also obtain Φ′′0(0),

Φ′(r)
r

= 4πG
M(r)

r3
⇒ lim

r→0

Φ′0
r

= 4πG lim
r→0

M′(r)
3r2

=
4

3
πGρ0(0) . (7.40)

From its definition given by the ODE (4.16),

Φ′′0(0) = 4πGρ0(0) − 2
4

3
πGρ0(0) =

4

3
πGρ0(0) . (7.41)

4

Remark 16. The indicial roots near the center (r = 0) have been derived in [35] under the hypothesis
that ρ and c tend to a constant value while Φ′0 ∼ 0, N2 ∼ 0 and N2/Φ′0 ∼ 0. N2 is the buoyancy
frequency defined by (5.17). The last condition implies that the background is adiabatic near the center.
In this case, the homogeneous system obtained in Remark 12 can be written as

r ∂r

(
y1

y2

)
+ B

(
y1

y2

)
=

(
0

0

)
, (7.42)

where y1 =
dml
r
, y2 =

eml
r

and

B =

 −3
`(`+ 1)

c1σ2

c1σ
2 −2

 . (7.43)

The indicial roots are the singular values of the matrix B and are thus `− 2 and −`− 3 for y1 and thus
` − 1 and −` − 2 for ξr as obtained in Proposition 10. However the derivation from [35] does not hold
for ` = 0.

Proposition 11 (Singularities apart from 0 in the interior). Under the assumption (7.26), we have

1. For Γ = 0 and a given ω > 0, for 0 < ` ≤ `?ω defined in (7.20), in addition to r = 0, the ODE
(7.5) on r ≤ ra also has a regular singular point at r = r?i,ω,` defined in (7.19) with the indicial
root equation

s(s− 1) + η s + 0 = 0 , (7.44)

where

η := lim
r→r?i,ω,`

(
r − r?i,ω,`

) c2
0

ω2
C22 q = −r?i,ω,` . (7.45)

The indicial exponents associated to r = r?i,ω,` are

s = 0 and s = −η + 1 = r?i,ω,` + 1 > 0 . (7.46)

2. For Γ = 0 and ` > `?ω, on [0, ra], (7.5) is singular only at r = 0.
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Proof. Since c20(r)
ω2 C22q̃(r) only has a pole of rank 1 at r = r?i,ω,`, we have

lim
r→ r?i,ω,`

(
r − r?i,ω,`

)2 c2
0(r)

ω2
C22(r) q̃(r) = 0 . (7.47)

Next, we consider (4.53) for c20(r)
ω2 C22 q(r), which simplifies to

c2
0(r)

σ2
C22(r) q(r)

Γ=0
= −αγp0

+
2

r
− `(`+ 1)

c2
0(r)

ω2

2 (αc0 r + 1)(
r −

√
`(`+ 1) c0

ω

) (
r +

√
`(`+ 1) c0

ω

) . (7.48)

Thus for Γ = 0, we have(
r − r?i,ω,`

) c2
0(r)

ω2
C22(r) q(r) =

(
−αγp0

+
2

r

)(
r − r?i,ω,`

)
− `(`+ 1)

c2
0(r)

ω2

2 (αc0 r + 1)

r +
√
`(`+ 1) c0(r)

ω

r − r?i,ω,`

r −
√
`(`+ 1) c0(r)

ω

.

(7.49)

The first term will vanish at r = r?i,ω,`, hence it remains to consider the limit of the second term.

Using the definition of r?i,ω,`, i.e. r
?
i,ω,` =

√
`(`+ 1)

c0(r?i,ω,`)

ω , we have

lim
r→ r?i,ω,`

r +
√
`(`+ 1) c0(r)

ω = 2 r?i,ω,` , (7.50)

and

lim
r→ r?i,ω,`

r − r?i,ω,`

r −
√
`(`+ 1) c0(r)

σ

=
1

1 −
√
`(`+ 1)

c′0(r?i,ω,`)

ω

=
1

1 +
√
`(`+ 1)

c0(r?i,ω,`)

ω αc0(r?i,ω,`)

=
1

1 + r?i,ω,` αc0(r?i,ω,`)
> 0 due to (7.53) .

(7.51)

The last inequality follows from assumption Assumption 3 and Figure 2b,

r 7→ r

c0(r)
is strictly increasing on [0 , ra] . (7.52)

This means that (
r

c0

)′
=

1

c0
+

r

c0
αc0 > 0 ⇒ 1 + r αc0(r) > 0. (7.53)

As a result of this, we have

lim
r→ r?i,ω,`

(
r − r?i,ω,`

) c2
0(r)

σ2
C22(r) q(r) =

− (r?i,ω,`)
2

2(r?i,ω,` αc0(r?i,ω,`) + 1)

2 r?i,ω,`

1

1 + r?i,ω,` αc0(r?i,ω,`)
= − r?i,ω,` .

(7.54)

Numerical validation We have obtained in Proposition 10 the indicial exponents at the origin, with
the corresponding values of η0 and η̃0 for all modes. These coefficients are also defined in terms of the
physical parameters (velocity, density) from Propositions 10 and 11, in (7.28) and (7.29). Here, we want
to see if the limits are verified numerically, that is, if we have:

η0 = lim
r→0

r
c2
0

σ2
C22 q(r) =

{
2 for ` = 0
4 for ` > 0

, (7.55a)

η̃0 = lim
r→0

r2 c2
0

σ2
C22 q̃(r) =

{
−2 for ` = 0
2− `(`+ 1) for ` > 0

. (7.55b)
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20 µHz.

Figure 4: Numerical validation of the limit of η0 given by (7.55a) at frequency 2 and 10 mHz, with and
without attenuation. The numerical computation uses the expression with the limit in (7.28), and follows
the step of Section 6.
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Figure 5: Numerical validation of the limit of η̃0 given by (7.55b) at frequency 2 and 10 mHz, with and
without attenuation. The numerical computation uses the expression with the limit in (7.29), and follows
the step of Section 6.

In Figures 4 and 5, we respectively compute η0 and η̃0 using the solar parameters (velocity, density,
etc.) and the approach of Section 6. Therefore we evaluate the first parts in (7.55) to see if the limits
are retrieved numerically. We plot for different frequencies, and in the absence (Γ = 0) or presence of
attenuation.

We observe in the figures that the limits at the origin are perfectly respected, even when the radius r
reaches 2× 10−3. Both η0 and η̃0 are constant, and we retrieve the values expected, according to (7.55).
This serves to validate further our analysis.

7.3 Indicial analysis in the atmosphere

We next consider the regularity of the coefficients of the scaled radial ODE (7.6) for r ≥ ra,

r2 C22 q̂(r) ∂
2
ra + r2 C22 q(r) ∂ra + r2 C22 q̃(r) a = 0 .

Let us first note that c0, γ and αρ0 are constant in the atmosphere.
We will assume that the latter two terms stay away from zero in the atmosphere (r ≥ ra). To make

this assumption more explicit, we write out their expression here, cf. (D.20) and (D.23)

C22 = −σ
2

c2
0

− αρ0
γ

1

r
+
`(`+ 1)

r2
+

Φ′0
c2
0

1

r
;

r2 C22 q̂(r) = −r2 C22 + `(`+ 1) =
σ2

c2
0

r2 +
αρ0
γ
r − Φ′0

c2
0

r ;

r2 C22 q(r) = C22(αρ0 r
2 − 2 r) + r C12 + `(`+ 1)

(1

r
− C ′22

C22
− αρ0

γ

)
;

r2 C22 q̃(r) = r2C22C11 + `(`+ 1)

[(
2

r
− αρ0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2

]
+

(
2

r
− αρ0

γ

)
rC12 .

(7.56)
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7.3.1 Discussion on the existence of singularity

When Γ 6= 0, we have
C22 6= 0 , r2C22q̂ 6= 0 , ∀ r ≥ ra . (7.57)

Thus, in this case, the ODE (7.6) on the interval [ra,∞) has no singularity.
When Γ = 0, σ = ω, and we have the following observations.

1. We consider the equation r2C22q̂ = 0. We first note that since we are in the atmosphere r > 0,
thus

r2 C22(r) q̂(r) = 0 ⇔ ω2

c2
0

r

(
r +

αρ0
γ

c2
0

ω2
− Φ′0

ω2

)
= 0

⇔ r +
αρ0
γ

c2
0

ω2
− Φ′0

ω2
= 0 , r > 0 .

(7.58)

Since r 7→ Φ′0(r) is monotone (in fact strictly decreasing, see Figure 6), the equation

r − Φ′0(r)

ω2
= −αρ0

γ

c2
0

ω2
(7.59)

either has no root or has exactly one root on r ≥ ra. If it exists, we denote by r?a1,ω the unique
simple root of (7.59), i.e.

r?a1,ω = − αρ0
γ

c2
0

ω2
+

Φ′0(r?a1,ω)

ω2
. (7.60)

The existence of this zero is further discussed below using the solar parameter values of model
S+AtmoCAI. Additionally, the zeros of r2C22q̂ = 0 are the same for all `, since the expression is
independent of `. This means that dividing by r2C22q̂ introduces at most a simple pole. It is also
convenient to rewrite (7.60) as

ω2

c2
0

r?a1,ω = − αρ0
γ

+
Φ′0(r?a1,ω)

c2
0

. (7.61)

2. For ` = 0, although the zero of C22(r) = 0 coincides with that of (7.59), we do not have to
worry about this creating more singularity since r2C22q and r2C22q̃ do not have C ′22/C22 in their
expression, in particular,

r2 C22 q(r) = C22(αρ0 r
2 − 2 r) + r C12 , ` = 0 ; (7.62a)

r2 C22 q̃(r) = r2C22C11 , ` = 0 . (7.62b)

In another word, the singularity of these terms only comes from r?a1,ω at which it is a pole of order
1.

3. Consider the equation C22(r) = 0 on r ≥ ra, which is equivalent to

ω2

c2
0

r − `(`+ 1)

r
− Φ′0(r)

c2
0

= −αρ0
γ

. (7.63)

Since r 7→ ω2

c20
r +

αρ0
γ r and the function r 7→ Φ′0(r)

c20
is strictly decreasing, r 7→ −Φ′0(r)

c20
is increasing.

The following functions are also increasing

r 7→ ω2

c2
0

r , and r 7→ − `(`+ 1)

r
. (7.64)

Thus the left-hand-side of (7.63) is an increasing function. This means that (7.63) has at most one
zero. Denoting by r?a2,ω,` this unique simple zero on (ra,∞), if it exists, we have,

ω2

c2
0

r?a2,ω,` −
`(`+ 1)

r?a2,ω,`
−

Φ′0(r?a2,ω,`)

c2
0

= −αρ0
γ

. (7.65)

The existence of this root is further discussed and illustrated in Subsection 7.5.1.
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4. For ` > 0, the zeros of C22(r) = 0 cannot coincide with that of r2C22(r)q̂(r) = 0. This is seen by
using the second expression of r2C22q̂ in (7.56),

r2 C22(r) q̂(r) = −r2 C22(r) + `(`+ 1) . (7.66)

Thus
(r?a1,ω)2 C22(r?a1,ω) q̂(r?a1,ω) = 0 ⇔ C22(r?a1,ω) =

`(`+ 1)

(r?a1,ω)2
(7.67)

and
C22(r?a2,ω,`) = 0 ⇔ (r?a2,ω,`)

2 C22(r?a2,ω,`) q̂(r
?
a2,ω,`) = `(`+ 1) . (7.68)

In another word,
r?a1,ω 6= r?a2,ω,` , ` > 0 . (7.69)

Existence of r?a2,ω,` We consider the following assumption,

Assumption 4.
1

4 ra
+
αρ0
γ
− Φ′0(ra)

c2
0

> 0 . (7.70)

Under the above assumption, we define,

`?a,ω :=

√
ω2

c2
0

(ra)2 +
1

4
+

(
αρ0
γ
− Φ′0(ra)

c2
0

)
ra −

1

2
. (7.71)

Assumption 4 guarantees the positivity of the term in the square root.

Proposition 12. Under Assumption 4 and Γ = 0, we have the following equivalence,

(7.63) has a unique zero on (ra,∞) ⇔ ` > `?a,ω . (7.72)

Proof. Statement (⇒) Suppose (7.63) has a unique zero on (ra,∞). We have denoted this unique zero
by r?a2,ω,`. We have

r?a2,ω,` =

(
`(`+ 1)

r?a2,ω,`
+

Φ′0(r?a2,ω,`)

c2
0

− αρ0
γ

)
c2
0

ω2
. (7.73)

Since r?a2,ω,` ≥ ra, so is the right-hand-side of the above equality, i.e.(
`(`+ 1)

r?a2,ω,`
+

Φ′0(r?a2,ω,`)

c2
0

− αρ0
γ

)
c2
0

ω2
≥ ra . (7.74)

Since the right-hand-side is a decreasing function on (ra,∞), the above inequality occurs if(
`(`+ 1)

ra
+

Φ′0(ra)

c2
0

− αρ0
γ

)
c2
0

ω2
>

(
`(`+ 1)

r?a2,ω,`
+

Φ′0(r?a2,ω,`)

c2
0

− αρ0
γ

)
c2
0

ω2
≥ ra (7.75)

which leads to (
`(`+ 1)

ra
+

Φ′0(ra)

c2
0

− αρ0
γ

)
c2
0

ω2
≥ ra (7.76a)

⇔ `(`+ 1) ≥ ra

(
ω2

c2
0

ra −
Φ′0(ra)

c2
0

+
αρ0
γ

)
(7.76b)

⇔ ` +
1

2
≥

√
ra

(
ω2

c2
0

ra −
Φ′0(ra)

c2
0

+
αρ0
γ

+
1

4 ra

)
. (7.76c)
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Statement (⇐) We now assume that ` > `?a,ω. It suffices to prove the existence since uniqueness is
discussed in the initial observations. We consider function

f : r 7→ r −
(
`(`+ 1)

r
+

Φ′0(r)

c2
0

− αρ0
γ

)
c2
0

ω2

is continuous on [ra,∞). If ` ≥ `?,aω then f(ra) < 0. Since Φ′0 is of order r−2, for large enough r, f(r) > 0.
With f being continuous, f(r) = 0 thus has at least one zero on [ra,∞).

Existence of r?a1,ω The existence of the singularity depends on the choice of model of parameters. We
first picture the evolution of Φ′0 in the atmosphere in Figure 6, using its expression in Lemma 1 and the
model parameters given in (6.33).

1 1.2 1.4 1.6 1.8 2

1

2

3

4

·10−7

r

Φ
′ 0

Φ′
0

αρ0
c20

γ

Figure 6: Evolution of Φ′0 (Lemma 1) in the solar atmosphere, using the model parameters given in
(6.33).

We see that Φ′0 is a strictly decreasing function, and we define the following assumptions for the
investigation of the existence of the singularity r?a1,ω.

Assumption 5.

Φ′0(ra) ≥ αρ0 c2
0

γ
. (7.77)

or

Assumption 6.

Φ′0(ra) <
αρ0 c2

0

γ
. (7.78)

Because Φ′0 is a strictly decreasing, there exists ra1,max so that

Φ′0(r) − αρ0 c2
0

γ
< 0 , r ∈ (ra1,max,∞) . (7.79)

Under Assumption 5, ra1,max is the unique value where

Φ′0(ra1,max) =
αρ0 c2

0

γ
. (7.80)

In the case of the solar atmospheric model AtmoCAI that we prescribed in (6.33), Assumption 5 is
verified and we have:

Φ′0(ra) = 3.931 71× 10−7 and
αρ0 c2

0

γ
= 3.930 92× 10−7 . (7.81)
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Let us note that the difference between the two quantities is small (7× 10−11) and therefore, it is strongly
related to the choice of model, and the representation with splines we have employed for the model S
(see Appendix F). Clearly, this condition may not be validated by any stellar models. Then we obtain

ra1,max = 1.000 812 9 , for the model of (6.33). (7.82)

We see that the singularity, if it exists, is very near the beginning of the atmosphere, as we remind that
ra = 1.000 712 6. This is due to the small difference between the quantities of (7.81).

Under Assumption 5, we define

ω∗a1 :=

√
1

ra

(
Φ′0(ra) − αρ0 c2

0

γ

)
. (7.83)

This limiting frequency can be explicitly computed for our model AtmoCAI using the parameter values
of (6.33) and we obtain,

ω∗a1

2π
= 1.4126 µHz , limiting frequency for r?a1,ω using model AtmoCAI. (7.84)

Therefore, in the case of our atmospheric model AtmoCAI, this singularity exists only at low frequency
and, when it exists, it is near the beginning of the atmosphere.

Proposition 13. In the following statements, we suppose Γ = 0.

1. We have the following equivalence

Equation (7.59) has a unique zero on (ra,∞) ⇔ Assumption 5 and ω < ω∗a1 .
(7.85)

Additionally, the zero of (7.59), denoted by r?a1,ω, if it exists, is unique and has the further
property that

r?a1,ω ∈ (ra, ra1,max] . (7.86)

2. This also means that, for the versions of model that satisfy Assumption 6, the equation (7.59)
has no zero on (ra,∞).

Proof. (Statement ⇒) If r?a1,ω exists, then

r?a1,ω =
1

ω2

(
Φ′0(r?a1,ω) − αρ0 c2

0

γ

)
. (7.87)

Since r?a1,ω > ra, the right-hand-side is also greater than > ra. In addition, since r 7→ Φ′0(r) in Figure 6
is a strictly decreasing function, we have

ra <
1

ω2

(
Φ′0(r?a1,ω) − αρ0 c2

0

γ

)
<

1

ω2

(
Φ′0(ra) − αρ0 c2

0

γ

)
(7.88)

This leads immediately to condition

ω2 <
1

ra

(
Φ′0(ra) − αρ0 c2

0

γ

)
, and Φ′0(ra) − αρ0 c2

0

γ
> 0 . (7.89)

This also gives us the statement regarding the interval to which r?a1,ω belongs, which is

r?a1,ω ∈ {r > ra
∣∣Φ′0(a) − αρ0 c2

0

γ
> 0 }. (7.90)

Statement (7.86) follows from the strictly decreasing of Φ′0.

(Statement ⇐) We now assume Assumption 5 and ω ≤ ω∗a1. Consider the continuous function

f : r 7→ r − Φ′0(ra) +
αρ0 c2

0

γ
.

We have f(ra) < 0. On the other hand, since r 7→ Φ′0(r) is of order r−2 as r → ∞, f(r) > 0 for large
enough r. Since f is continuous, this means f(r) = 0 has at least a zero on [ra,∞).
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7.3.2 Computation of indicial exponents

In the following propositions, we consider the cases in which the equation (7.59) or (7.63) has a zero, and
compute the corresponding indicial exponents.

Proposition 14. In the case that equation (7.59) has a zero, with r?a1,ω denoting the unique zero,
cf. (7.60), we have

lim
r→r?

a1,ω

(r − r?a1,ω)
r2 C22 q

r2 C22 q̂
= 1 (7.91)

and

lim
r→r?

a1,ω

(r − r?a1,ω)2 r
2 C22 q̃

r2 C22 q̂
= 0 . (7.92)

Under this assumption, the ODE (7.6) on r ≥ ra, has a regular singularity at r = r?a1,ω with indicial
equation λ2 = 0, and with double indicial exponent λ = 0.

Proof. From observation 1, we have r2C22q̃(r) = 0 only has a pole of rank 1 at r = r?a1,ω, we thus have

lim
r→ r?

a1,ω

(
r − r?a1,ω

)2 r2C22 q̃

r2 C22 q̂
= 0 .

It remains the consider the first statement.

Using l’Hopital’s rule, we have

lim
r→r?

a1,ω

(r − r?a1,ω)
1

r2 C22 q̂
= lim

r→r?
a1,ω

(r − r?a1,ω)′

(r2 C22 q̂)′
= lim

r→r?
a1,ω

1

ω2

c20
2r +

αρ0
γ − Φ′0(r)

c20
− Φ′′0 (r)

c20
r

=
1

ω2

c20
r?a1,ω −

Φ′′0 (r?
a1,ω)

c20
r?a1,ω

=
c2
0(

ω2 − Φ′′0(r?a1,ω)
)
r?a1,ω

> 0 .

(7.93)

In the third equality, we have used (7.61). The last inequality comes from the fact that Φ′′0 < 0.

We next consider the limiting value of r2C22q at r = r?a1,ω. We substitute the definition of C12, cf.
e.g. (D.20), and using that r2C22(r) = `(`+ 1) at r = r?a1,ω, we have

r2 C22 q(r)
∣∣∣
r=r?

a1,ω

= `(`+ 1)(αρ0 −
2

r?a1,ω
) + r?a1,ω C12 + `(`+ 1)

( 1

r?a1,ω
−

(r?a1,ω)2C ′22(r?a1,ω)

`(`+ 1)
− αρ0

γ

)
= `(`+ 1)(αρ0 −

2

r?a1,ω
) + `(`+ 1)

(
−αρ0 +

αρ0
γ
− 1

r?a1,ω

)

+ `(`+ 1)
( 1

r?a1,ω
− αρ0

γ

)
− (r?a1,ω)2C ′22(r?a1,ω)

= −2
`(`+ 1)

r?a1,ω
− (r?a1,ω)2C ′22(r?a1,ω) .

(7.94)
From the expression of C ′22 in (D.21), we have

C ′22(r?a1,ω) =
1

(r?a1,ω)2

(
−2

αρ0
γ

+ 3

(
αρ0
γ
−

Φ′0(r?a1,ω)

c2
0

))
+

4πGρ0(r?a1,ω)

c2
0 r

?
a1,ω

− 2
`(`+ 1)

(r?a1,ω)3

=
1

(r?a1,ω)2

(
−2

αρ0
γ
− 3

ω2

c2
0

r?a1,ω

)
+ 4πG

ρ0(r?a1,ω)

c2
0 r

?
a1,ω

− 2
`(`+ 1)

(r?a1,ω)3
.

(7.95)
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In the second equality, we have used (7.61). Using the value of C ′22, we obtain

⇒ r2 C22 q(r)
∣∣∣
r=r?

a1,ω

= −2
`(`+ 1)

r?a1,ω
+ 2

αρ0
γ

+ 3
ω2

c2
0

r?a1,ω − 4πG
ρ0(r?a1,ω)

c2
0

r?a1,ω + 2
`(`+ 1)

r?a1,ω

= 2
αρ0
γ

+ 3
ω2

c2
0

r?a1,ω −
Φ′′0(r?a1,ω)

c2
0

r?a1,ω −
2

c2
0

Φ′0(r?a1,ω)

= +
ω2

c2
0

r?a1,ω −
Φ′′0(r?a1,ω)

c2
0

r?a1,ω .

(7.96)

In the second equation, we have replaced 4πGρ0 = Φ′′0 + 2
rΦ′0 and used (7.61).

Putting together (7.93) and (7.96), we finally obtain

lim
r→r?

a1,ω

(r − r?a1,ω)
r2 C22 q

r2 C22 q̂
= lim

r→r?
a1,ω

r − r?a1,ω
r2 C22 q̂

lim
r→r?

a1,ω

r2 C22 q = 1 . (7.97)

The associated indicial equation

λ (λ − 1) +

(
lim

r→r?
a1,ω

(r − r?a1,ω)
r2 C22 q

r2 C22 q̂

)
λ = 0 , (7.98)

simplifies to
λ2 = 0 (7.99)

with double indicial exponents given by λ = 0.

Proposition 15. If equation (7.63) has a zero, and with r?a2,ω,` of (7.65) representing this unique
zero, we have

lim
r→r?

a2,ω,`

(r − r?a2,ω,`)
r2 C22 q

r2 C22 q̂
= −1 , (7.100)

and

lim
r→r?

a2,ω,`

(r − r?a2,ω,`)
2 r

2 C22 q̃

r2 C22 q̂
= 0 . (7.101)

In this case, ODE (7.6) on r ≥ ra has a regular singularity at r = r?a2,ω,` with indicial exponent
λ = 0 and λ = 2.

Proof. From observation 3, we have C22(r) = 0 only has a pole of rank 1 at r = r?a2,ω,`, we thus have

lim
r→r?

a2,ω,`

(r − r?a2,ω,`)
2 r

2 C22 q̃

r2 C22 q̂
= 0 .

It remains the consider the first statement.
Consider,

lim
r→r?

a2,ω,`

(r − r?a2,ω,`)
r2 C22 q

r2 C22 q̂
=

(
lim

r→r?
a2,ω,`

(r − r?a1,ω) r2 C22 q

) (
lim

r→r?
a2,ω,`

r2 C22 q̂

)
. (7.102)

We rearrange the first term on the right-hand-side of (7.102),

r2 C22 q(r) =

C22

(
C22(αρ0 r

2 − 2 r) + r C12 + `(`+ 1)
(1

r
− αρ0

γ

))
− C ′22`(`+ 1)

C22
. (7.103)

Thus

lim
r→r?

a2,ω,`

r2 C22 q(r) = lim
r→r?

a2,ω,`

C ′22

C22
`(`+ 1) ;

lim
r→r?

a2,ω,`

(r − r?a2,ω,`)r
2 C22 q(r) = lim

r→r?
a2,ω,`

r − r?a2,ω,`
C22

× lim
r→r?

a2,ω,`

(−C ′22)`(`+ 1) = −`(`+ 1) .

(7.104)
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On the other hand, using its definition in (7.65),

lim
r→r?

a2,ω,`

r2 C22 q̂ = `(`+ 1) , (7.105)

and

lim
r→r?

a2,ω,`

(r − r?a2,ω,`)
r2 C22 q

r2 C22 q̂
= −1 . (7.106)

The indicial root associated to this point is

λ (λ − 1) + lim
r→r?

a1,ω

(r − r?a2,ω,`)
r2 C22 q

r2 C22 q̂
λ = 0 , (7.107)

with indicial exponents
λ = 0 , λ = 2 . (7.108)

7.4 Indicial analysis for the conjugate equation

The indicial analysis for the radial modal equation (7.5) transfers readily to that for the conjugate one
(7.2), particular for V given by (8.3)

V`(r) =
1

4
h2
`(r) −

1

2
∂r h`(r) + g`(r) . (7.109)

The function h(r) = − q(r)q̂(r) has a simple pole at r = 0 and is smooth elsewhere, and g(r) = − q̃(r)q̂(r) . Thus
then V` has a pole of order two at r = 0. The same reasoning applies to the other singular points.

It remains to calculate the indicial exponents, which are now zeros of

s(s − 1) + lim
r→0

r2 V`(r) = 0 . (7.110)

The indicial exponents associated to

r? ∈ {r?i,ω,` , r?a2,ω,` , r?a1,ω} , (7.111)

are the zeros of
s(s − 1) + lim

r→0
(r − r?)2 V`(r) = 0 . (7.112)

We denote the roots of (7.110) and (7.112) respectively as

λ̃±0 and λ̃±? , (7.113)

with the convention
Re λ̃−• < Re λ̃+

• . (7.114)

Recall that from Propositions 10 and 11, that

η0 = lim
r→0

r h , η̃0 = lim
r→0

r2 g , (7.115)

and from Propositions 10, 11, 14 and 15,

η = lim
r→0

(r − r?i,ω,`) h , 0 = lim
r→0

(r − r?i,ω,`)
2 g . (7.116)

We write h as
h(r) =

η0

r
+ h̃(r) , h̃ regular at r = 0 . (7.117)

Then
d

dr
h = −η0

r2
+

d

dr
h̃ , (7.118)
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and

lim
r→0

r2 d

dr
h = lim

r→0
r h = η0 . (7.119)

Similarly at r?.

lim
r→r?

(r − r?)2 d

dr
h = lim

r→r?
(r − r?) h = η? . (7.120)

The indicial equation (7.110) takes explicit form,

s(s − 1) +
1

4
η2

0 −
1

2
η0 + η̃0 = 0 , (7.121)

and for r = r?,

s(s − 1) +
1

4
η2
? −

1

2
η? = 0 . (7.122)

We can also calculate the indicial exponents λ̃±0 and λ̃±? of the conjugate ODE, starting from those

of the original ODE. We only need to keep track of what the Liouville factor, e−
1
2

∫ r h(s) ds contributes.
Using the form (7.117) of h,∫ r

h(s) ds =

∫ r (
η0
s + h̃(s)

)
ds = η0 log x +

∫ r

h̃(s) ds (7.123)

⇒ e−
1
2

∫ r h(s) ds = e−
1
2η0 log x e−

1
2

∫ r h̃(s) ds = x−
1
2η0 ×

(
a regular function
not vanishing at 0

)
. (7.124)

We have similar results in a small neighborhood of r = r?. Thus the indicial exponents of the conjugate
ODE are obtained from those of the original ODE by relation,

λ̃±0 = λ±0 −
1

2
η0 , λ±? = λ±? −

1

2
η . (7.125)

In particular, for r = 0, since η0 = 2 for ` = 0 and 4 for ` > 0, the first relation is

λ̃±0 = λ±0 − 1 , for ` = 0 ; λ̃±0 = λ±0 − 2 , for ` > 0 , (7.126)

and
λ̃−0 = −3 , λ̃+

0 = 0 . (7.127)

We summarize the above discussion in the following proposition.

Proposition 16. The poles of V` are given as follows:

1. For Γ > 0 (i.e., with attenuation), V` only has a pole at r = 0 on (0,∞), and this is a pole of
order 2.

2. For Γ = 0, in addition to r = 0, V can have pole of order 2 at the following positions,

0 < r?i,ω,` < ra , ra < r?a1,ω and ra < r?a2,ω,` . (7.128)

This means that the potential V` is continuous and bounded on [rreg,∞) with

rreg arbitrarily small for Γ > 0, (7.129)

and
rreg > max{r?i,ω,` , r?a1,ω , r?a2,ω,`} for Γ = 0 , (7.130)

if these zeros exist.
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7.5 Numerical illustrations with the solar model

Following our analysis of the singularity of the potential V` and Proposition 16, we provide some numerical
illustrations, where we use the background parameters of the Sun, that are shown in Figures 1 to 3, see
also Appendix F. We first investigate the behavior of the singularities, before plotting the potential. Let
us first recall that for the singularity r?a1,ω, it only exists at low frequency, (7.84), and, when it exists, it
remains near the beginning of the atmosphere.

7.5.1 Singularities r?i,ω,` and r?a2,ω,`

We consider the case without attenuation. Let us first recall the definition of `?ω, which is the maximal
mode at which r?i,ω,` exists, cf. (7.20), with `

?
a,ω, the minimal mode at which r?a2,ω,` exists, given by (7.71):

`?ω = −1

2
+

√
ω2 r2

a

c0(ra)2
+

1

4
, `?a,ω = −1

2
+

√
ω2 r2

a

c0(ra)2
+

1

4
+

(
αρ0
γ
− Φ′0(ra)

c2
0(ra)

)
ra.

Comparing `?ω with `?a,ω, we observe that

Assumption 5 =⇒ `?ω ≥ `?a,ω , (7.131a)

Assumption 6 =⇒ `?ω < `?a,ω . (7.131b)

We have seen that our model AtmoCAI verifies Assumption 5 and injecting the values from (7.81), we
have

ra

(
αρ0
γ
− Φ′0(ra)

c2
0(ra)

)
= −0.81 . (7.132)

In fact, because the modes are integer, we observe a continuity in the singularity between r?i,ω,` and r
?
a2,ω,`,

such that `?ω = `?a,ω. When ` ≤ `?ω, the singularity in the interior, r?i,ω,`, and r
?
a2,ω,` does not exist. On

the other hand, when ` > `?ω, the singularity is moved towards the atmosphere, in r?a2,ω,` while r
?
i,ω,` does

not exist.
In Figure 7, we picture the position of the singularity r?i,ω,` or r

?
a2,ω,`, for modes between ` = 1 and

` = 2000, and for frequencies from 0.1 mHz to 12 mHz. We use the values of the parameters from the
solar model S for the interior, and from model AtmoCAI for the atmosphere.

r?i,ω,`

r?a2,ω,`

10 700 1,500

5

10

`

fre
qu

en
cy

(m
H
z)

0.5

1

1.5
r?

Figure 7: Position of the singularity r?i,ω,` or r
?
a2,ω,` for the solar model. We investigate modes from ` = 1

to ` = 2000 and frequencies from 0.1 mHz to 12 mHz. The black dashed line indicates the separation
between the singularity located in the interior (above the line: r?i,ω,`) or in the atmosphere (below the line:
r?a2,ω,`), and corresponds to `?ω of (7.20). For visualization, all the positions where r?a2,ω,` > 1.5 uses the
same color, while the maximum, obtained at ` = 2000 for frequency 0.1 mHz is r?a2,0.1mHz,`=2000 = 30.89.

We see that the singularity is mainly positioned near the r = 1. It is moved towards the origin
when the frequency increases and when the mode decreases. Here, the minimum is obtained at frequency
12 mHz for mode ` = 1 with r?i,12mHz,`=1 = 1.36× 10−2. On the other hand, it is moved away with

Inria



Outgoing solutions in vectorial helioseismology 57

increasing mode and decreasing frequency, the maximum is obtained for 0.1 mHz for mode ` = 2000 with
r?a2,0.1mHz,`=2000 = 30.89.

7.5.2 Evaluation of the potential

Eventually, we provide the evaluations of the real part of the potential in the interior and atmosphere,
where we consider r from 0 to 3. In Figure 8, we picture the potential without attenuation (Γ = 0)
at frequencies 2 and 10 mHz for different modes. The case with attenuation, using Γ/(2π) = 20 µHz
is pictured in Figure 9. For visualization (i.e., to allow different scales), our figures are separated into
four panels: one corresponds to near the origin, one for the interior, one near the interface with the
atmosphere (i.e. near ra) and one for the atmosphere. We use frequencies in mHz, which are typical of
applications in helioseismology, therefore, we do not observe the singularity in r?a1,ω which requires much
lower frequencies (lower than 1.4 µHz as given in (7.84)).
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(b) ω/(2π) =10 mHz, Γ = 0.

Figure 8: Solar potential V` depending on the mode ` and the frequency, assuming there is no attenuation,
such that Γ = 0. For visualization, the interval is split in four for the different regions. In addition to
the singularity in r = 0, the singularity in r = r?i,ω,` or r = r?a2,ω,` is shown by the peaks, and depends on
the mode and the frequency.

For all choices of frequency and mode, we observe the singularity at the origin (in r = 0). In the
case without attenuation, Figure 8, we see the additional singularity in r?i,ω,` or r

?
a2,ω,`: this singularity

moves towards the exterior when the mode increases, or when the frequency decreases. Namely, for mode
` = 10, the singularity is in the interior (that is, r?i,ω,`) for the two frequencies (2 mHz and 10 mHz), and
appears closer to the origin at 10 mHz. For higher mode ` = 1500, the singularity is in the atmosphere
(that is, r?a2,ω,`) at frequency 2 mHz and in the interior (that is, r?i,ω,`) at 10 mHz. These observations
coincide with the numerical evaluation of the singularity provided in Figure 7. Furthermore, we note
that only the singularity at the origin remains at mode ` = 0 without attenuation (Figure 8) or when
we incorporate attenuation, see Figure 9. We note that, near the surface and due to the variation of the
physical properties, the potential shows some important changes in all cases.

In the case with attenuation, we see some variations at the position where a singularity is in the
case without attenuation. This is due to the relatively small imaginary part added by the attenuation.
Nonetheless, these are not singularity, and they have finite values. We illustrate in Figure 10 where we
zoom near the singularity for mode ` = 10 at 10 mHz. We see that without attenuation, we have a sharp
peak that increases towards infinity, while it is a Gaussian-shape function with attenuation.
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Figure 9: Solar potential V` for the interior depending on the mode ` and the frequency, using attenuation
Γ/(2π) = 20 µHz. For visualization, the interval is split in four for the different regions.
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Figure 10: Zoom near r?i,ω,` of the Solar potential V` in the interior at frequency 10 mHz and mode ` = 10.

8 Analysis of the modal ODE: asymptotic

In this section, we obtain explicitly the first three terms in the asymptotic expansion of V` in (7.2) as
r →∞, such that,

V`(r) = v0 +
v−1

r
+

v−2

r2
+ O(r−3) , r →∞ . (8.1)

Let us first recall that the conjugated unknown ã(r) solves the conjugate ODE

−∂2
r ã + V`(r) ã = 0 , (8.2)

with
V`(r) =

1

4
h2(r) − 1

2
∂rh(r) + g(r) . (8.3)

We will present two approaches. In the first one, the asymptotic analysis is done without using
explicit expression for h, h′ and g obtained Proposition 8, by keeping track of only top order terms. This
gives an approximation result with error of order r−3, cf. Proposition 19. On the other hand, taking
advantage of the special assumptions of AtmoCAI, one can also carry out approximation directly on the
expressions given Proposition 8. The second approach, available under this specific assumption, allows for
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higher order approximation and explicit description of the error. It also allows us to present an enriched
approximation of order r−3, which makes appear the effects of gravity, cf. (8.65) or (8.66). We note that
the usual O(r−3) as obtained in Approach 1 works well at infinity, but does not show the effect of gravity
which comes into presence at order r−3 and only for g.

We also recall the notation introduced in (4.50),

k0 :=
σ

c0
(8.4)

8.1 Approach 1

8.1.1 Asymptotic of C22

To begin with, we write out the asymptotic of coefficient C22.

Proposition 17. For all k0 6= 0,

1

C22
= − 1

k2
0

(
1− αρ0

γ k0

1

k0 r
+

(
`(`+ 1) +

α2
ρ0

γ2 (k0)2

)
1

(k0r)2
+ k−2

0 O(r−3)

)
, r →∞ . (8.5)

Here the error O(r−3) is bounded independently of k0. For k0 > k̂0,

1

C22
=

1

k2
0

O(1) , r →∞ . (8.6)

On the other hand, C ′22 is independent of k0, and

C ′22 = πG
ρ0

c2
0

1

r
+ O(r−2) , (8.7)

thus (
1

r C22

)′
= k−2

0 O(r−2) . (8.8)

Proof. Denote by ε(r) the following function independent of k0:

ε(r) :=
αρ0
γ

1

r
− `(`+ 1)

r2
− 1

c2
0

Φ′0
r
. (8.9)

From Lemma 1, we have
1

c2
0

Φ′0
r

= O(r−3) . (8.10)

For fixed `, this means

ε = r−1 O(1) =
αρ0
γ

1

r
+ O(r−2) =

αρ0
γ

1

r
− `(`+ 1)

r2
+ O(r−3) , r →∞ , (8.11)

and

ε2 =
α2
ρ0

γ2

1

r2
+ O(r−3) , ε3 = O(r−3) , r →∞ . (8.12)

As a result of this, for

C22 = −k2
0 −

αρ0
γ

1

r
+
`(`+ 1)

r2
+

1

c2
0

Φ′0
r

= −k2
0 − ε(r) , (8.13)

we have

−k2
0

1

C22
=

1

1 + k−2
0 ε(r)

= 1 − k−2
0 ε(r) + k−4

0 ε2(r) + k−6
0 O(|ε(r)|3)

= 1 − k−2
0

(αρ0
γ

1

r
− `(`+ 1)

r2
+ O(r−3)

)
+ k−4

0

(α2
ρ0

γ2

1

r2
+ O(r−3)

)
+ k−6

0 O(r−3) .

(8.14)
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For k0 > k̂0, we have

1

C22
= − 1

k2
0

(
1− αρ0

γ k0

1

k0 r
+
`(`+ 1)

(k0r)2
+

α2
ρ0

γ2 (k0)2

1

(k0r)2
+ k−2

0 O(r−3)

)

= − 1

k2
0

(
1− αρ0

γ k0

1

k0 r
+

(
`(`+ 1) +

α2
ρ0

γ2 (k0)2

)
1

(k0r)2
+ k−2

0 O(r−3)

)
.

On the other hand,

C ′22 =
αρ0
γ

1

r2
− 2

`(`+ 1)

r3
+

1

c2
0

Φ′′0
r
− 1

c2
0

Φ′0
r2

=
αρ0
γ

1

r2
− 2

`(`+ 1)

r3
+

1

c2
0

1

r
(4πGρ0 −

2

r
Φ′0) − 1

c2
0

Φ′0
r2

= 4πG
ρ0

c2
0

1

r
+
αρ0
γ

1

r2
− 2

`(`+ 1)

r3
− 3

1

c2
0

Φ′0
r2

.

(8.15)

Thus C ′22 is independent of k0 and

C ′22 = πG
ρ0

c2
0

1

r
+ O(r−2) . (8.16)

Since (
1

r C22

)′
= − 1

r2

1

C22
− 1

C2
22

C ′22

r
,

for k0 > k̂0, this leads to,(
1

r C22

)′
=

1

r2

1

k2
0

O(1) +
1

k4
0

O(1)O(r−2) = k−2
0 O(r−2) .

8.1.2 Asymptotic of q̂, q̃ and q

We write out the asysmptotics for the coefficients q̂, q̃ and q.

Lemma 3. The coefficients of the ODE (7.1) have the following asymptotic expansion, as r →∞,

− 1

q̂(r)
= 1− `(`+ 1)

(k0r)2
+ k−2

0 O(r−3) , (8.17a)

q(r) = αρ0 −
2

r
+
`(`+ 1)αρ0

k2
0

1

r2
+ k−2

0 O(r−3) , (8.17b)

q̃(r) = −σ
2

c2
0

+
2

r

(
αρ0 −

αρ0
γ

)
+

2

r2
+
`(`+ 1)

k2
0

α2
ρ0 (1− γ)

γ2

1

r2
+ O(r−3) + k−2

0 O(r−3) .

(8.17c)

Proof. Let us consider − 1
q̂(r) , from (8.5), we have

1

r2 C22
= − 1

k2
0

1

r2

(
1− αρ0

γ k0

1

k0 r
+ k−2

0 O(r−2)

)
, (8.18)

and for k0 > k̂0,

1

r2 C22
= − 1

k2
0

1

r2
O(1) =⇒

(
1

r2 C22

)2

=
1

r4

1

k4
0

O(1) . (8.19)
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As a result of (8.18), using Neumann series expansion, we obtain

− 1

q̂(r)
=

1

1 − `(`+ 1)

r2 C22

= 1 +
`(`+ 1)

r2 C22
+ O(

∣∣∣∣`(`+ 1)

r2 C22

∣∣∣∣2) = 1− `(`+ 1)

(k0r)2
+

αρ0
γ k0

`(`+ 1)

(k0 r)3
+ k−4

0 O(r−4) ,

or simply

− 1

q̂(r)
= 1 − `(`+ 1)

(k0 r)2
+ k−4

0 O(r−3) . (8.20)

Then, since (
1

r C22

)′
= k−2

0 O(r−2) ,

we have

q(r) = αρ0 −
2

r
+

1

r

C12

C22
− `(`+ 1)

αρ0
γ

1

r2C22
+
`(`+ 1)

r

(
1

r C22

)′
+

2 `(`+ 1)

r3C22︸ ︷︷ ︸
k−2
0 O(r−3)

.

It remains to consider C12

C22
. Using the definition of C12 in (4.39c),

C12 = `(`+ 1)

(
1

r

(
−αρ0 +

αρ0
γ

)
− 1

r2

)
,

and (8.5) which gives the asymptotic of C−1
22 ,

C12

C22
= C12C

−1
22 = `(`+ 1)

(
1

r

(
−αρ0 +

αρ0
γ

)
− 1

r2

)(
− 1

k2
0

)(
1− αρ0

γ k0

1

k0 r
+ k−2

0 O(r−2)

)
= −`(`+ 1)

k2
0

[
αρ0
γ

(1− γ)

r
− 1

r2

] [
1− αρ0

γ k0

1

k0 r
+ k−2

0 O(r−2)

]
= −`(`+ 1)

k2
0

(
αρ0
γ

(1− γ)

r
−

(
α2
ρ0(1− γ)

γ2 k2
0

+ 1

)
1

r2
+

αρ0
γ k−2

0

1

r3
+ k−2

0 O(r−4)

)

= −`(`+ 1)

k2
0

(
αρ0
γ

(1− γ)

r
−

(
α2
ρ0(1− γ)

γ2 k2
0

+ 1

)
1

r2
+ k−2

0 O(r−3)

)
.

This gives

1

r

C12

C22
= −`(`+ 1)

k2
0

(
αρ0
γ

(1− γ)

r2
−

(
α2
ρ0(1− γ)

γ2 k2
0

+ 1

)
1

r3
+ k−2

0 O(r−4)

)
. (8.21)

In summary, we have

q(r) = αρ0 −
2

r
+

(
−`(`+ 1)

k2
0

αρ0 (1− γ)

γ
+
`(`+ 1)

k2
0

αρ0
γ

)
1

r2
+ k−2

0 O(r−3) ,

which simplifies to

q(r) = αρ0 −
2

r
+
`(`+ 1)αρ0

k2
0

1

r2
+ k−2

0 O(r−3) . (8.22)

Eventually, since

1

r

[(
2

r
− αρ0

γ

)
1

rC22

]′
= −1

r

2

r2

1

rC22
+

(
2

r
+
αρ0
γ

)
1

r

(
1

rC22

)′
= k−2

0 O(r−3) ,

we have

q̃(r) = C11 +
`(`+ 1)

r

[(
2

r
− αρ0

γ

)
1

rC22

]′
+

2

r

C12

rC22︸ ︷︷ ︸
`(`+1) k−2

0 O(r−3)

− αρ0
γ

C12

rC22
.
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It remains to look at C11, given by

C11 = −σ
2

c2
0

+
2

r

(
αρ0 −

αρ0
γ

)
+

2

r2
− 2

c2
0

Φ′0
r︸︷︷︸

O(r−3)+expo decay

+
4πG

c2
0

ρ0︸︷︷︸
decays exponentially

.

Thus

C11 ∼ −
σ2

c2
0

+
2

r

(
αρ0 −

αρ0
γ

)
+

2

r2
+ O(r−3) , r →∞. (8.23)

Together with (8.21), we obtain

q̃(r) = −σ
2

c2
0

+
2

r

(
αρ0 −

αρ0
γ

)
+

2

r2
+
`(`+ 1)

k2
0

α2
ρ0 (1− γ)

γ2

1

r2
+ O(r−3) + k−2

0 O(r−3) . (8.24)

8.1.3 Asymptotic of the coefficients of the ODE

Here, we obtain the asymptotic for the coefficient of the normalized ODE (4.62),

−∂2
ra + h(r) a + g(r) = 0 , (8.25)

with
h(r) := −q(r)

q̂(r)
, g(r) := − q̃(r)

q̂(r)
. (8.26)

We label the coefficients of the asymptotic expansions at infinity of the ODE (7.1) in (8.17) as

q̌−2 := −`(`+ 1)

k2
0

,

q0 = αρ0 , q−1 = −2 , q−2 :=
αρ0 `(`+ 1)

k2
0

= −αρ0 q̌−2 ,

q̃0 = −k2
0 , q̃−1 = 2

(
αρ0 −

αρ0
γ

)
,

q̃−2 = 2 +
`(`+ 1)

k2
0

α2
ρ0 (1− γ)

γ2
= 2 −

α2
ρ0 (1− γ)

γ2
q̌−2 .

(8.27)

Proposition 18. The coefficient of ODE (8.25) has the following asymptotic as r →∞,

h(r) = h0 +
h−1

r
+

h−2

r2
+ O(r−3) ,

g(r) = g0 +
g−1

r
+

g−2

r2
+ O(r−3) ,

(8.28)

with

h0 = αρ0 , h−1 = −2 , h−2 = 0 ;

g0 = −k2
0 , g−1 = 2

(
αρ0 −

αρ0
γ

)
, g−2 = 2 + `(`+ 1) +

`(`+ 1)

k2
0

α2
ρ0(1− γ)

γ2
.

(8.29)

Proof. We have

h(r) =
(

1 +
q̌−2

r2
+ k−2

0 O(r−3)
)(

q0 +
q−1

r
+
q−2

r2
+ k−2

0 O(r−3)
)

⇒ h(r) = q0 +
q−1

r
+ r−2

(
q0 q̌−2 + q−2

)
+ k−2

0 O(r−3) .

Note that q̌−2 contains a factor of k−2
0 which allows for the presence of this factor in the error.
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From (8.27), we have the simplification

q̌−2 q0 + q−2 = q̌−2 αρ0 − αρ0 q̌−2 = 0 .

Similarly, we have

g(r) =
(

1 +
q̌−2

r2
+ k−2

0 O(r−3)
)(

q̃0 +
q̃−1

r
+
q̃−2

r2
+ k−2

0 O(r−3) + O(r−3)
)
, (8.30)

and thus,

g = q̃0 +
q̃−1

r
+
q̃0 q̌−2 + q̃−2

r2
+ O(r−3) + k−2

0 O(r−3) . (8.31)

Simplification of the higher order terms gives,

q̃0 q̌−2 + q̃−2 = (−k2
0) q̌−2 + 2 −

α2
ρ0 (1− γ)

γ2
q̌−2 = −q̌−2

(
k2

0 +
α2
ρ0(1− γ)

γ2

)
+ 2

=
`(`+ 1)

k2
0

(
k2

0 +
α2
ρ0(1− γ)

γ2

)
+ 2 = 2 + `(`+ 1) +

`(`+ 1)

k2
0

α2
ρ0(1− γ)

γ2
.

8.1.4 Asymptotic of the potential

Combining all of the above asymptotic results, we obtain the one for the potential.

Proposition 19. V`(r) defined in (8.3) has the following asymptotics as r →∞,

V`(r) = v0 +
v−1

r
+

v−2

r2
+ O(r−3) , r →∞ , (8.32)

where

v0 =
α2
ρ0

4
− σ2

c2
0

=
α2
ρ0

4
− k2

0 ,

v−1 = αρ0 − 2
αρ0
γ

,

v−2 = 2 + `(`+ 1) +
`(`+ 1)

k2
0

α2
ρ0(1− γ)

γ2
.

(8.33)

The error is bounded in k0, for k0 > k̂0.

Proof. To obtain the asymptotic expansion for V` as r →∞, we first recall from (8.29), that

h0 = αρ0 , h−1 = −2 , h−2 = 0 ;

g0 = −k2
0 , g−1 = 2

(
αρ0 −

αρ0
γ

)
, g−2 = 2 + `(`+ 1) +

`(`+ 1)

k2
0

α2
ρ0(1− γ)

γ2
.

We thus obtain the asymptotic for (h(r))2 as

(h(r))2 = h2
0 +

2 h0 h−1

r
+

2 h0 h−2 + (h−1)2

r2
+ O(r−3) , (8.34)

and that for ∂rh,

∂rh(r) =
∂rq(r)

q̂(r)
− q(r) ∂r q̂

q̂(r)2
⇒ ∂rh = −q−1r

−2 + O(r−3) = −h−1r
−2 + O(r−3) .

Putting these asymptotics together, we obtain that for V`:

v0 =
1

4
h2

0 + g0 =
α2
ρ0

4
− k2

0 ,
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and

v−1 =
1

4
(2 h0 h−1) + g−1 = −αρ0 + 2

(
αρ0 −

αρ0
γ

)
= αρ0 − 2

αρ0
γ

.

On the other hand,

v−2 =
1

4

(
2 h0 h−2 + (h−1)2

)
− 1

2
(−h−1) + g−2

=
1

4
(h−1)2 − 1

2
(−h−1) + g−2

= g−2 .

8.2 Approach 2

We obtain asymptotic approximations for h, h′ and g, starting directly from their explicit expression
given in Proposition 8. For simplicity, we work under the assumption of constant attenuation i.e.

(k2
0)′ = 0 . (8.35)

We first note that for ` = 0,

h0 = αρ0 −
2

r
; (8.36a)

g0 = −k2
0 +

2 (αρ0 −
αρ0
γ )

r
+

2

r2
. (8.36b)

It suffices to consider for higher `.
We recall from Lemma 1 that in r ≥ ra,

Φ′0 =
G

r2
m + exponential decay term (8.37)

thus

Φ′′0 = −2
G

r3
m + exponential decay term . (8.38)

By its definition

Ehe = −αρ0
γ

+
Gm

c2
0

1

r2
+ exponential decay term . (8.39)

Approximations with exponentially small error For rational approximations with exponentially
small error, in expressions (4.76) (4.75) and (4.77), we replace

Φ′0 ∼
G

r2
m ; Φ′′0 ∼ −2

G

r3
m ; Ehe ∼ −

αρ0
γ

+
Gm

c2
0

1

r2
. (8.40)

We denote these as

happ-exp , (h′)app-exp , gapp-exp (8.41)

and

Vapp-exp :=
1

4
(happ-exp)2 − 1

2
(h′)app-exp + gapp-exp . (8.42)
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Approximation with error O(r−3) In (4.75), the third term is of order r−3, as r →∞. In addition, it
is clear that they are bounded in k−2

0 for all k0 ≥ 0, thus we arrive at the same result from Proposition 18,

h = αρ0 −
2

r
+

`(`+ 1)

k2
0

Eh (8.43)

with error,

Eh =
2 r − Ehe

k20
− r

Φ′′0
c20

1
k20(

r2 − `(`+1)
k20

− r
k20
Ehe

)
(r2 − r

k20
Ehe)

= O(r−3)

bounded uniformly in k2
0 ∈ [0,∞) and `(`+ 1) for ` = 0, 1, . . .

(8.44)

Similarly,

h′ =
2

r2
+

`(`+ 1)

k2
0

O(r−4) . (8.45)

with O(r−4) term bounded uniformly in k2
0 ∈ [0,∞) and `(`+ 1) for ` = 0, . . .. We write

happ−3 = h0 = αρ0 −
2

r
; (8.46a)

(h′)app−3 = h′0 =
2

r2
. (8.46b)

Since the term (4.76b) in expression (4.76) for g is of order r−3, we reobtain the result from Proposi-
tion 18. We introduce the notation

gapp−3 = −k2
0 +

2 (αρ0 −
αρ0
γ )

r
+

2

r2
+ `(`+ 1)

k2
0 +

αρ0
γ

(
αρ0
γ − αρ0

)
k2

0 r
2 − r Ehe

; (8.47a)

g̃app−3 = −k2
0 +

2 (αρ0 −
αρ0
γ )

r
+

1

r2

(
2 + `(`+ 1) +

`(`+ 1)

k2
0

αρ0
γ

(
αρ0
γ
− αρ0

))
(8.47b)

then
g = g̃app−3 +

`(`+ 1)

k2
0

Ẽg,−3 = gapp−3 +
`(`+ 1)

k2
0

Eg,−3 (8.48)

where
Eg := − Φ′′0

c2
0

1

r2 − r
k20
Ehe

+
Φ′′0
c2
0

1

k2
0

+

(
2

r
− αρ0

γ

) 2r − k−2
0 Ehe − r

k20

Φ′′0
c20(

r2 − `(`+1)
k20

− r
k20
Ehe) (r2 − r

k20
Ehe)

.

(8.49)

This error term also satisfies

Eg = O(r−3) bounded uniformly in k2
0 ∈ [0,∞) and `(`+ 1) for ` = 0, 1, . . . (8.50)

For V , we define

V app
−3 =

1

4
(happ−3 )2 − 1

2
(h′)app−3 + gapp−3 ; (8.51a)

Ṽ app
−3 =

1

4
(happ−3 )2 − 1

2
(h′)app−3 + gapp−3 . (8.51b)

Since
1

4
(happ−3 )2 − 1

2
(h′)app−3 =

α2
ρ0

4
− αρ0

r
, (8.52)

we have
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V app
−3 =

α2
ρ0

4
− k2

0 +
αρ0 − 2

αρ0
γ

r
+

2

r2
+ `(`+ 1)

k2
0 +

αρ0
γ

(
αρ0
γ − αρ0

)
k2

0 r
2 − r Ehe

; (8.53a)

Ṽ app
−3 =

α2
ρ0

4
− k2

0 +
αρ0 − 2

αρ0
γ

r
+

1

r2

(
2 + `(`+ 1) +

`(`+ 1)

k2
0

αρ0
γ

(
αρ0
γ
− αρ0

))
.

(8.53b)

We also have the same result as in Proposition 19,

V (r) = Ṽ app
−3 +

`(`+ 1)

k2
0

O(r−3) = V app
−3 +

`(`+ 1)

k2
0

O(r−3) . (8.54)

Higher order approximations By ignoring Φ′′0
c20
r in the numerator of the last expression of h, we

obtain an approximation of order r−6. We further ignore the lower order term in Ehe and obtain an
approximation of order r−5. Define

happ−6 := αρ0 −
2

r
+ `(`+ 1)

2 k2
0 r − Ehe(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

, (8.55)

and

happ−5 := αρ0 −
2

r
+ `(`+ 1)

2 k2
0 r +

αρ0
γ(

k2
0r

2 − `(`+ 1) + r
αρ0
γ

)
(k2

0 r
2 + r

αρ0
γ )

. (8.56)

We have

h = happ−6 +
`(`+ 1)

k2
0

O(r−6) = happ−5 +
`(`+ 1)

k2
0

O(r−5) . (8.57)

We have

h′ = (h′)app−5 +
`(`+ 1)

k2
0

O(r−5) (8.58)

with

(h′)app−5 =
2

r2
− 6 `(`+ 1) k2

0(
k2

0r
2 − `(`+ 1) + r

αρ0
γ

) (
k2

0 r
2 + r

αρ0
γ

) . (8.59)

We did as above to obtain an approximation of order r−5 for g,

gapp−5 := − k2
0 +

2 (αρ0 −
αρ0
γ )

r
+

2

r2
+ `(`+ 1)

k2
0 +

αρ0
γ

(
αρ0
γ − αρ0

)
k2

0 r
2 + r

αρ0
γ

− 2
Gm

c2
0

1

r3
+ `(`+ 1)

(
2

r
− αρ0

γ

)
2 k2

0 r +
αρ0
γ(

k2
0r

2 − `(`+ 1) + r
αρ0
γ ) (k2

0 r
2 + r

αρ0
γ )

(8.60)

then

g = gapp−5 +
`(`+ 1)

k2
0

O(r−5) . (8.61)

Potential V is then approximated by,

V app
−5 =

1

4
(happ−5 )2 − 1

2
(happ−5 )′ + gapp−5 . (8.62)
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Locally enriched O(r−3) approximation Near r = ra, with constant 2Gm
c20

being large, the term
−2Gm

c0
r−3 has significant effect in this region, which prevents gapp−3 from approximating g well. The same

poor approximation carries over for V . For h, since terms carrying Gm
c20

appear at order r−5, this influence
is much more tamed. Because of this, happ−3 approximates h well even close to r = 1, despite the area
around the spike when there are zeros of the denominator (i.e. at r = r?a1,ω,` and r = r?a2,ω,`. Thus an
enriched version near r = 1 with the same order of error at infinity (i.e. r−3), we can work with

h0 , h
′
0 (8.63)

and
gappG,−3 := gapp−3 − 2

Gm

c2
0

1

r3
or g̃appG,−3 := g̃app−3 − 2

Gm

c2
0

1

r3
. (8.64)

The approximation for V are given by

Ṽ app
G,−3 = Ṽ app

−3 − 2
Gm

c2
0

1

r3
. (8.65)

or

V app
G,−3 = V app

−3 − 2
Gm

c2
0

1

r3
. (8.66)

8.3 Numerical illustration of the performance

We evaluate the quality of the asymptotics for the functions h, h′, g and V`, using the expansions obtained
at order 3 and 5, given above. In addition to the visualization of the functions, we also introduce the
relative error between the function and its asymptotic, that depends on the frequency and mode, and
that we define by

eV•(r) =

∣∣V`(r)− V•,`(r)∣∣
|V`(r)|

, (8.67)

and similarly with eh• , eh′• and eg• .

8.3.1 Numerical illustration for the asymptotic of h

We investigate the accuracy of the asymptotic expansion of h, given at order 3 and 5 respectively by
(8.46a) and (8.56). In Figures 11 and 12, we picture the function h together with its asymptotic happ−3 and
happ−5 , as well as their corresponding relative error eh• , respectively without and with attenuation.

We observe that the asymptotic is equally accurate with or without attenuation and that, in both
cases, it becomes less accurate at high modes. Namely, it reaches at best a relative error of 10−12 at
mode ` = 0, and 10−8 at mode ` =1500. As expected, the asymptotic at order 5, happ−5 , gives the best
results and we observe a gain of 2 orders of magnitude in terms of accuracy when we compare from order
3 and 5. The maximal error occurs near the singularity r?a2,ω,`, if it exists (that is, only for high modes,
as illustrated in Subsection 7.5).

We can conclude of the expansion of h that the asymptotics accurately capture the behaviours. For
small modes, the order 3 approximation, happ−3 , appears sufficient (about 10−8 relative error), but the order
5 is necessary for larger modes, as illustrated with ` = 1500. Also, we do not observe any differences if
attenuation is incorporated of not.

8.3.2 Numerical illustration for the asymptotic of h′

We now experiment with the asymptotic expansion of h′, given at order 3 and 5 respectively by (8.46b)
and (8.59). In Figures 13 and 14, we picture the function together with its asymptotic h′app−3 and h′app−5 ,
and the corresponding relative error eh′• . The two figures correspond respectively to the case without and
with attenuation.

Similarly as for the function h, we do not see a difference in case with or without attenuation. On
the other hand, we see that the relative error for the asymptotic expansion of h′ is larger than that for
h, in particular for the high modes. Here, for the mode ` = 10, the relative error reaches 10−8 while it is
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Figure 11: Evaluation of the asymptotic of h at order 3 and 5, given by (8.46a) and (8.56) in the case
without attenuation (Γ = 0).
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(c) Evolution of error at 2 mHz, for mode ` = 10.
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Figure 12: Evaluation of the asymptotic of h at order 3 and 5, given by (8.46a) and (8.56) in the case
with attenuation Γ/(2π) = 20 µHz.

10−12 for h. At mode ` = 250, the relative error is still acceptable (10−4 with order 5 approximation),
but the error is particularly high for high modes, as illustrated with mode ` = 2500 in Figures 13 and 14,
with, namely, 100% relative error.

Therefore, the asymptotic expansion of h′ is less accurate than that for h. The order 3 approximation
seems effective only for low modes, while the order 5 appears effective for modes up to a few hundreds.
Nonetheless, for very high modes, such that we have illustrated with ` = 1500, one needs an expansion
of higher order.
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Figure 13: Evaluation of the asymptotic of h′ at order 3 and 5, given by (8.46b) and (8.59) in the case
without attenuation (Γ = 0).
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Figure 14: Evaluation of the asymptotic of h′ at order 3 and 5, given by (8.46b) and (8.59) in the case
with attenuation Γ/(2π) = 20 µHz.

8.3.3 Numerical illustration for the asymptotic of g

For the asymptotic of g, we have provided the expansion at order 3 and 5, (8.47a) and (8.60), as well
as a variation for the order 3, g̃app−3 , given in (8.47b). In addition, we have provided the locally enriched
version with the gravity term for the order 3, gappG,−3 and g̃appG,−3 given in (8.65) and (8.66). We picture
the performance of these approximations in Figures 15 and 16, respectively in the case without and with
attenuation.

As in the previous comparisons, we do not observe any difference between the case without and with
attenuation in terms of accuracy. Comparing the choice of asymptotic expansions, we have the following
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(d) Using frequency 2 mHz and mode ` = 1500.

Figure 15: Evaluation of the asymptotic of g, in the case without attenuation (Γ = 0).
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(d) Using frequency 2 mHz and mode ` = 1500.

Figure 16: Evaluation of the asymptotic of g, in the case with attenuation Γ/(2π) = 20 µHz.

comments.

– The order 3 approximation gapp−3 and g̃app−3 gives the same results at low mode, where we cannot
distinguish between the two. On the other hand, at higher modes, g̃app−3 gives better results than
gapp−3 .

– Similarly, the enriched versions of the order 3 approximations, gappG,−3 and g̃appG,−3 are relatively similar
at low mode, but g̃appG,−3 behaves better at high modes.

– We clearly observe the improvement obtained from enriched versions with gravity, gappG,−3 and g̃appG,−3,
compared to the original version of gapp−3 and g̃app−3 . In particular, the enriched version as as accurate
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as the order 5 approximation, gapp−5 .

Overall, we see that the ‘tilda’ versions of the expansion is more efficient, and that the enrichment of
the order 3 with the gravity is as (or even more) accurate than the order 5.

8.3.4 Numerical illustration for the asymptotic of V`

We can finally plot the asymptotics of the potential V , which definitions coincide with the choice of
expansion for g, h and h′. Therefore, we have the order 3 and 5 (V app

−3 and V app
−5 ) and, for the former,

the variation Ṽ app
−3 and the possibility to enrich with the gravity term: V app

G,−3 and Ṽ app
G,−3. We compare in

Figures 17 and 18 in the absence or presence of attenuation respectively.
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Ṽ
app
G,−3

(a) Using frequency 2 mHz and mode ` = 10.

1 1.5 2 2.5 3

9.1

9.2

9.3

·106

r

R
e
(
V

)

V

V
app
−3

Ṽ
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Ṽ
app
G,−3

(b) Using frequency 2 mHz and mode ` = 250.

1 1.5 2 2.5 3
10−14

10−6

102

r

e
V
•

e
V

app
−3e

Ṽ
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Ṽ
app
G,−3

(c) Using frequency 2 mHz and mode ` = 10.

1 1.5 2 2.5 3
10−12

10−5

102

r

e
V
•

e
V

app
−3e

Ṽ
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(d) Using frequency 2 mHz and mode ` = 250.

Figure 17: Evaluation of the asymptotic of V , in the case without attenuation (Γ = 0).

The results for the potential coincide with the observations given above for the different functions. In
particular, the accuracy of the approximation using order 5 can be attained by using the order 3 with an
enriched gravity term. While we show the results using a maximal mode of ` = 250, it is clear that using
high modes (such as ` = 2500) results in a drastic increase of error, as illustrated in the approximation
of h′.

9 Existence of solutions

With the background quantities given by the AtmoCAI model for r ≥ ra, we consider

−ρ0

(
ω2 + 2iω Γ

)
ξ + P(ξ) + ρ0(ξ · ∇)∇Φ0 = f in R3 . (9.1)

In this section, we construct a Green’s operator, denoted by G whose Schwartz kernel is given by Green’s
tensor G written in a basis made up of vectorial harmonic spherical Pm` , Bm

` and Cm
` , so that for a

compactly supported smooth vector-valued function f ,

LG f = f , f ∈ D(R3)3 . (9.2)

The component of the 3D Green’s kernel G depends on the radial modal Green’s kernel of the modal
radial ODE, (

q̂(r) ∂2
r + q(r) ∂r + q̃(r)

)
G`(r, s) = δ(r − s) . (9.3)
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Figure 18: Evaluation of the asymptotic of V , in the case with attenuation Γ/(2π) = 20 µHz.

This is equivalent to constructing a conjugate modal Green’s kernel G̃`,(
∂2
r − V`

)
G̃` = δ(r − s) . (9.4)

The second serves in particular for choosing an appropriate outgoing condition at infinity. Since Green’s
kernels of ODE are obtained from two homogeneous solutions, we first construct ‘regular’ homogeneous
solutions in Subsection 9.1.1, and then outgoing homogeneous solutions in Subsection 9.1.2. With the
construction G`, the tensor G is determined uniquely G in Subsection 9.2.

9.1 Existence results for modal radial ODEs

9.1.1 Existence of a regular solution ψ

We have identified the singular points of the coefficients of ODE (7.1) in Table 1. Apart these points, the
coefficients of the two ODEs are continuous. To facilitate the construction of solution in the neighborhood
of singular points, in particular to apply ODE theory for regular singular points, we assume the following.

Assumption 7 (Analytic background assumption). We assume that c0, ρ0 and γ are analytic in a small
neigbhorhood of each point in the singular set S, and outside of which they are continuous, with

Σreg sing = {0} for Γ > 0 , (9.5a)
Σreg sing = {0 , r?i,ω,` , r?a1,ω , r?a2,ω,`} for Γ = 0 . (9.5b)

Under Assumption 7, we can construct a regular solution φ = φ` of the original radial modal ODE
(7.1), (

q̂(r) ∂2
r + q(r) ∂r + q̃(r)

)
ψ = 0 . (9.6)

This will give a corresponding ‘more regular’4 solution ψ = ψ` for the conjugate radial modal ODE (7.2),(
− ∂2

r + V (r)
)
ψ = 0 , (9.7)

via the relation (4.66),

ψ` = e−
1
2

∫ r h` φ` . (9.8)
4We recall that λ̃+ = λ+ − 2 for ` > 0 and λ̃+ = λ+ − 1 = 0 for ` = 0.
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Regular solution for the original radial ODE For Γ > 0, we recall that the only singular point is
at r = 0 with the indicial roots given by

λ+
0 =

{
`− 1 , ` > 0

1 , ` = 0
, λ−0 =

{
−`− 2 , ` > 0

−2 , ` = 0
. (9.9)

Assume also the analyticity neighborhood of the background at the point is (−δ, δ), with δ > 0. We apply
Theorem 3 for the regular singular ODE in order to construct a regular solution ψ` on [0, δ) satisfying,

lim
r→0

r−λ
+
0 ψ` = 1 . (9.10)

This solution ψ`|[0,δ) is then extended to [0,∞) by using Theorem 2 applied to the interval [−δ/2,∞).
For Γ = 0, we have shown that the set of regular singular points contains more than just r = 0,

cf. (9.5). Once we make a choice of a solution at r = 0 and we can only extend this solution without
making further choice of indicial exponents at the remaining singular points (r?i,ω,`, r

?
a1,ω, and r?a2,ω,`). The

extension is obtained by using Theorem 2 on the interval where the coefficients of (7.1) are continuous,
and using Theorem 3 to extend after a regular singular point.

Remark 17. When we extend past a regular singular point, what we simply do is to determine the highest
order term c0 and c̃0 in Theorem 3, and the extended solution is a linear combination of the u1 and u2.
Luckily, the indicial exponents at the nonzero singular points for the ODE (7.1) are all non-negative, cf.
Table 1. 4

9.1.2 Existence of outgoing homogeneous solution

From the results of Section 7 and Subsection 9.1.1, there exists rreg > 0 such that V` is bounded on
[rreg,∞), cf. Proposition 19. V` has the asymptotic expansion at infinity,

V`(r) = −k2 − αad

r
+
µ2
` − 1

4

r2
+ O(r−3) . (9.11)

Here, µ` depends on v−2 defined in Proposition 19 and is explicitely given in (9.40), and we use the
notations

k2 := v0 =
σ2

c2
0

− α2

4
, k :=

√
k2 ; (9.12a)

αad = −v−1 =
α

γ
(2− γ) , (9.12b)

where √ uses the Argument branch [0, 2π). Under the physical assumption of (2.1), we have

αad > 0 . (9.13)

In another word, the function

R+ 3 r 7→ V`(r + rreg) , (9.14)

is smooth and inherits the same asymptotic with V` at infinity. To focus on the behavior of the solution
to (7.2), (

− ∂2
r + V`(r)

)
ãm` = 0 , (9.15)

at infinity, we follow [2, Eqn 3.4 - 3.6] to shift the problem to (rreg,∞), on which V` is bounded.

Shifted problem Consider a solution w defined by

w(r) = ã(r + rreg) , (9.16)

then w satisfies

− d2

dr2
w + Vshifted w = 0 , Vshifted(r) = V (r + rreg) , r > 0 . (9.17)
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Vshifted is a complex-valued function which is bounded, smooth and has asymptotic,

Vshifted(r) = −k2 − αad

r + rreg
+

µ2
` − 1

4

(r + rreg)2
+ O((r + rreg)−3) . (9.18)

We define

qL(r) := − αad

r + rreg
; (9.19a)

qS(r) := Vshifted(r) − qL(r) + k2 =
µ2
` − 1

4

(r + rreg)2
+ O(r−3) . (9.19b)

Then ODE (9.17) on r > rreg is written as(
− d2

dr2
− λ2 + qS(r) + qL(r)

)
w = 0 , r > 0 . (9.20)

In our case, λ2 = k2 and q also depends on k.

Outgoing solution on [rreg,∞) The ODE (9.20) is in the form of Equation (2.1) of [2], and the
potential q satisfies hypothesis (H3) of Proposition 2.1 and Theorem 2.2 in [2]. We first list this hypothesis,

q(r) = qS + qL is a complex-valued function ; (9.21a)

qS ∈ L1(R+) ; (9.21b)

qL ∈ C2(R+) ; (9.21c)

lim
r→∞

qL = 0 , ∂jrq = O(r−j/2−ε) , r →∞ , j = 1, 2 and ε > 0 . (9.21d)

Proposition 2.1 of [2] allows us to construct a global phase ϕ having the property: for all j ∈ N, there
exists an analytic function gj(λ) on {λ : λ2 > 1/j},

ϕ(r) =

∫ r

0

√
λ −

(
1 − χ( rj )

)
qL(s) ds + gj(λ) , (9.22)

such that
λ 7→ ϕ(r, λ) is analytic in λ ∈ C \ {0} , (9.23)

to define incoming/outgoing solution. Here, the cut-off function χ and the sequence χj are defined as

χ ∈ C∞(R) , χ(r) =

{
1 |r| ≤ 0.5

0 |r| ≥ 1
, χj(r) := χ

(
r
j

)
. (9.24)

Note that the analytic function gj(λ) only depends on λ.

Remark 18. The phase function ϕ = ϕ(r, k) can be chosen to be an exact or approximate solution to
the eikonal equation, cf. [31, Eqn. 0.15],

|ϕ′(r, k)|2 + qL = k2 , (9.25)

hence,

|ϕ′(r, k)|2 +
−αad

r
= k2 ⇒ ϕ(r, k) =

∫ r

0

√
k2 − αad

s
ds = k

∫ r

r0

√
1 +

αad

s k2
ds . (9.26)

We obtain,

ϕ(r, k) ∼ k

∫ r

r0

(
1 − αad

2 s k2

)
ds ∼ k r +

αad

2 k
log r . (9.27)

4
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We next apply Theorem 2.2 of [2], which gives the unique existence of the outgoing solution to (9.17),
denoted by w+. We list the stronger results for real qL. We define,

C± := {z ∈ C
∣∣ ± Im z > 0} . (9.28)

Theorem 1 (Theorem 2.2 of [2] ). Suppose that the potential q satisfies the hypothesis (9.21).

1. For each
√
λ ∈ C± \ {0}, the equation(

− ∂2
r − λ2 + q

)
w = 0 , r > 0 , (9.29)

has a unique solution w±(r) satisfying the asymptotic relation

w±(r, λ) = e±iϕ(r,λ)
(
1 + o(1)

)
, as r →∞ , (9.30)

and the mapping

C± \ {0} 3 λ 7→ w+(r, λ)
de�ned in (9.29)

is analytic . (9.31)

2. This family extends continuously to
λ ∈ C± \ {0} , (9.32)

and the asymptotic relation (9.29) holds uniformly in

0 ≤ Arg (±λ) ≤ π , |λ| ≥ δ > 0 . (9.33)

As a result of the above theorem, we obtain the solution w+(r, λ)|(0,∞) to (9.29) which provides the
unique solution to (9.15) on (rreg,∞), which satisfies the asymptotic relation

φ̃(r, k) = eϕλ(r,k)
(

1 + o(1)
)
, as r →∞ . (9.34)

We denote this solution by
φ̃
∣∣
(rreg,∞)

. (9.35)

Extension of outgoing solution on (0,∞) We next extend the solution constructed in (9.35) to a
solution to (9.15) on (0,∞). This result is instant for the case where Γ > 0, since rreg > 0, cf. Table 1.
In the case where Γ = 0, the solution is extended backward up to r = 0, using Theorem 2, on the interval
where the coefficients of (7.1) are continuous, and using Theorem 3 to extend pass a regular singular
point. The solution remains continuous on (0,∞), due to the fact that the indicial exponents of non-zero
regular points are positive, see also Remark 17. In short, we obtain an outgoing solution φ̃` to (7.1) on
(0,∞) that is bounded on a compact subset of (0,∞), and that has

φ̃(r, k) = eϕλ(r,k)
(

1 + o(1)
)
, as r →∞ . (9.36)

9.1.3 Approximate outgoing modal coefficient in the atmosphere via Whittaker equation

We restrict ourselves to the atmosphere, and consider the ODE with the potential that takes into account
the first three terms in the asymptotic expansion of V` at infinity.

We call (
−∂2

r − k2 − αad

r
+

v−2

r2

)
â = 0 , (9.37)

the approximate conjugate radial equation. We also define

Q := k2 +
αad

r
− V−2

r2
. (9.38)
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Normalization of approximate radial equation (9.37) to the Whittaker equation Introduce
the change of unknown

z := 2 ei
π
2 k r . (9.39)

Then for Ã(z) defined as ã(r) = Ã(z := 2ikr), we have

∂râ = 2 i k ∂zÂ ⇒ −∂2
r â = 4 k2∂2

z Â .

We divide both sides of (9.37) by 4k2 to get,

−αad

r

1

4k2
= −i

αad

2k

1

z
,

v−2

r2 4k2
= −v−2

z2
.

Arising from this calculation are µ` and η defined as

ηad :=
αad

2 k
; (9.40a)

1

4
− µ2

` := −v−2 = −2 − `(`+ 1)

(
1 − α2

k2
0

γ − 1

γ2

)
. (9.40b)

In the new notations, the approximate conjugate ODE (9.37) is written as,

(
− d2

dr2
− k2 +

(−αad)

r
+
µ2
` − 1

4

r2

)
â = 0 . (9.41)

The truncated potential Q defined in (9.38) is

Q = k2 +
αad

r
−
µ2
` − 1

4

r2
. (9.42)

In particular, the new variable Â solves the Whittaker equation,

∂2
z Â +

(
−1

4
+
−i ηad

r
+

1
4 − µ2

`

z2

)
Â = 0 . (9.43)

Since a pair of linearly independent solutions to (9.43) in a neighborhood of infinity is given by

W−i ηad , µ`(z)
incoming

, Wi ηad , µ`(e
−iπ z)

outgoing

, (9.44)

the corresponding pair for (9.41) is

W−i ηad , µ`(2 i k r)
incoming

, Wi ηad , µ`(e
−iπ 2i k r)

outgoing

. (9.45)

Approximate solution An outgoing solution for ã can be approximated by the Whittaker function

ãm` ∼ Wiηad , µ(−2 i kr) . (9.46)

Remark 19. The key here is that

lim
r→∞

∂r ã(r) − i k ã(r) = 0 , (9.47)

such that a = am` satisfies to

lim
r→∞

∂ra(r) − h(r)

2
a(r) − i k a = 0 . (9.48)
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9.1.4 Modal Green kernel

We work under Assumption 7. We now patch together the regular and outgoing solutions constructed
in Subsection 9.1.1 and Subsection 9.1.2 respectively to obtain the radial modal Green’s function.We can
either build the Green’s kernel for the original radial ODE directly or first construct one for the conjugate
ODE and then obtain that for the original ODE. We discuss both approaches below.

Approach 1 We construct directly the Green’s kernel of(
q̂(r) ∂2

ra + q(r) ∂ra + q̃(r)
)
G`(r, s) = δ(r − s) (9.49)

where δ denotes the Dirac function. We have

G`(r, s) := −H(s− r)φ(r) φ̃(s) + H(r − s) φ̃(r)φ(s)

W(φ, φ̃)(s)
, (9.50)

where H is the Heavyside function and using the two homogeneous solutions φ, φ̃,(
q̂(r) ∂2

r + q(r) ∂r + q̃(r)
)
φ = 0 on (0,∞) ;(

q̂(r) ∂2
r + q(r) ∂r + q̃(r)

)
φ̃ = 0 on (0,∞) .

(9.51)

In the above expression, s 7→ W(φ, φ̃)(s) is the Wronskian of φ(s) and φ̃(s). The solution φ is the unique
regular one on (0,∞) to (9.51), satisfying

lim
r→λ+

r−λ
+
0 φ`(r) = 1 . (9.52)

The indicial exponent λ+
0 is given in (7.30) and (7.31). On the other hand, φ̃ is obtain from the unique

outgoing homogeneous solution ψ̃ to the conjugate ODE defined in (9.57),

φ̃(r) := e
1
2

∫ r h ψ̃(r) . (9.53)

Thus, φ̃ satisfies the asymptotic relation

φ̃(r) = e
1
2

∫ r h eiϕ(r,k) (1 + o(1)) , r →∞ . (9.54)

Approach 2 : In this approach, we first construct a Green’s kernel for the conjugate equation, and
from there we construct a Green’s kernel for the original problem. For homogeneous conjugate problem,(

− ∂2
r + V (r)

)
ψ = 0 (9.55)

the results of previous sections have shown that, with or without attenuation,

1. There exists a unique regular solution ψ` on (0,∞) that satisfies

lim
r→λ+

r−λ̃
+
0 ψ` = 1 , (9.56)

with λ̃+
0 given in (7.125),

2. There exists a unique outgoing solution ψ` on (0,∞) satisfying

ψ̃` = eiϕ(r,k)(1 + o(1)) , as r →∞ , (9.57)

where the phase function is independent of `, and satisfies asymptotic relation,

ϕ(r, k) = k r + − αad

2k
log r + k−2o(1) . (9.58)
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From this results, the outgoing Green’s function G̃` that solves(
− ∂2

r + V`
)
G̃` = δ(r − s) , (9.59)

is given by

G̃`(r, s) := −H(s− r)ψ(r) ψ̃(s) + H(r − s)ψ̃(r)ψ(s)

W(ψ, ψ̃)(s)
. (9.60)

From the transformation of the right-hand side between the original ODE and the conjugate ODE, cf.,
(4.64) and (4.65), the outgoing modal Green’s function G` (9.49) is obtained by,

G`(r, s) = −e
1
2

∫ r h e− 1
2

∫ s h G̃`(r, s)
q̂(s)

. (9.61)

9.2 Outgoing solution for 3D Green's kernel

Characterization of outgoing solutions As before, we work under Assumption 7. We now return
to the 3D equation (9.1). From the results of Proposition 3 and (4.26), we see that the solution of the
vectorial equation (9.1) is uniquely determined by its radial component. In particular, using convention
in Remark 7, the solution ξ to (9.1),

−ρ0

(
ω2 + 2iω Γ

)
ξ + P(ξ) + ρ0(ξ · ∇)∇Φ0 = f in R3 , (9.62)

with a compactly supported right-hand side

f =

∞∑
`=0

∑̀
m=−`

fm` (r)Pm` (x̂) +

∞∑
`=0

∑̀
m=−`

gm` (r)Bm
` (x̂) +

∞∑
`=0

∑̀
m=−`

hm` (r)Cm
` (x̂) , (9.63)

is given by

ξ =

∞∑
`=0

∑̀
m=−`

am` (r)Pm` (x̂) +

∞∑
`=0

∑̀
m=−`

bm` (r)Bm
` (x̂) +

∞∑
`=0

∑̀
m=−`

cm` (r)Cm
` (x̂) . (9.64)

The radial coefficients are given by, cf. (4.66),

am` =

∫ ∞
0

G`(r, s) f
m
` (s) ds ; (9.65a)

where fm` = − C12

C22

gm`
γ p0

√
`(`+ 1)

− `(`+ 1)

r
∂r

(
1

C22

gm`
γ p0

√
`(`+ 1)

)
+

fm`
γ p0

. (9.65b)

with G` the physical kernel constructed in (9.50) (or equivalently (9.61)), and the horizontal ones by, cf.
(4.45),

bm`√
`(`+ 1)

=
1

r

1

C22
∂ra

m
` +

(
2

r
− αp0(r)

γ(r)

)
1

rC22
am` +

1

C22

gm`
γ p0

√
`(`+ 1)

, (9.66)

and
cm` =

hm` (r)

−σ2ρ0 +
p′0 + ρ0Φ′0

r

. (9.67)

Note that the expression for cm` is simplified to cm` =
hm` (r)
−σ2ρ0

for the interior and

αp0
(r)

γ(r)
=


α
γ r ≥ ra
−Φ′0(r)

c20(r)
r ≤ ra , cf. (6.28a)

. (9.68)

Since the phase function ϕ in (9.58) is constructed to be independent of `, the characterization
(9.57) remains the same for all level of (m, `) and the above solution also satisfies a similar asymptotic
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relation, which characterizes it as an outgoing solution. In particular, we recall from (9.27) and (9.54)
and Proposition 18 that

φ̃(r) = e
1
2

∫ r h eiϕ(r,k) (1 + o(1)) , r →∞ ; (9.69a)

ϕ(r, k) ∼ k r +
αad

2 k
log r ; (9.69b)

h = α − 2

r
+ O(r−3) . (9.69c)

Thus, we have

φ̃ =
e

1
2αr

r
eiϕ(r,k) (1 + o(1)) , r →∞ . (9.70)

Definition 3. A solution ξ ∈ H2
loc(R3) to (9.1) is called outgoing or physical if its radial part

satisfies one of the following asymptotic relation for some continuous function a,

ξ · er =
1

|x|
e

1
2α |x| eiϕ(|x|,k)

(
a

(
x

|x|

)
+ o(1)

)
, as |x| → ∞ . (9.71)

Structure of the 3D outgoing Green’s kernel For x and s ∈ R3, we have written

r = |x| , s = |s| , x̂ = x
|x| . (9.72)

Using the orthogonality of vector spherical harmonics,∫
S2
Pm` (x̂) ·Pm̃˜̀ (x̂) dσ =

∫
S2
Bm
` (x̂) ·Bm̃

˜̀ (x̂) dσ =

∫
S2
Cm
` (x̂) ·Cm̃

˜̀ (x̂) dσ = δmm̃ δ`˜̀ . (9.73)

we can decompose the 3D Green’s kernel of G in the basis of second-order tensors made up from these
vector harmonic basis. In particular, we find the scalar distributions acting on the radial direction,

Am` (r, s) , Bm` (r, s) , Cm` (r, s) , Dm
` (r, s) , Em` (r, s) , (9.74)

so that
G(x, s) = A0

0(r, s)P0
0(x̂)⊗P0

0(ŝ)

+

∞∑
`=1

∑̀
m=−`

(
Am` (r, s)Pm` (x̂)⊗Pm` (ŝ) + Bm` (r, s)Pm` (x̂)⊗Bm

` (ŝ)

+ Cm` (r, s)Bm
` (x̂)⊗Pm` (ŝ) + Dm

` (r, s)Bm
` x̂)⊗Bm

` (ŝ)

+ Em` (r, s)Cm
` (x̂)⊗Cm

` (ŝ)
)
,

(9.75)

and
G f = 〈G , f〉(D(R3)3)′,D(R3)3 . (9.76)

We first clarify the notation. Here, D(R3) denotes the set of smooth and compactly supported functions
and E(R3) denotes the set of smooth functions. D(R3)3 is the vectored-valued version and ′ denotes the
dual space, i.e. the space of functionals. For a distribution h(r, s) ∈ E ′(R+

r × R+
s ) and smooth vectors

V(r, x̂),W(s, x̂) defined in terms of spherical coordinates, we define the action of h(r, s)V(x̂)⊗W(ŝ) on
a compactly supported smooth vector-valued function f by,〈

h(r, s)V(r, x̂)⊗W(s, ŝ) , f
〉

(E(R3)3)′,E(R3)3

:= V(r, x̂)

∫ π

0

∫ 2π

0

〈
h(r, s) , s2 W(s, ŝ) · f(s)

〉
E′(R+

s ),E(R+
s )

sin θs dφs dθs .

(9.77)
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Step 1 We start with the radial coefficient given in (9.65),

am` =

∫ ∞
0

G`(r, s) f
m
` (s)

=

∫ ∞
0

G`(r, s)
fm` (s)

γ(s) p0(s)
ds

+

∫ ∞
0

G`(r, s)

(
− C12(s)

C22(s)

gm` (s)

γ(s) p0(s)
√
`(`+ 1)

− `(`+ 1)

s
∂s

(
1

C22(s)

gm` (s)

γ(s) p0(s)
√
`(`+ 1)

))
ds .

(9.78)
Since f is compactly supported, gm` is of compact support in [0,∞). As a result of this

lim
s→0

G`(r, s)

s

1

C22(s)

gm` (s)

γ(s) p0(s)
√
`(`+ 1)

= 0 . (9.79)

On the other hand, we recall the definition of C22 in the interior of the Sun (4.35d),

C22(r) = −σ
2

c2
0

+
`(`+ 1)

r2
⇒ 1

sC22(s)
=

s

−σ
2

c20
s2 + `(`+ 1)

. (9.80)

In addition, due to its construction, G` is regular at r = 0, we thus have

lim
s→0

G`(r, s)

s

1

C22(s)

gm` (s)

γ(s) p0(s)
√
`(`+ 1)

= 0 . (9.81)

Given (9.79) and (9.81), we can perform the integration by parts in the last integral of the right-hand
side of (9.78) and obtain

am` =

∫ ∞
0

G`(r, s)

γ(s) p0(s)
fm` (s) ds +

∫ ∞
0

T`(r, s)
gm` (s)√
`(`+ 1)

ds , (9.82)

where

T`(r, s) =
−
(
C12(s) + `(`+1)

s2

)
G`(r, s) + `(`+ 1)∂sG`(r,s)s

C22(s) γ(s) p0(s)
. (9.83)

Step 2 We next rewrite bm` starting from (9.66).
First, from (9.82), we have

1

r

1

C22(r)
∂ra

m
` =

1

r

1

C22(r)
∂r

(∫ ∞
0

G`(r, s)

γ(s) p0(s)
fm` (s) ds +

∫ ∞
0

T`(r, s)
gm` (s)√
`(`+ 1)

ds

)
, (9.84)

and (
2

r
− αp0

(r)

γ(r)

)
1

r C22(r)
am` (r)

=

(
2

r
− αp0

(r)

γ(r)

)
1

r C22(r)

(∫ ∞
0

G`(r, s)

γ(s) p0(s)
fm` (s) ds +

∫ ∞
0

T`(r, s)
gm` (s)√
`(`+ 1)

ds

)
.

(9.85)

Thus, with

K`(r, s) :=
1

r C22(r)

∂rG`(r, s)

γ(s) p0(s)
+

(
2

r
− αp0

(r)

γ(r)

)
1

r C22(r)

G`(r, s)

γ(s) p0(s)
, (9.86)

and

N`(r, s) =

(
2

r
− αp0

(r)

γ(r)

)
T`(r, s)

r C22(r)
+
∂rT`(r, s)

r C22(r)
, (9.87)

we have
bm`√
`(`+ 1)

=

∫ ∞
0

K`(r, s)f
m
` (s)ds+

∫ ∞
0

N`(r, s)
gm` (s)√
`(`+ 1)

ds+
1

C22(r)γ(r)p0(r)

gm` (r)√
`(`+ 1)

. (9.88)
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Proposition 20. By putting together the results (9.67), (9.82), and (9.88), the outgoing Green’s
tensor of (9.1) is

G(x, s) =

∞∑
`=0

∑̀
m=−`

G`(r, s)

γ(s) p0(s)
Pm` (x̂)⊗Pm` (ŝ)

+

∞∑
`=1

∑̀
m=−`

T`(r, s)√
`(`+ 1)

Pm` (r, x̂)⊗Bm
` (ŝ)

+
√
`(`+ 1)K`(r, s)B

m
` (x̂)⊗Pm` (s, ŝ)

+

(
N`(r, s) +

δ(r − s)
C22(r) γ(r) p0(r)

)
Bm
` (x̂)⊗Bm

` (ŝ)

− δ(r − s)
−σ2ρ0 +

p′0 + ρ0Φ′0
r

Cm
` (x̂)⊗Cm

` (ŝ) ,

(9.89)

with the kernels T`, K` and N` defined by (9.83), (9.86), and (9.87), and δ(·) denoting the delta
distribution.

10 Low-order radiation boundary conditions (RBC)

In this section, we construct radiation boundary conditions (RBC) for the vectorial ODE problem.

10.1 RBC for the conjugate radial coe�cients

Since ã solves −∂2
r ã + V`(r)ã = 0, we can use the same procedure as in [3, 6, 5] to obtain radiation

boundary conditions of the form
∂rã = Z ã . (10.1)

We recall that
√
· is the square root branch such that Arg

√
· ∈ [0, π), while (·)1/2 is the principal

square root branch with Arg(·)1/2 ∈ (−π2 ,
π
2 ]. The branch

√
· ensures that Im

√
· ≥ 0.

10.1.1 Nonlocal coefficient

Nonlocal coefficient By factorization of operator, we can always define the non-local radiation
coefficient,

Z`nonlocal(r) := i
√
−V`(r) . (10.2)

With this choice of square root, we have that the imaginary part of
√
−V`(r) is always positive. This

means that with attenuation, the solutions vanish at infinity.
We can further rewrite the defining expression in (10.2) using the principle square root (·)1/2. We

consider the following assumptions.

Assumption 8.
Im (−V`) ≥ 0 . (10.3)

Assumption 9.
Im k2 ≥ 0 . (10.4)

Assumption 10.
(Arg k2 , Arg(−V`)) 6= (π , 0) . (10.5)

Under assumption Assumption 8

Z`nonlocal = i (−V`(r))1/2
. (10.6)
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If k2 and V` satisfy Assumption 8– Assumption 10, we can apply [5, Prop 33] to factor out k2 of (−V`)1/2,
such that,

Z`nonlocal = i k

(
−V`(r)

k2

)1/2

. (10.7)

Simplified non-local Recall that

−V`(r) = Q(r) + εV (r) , εV = −V`(r) − Q(r) =
`(`+ 1)

k2
0

O(r−3) , (10.8)

where Q consists of the first three summands in the asymptotic expansion of (−V`)

Q(r) := k2 +
αad

r
−
µ2
` − 1

4

r2

= k2 +
αad

r
− `(`+ 1)

(
2

`(`+ 1)
+ 1 − α2

k2
0

γ − 1

γ2

)
1

r2
.

(10.9)

As we have observed in the discussion of Subsection 8.3, in particular in Figures 15 to 18, the addition
of the term 2Gm

c20
r−3 improves the approximation near r = ra, i.e. using Ṽ app

G,−3 in (8.65). In the context
of RBC, we introduce the notation

QG
` (r) := k2 +

αad

r
−
µ2
` − 1

4

r2
+ 2

Gm

c2
0

1

r3
. (10.10)

At infinity, it maintains

−V`(r) = QG
` (r) + εGV (r) , εV = −V`(r) − QG

` (r) =
`(`+ 1)

k2
0

O(r−3) , (10.11)

Under assumption that

Im Q` ≥ 0 , Im k2 ≥ 0 , (Arg k2 , Arg(Q`)) 6= (π , 0) . (10.12)

we define the simplified nonlocal coefficient,

Z`snl = i k

(
Q

k2

)1/2

= i k

(
1 +

αad

k

1

k r
+

1
4 − µ2

`

(kr)2

)1/2

. (10.13)

Similarly under assumption that

Im QG
` ≥ 0 , Im k2 ≥ 0 , (Arg k2 , Arg(QG

` )) 6= (π , 0) , (10.14)

we define the simplified gravity-enriched nonlocal coefficient ,

Z`G = i k

(
QG
`

k2

)1/2

= i k

(
1 +

αad

k

1

k r
+

1
4 − µ2

`

(kr)2
+ 2

Gm

c2
0

1

(k r)2 r

)1/2

. (10.15)

Remark 20. See further discussion in the assumption that ImQ` > 0 see Appendix E. 4

Remark 21 (Comparison with the scalar equation). We recall the form of the conjugate ODE for the
scalar equation from [5, Section 6.2] or [3] (in terms of ω

c0
),

∂2
ru = −Qscalar u , with Qscalar = k2 − α

r
− `(`+ 1)

r2
(10.16)

and thus

[Zscalar]`nonlocal = i k

(
1 − α

r

1

k2
− `(`+ 1)

(rk)2

)1/2

. (10.17)
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With α > 0 and under assumption (2.1), αad > 0, we note that the first difference between the scalar
case and the vectorial one is in the sign of the Coulomb potential. The second difference is the addition
of the term 2 Gm

c20r
3 as discussed in Subsection 8.3 which greatly improves the approximation near r = ra.

Note however that the unknown of the scalar equation is u =
√
ρ0c0∇ · ξ which is closer to the

Lagrangian perturbation of the pressure δp than to ξr. A proper comparison of the boundary conditions
will require to derive, in this framework, the boundary condition for δp and then compare to the one for
the scalar unknown u. 4

10.1.2 Approximations of nonlocal coefficients

Coefficients in the HF family We next set out to approximation,(
−V`(r)

k2

)1/2

=

(
Q(r) + εQ(r)

k2

)1/2

=

(
1 +

αad

k

1

k r
+

1
4 − µ2

`

(k r)2
+
εQ(r)

k2

)1/2

. (10.18)

We recall that
εQ(r) = O(r−3) , is bounded in k0 thus k . (10.19)

We use
(1 + z)1/2 = 1 +

1

2
z − 1

8
z2 +

1

16
z3 − . . . , |z| < 1 . (10.20)

Using for the small quantity,

k−2 ε , where ε =
αad

r
+

1
4 − µ

2

r2
+ εQ(r) , (10.21)

we have, (
−V`
k2

)1/2

= 1 + k−2 O(ε) = 1 + k−2 O(r−1) . (10.22)

This leads us to introduce
ZS-HF-0 := i k . (10.23)

Higher approximation gives(
−V`
k2

)1/2

= 1 +
1

2
k−2 ε − k−4

8
ε2 + k−4 O(ε3)

= 1 +
1

2

1

k2

(
αad

r
+

1
4 − µ

2

r2
+ εQ(r)

)
− k−4

8

(
α2

ad

r2
+ O(r−3)

)
+ k−6 O(ε3) .

(10.24)

Therefore, we have,

(
−V`
k2

)1/2

= 1 +
1

2

1

k2

(
αad

r
+

1
4 − µ

2

r2
− 1

8 k2

α2
ad

r2

)
+ k−2 O(r−3) . (10.25)

We define

ZS−HF−3 := i k

(
1 +

1

2

1

k2

(
αad

r
+

1
4 − µ

2

r2
− 1

8 k2

α2
ad

r2

))
. (10.26)

Among therm in r of order 2, if assuming further that

1

8 |k2|
α2

ad �
∣∣∣∣14 − µ2

∣∣∣∣ , (10.27)

we introduce

ZS−HF−2 := i k

(
1 +

1

2k2

(
αad

r
+

1
4 − µ

2

r2

))
. (10.28)
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If we assume ∣∣∣∣ 1
4 − µ

2

r
− 1

8 k2

α2
ad

r

∣∣∣∣ � αad , (10.29)

then we obtain

ZS−HF−1 := i k

(
1 +

1

2 k2

αad

r

)
. (10.30)

The same argument applies to QG
` to give the family HFG listed below.

Coefficients of the SAI family Consider as small quantity

k−2 ε , with ε =

1
4−µ

2

r2 + εQ(r)

1 + αad

r
1
k2

, (10.31)

then

(
−V`
k2

)1/2

=

(
1 − αad

r

1

k2

)1/2

1 +
1

2k2

1
4−µ

2

r2 + εQ(r)

1 − αad

r
1
k2

− 1

8
k−4

 1
4−µ

2

r2 + εQ(r)

1 + αad

r
1
k2

2

+ k−6O(ε3)


=

(
1 − αad

r

1

k2

)1/2
(

1 +
1

2k2 r2

1
4 − µ

2

1 − αad

r
1
k2
− 1

8

1

k4 r2

( 1
4 − µ

2

1 + αad

r
1
k2

)2

+ k−2O(r−3)

)
.

(10.32)
Thus we introduce the SAI coefficients

Z`
S-SAI-0

= i k

(
1 − αad

r

1

k2

)1/2

Z`
S-SAI-1

= i k

(
1 − αad

r

1

k2

)1/2(
1 +

1

2k2 r2

1
4 − µ

2

1 − αad

r
1
k2

)

Z`
S-SAI-2

= i k

(
1 − αad

r

1

k2

)1/2
(

1 +
1

2k2 r2

1
4 − µ

2

1 − αad

r
1
k2
− 1

8k4 r2

( 1
4 − µ

2

1 + αad

r
1
k2

)2
) (10.33)

Summary We have introduced the following ten approximations of the modal RBC, with k and αad

defined in (9.12), and ηad and µ` in (9.40).

– The approximate DtoN condition is given by Whittaker function,

Z`Whitt = −2 i k
W′iηad , µ`(−2 ik r)

Wiηad , µ`(−2 i k r)
. (10.34)

– We have three conditions in the nonlocal family:

Z`nonlocal = i k

(
−V`(r)

k2

)1/2

, (10.35a)

Z`snl = i k

(
1 +

αad

k

1

k r
+

1
4 − µ2

`

(kr)2

)1/2

(10.35b)

Z`G = i k

(
1 +

αad

k

1

k r
+

1
4 − µ2

`

(kr)2
+ 2

Gm

c2
0

1

(k r)2 r

)1/2

. (10.35c)
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– We have four conditions in the HF family:

ZS−HF−0 = i k , (10.36a)

ZS−HF−1 = i k

(
1 +

1

2k2

αad

r

)
, (10.36b)

ZS−HF−2 = i k

(
1 +

1

2k2

(
αad

r
+

1
4 − µ

2
`

r2

))
, (10.36c)

ZS−HF−3 = i k

(
1 +

1

2k2

(
αad

r
+

1
4 − µ

2
`

r2
− 1

8 k2

α2
ad

r2

))
. (10.36d)

– We introduce the HF family enriched with the gravity term, in the spirit of the enriched
asymptotic of Section 8,

ZS−HFG−0 = i k

(
1 +

Gm

c2
0

1

(k r)2 r

)
, (10.37a)

ZS−HFG−1 = i k

(
1 +

1

2k2

αad

r
+
Gm

c2
0

1

(k r)2 r

)
, (10.37b)

ZS−HFG−2 = i k

(
1 +

1

2k2

(
αad

r
+

1
4 − µ

2
`

r2

)
+
Gm

c2
0

1

(k r)2 r

)
, (10.37c)

ZS−HFG−3 = i k

(
1 +

1

2k2

(
αad

r
+

1
4 − µ

2
`

r2
− 1

8 k2

α2
ad

r2

)
+
Gm

c2
0

1

(k r)2 r

)
. (10.37d)

– In the same spirit as the SAI family, we introduce

Z`
S-SAIG-0

= i k

(
1 +

αad

r

1

k2
+

2Gm

c2
0

1

(k r)2 r

)1/2

, (10.38a)

Z`
S-G-0

= i k

(
1 +

2Gm

c2
0

1

(k r)2 r

)1/2

. (10.38b)

– We have three conditions in the SAI family:

Z`
S-SAI-0

= i k

(
1 +

αad

r

1

k2

)1/2

(10.39a)

Z`
S-SAI-1

= i k

(
1 +

αad

r

1

k2

)1/2 (
1 +

1

2k2 r2

1
4 − µ

2
`

1 + αad

r
1
k2

)
, (10.39b)

Z`
S-SAI-2

= i k

(
1 +

αad

r

1

k2

)1/2
(

1 +
1

2k2 r2

1
4 − µ

2
`

1 + αad

r
1
k2
− 1

8k4 r2

( 1
4 − µ

2
`

1 + αad

r
1
k2

)2
)
.

(10.39c)

10.2 RBC for the original ODE coe�cient a and b

Assuming ã satisfies the condition at r = r, ∂rã := Z ã, we derive the corresponding conditions for a
and b which are obtained from ã by relation (4.66)

ã(r) := e−
1
2

∫
ha(r) , (10.40)

and from (4.45),

bm` =

√
`(`+ 1)

r

1

C22
∂ra +

(
2

r
− α

γ

) √
`(`+ 1)

rC22
a . (10.41)
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Proposition 21. Assuming that ã = ãm` satisfies at r = r condition

∂rã(r) = Z(r) ã(r) . (10.42)

then a = am` and b = bm` defined by (10.40) and (10.41) satisfy at r = r,

∂r a
m
` (r) =

(
h(r)

2
+ Z(r)

)
am` (r) ; (10.43a)

∂r
bm`√
`(`+ 1)

=

(
h(r)

2
+ Z(r)− 1

r
− C ′22(r)

C22(r)

)
b(r√
`(`+ 1)

+

(
h2(r)

4
− Z2(r) − 2

r2
+ g(r)

)
1

rC22(r)
a(r) . (10.43b)

Proof. Since

a = e
∫ 1

2h ã , and ∂r(e
∫ 1

2h ã) = e
∫ 1

2h

(
∂rã +

1

2
h ã

)
= e

1
2h∂rã +

1

2
h a ,

we have,

∂ra = e
∫ 1

2h∂rã +
1

2
h a . (10.44)

Evaluating at r = r, it gives

∂ra (r) = e
∫ 1

2h
∣∣∣
r
∂rã(r) + 1

2h(r) a (r) = e
∫ 1

2h
∣∣∣
r
Z(r) ã(r) +

1

2
h(r) a (r) = Z(r) a(r) +

1

2
h(r) a (r) .

We thus obtain the boundary condition (10.43a) for a.

Since a is a solution for an ODE of order 2, this also gives the values of ∂2
ra. Recall from (4.62) that

∂2
ra = h(r) ∂ra + g(r) a . (10.45)

Evaluating both sides at r = r and replacing ∂ra using (10.43a) gives

∂2
ra(r) = h(r) ∂ra(r) + g(r) a(r)

(10.43a)
= h(r)

(
h(r)

2
+ Z(r)

)
a(r) + g(r) a(r) , (10.46)

thus

∂2
ra(r) =

(
h2(r)

2
+ h(r)Z(r) + g(r)

)
a(r) . (10.47)

We next consider the RBC for
b̃m` :=

bm`√
`(`+ 1)

. (10.48)

From the definition of bm` in (4.45), we have

b̃m` =
1

r C22

(
∂ra +

(
2

r
− α

γ

)
a

)
. (10.49)

Evaluating at r = r, this gives

b̃m` (r) =
1

rC22(r)

(
∂ra(r) +

(
2

r
− α

γ

)
a(r)

)
=

1

rC22(r)

(
h(r)

2
+ Z(r) +

2

r
− α

γ

)
a(r) . (10.50)

On the other hand, if we differentiate both sides of (10.49), we obtain

∂r b̃ =

(
1

r

1

C22
∂ra +

(
2

r
− α

γ

)
1

rC22
a

)′
=

1

r

1

C22
∂2
ra +

(
2

r
− α

γ

)
1

rC22
∂ra+

(
1

r

1

C22

)′
∂ra +

((
2

r
− α

γ

)
1

rC22

)′
a .

Inria



Outgoing solutions in vectorial helioseismology 87

Rewriting the last three terms on the rhs by expanding the last derivative, we obtain,

∂r b̃ =
1

r C22
∂2
ra +

(
2

r
− α

γ

)
1

rC22
∂ra (10.51)

+

(
1

r C22

)′(
∂ra +

(
2

r
− α

γ

)
a

)
+

(
2

r
− α

γ

)′
1

rC22
a . (10.52)

Evaluating at r = r and using (10.43a) to replace ∂ra(r) and (10.47) ∂2
ra(r), then we have,

1

r C22
∂2
ra +

(
2

r
− α

γ

)
1

rC22
∂ra

r=r
=

h(r)

rC22(r)

(
h(r)

2
+ Z(r)

)
a(r) +

g(r)

rC22(r)
a(r)

+

(
2

r
− α

γ

)
1

rC22(r)

(
h(r)

2
+ Z(r)

)
am` (r)

=
1

rC22(r)

(
h(r)

2
+ Z(r)

)(
h(r) +

2

r
− α

γ

)
a(r) +

g(r)

rC22(r)
a(r)

=

(
h(r)

2
+ Z(r)

)(
b̃(r) − Z(r)

rC22(r)
a(r) +

h(r)

2rC22(r)
a(r)

)
+

g(r)

rC22(r)
a(r) ,

and the second line of the right-hand side of (10.51) is written as(
1

r C22

)′(
∂ra +

(
2

r
− α

γ

)
a

)
+

(
2

r
− α

γ

)′
1

rC22
a

r=r
=

(
1

r C22

)′ ∣∣∣
r=r

(
h(r)

2
+ Z(r) +

(
2

r
− α

γ

))
a(r) +

(
2

r
− α

γ

)′ ∣∣∣
r=r

1

rC22(r)
a(r)

=

(
1

r C22

)′ ∣∣∣
r=r

rC22(r) b̃(r) +

(
2

r
− α

γ

)′ ∣∣∣
r=r

1

rC22(r)
a(r)

= −
(

1

r
+
C ′22(r)

C22(r)

)
b̃(r) − 2

r3 C22(r)
a(r) .

Combining these above calculations, we obtain a boundary condition for b̃

∂r b̃(r) =

(
h(r)

2
+ Z(r)

)(
b̃(r) − Z(r)

rC22(r)
a(r) +

h(r)

2 rC22(r)
a(r)

)
+

g(r)

rC22(r)
a(r)

−
(

1

r
+
C ′22(r)

C22(r)

)
b̃(r) − 2

r3 C22(r)
a(r)

=

(
h(r)

2
+ Z(r)− 1

r
− C ′22(r)

C22(r)

)
b̃(r)

+

(
h2(r)

4
− Z2(r) − 2

r2
+ g(r)

)
1

rC22(r)
a(r) .

(10.53)

10.3 Radiation conditions in 3D

In this subsection, we give a preliminary discussion of 3D RBC to be used in a 3D discretization of (3.1).
Since a choice of 3D RBC depends on the variational formulation of (3.1) and on the type of discretization
method (e.g. Discontinuous Galerkin, Finite Elements), we only give some variants that come directly
from the modal conditions (3.1). Specifically, in (10.43), if we assume that Z is independent of ` (e.g.,
ZS-HF-0 and ZS-HF-1 in (10.36)), and using the approximate version of h` that is independent of `, we
obtain readily a boundary condition for ξ placed on the boundary of a sphere. As one of our conditions,
(10.81) and (10.84), which bear some resemblance to a common noneffective boundary condition (10.85)
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(or (10.87)) employed in [18, 7, 34, 29]. However, the crucial difference is in the leading wavenumber, as
discussed in Subsection 10.3.3.

We first recall the decomposition of ξ,

ξ = ξrer + ξh , ξr = ξ · er = πr ξ , ξh = ξ − ξr , (10.54)

and
ξrer = e⊗ er · ξ , ξh = (Id − e⊗ er) · ξh . (10.55)

For simplicity, we assume that the source has zero Cm` component, see (4.5). From the results in (4.23)–
(4.26), the tangential part of ξ only has component along ∇S2Ym

` ,

ξr =

∞∑
`=0

∑̀
m=−`

am` (r) Ym
` ;

ξh =

∞∑
`=0

∑̀
m=−`

bm` (r)√
`(`+ 1)

∇S2 Ym
` .

10.3.1 First variant

We first deduce the boundary condition for ξ in series form.

Lemma 4. Assuming that am` satisfies the condition (10.43a) and bm` (10.43b),

∇ξ · er =

∞∑
`=0

∑̀
m=−`

(
h(r)

2
+ Z(r)

)(
am` (r) Ym

` er + b̃(r)∇S2Ym
`

)

−
∞∑
`=0

∑̀
m=−`

(
1

r
+
C ′22(r)

C22(r)

)
b̃(r)∇S2Ym

`

+

∞∑
`=0

∑̀
m=−`

(
h2(r)

4
− Z2(r) − 2

r2
+ g(r)

)
1

rC22(r)
a(r)∇S2Ym

` .

(10.56)

Proof. From the expression of the gradient of a vector in spherical basis(2.13), we have

∇ξ · er = ∂r(πrξ) er + ∂r(πθξ) eθ + ∂r(πφξ) eφ , (10.57)

thus
∇ξ · er = ∂rξrer + ∂rξh

=

∞∑
`=0

∑̀
m=−`

(∂ra
m
` ) Ym

` er +

∞∑
`=0

∑̀
m=−`

(
∂r

bm`√
`(`+ 1)

)
∇S2Ym

` .
(10.58)

We next use (10.43) to replace ∂ram` and ∂rbm` ,

∂ra =

(
h

2
+ Z

)
a ,

∂r b̃ =

(
h(r)

2
+ Z(r)− 1

r
− C ′22(r)

C22(r)

)
b̃(r) +

(
h2(r)

4
− Z2(r) − 2

r2
+ g(r)

)
1

rC22(r)
a(r) ,

to obtain

∇ξ · er =

∞∑
`=0

∑̀
m=−`

(
h(r)

2
+ Z(r)

)
am` (r) Ym

` er

+

∞∑
`=0

∑̀
m=−`

(
h(r)

2
+ Z(r)− 1

r
− C ′22(r)

C22(r)

)
b̃(r)∇S2Ym

`

+

∞∑
`=0

∑̀
m=−`

(
h2(r)

4
− Z2(r) − 2

r2
+ g(r)

)
1

rC22(r)
a(r)∇S2Ym

` .

(10.59)
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An approximation of (10.56) is obtained using the approximations of Z, h and g that are independent
of `. From the derivation in Subsection 10.1 and Proposition 18, this means that we work modulo r−2.
Recall from Proposition 17,

C ′22

C22
= k−2

0 O(r−2)︸ ︷︷ ︸
bounded with respect to k0

. (10.60)

From the result of Proposition 18, we have

h(r) = α − 2

r
+ O(r−2) , g = −k2

0 + 2

(
α− α

γ

)
1

r
+ O(r−2) . (10.61)

We consider Z independent of m and ` and of the form

Z(r) = Z0 +
Z1

r
. (10.62)

Then

h2 = α2 − 4α

r
+ O(r−2) ; (10.63)

Z2(r) = Z2
0 +

2Z0Z1

r
+ O(r−2) ; (10.64)

1

r C22
= − 1

k2
0

1

r
+ k−2

0 O(r−2) . (10.65)

This leads to

h2(r)

4
− Z2(r) − 2

r2
+ g(r)

=
α2

4
− α

r
− Z2

0 −
2Z0Z1

r
− k2

0 + 2

(
α− α

γ

)
1

r
+ O(r−2) ,

(10.66)

and (
h2(r)

4
− Z2(r) − 2

r2
+ g(r)

)
1

r C22
=

α2

4 − Z2
0 − k2

0

k2
0 r

+ O(r−2) . (10.67)

Using these approximations, we derive

∇ξ · er ∼
∞∑
`=0

∑̀
m=−`

(
α

2
− 1

r
+ Z(r)

)(
am` (r) Ym

` er + b̃m` ∇S2Ym
`

)

−
∞∑
`=0

∑̀
m=−`

1

r
b̃(r)∇S2Ym

`

+

∞∑
`=0

∑̀
m=−`

α2

4 − Z2
0 − k2

0

k2
0 r

am` (r)∇S2Ym
` .

(10.68)

Finally, using the property (2.15b) of Ym
` ,

∑̀
m=−`

a(r)∇S2Ym
` = ∇S2

∑̀
m=−`

a(r) Ym
` = ∇S2 er · ξ , (10.69)

we arrive at the following approximate condition of (10.56), with Z independent of `,

∇ξ · er =

(
α

2
− 1

r
+ Z(r) − I − er ⊗ er

r
+

α2

4 − Z2
0 − k2

0

k2
0 r

∇S2 (er · )

)
ξ . (10.70)
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10.3.2 Second variant

With the same derivation, we obtain the following lemma.

Lemma 5. Assuming that am` satisfies condition (10.43a), then at r = r,

τ · er =

∞∑
`=0

∑
m=−`

(
γ p0

(
h

2
+ Z

)
+

2

r
(γ − 1)p0

)
am` Ym

` er

+
(γ − 1) p0

r
(∇S2 · ξh) er +

p0

r
∇S2 (ξ · er) −

p0

r
ξh , |x| = r .

(10.71)

Proof. We recall definition of second-order tensor τ defined in (3.22),

τ := (γ − 1) p0∇ · ξ Id + p0∇tξ
⇒ τ · er = (γ − 1) p0 (∇ · ξ) er + p0 (∇tξ) · er .

(10.72)

We recall from (4.4) that

∇ · ξ =

∞∑
`=0

∑
m=−`

[ (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
`

=

∞∑
`=0

∑
m=−`

[
∂ra

m
` +

2

r
am` −

√
`(`+ 1)

bm`
r

]
Ym
` .

(10.73)

This can also be written as

∇ · ξ =

∞∑
`=0

∑
m=−`

[ (r2am` )′

r2
−
√
`(`+ 1)

bm`
r

]
Ym
`

=

∞∑
`=0

∑
m=−`

[
∂ra

m
` +

2

r
am`

]
Ym
` +

1

r
∇S2 · ξh .

(10.74)

Thus it remains to examine the second term (∇tξ) · er. From the expression (2.13) of ∇ξ in spherical
coordinates, and noting that ξr = πrξ, we have

(∇ξ)t · er = (∂rξr) er +

(
∂θξr
r
− πθξ

r

)
eθ +

(
∂θξr
r sin θ

− πφξ

r

)
eφ

= (∂rξr) er +
1

r

(
∂θ ξr eθ +

∂θ ξr
r sin θ

eφ

)
︸ ︷︷ ︸

∇S2 ξr

− 1

r

(
(πθξ) eθ + (πφξ) eφ

)︸ ︷︷ ︸
ξh

.

Since

∇S2ξr = ∇S2

∞∑
`=0

∑̀
m=−`

am` (r)Ym
` =

∞∑
`=0

∑̀
m=−`

am` (r)∇S2Ym
` ,

we have

(∇ξ)t · er =

∞∑
`=0

∑̀
m=−`

(∂r a
m
` ) Ym

` er +
1

r
∇S2(ξ · er) −

1

r
ξh . (10.75)

Using (10.75) together with (10.74), we obtain

τ · er := (γ − 1) p0∇ · ξ er + p0∇tξ · er

= (γ − 1) p0

∞∑
`=0

∑
m=−`

[
∂ra

m
` +

2

r
am`

]
Ym
` er +

(γ − 1) p0

r
(∇S2 · ξh) er

+ p0

∞∑
`=0

∑̀
m=−`

(∂r a
m
` ) Ym

` er +
p0

r
∇S2 (ξ · er) −

p0

r
ξh .

(10.76)

The derivation is finished by using (10.43a) to replace ∂ram` .
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As in Subsection 10.3.1, using an approximation of Z and h that are independent of m and `, we
derive the following approximate version of (10.71),

τ · er =

(
γ p0

(
α

2
+

1

r
+ Z

)
+

2

r
(γ − 1)p0

)
er ⊗ er ξ

+
(γ − 1) p0

r
(∇S2 · ξh) er +

p0

r
∇S2 (ξ · er) −

p0

r
ξh .

(10.77)

We can obtain a lower order condition by ignoring all terms containing the factor p0

r in (10.77). In
particular, from (10.76), we have

τ · er = γp0∇ · ξ +
p0

r
(. . .) (10.78)

such that the right-hand side of (10.77) is approximated by γp0∇ · ξ. With k defined in (9.12), for Z of
the form

Z = i k + i
Z−1

r
, (10.79)

if on both sides of (10.77), we ignore the term containing factor p0

r , we arrive at the following approximate
condition,

γp0∇ · ξ = γp0

(α
2

+ ik
)
ξ · er , (10.80)

which simplifies to

∇ · ξ =
(α

2
+ i k

)
ξ · er . (10.81)

This one resembles the form of non-reflective boundary condition used in literature, see discussion below.

10.3.3 Third variant

From (10.74), we have,

∇ · ξ =

∞∑
`=0

∑
m=−`

[
∂ra

m
` +

2

r
am`

]
Ym
` +

1

r
∇S2 · ξh . (10.82)

The following statement follows readily using (10.43a) to replace ∂ram` .

Lemma 6. Assuming that am` satisfies condition (10.43a), then

∇ · ξ =

∞∑
`=0

∑
m=−`

(
h

2
+ Z +

2

r

)
am` Ym

` +
1

r
∇S2 · ξh . (10.83)

As before, using approximations of Z and h that are independent of m and `, we obtain,

∇ · ξ =

(
α

2
+

1

r
+ Z

)
ξ · er +

1

r
∇S2 · ξh . (10.84)

The condition (10.84) and in particular (10.81) are similar to the nonreflective boundary condition
employed in [18, 7, 34] and [29] in the absence of flow. Based on the work of [18, section 3.3 p. 89], the
condition in the absence of flow (i.e. v0 = 0) simplifies to an impedance condition in the form of a ratio
between the Lagrangian pressure perturbation δL

p and the normal direction of displacement ξ,

δL
p = −iω ρ0 c0 ξ · n . (10.85)

This is implemented in [7, Eqn 5.28] (in particular with the formulation of Galbrun’s Eqn 5.9 and non-
reflective condition Eqn 5.18 which is the same as Eqn 5.28 for no flow), and [34, Eqn 2.14], [33, Eqn 4.1]
following[29, Eqn 4.3]. Since

δL
p = −ρ0 c2

0∇ · ξ , (10.86)
the condition (10.85) is equivalent to

∇ · ξ = i
ω

c0
ξ · n . (10.87)

However, in the aforementioned references, instead of k defined in (9.12) in (10.81), the wavenumber ω
c0

is used. This is the most important difference with our result.
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11 Conclusions

We consider the propagation of time-harmonic waves in the Sun in the vectorial form, and we have
achieved the following results:

1. Starting from the Galbrun equation, under S+AtmoCAI assumption, we obtain the coupled system
whose unknowns are the radial and tangential coefficients of ξ in vector spherical harmonic basis,
denoted by am` and bm` . We then obtain a decoupled problem solved only by am` , also called the modal
radial ODE. With no-source, this is written as(

q̂∂2
r + q ∂r + q̃

)
am` = 0 , (11.1)

or equivalently

(∂2
r + V )ãm` = 0 . (11.2)

Explicit and compact expressions for q̂, q, q̃ as well as V are given. For the interior, we also identify
our derivation with the coupled system given in [35] and [11]. A second derivation for the radial ODE
for am` is given starting from the decoupled system of [35] and [11].

2. We give complete indicial analysis for the above ODEs, i.e. for both the interior and in the atmosphere,
with and without attenuation. We note that the set of real singularities differs with or without
attenuation. With less restrictive hypotheses on the background coefficients, we obtain the same
result at r = 0 as in [35] for ` > 0, with the indicial exponents being `− 1 and −`− 2. For ` = 0, our
analysis shows that the exponents are 1 and −2.

3. We obtain asymptotic description for V using two different approaches. This allows to define outgoing
solutions and obtain a characterization of such solutions in terms of an oscillatory phase.

4. The indicial analysis and asymptotic analysis at infinity are put together to construct outgoing solu-
tions and outgoing Green kernel globally (i.e on (0,∞)). From the modal Green kernel, one can obtain
the 3D Green kernel.

5. We have also obtained low-order radiation boundary conditions both in modal form (i.e., for the
coefficients of the decomposition in vector spherical harmonics) and in 3D form. These boundary
conditions are now for the 3D unknown ξ and extend the results from [5, 6, 4] that have been derived
for an unknown linked to ∇ · ξ which is related to the Lagrangian perturbation of the pressure.

This work will allow to extend the framework developed in [20] for a scalar wave equation to a vectorial
problem. The Green kernel derived here is the main input for the computation of Born sensitivity kernels
that relate the helioseismic observables to the perturbations in the solar interior. This improvement in
the forward modeling should lead to a better understanding of the data and correction of the systematic
errors. Moreover, the newly derived boundary conditions are necessary to solve numerically the vectorial
equation. They can also be used in the presence of flows in the solar interior and some new physical
problems that could not be studied with the scalar equation can now be treated. Some important
applications are the analysis of the recently discovered Rossby waves [25] or the internal gravity modes
[16].
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A Explicit expressions of the coe�cients of the radial ODE in
the interior

In this appendix, we prove Proposition 4, showing (4.53) and (4.55). We first recall from (4.35), such
that

C11 = −σ
2

c2
0

+
Φ′′0
c2
0

+ 2
αγp0

r
+

2

r2
− 2

αp0

rγ
; (A.1a)

C12 = `(`+ 1)

(
αp0

r γ
− αγp0

r
− 1

r2

)
; (A.1b)

C22 = −σ
2

c2
0

+
`(`+ 1)

r2
. (A.1c)

q̂(r) = −1 +
`(`+ 1)

r2 C22
;

q(r) = αγp0 −
2

r
+

1

r

C12

C22
+
`(`+ 1)

r

(
1

r C22

)′
+
`(`+ 1)

r

(
2

r
− αp0

γ

)
1

rC22
;

q̃(r) = C11 +

(
2

r
− αp0

γ

)
C12

r C22
+
`(`+ 1)

r

[(
2

r
− αp0

γ

)
1

rC22

]′
,

thus

r2 C22 q̂(r) = −r2 C22 + `(`+ 1) =
σ2

c2
0

r2 ; (A.2a)

r2 C22 q(r) = C22(αγp0r
2 − 2 r) + r C12 + `(`+ 1)

(
rC22

(
1

r C22

)′
+

2

r
− αp0

γ

)
; (A.2b)

= C22

(
αγp0

r2 − 2 r
)

+ r C12 + `(`+ 1)
(1

r
− C ′22

C22
− αp0

γ

)
; (A.2c)

r2 C22 q̃(r) = r2C22C11 + `(`+ 1)

[(
2

r
− αp0

γ

)′
+

(
2

r
− αp0

γ

)
rC22

(
1

rC22

)′]
(A.2d)

+

(
2

r
− αp0

γ

)
rC12 (A.2e)

= r2C22C11 + `(`+ 1)

[(
2

r
− αp0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2
−
(
αp0

γ

)′]
(A.2f)

+

(
2

r
− αp0

γ

)
rC12 . (A.2g)

Note that in the formulation of r2 C22 q̃(r) and r2 C22 q(r), we have used(
1

rC22

)′
= −C22 + r C ′22

(rC22)2
⇒ r C22

(
1

r C22

)′
= −C22 + r C ′22

r C22
= −1

r
− C ′22

C22
.

Let us first recall the proposition for clarity.

Proposition 4: For r ≤ ra, we have

1. For ` > 0,
C ′22

C22
= −2

r
+ r2 2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

+ r
2σ2

σ2 r2 − `(`+ 1)c2
0

. (A.3)
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2. The coefficient of the first order term of the ODE (7.12) has the following form,

r C22 q(r) = −αγp0

σ2

c2
0

r + 2
σ2

c2
0

− `(`+ 1)
r
(
2 σ2

c20
αc0 + iω (2Γ)′

c20

)
+ 2σ

2

c20

σ2

c20
r2 − `(`+ 1)

, (A.4)

or equivalently

r C22 q(r)

k2
0

= −αγp0 r + 2 − `(`+ 1)
2αc0 r + iω (2Γ)′

c20

1
k20
r + 2

r2 − `(`+1)
k20

. (A.5)

3. The coefficient of the 0th- term of the ODE (7.12) has the form,

r2 C22 q̃(r) = − σ2

c2
0

(−σ2 + Φ′′0)

c2
0

r2 + 2
σ2

c2
0

(
αp0

r

γ
− αγp0 r − 1

)
− `(`+ 1)

σ2

c2
0

+ `(`+ 1)
Φ′0
c2
0

(
− Φ′0

c2
0

+ αρ0

)

− `(`+ 1)

(
2 − αp0

γ
r

) r
(
2 σ2

c20
αc0 + iω (2Γ)′

c20

)
+ 2σ

2

c20

σ2

c20
r2 − `(`+ 1)

.

(A.6)

A form entirely in terms of ρ0, c0 and Φ0 , and k0 is given as

r2 C22 q̃(r)

k2
0

=

(
k2

0 −
Φ′′0
c2
0

)
r2 + 2 r

(
Φ′0
c2
0

− αρ0 − 2αc0

)
− 2− `(`+ 1)

+
`(`+ 1)

k2
0

Φ′0
c2
0

(
αρ0 −

Φ′0
c2
0

)

− `(`+ 1)

k2
0

(
2 − Φ′0

c2
0

r

) 2αc0 r + 2 + i ω
k20

(2Γ)′

c20
r

r2 − `(`+1)
k20

.

(A.7)

Proof. Statement 1 From the definition of C22 in (4.35), we have

C ′22 = −
(
σ2

c2
0

)′
− 2

`(`+ 1)

r3
, (A.8)

with (
σ2

c2
0

)′
= 2

σ2

c2
0

αc0 +
(σ2)′

c2
0

, (σ2)′ = iω (2Γ)′ . (A.9)

Thus, we have

C ′22

C22
=

1

r

−2
σ2

c2
0

αc0 r
3 − iω (2Γ)′

c2
0

r3 − 2`(`+ 1)

−σ
2

c2
0

r2 + `(`+ 1)

.

Next, we consider

C ′22

C22
+

2

r
=

1

r

−2
σ2

c2
0

αc0 r
3 − iω (2Γ)′

c2
0

r3 − 2
σ2

c2
0

r2

−σ
2

c2
0

r2 + `(`+ 1)

= r2 2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

+ r
2σ2

σ2 r2 − `(`+ 1)c2
0

,

(A.10)
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thus

−C
′
22

C22
+

1

r
=

3

r
− r2 2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

− r
2σ2

σ2 r2 − `(`+ 1)c2
0

, (A.11)

and

−C
′
22

C22
− 1

r
=

1

r
− r2 2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

− r
2σ2

σ2 r2 − `(`+ 1)c2
0

. (A.12)

Statement 2a We now consider r2 C22 q(r). From its definition in (D.16),

r2 C22 q(r) = C22(αγp0
r2 − 2 r) + r C12 + `(`+ 1)

(
rC22

(
1

r C22

)′
+

2

r
− αp0

γ

)
= αγp0

(C22 r
2) − 2 r C22 + r C12 + `(`+ 1)

(1

r
− C ′22

C22
− αp0

γ

)
.

(A.13)

We substitute the definition of C12 on the right-hand side of (A.13),

C22 = −σ
2

c2
0

+
`(`+ 1)

r2
,

C12 = `(`+ 1)

(
αp0

r γ
− αγp0

r
− 1

r2

)
,

and using (A.11), we obtain

r2 C22 q(r) = αγp0

(
−σ

2

c2
0

r2 + `(`+ 1)

)
+

(
2
σ2

c2
0

r − 2
`(`+ 1)

r

)
+ `(`+ 1)

αp0
− γ αγp0

γ
− `(`+ 1)

r

+
3 `(`+ 1)

r
− r2 `(`+ 1)

2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

− r `(`+ 1)
2σ2

σ2 r2 − `(`+ 1)c2
0

− `(`+ 1)
αp0

γ

= −αγp0

σ2

c2
0

r2 + 2
σ2

c2
0

r + − r2 `(`+ 1)
2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

− r `(`+ 1)
2σ2

σ2 r2 − `(`+ 1)c2
0

.

Statement 2b Let us now consider r2 C22 q̃(r). From (D.16), we have

r2 C22 q̃(r) = r2C22C11 +

(
2

r
− αp0

γ

)
rC12

+ `(`+ 1)

[(
2

r
− αp0

γ

)′
+

(
2

r
− αp0

γ

)
rC22

(
1

rC22

)′] (A.14)

⇒ r2 C22 q̃(r) = r2C22C11 +

(
2

r
− αp0

γ

)
rC12

+ `(`+ 1)

[(
2

r
− αp0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2
−
(
αp0

γ

)′]
.

(A.15)

We consider the first two terms of the right-hand side of (A.15),

I1 := r2 C22 C11 +

(
2

r
− αp0

γ

)
rC12 .
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Recall from their definitions,

C12 = `(`+ 1)

(
αp0

r γ
− αγp0

r
− 1

r2

)
(A.16a)

C11 = −σ
2

c2
0

+
Φ′′0
c2
0

+ 2
αγp0

r
+

2

r2
− 2

αp0

rγ
⇒ C11 = −σ

2

c2
0

+
Φ′′0
c2
0

− 2

`(`+ 1)
C12 . (A.16b)

This gives

r2 C22 C11 =

(
−σ

2

c2
0

r2 + `(`+ 1)

) (
−σ

2

c2
0

+
Φ′′0
c2
0

− 2

`(`+ 1)
C12

)
=

(
−σ

2

c2
0

r2 + `(`+ 1)

) (
−σ

2

c2
0

+
Φ′′0
c2
0

)
+
σ2

c2
0

r2 2

`(`+ 1)
C12 − 2C12 .

⇒ I1 = r2 C22 C11 + 2C12 −
αp0

γ
r C12

=

(
−σ

2

c2
0

r2 + `(`+ 1)

)
−σ2 + Φ′′0

c2
0

+
σ2

c2
0

r2 2

`(`+ 1)
C12 −

αp0

γ
r C12 .

⇒ I1 =

(
−σ

2

c2
0

r2 + `(`+ 1)

)
−σ2 + Φ′′0

c2
0

+ 2
σ2

c2
0

(
αp0r

γ
− αγp0

r − 1

)
− αp0

γ
`(`+ 1)

(
αp0

γ
− αγp0 −

1

r

)
.

(A.17)

We consider the remaining term on the right-hand side of (A.15),

I2 := `(`+ 1)

[(
2

r
− αp0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2
−
(
αp0

γ

)′]
.

Using (A.12), we obtain(
2

r
− αp0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2

=

(
2

r
− αp0

γ

)(
1

r
− r2 2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

− r
2σ2

σ2 r2 − `(`+ 1)c2
0

)
− 2

r2

= −
(
r

2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

+
2σ2

σ2 r2 − `(`+ 1)c2
0

)(
2 − αp0

γ
r

)
− αp0

γ

1

r
,

and we get

I2 = − `(`+ 1)

(
r

2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

+
2σ2

σ2 r2 − `(`+ 1)c2
0

)(
2 − αp0

γ
r

)
− αp0

γ

`(`+ 1)

r
− `(`+ 1)

(
αp0

γ

)′
.

(A.18)

Finally, putting together (A.17) and (A.18), we obtain the expression,

r2 C22 q̃(r)

=

(
−σ

2

c2
0

r2 + `(`+ 1)

)
−σ2 + Φ′′0

c2
0

− `(`+ 1)

(
αp0

γ
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+ 2
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c2
0

(
αp0

r

γ
− αγp0

r − 1

)
− αp0
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(
αp0
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− αγp0

)
− `(`+ 1)

(
r

2σ2 αc0 + iω (2Γ)′

σ2 r2 − `(`+ 1)c2
0

+
2σ2
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)(
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)
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(A.19)

Inria



Outgoing solutions in vectorial helioseismology 97

Using (6.30), we have (
αp0

γ

)′
=

Φ′′0
c2
0

+ 2
Φ′0
c2
0

αc0 , (A.20)

and the above expression simplifies to

r2 C22 q̃(r)

= −σ
2

c2
0

(−σ2 + Φ′′0)

c2
0

r2 + `(`+ 1)
−σ2− 2 Φ′0 αc0

c2
0

+ 2
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0

(
αp0r

γ
− αγp0

r − 1

)
− αp0
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− `(`+ 1)
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σ2 r2 − `(`+ 1)c2
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(A.21)

After rearrangement, we arrive at

r2 C22 q̃(r) (A.22a)

= −σ
2

c2
0

(−σ2 + Φ′′0)

c2
0

r2 + 2
σ2

c2
0

(
αp0r

γ
− αγp0 r − 1

)
(A.22b)

+ `(`+ 1)
−σ2− 2 Φ′0 αc0

c2
0

− αp0

γ
`(`+ 1)

(
αp0

γ
− αγp0

)
(A.22c)

− `(`+ 1)

(
2 − αp0

γ
r

) r
(
2 σ2

c20
αc0 + iω (2Γ)′

c20

)
+ 2σ

2

c20

σ2

c20
r2 − `(`+ 1)

. (A.22d)

We can further regroup the second expression (A.22c). Using (6.28a)

αp0
= + Φ′0

γ

c2
0

, (A.23)

and
αγp0

= 2αc0 + αρ0 , cf. (6.28b), (A.24)

we rewrite

(A.22c) = `(`+ 1)
−σ2− 2 Φ′0 αc0

c2
0

− αp0

γ
`(`+ 1)

(
αp0

γ
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)
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0
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− Φ′0

c2
0

+αρ0

)
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(A.25)

Remark 22. In the case where ` = 0, we have

C ′22

C22
=

−2
σ2

c2
0

αc0 −
iω (2Γ)′

c2
0

−σ
2

c2
0

=
2σ2 αc0 + iω (2Γ)′

σ2
.

Therefore, this is a regular function. However, we do not need this since this term does not appear at all
in the equation for ` = 0. 4
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B Explicit expressions for the coe�cients of the radial ODE in
the atmosphere

In this appendix, we prove Proposition 5. We recall

C11 = −σ
2

c2
0

+
2

r

(
αρ0 −

αρ0
γ

)
+

2

r2
+

Φ′′0
c2
0

; (B.1a)

C12 = `(`+ 1)

(
−αρ0

r
+
αρ0
r γ
− 1

r2

)
; (B.1b)

C22 = −σ
2

c2
0

− αρ0
γ

1

r
+
`(`+ 1)

r2
+

Φ′0
c2
0

1

r
. (B.1c)

r2 C22 q̂(r) = −r2 C22 + `(`+ 1) =
σ2

c2
0

r2 +
αρ0
γ
r − Φ′0

c2
0

r ; (B.2a)

r2 C22 q(r) = C22(αρ0 r
2 − 2 r) + r C12 + `(`+ 1)

(
rC22

(
1

r C22

)′
+

2

r
− αρ0

γ

)
; (B.2b)

= C22(αρ0 r
2 − 2 r) + r C12 + `(`+ 1)

(1

r
− C ′22

C22
− αρ0

γ

)
; (B.2c)

r2 C22 q̃(r) = r2C22C11 + `(`+ 1)
[(2

r
− αρ0

γ

)′ (B.2d)

+
(2

r
− αρ0

γ

)
rC22

( 1

rC22

)′]
+
(2

r
− αρ0

γ

)
rC12 (B.2e)

= r2C22C11 + `(`+ 1)

[(
2

r
− αρ0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2

]
(B.2f)

+

(
2

r
− αρ0

γ

)
rC12 . (B.2g)

We have introduced (4.57),

Ehe := − αρ0
γ

+
Φ′0
c2
0

, (B.3)

and in (4.50),
k0 =

σ

c0
, (B.4)

Proposition 4 In r ≥ ra
r2 C22 q̂(r) = r(k2

0 r − Ehe) . (B.5)

r2 C22 q(r) = (αρ0r − 2) (−k2
0 r + Ehe)

+ `(`+ 1)
(k2

0)′ r2 + 2 k2
0 r − (Ehe + r

Φ′′0
c20

)

−k2
0r

2 + `(`+ 1) + rEhe
.

(B.6)

r2 C22 q̃(r)

=
(
k2

0 r
2 − rEhe

) (
k2

0 −
Φ′′0
c2
0

)
+ 2

(
k2

0r
2 − rEhe

) (
−αρ0

r
+
αρ0
r γ
− 1

r2

)
+ `(`+ 1)

(
−k2

0 +
Φ′′0
c2
0

)
− `(`+ 1)

αρ0
γ

(
αρ0
γ
− αρ0

)

+ `(`+ 1)

(
2

r
− αρ0

γ

) (k2
0)′ r2 + 2 k2

0 r −
(
Ehe + r

Φ′′0
c20

)
−k2

0r
2 + `(`+ 1) + rEhe

.

(B.7)
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Proof. In the new notation,

r2 C22 q̂(r) = −r2 C22 + `(`+ 1) = k2
0 r

2 +
αρ0
γ
r − Φ′0

c2
0

r (B.8)

can be written as
r2 C22 q̂(r) = k2

0 r
2 − r Ehe . (B.9)

Component C22 and its derivative Recall from (D.20), the definition of C22,

C22 = −σ
2

c2
0

− αρ0
γ

1

r
+
`(`+ 1)

r2
+

Φ′0
c2
0

1

r
. (B.10)

In terms of Ehe, C22 is written as,

C22 = −k2
0 +

`(`+ 1)

r2
+
Ehe(r)

r
(B.11)

We can write

C ′22 = −(k2
0)′ − 2

`(`+ 1)

r3
− Ehe

r2
+

E′he
r

. (B.12)

We note that

E′he =
Φ′′0
c2
0

. (B.13)

We consider

C ′22

C22
=
−(k2

0)′

C22
− 2`(`+ 1) r−1

−k2
0r

2 + `(`+ 1) + r Ehe
+

−Ehe + rE′he
−k2

0r
2 + `(`+ 1) + r Ehe

. (B.14)

Thus

−C
′
22

C22
− 2

r
= −−(k2

0)′

C22
+

2

r

`(`+ 1)− (−k2
0r

2 + `(`+ 1) + r Ehe

−k2
0r

2 + `(`+ 1) + r Ehe
+

Ehe − rE′he
−k2

0r
2 + `(`+ 1) + r Ehe

= −−(k2
0)′

C22
+

2

r

k2
0r

2 − r Ehe

−k2
0r

2 + `(`+ 1) + r Ehe
+

Ehe − rE′he
−k2

0r
2 + `(`+ 1) + r Ehe

= −−(k2
0)′

C22
+

2 k2
0r

−k2
0r

2 + `(`+ 1) + r Ehe
+

−Ehe − rE′he
−k2

0r
2 + `(`+ 1) + r Ehe

.

(B.15)
We can thus write

−C
′
22

C22
− 2

r
=

(k2
0)′ r2 + 2 k2

0 r − (Ehe + rE′he)
−k2

0r
2 + `(`+ 1) + rEhe

. (B.16)

Statement 1 We start with expression of r2 C22 q given in (B.2),

r2 C22 q = C22(αρ0 r
2 − 2 r) + r C12 + `(`+ 1)

(1

r
− C ′22

C22
− αρ0

γ

)
. (B.17)

Using its definition in (D.20)

C12 = `(`+ 1)

(
−αρ0

r
+
αρ0
r γ
− 1

r2

)
(B.18)

we have

rC12 + `(`+ 1)
(1

r
− C ′22

C22
− αρ0

γ

)
= `(`+ 1)

(
−αρ0 +

αρ0
γ
− 1

r

)
+ `(`+ 1)

(1

r
− C ′22

C22
− αρ0

γ

)
= −`(`+ 1)

(
αρ0 +

C ′22

C22

)
.

(B.19)
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With the above calculation, expression (B.17) simplifies to,

r2 C22 q(r) = C22(αρ0 r
2 − 2 r) − `(`+ 1)αρ0 − `(`+ 1)

C ′22

C22
. (B.20)

We can rewrite the first two terms as

C22(αρ0 r
2 − 2 r) − `(`+ 1)αρ0

=
(
−αρ0 k2

0 r
2 + αρ0`(`+ 1) + αρ0rEhe

)
− 2 r

(
−k2

0 +
`(`+ 1)

r2
+
Ehe

r

)
− `(`+ 1)αρ0

= −αρ0 k2
0 r

2 + αρ0 r Ehe + 2 r k2
0 − 2

`(`+ 1)

r
− 2Ehe

= αρ0r(−k2
0 r + Ehe) + 2(k2

0 r − Ehe) − 2
`(`+ 1)

r

= (αρ0r − 2) (−k2
0 r + Ehe) − 2

`(`+ 1)

r
.

(B.21)

Together with identity (B.16), we obtain the following expression,

r2 C22 q(r) = (αρ0r − 2) (−k2
0 r + Ehe) − `(`+ 1)

(
2

r
+
C ′22

C22

)
= (αρ0r − 2) (−k2

0 r + Ehe) + `(`+ 1)
(k2

0)′ r2 + 2 k2
0 r − (Ehe + rE′he)

−k2
0r

2 + `(`+ 1) + rEhe
.

(B.22)

Statement 2 From (D.23)

r2 C22 q̃(r) = r2C22C11 + `(`+ 1)

[(
2

r
− αρ0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2

]
+

(
2

r
− αρ0

γ

)
rC12 . (B.23)

Break the right-hand-side into

I1 := r2 C22 C11 + 2C12 −
αp0

γ
r C12 ; (B.24a)

I2 := `(`+ 1)

[(
2

r
− αρ0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2

]
. (B.24b)

We have

r2 C22 C11 =
(
−k2

0 r
2 + `(`+ 1) + rEhe

) (
−k2

0 +
Φ′′0
c2
0

− 2

`(`+ 1)
C12

)
=
(
−k2

0r
2 + `(`+ 1) + rEhe

) (
−k2

0 +
Φ′′0
c2
0

)
+
(
k2

0r
2 − rEhe

) 2

`(`+ 1)
C12 − 2C12 .

⇒ I1 := r2 C22 C11 + 2C12 −
αp0

γ
r C12

=
(
−k2

0r
2 + `(`+ 1) + rEhe

) (
−k2

0 +
Φ′′0
c2
0

)
+
(
k2

0r
2 − rEhe

) 2

`(`+ 1)
C12 −

αp0

γ
r C12 .

Substitute in the definition of C12, we obtain

I1 =
(
−k2

0r
2 + `(`+ 1) + rEhe

) (
−k2

0 +
Φ′′0
c2
0

)
+ 2

(
k2

0r
2 − rEhe

) (
−αρ0

r
+
αρ0
r γ
− 1

r2

)
− αp0

γ
`(`+ 1)

(
−αρ0 +

αρ0
γ
− 1

r

)
.

(B.25)

We next consider I2. Using (B.16), we can write

−C
′
22

C22
− 1

r
=

1

r
+

(k2
0)′ r2 + 2 k2

0 r − (Ehe + rE′he)
−k2

0r
2 + `(`+ 1) + rEhe

. (B.26)
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Thus
1

`(`+ 1)
I2 =

(
2

r
− αρ0

γ

)(
1

r
+

(k2
0)′ r2 + 2 k2

0 r − (Ehe + rE′he)
−k2

0r
2 + `(`+ 1) + rEhe

)
− 2

r2

=

(
2

r
− αρ0

γ

)
(k2

0)′ r2 + 2 k2
0 r − (Ehe + rE′he)

−k2
0r

2 + `(`+ 1) + rEhe
− 1

r

αρ0
γ

.

(B.27)

Putting together expression (B.25) for I1 and (B.27) for I2,

r2 C22 q̃(r)

=
(
−k2

0r
2 + `(`+ 1) + rEhe

) (
−k2

0 +
Φ′′0
c2
0

)
+ 2

(
k2

0r
2 − rEhe

) (
−αρ0

r
+
αρ0
r γ
− 1

r2

)
− αp0

γ
`(`+ 1)

(
−αρ0 +

αρ0
γ

)
+ `(`+ 1)

(
2

r
− αρ0

γ

)
(k2

0)′ r2 + 2 k2
0 r − (Ehe + rE′he)

−k2
0r

2 + `(`+ 1) + rEhe
.

(B.28)

After rearrangement we obtain

r2 C22 q̃(r)

=
(
k2

0 r
2 − rEhe

) (
k2

0 −
Φ′′0
c2
0

)
+ 2

(
k2

0r
2 − rEhe

) (
−αρ0

r
+
αρ0
r γ
− 1

r2

)
+ `(`+ 1)

(
−k2

0 +
Φ′′0
c2
0

)
− `(`+ 1)

αρ0
γ

(
αρ0
γ
− αρ0

)

+ `(`+ 1)

(
2

r
− αρ0

γ

) (k2
0)′ r2 + 2 k2

0 r −
(
Ehe + r

Φ′′0
c20

)
−k2

0r
2 + `(`+ 1) + rEhe

.

(B.29)

We next consider h and g.

Proposition 8 : For r ≥ ra, we have

h = αρ0 −
2

r
+ `(`+ 1)

(k2
0)′ r2 + 2 k2

0 r − Ehe − r
Φ′′0
c20(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

, (B.30)

g = −k2
0 +

2 (αρ0 −
αρ0
γ )

r
+

2

r2
+ `(`+ 1)

k2
0 +

αρ0
γ

(
αρ0
γ − αρ0

)
− Φ′′0

c20

k2
0 r

2 − r Ehe
(B.31a)

+
Φ′′0
c2
0

+ `(`+ 1)

(
2

r
− αρ0

γ

) (k2
0)′ r2 + 2 k2

0 r − Ehe − r
Φ′′0
c20(

k2
0r

2 − `(`+ 1) − rEhe) (k2
0 r

2 − r Ehe)
. (B.31b)

Under the hypothesis of constant attenuation,

h′ =
2

r2
+ `(`+ 1)

2 k2
0 − 4πG

c20
r ρ′0 − 2

Φ′0
c20

1
r(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

,

−
`(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

) (
2 k2

0 r − Ehe − r
Φ′′0
c20

)(
2k2

0r
2 − `(`+ 1) − 2rEhe

)
(
k2

0r
2 − `(`+ 1) − rEhe

)2
(2 k2

0 r
2 − r Ehe)2

(B.32)

Proof.

−r
2 C22 q(r)

r2 C22 q̂(r)
= − (αρ0r − 2) (−k2

0 r + Ehe)

r (k2
0 r − Ehe)

− `(`+ 1)
(k2

0)′ r2 + 2 k2
0 r − (Ehe + r

Φ′′0
c20

)

−k2
0r

2 + `(`+ 1) + rEhe

1

r (k2
0 r − Ehe)

.

(B.33)
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Thus

h = αρ0 −
2

r
+ `(`+ 1)

(k2
0)′ r2 + 2 k2

0 r − Ehe − r
Φ′′0
c20(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

. . (B.34)

We obtain readily the expression for g.

g = −r
2 C22 q̃(r)

r2 C22 q̂(r)

= −k2
0 +

Φ′′0
c2
0

+ 2

(
αρ0
r
− αρ0

r γ
+

1

r2

)

+ `(`+ 1)
k2

0 −
Φ′′0
c20

r(k2
0 r − Ehe)

+ `(`+ 1)
αρ0
γ

(
αρ0
γ
− αρ0

)
1

r(k2
0 r − Ehe)

− `(`+ 1)

(
2

r
− αρ0

γ

) (k2
0)′ r2 + 2 k2

0 r −
(
Ehe + r

Φ′′0
c20

)
−k2

0r
2 + `(`+ 1) + rEhe

1

r(k2
0 r − Ehe)

.

(B.35)

The final expression is obtained from rearrangement.

Derivative of h To calculate h′, for simplicity, we assume constant attenuation so (k2
0)′ = 0.

h′ = −
(

2

r

)′
+ `(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

)′
(
k2

0r
2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

−
`(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

)
(
k2

0r
2 − `(`+ 1) − rEhe

)2
(k2

0 r
2 − r Ehe)

(
k2

0r
2 − `(`+ 1) − rEhe

)′
−

`(`+ 1)
(

2 k2
0 r − Ehe − r

Φ′′0
c20

)
(
k2

0r
2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)2

(k2
0 r

2 − r Ehe)
′

(B.36)

We next recall that E′he =
Φ′′0
c20

, and

Φ′′′0 = 4πGρ′0 +
2

r2
Φ′0 −

2

r
Φ′′0 . (B.37)

⇒ E′he +

(
r

Φ′′0
c2
0

)′
=

Φ′′0
c2
0

+
Φ′′0
c2
0

+
r

c2
0

(
4πGρ′0 +

2

r2
Φ′0 −

2

r
Φ′′0

)
=

4πG

c2
0

r ρ′0 + 2
Φ′0
c2
0

1

r
.

(B.38)

h′ =
2

r2
+ `(`+ 1)

2 k2
0 − 4πG

c20
r ρ′0 − 2

Φ′0
c20

1
r(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

,

−
`(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

)
(
k2

0r
2 − `(`+ 1) − rEhe

)2
(k2

0 r
2 − r Ehe)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

)

−
`(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

)
(
k2

0r
2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)2

(
2 k2

0 r − Ehe − r
Φ′′0
c20

)
(B.39)

The last two terms are grouped using,

1

k2
0r

2 − `(`+ 1) − rEhe
+

1

k2
0 r

2 − r Ehe
=

2k2
0r

2 − `(`+ 1) − 2rEhe

(k2
0r

2 − `(`+ 1) − rEhe) (k2
0 r

2 − r Ehe)
. (B.40)
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We thus arrive at the stated expression for h′,

h′ =
2

r2
+ `(`+ 1)

2 k2
0 − 4πG

c20
r ρ′0 − 2

Φ′0
c20

1
r(

k2
0r

2 − `(`+ 1) − rEhe

)
(k2

0 r
2 − r Ehe)

,

−
`(`+ 1)

(
2 k2

0 r − Ehe − r
Φ′′0
c20

) (
2 k2

0 r − Ehe − r
Φ′′0
c20

)(
2k2

0r
2 − `(`+ 1) − 2rEhe

)
(
k2

0r
2 − `(`+ 1) − rEhe

)2
( k2

0 r
2 − r Ehe)2

.

(B.41)

C Results of the solutions of ODE

Here we cite the results in [13] needed for the construction of solution in Section 9. There are two types
of results, one for interval on which the coefficients of the ODE are continuous, and a second result for
regular singular ODE.

First, we put together the results of the Theorems 1 and 3 of [13], which give the existence and
uniqueness of the initial boundary value problem for an ODE with continuous coefficients.

Theorem 2 (Theorems 1 and 3 p.103 of [13]). Let q1 and q0 be continuous functions on an interval I
containing x0. For any set of constants (c0, c1) ∈ C2, there exists a unique solution u of

u′′ + q1(r)u′ + q0(r) = 0 (C.1)

on the entire interval I satisfying

u(x0) = c0 , u′(x0) = c1 . (C.2)

When there are singularities, we suppose that they are of regular singular type and cite the results of
Section 6 of [13].

Next, we use the Theorems 3 and 4 of [13].

Theorem 3 (Theorem 3 p. 158 and Theorem 4 p. 165 of [13]). Consider the equation

r2u′′ + p(r) r u′ + q(r)u = 0 , r > 0 (C.3)

where p and q have power series expansions which are convergent for |r| < r0 with r0 > 0. Let λ− and
λ+ with

Re λ− ≤ Reλ+ , (C.4)

the two indicial roots of the indicial polynomial

λ (λ − 1) + p(0)λ + q(0) = 0 . (C.5)

1. If λ+ − λ− /∈ Z, there are two linearly independent solutions u1 and u2 of the form

u1(r) = rλ+

∞∑
k=0

ckr
k , c0 = 1 , (C.6a)

u2(r) = rλ−
∞∑
k=0

c̃kr
k , c̃0 = 1 , (C.6b)

where the series converges for |r| ≤ r0.

2. If λ− = λ+, two linearly independent solutions are given by

u1(r) = rλ+

∞∑
k=0

ckr
k , c0 6= 0 ; (C.7a)

u2(r) = rλ++1
∞∑
k=0

c̃kr
k + u1 log r . (C.7b)

RR n° 9335



104 Barucq, Faucher, Fournier, Gizon & Pham

3. If λ+ − λ− is a positive integer, then two linearly independent solutions are given by

u1(r) = rλ+

∞∑
k=0

ckr
k , c0 6= 0 , (C.8a)

u2(r) = rλ−
∞∑
k=0

c̃kr
k + c u1 log r , c̃0 6= 0 , (C.8b)

with a constant c that can be zero.

D Alternative method for computation of the vectorial quantities

D.1 Discussion on the hierarchy of the background parameters

While (6.12) and (6.20) give a way to obtain higher derivatives of p0 and Φ0, it is not enough to calculate
their scale height functions, if we do not assume a priori knowledge of α′ρ0 and of α′c0 . For the moment,
we assume that we are only given

c0 , ρ0 , αc0 , αρ0(= α) . (D.1)

1. We can use (6.20) to calculate p′0, with

p′0 = 4πG
ρ0(r)

r2

∫ r

0

ρ0(s) s2 ds . (D.2)

The second-order derivative is then obtained from (6.15b),

p′′0 = −
(

2

r
+ αρ0

)
p′0 + 4πGρ2

0 . (D.3)

2. Next we obtain the inverse scale height for p0 and its derivative,

αp0
= −p′0

p0
, (D.4a)

α′p0
= −p′′0

p0
+ α2

p0
. (D.4b)

3. We have
αγp0 = 2αc0 + αρ0 , (D.5)

which gives us αγ ,
αγ = αp0

− αγp0
. (D.6)

4. However, after the above step, we run into a problem because if given ρ0 and ρ′0 we can get up to Φ
(3)
0 ,

however we have the equivalence of the following quantities

p
(3)
0 ⇔ ρ′′0 ⇔ α′ (D.7)

This can be seen from the ODE of p0, since n derivatives of p0 will also require n−1 derivatives of ρ0.
In fact all the relations give p

(3)
0 + p′0 p′′0 which is the same as (due to the hydrostatic equilibrium),

1

ρ0
p

(3)
0 − Φ′0 p′′0 .

Similarly, all the relations give
αc0 ⇔ αγp0

⇔ αγ (D.8)

and on the level of derivative
α′c0 ⇔ α′γp0

⇔ α′γ (D.9)

In particular,
−2αc0 + αγ = . . . (D.10)

This means that we need to assume the a priori computation of α′ρ0 and α′c0 .
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D.2 Computational steps for V` in the interior

Here we compute the background quantities in the same order as in Step 1 – 11 in Subsection 6.3. However,
in order to obtain quantities like r2C22(r)q, r2C22, q̃ and V , we start from the original expressions in
Proposition 3 (instead of the compact expressions in Proposition 4 and Proposition 7).

Remark 23. As an alternative to the computational steps 6 to 11 given in Subsection 6.3, we can directly
use the scale height function associated with the adiabatic index (i.e., αγ), and calculate its derivative
numerically (e.g., using a finite-differences approximation). We can proceed as follows.

6. Compute the scale height function αγ , and its derivative α′γ .

7. Compute the scale height function for the fluid pressure p0 and its derivatives

αγp0

(6.3)
= 2αc0 + αρ0 ⇒ α′γp0

= 2α′c0 + α′ρ0 (D.11a)

αp0

(6.5)
= 2αc0 + αρ0 − αγ ⇒ α′p0

= 2α′c0 + α′ρ0 − α′γ , (D.11b)
p′′0
p0

= − α′p0
+ α2

p0
. (D.11c)

8. Compute the derivatives of the background gravitational potential Φ0,

Φ′0
(6.9)
= αp0

c2
0

γ
; (D.12a)

Φ′′0
(6.11)

= −p′′0
p0

c2
0

γ
+ αρ0 Φ′0 . (D.12b)

4

We can now compute the components of C using (4.35), such that

C11 = −σ
2

c2
0

+
Φ′′0
c2
0

+ 2
αγp0

r
+

2

r2
− 2

αp0

rγ
; (D.13a)

C12 = `(`+ 1)

(
αp0

r γ
− αγp0

r
− 1

r2

)
; (D.13b)

C22 = −σ
2

c2
0

+
`(`+ 1)

r2
. (D.13c)

The derivatives of C22 are given by

C22
′ = −

(
σ2

c2
0

)′
− 2

`(`+ 1)

r3
, (D.14a)

C22
′′ = −

(
σ2

c2
0

)′′
+ 6

`(`+ 1)

r4
, (D.14b)

and of C12 by

C ′12 = `(`+ 1)

(
α′p0

r γ
+
αp0

r γ
αγ −

1

r2

αp0

γ
−
α′γp0

r
+
αγp0

r2
+

2

r3

)
. (D.15)

Next, instead of computing directly q̂, q(r), and q̃(r), which depend on the inverse of the radius:

q̂(r) = −1 +
`(`+ 1)

r2 C22
;

q(r) = αγp0 −
2

r
+

1

r

C12

C22
+
`(`+ 1)

r

(
1

r C22

)′
+
`(`+ 1)

r

(
2

r
− αp0

γ

)
1

rC22
;

q̃(r) = C11 +

(
2

r
− αp0

γ

)
C12

r C22
+
`(`+ 1)

r

[(
2

r
− αp0

γ

)
1

rC22

]′
,
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we compute a more stable coefficient: r2C22 q̂, r2C22 q, and r2C22 q̃(r), given by

r2 C22 q̂(r) = −r2 C22 + `(`+ 1) =
σ2

c2
0

r2 ; (D.16a)

r2 C22 q(r) = C22(αγp0r
2 − 2 r) + r C12 + `(`+ 1)

(
rC22

(
1

r C22

)′
+

2

r
− αp0

γ

)
; (D.16b)

= C22

(
αγp0

r2 − 2 r
)

+ r C12 + `(`+ 1)
(1

r
− C ′22

C22
− αp0

γ

)
; (D.16c)

r2 C22 q̃(r) = r2C22C11 + `(`+ 1)

[(
2

r
− αp0

γ

)′
+

(
2

r
− αp0

γ

)
rC22

(
1

rC22

)′]
(D.16d)

+

(
2

r
− αp0

γ

)
rC12 (D.16e)

= r2C22C11 + `(`+ 1)

[(
2

r
− αp0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2
−
(
αp0

γ

)′]
(D.16f)

+

(
2

r
− αp0

γ

)
rC12 . (D.16g)

Note that in the formulation of r2 C22 q̃(r) and r2 C22 q(r), we have used(
1

rC22

)′
= −C22 + r C ′22

(rC22)2
⇒ r C22

(
1

r C22

)′
= −C22 + r C ′22

r C22
= −1

r
− C ′22

C22
.

We compute the derivatives,

(r2 C22 q̂)
′ = 2

σ2

c2
0

r +

(
σ2

c2
0

)′
r2 ; (D.17a)

(r2 C22 q)
′ = C ′22

(
αγp0

r2 − 2 r
)

+ C22

(
α′γp0

r2 + 2αγp0
r − 2

)
+ C12 + r C ′12 + `(`+ 1)

(
− 1

r2
− C ′′22

C22
+

(
C ′22

C22

)2

−
(
αp0

γ

)′ )
. (D.17b)

Eventually, we compute the three functions defining the potential:

h = −q
q̂

= −r
2 C22 q

r2C22 q̂
;

h′ = − (r2 C22 q)
′

r2C22 q̂
+
r2 C22 q

r2C22 q̂

(r2C22 q̂)
′

r2C22 q̂
= − (r2 C22 q)

′

r2C22 q̂
− h

(r2C22 q̂)
′

r2C22 q̂
;

g = − q̃
q̂

= −r
2 C22 q̃

r2 C22 q̂
.

(D.18)

The potential V`(r) is given by

V` =
1

4
h2 − 1

2
h′ + g . (D.19)

D.3 Computational steps for V` in the atmosphere

Here we compute the background quantities in the same order as in Step 1 of Subsection 6.4. However,
in order to obtain quantities like r2C22(r)q, r2C22, q̃ and V , we start from the original expressions in
Proposition 3 (instead of the compact expressions in Proposition 5 and Proposition 8).

We have the following steps for the computation of the potential in the atmosphere.

1. This step remains as Step 1 of Subsection 6.4.
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2. Compute the components of the matrix C from (4.39) (note that they are functions of r),

C11 = −σ
2

c2
0

+
2

r

(
αρ0 −

αρ0
γ

)
+

2

r2
+

Φ′′0
c2
0

; (D.20a)

C12 = `(`+ 1)

(
−αρ0

r
+
αρ0
r γ
− 1

r2

)
; (D.20b)

C22 = −σ
2

c2
0

− αρ0
γ

1

r
+
`(`+ 1)

r2
+

Φ′0
c2
0

1

r
. (D.20c)

3. Compute the derivatives of C22

C ′22 =
αρ0
γ

1

r2
− 2

`(`+ 1)

r3
+

1

c2
0

(
Φ′′0
r
− Φ′0

r2

)
;

(4.16)
=

αρ0
γ

1

r2
− 2

`(`+ 1)

r3
+

1

c2
0

1

r2
(4πGρ0 r − 3Φ′0) ,

C ′′22 = −2
αρ0
γ

1

r3
+ 6

`(`+ 1)

r4
− 2

c2
0

1

r3
(4πGρ0 r − 3Φ′0)

+
1

c2
0

1

r2

(
4πGρ0 + 4πGρ′0r − 12πGρ0 +

6

r
Φ′0

)
= −2

αρ0
γ

1

r3
+ 6

`(`+ 1)

r4
− 4

c2
0

1

r3
(4πGρ0 r − 3Φ′0) − 4πG

ρ0 αρ0
c2
0 r

.

(D.21)

and of C12,

C ′12 = `(`+ 1)

(
αρ0
r2
− αρ0
r2 γ

+
2

r3

)
. (D.22)

4. Similarly to the computation in the interior, instead of computing q̂, q(r), and q̃(r), we use r2C22 q̂,
r2C22 q, and r2C22 q̃(r), such that

r2 C22 q̂(r) = −r2 C22 + `(`+ 1) =
σ2

c2
0

r2 +
αρ0
γ
r − Φ′0

c2
0

r ; (D.23a)

r2 C22 q(r) = C22(αρ0 r
2 − 2 r) + r C12 + `(`+ 1)

(
rC22

(
1

r C22

)′
+

2

r
− αρ0

γ

)
; (D.23b)

= C22(αρ0 r
2 − 2 r) + r C12 + `(`+ 1)

(1

r
− C ′22

C22
− αρ0

γ

)
; (D.23c)

r2 C22 q̃(r) = r2C22C11 + `(`+ 1)
[(2

r
− αρ0

γ

)′ (D.23d)

+
(2

r
− αρ0

γ

)
rC22

( 1

rC22

)′]
+
(2

r
− αρ0

γ

)
rC12 (D.23e)

= r2C22C11 + `(`+ 1)

[(
2

r
− αρ0

γ

)(
−1

r
− C ′22

C22

)
− 2

r2

]
(D.23f)

+

(
2

r
− αρ0

γ

)
rC12 . (D.23g)

5. Compute the derivatives,

(r2 C22 q̂)
′ = 2

σ2

c2
0

r +
αρ0
γ
− Φ′0

c2
0

− Φ′′0
c2
0

r ;

(r2 C22 q)
′ = C ′22 (αρ0 r

2 − 2 r) + C22 (2αρ0 r − 2) + C12 + r C ′12

+ `(`+ 1)

(
− 1

r2
− C ′′22

C22
+

(
C ′22

C22

)2
)
.

(D.24)
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6. We compute the three functions,

h = −q
q̂

= −r
2 C22 q

r2C22 q̂
;

h′ = − (r2 C22 q)
′

r2C22 q̂
+
r2 C22 q

r2C22 q̂

(r2C22 q̂)
′

r2C22 q̂
= − (r2 C22 q)

′

r2C22 q̂
− h

(r2C22 q̂)
′

r2C22 q̂
;

g = − q̃
q̂

= −r
2 C22 q̃

r2 C22 q̂
.

(D.25)

7. Eventually, the potential in the atmosphere is given by

V` =
1

4
h2 − 1

2
h′ + g . (D.26)

E Square roots of potential

Recall that
−V`(r) = Q(r) + εV (r) , εV = −V`(r) − Q(r) = O(r−3) ,

where Q consists of the first three summands in the asymptotic expansion of (−V`)

Q(r) := k2 +
αad

r
−
µ2
` − 1

4

r2

= k2 +
αad

r
− `(`+ 1)

(
2

`(`+ 1)
+ 1 − α2

k2
0

γ − 1

γ2

)
1

r2
.

(E.1)

We recall the definitions of the wavenumbers,

σ2 = ω2 + 2i Γa ω = ω2(1 + 2i
Γa
ω

) ; (E.2a)

k2 = k2
0 −

α2

4
=

ω2

c2
0

+ 2i
Γa ω

c2
0

− α2

4c2
0

⇒ Im k2 = Im k2
0 = 2

Γa
ω

(
ω

c0

)2

; (E.2b)

1

k2
0

=
1

|k0|4

(
ω2

c2
0

− 2i
Γa ω

c2
0

)
⇒ Im

1

k2
0

= −2
1

|k0|4
Γa
ω

(
ω

c0

)2

. (E.2c)

And we have defined
σ :=

√
σ2 + iω

2 Γ

c2
0

, k0 :=
√
k2

0 =
σ

c0
. (E.3)

We denote by √ the square root branch that uses Argument branch [0, 2π) while ()1/2 uses Argument
branch (−π, π]. With Γ0 > 0, we always have

√
k2 = (k2)1/2 , Im k > 0 . (E.4)

Square root of Q We need to investigate the sign of its imaginary part. Since

µ2
` =

1

4
+ `(`+ 1)

(
2

`(`+ 1)
+ 1 − α2 (γ − 1)

γ2

1

k2
0

)
,

and replacing |k2
0| by

|k2
0| =

|σ2|
c2
0

=
ω2

c2
0

√
1 +

4 Γ2
a

ω2
,

we obtain the following expressions for the real and imaginary part of µ2
` ,

Reµ2
` =

1

4
+ `(`+ 1)

(
2

`(`+ 1)
+ 1 − α2(γ − 1)

γ2

(
Re

1

k2
0

))
=

1

4
+ `(`+ 1)

(
2

`(`+ 1)
+ 1 − α2 (γ − 1)

γ2

ω2

|k0|4 c2
0

)
.
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Thus, we have

Reµ2
` =

1

4
+ `(`+ 1)

 2

`(`+ 1)
+ 1 − 1(

ω
c0

)2

α2 (γ − 1)

γ2

1

1 + 4(Γa
ω )2

 ,

=

(
` +

1

2

)2

+ 2 − α2 (γ − 1)

γ2

1

1 + 4(Γa
ω )2

`(`+ 1)(
ω
c0

)2 .

(E.5)

Similarly, for the imaginary part, we have

Imµ2
` = −`(`+ 1)

α2 (γ − 1)

γ2

(
Im

1

k2
0

)
= −`(`+ 1)

α2 (γ − 1)

γ2

(−2) Γa ω

|k0|4 c2
0

= 2
Γa ω

c2
0

α2

|k0|4
γ − 1

γ2
`(`+ 1) = 2

Γa
ω

(
ω

c0

)2
α2

( ωc0 )2

(γ − 1)

γ2

1

1 + 4(Γa
ω )2

`(`+ 1)

( ωc0 )2
.

This leads to,

Imµ2
` = 2

Γa
ω

α2 (γ − 1)

γ2

1

1 + 4(Γa
ω )2

`(`+ 1)

( ωc0 )2
. (E.6)

From these calculations, we have

ImQ = Im k2 − Imµ2
`

r2
= 2

Γa
ω

((
ω

c0

)2

− α2 (γ − 1)

γ2

1

1 + 4(Γa
ω )2

`(`+ 1)

( ωc0 r)
2

)
;

ReQ = Re k2 +
αad

r
−

Reµ2
` − 1

4

r2

=

(
ω2

c2
0

− α2

4

)
+

αad

r
− `(`+ 1)

r2

(
2

`(`+ 1)
+ 1 − 1

( ωc0 )2

α2 (γ − 1)

γ2

1

1 + 4(Γa
ω )2

)

=

(
ω2

c2
0

− α2

4

)
+

αad

r
− 1

r2

(
`(`+ 1) + 2 − α2 (γ − 1)

γ2

1

1 + 4(Γa
ω )2

`(`+ 1)

( ωc0 )2

)
.

Then, we use the physical assumption (2.1), that

1 < γ < 2 .

In addition, we note that if ω, r, and ` satisfy

1 −

(
α
ω
c0
γ

)2

(γ − 1)
1

1 + 4(Γa
ω )2

`(`+ 1)

( ωc0 r)
2
> 0 , ` > 0 , (E.7)

then
ImQ > 0 . (E.8)

Remark 24. Under the hypothesis (2.1) and (E.7), we also have

Reµ2
` >

1
4 , Imµ2

` > 0 . (E.9)

4

F De�nition of the solar models using splines

In the model S from [12], the physical parameters (density and velocity) for the Sun are given point-wise,
that is, a list of (spherical) positions associated with the value of the parameters. In order to work with
their derivatives, which are required in the vectorial case through the scale heights, we extract a cubic
spline representation from the given point-wise representation. Namely, we proceed as follows.
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1. We start from a coarse partition to generate a first cubic spline representation.

2. We compute the difference between the original values and the spline representation.

3. The interval with the maximal difference is refined to increase the number of splines and reduce
the difference with the original model.

4. We repeat until the error is less than a selected threshold.

Consequently, we follow an iterative refinement of a coarse interval and the resulting basis of splines is
unstructured. This allows us to explicitly form the parameters and their derivatives. For instance, we
give in Table 2 the velocity model represented with cubic splines, which is pictured in Figure 1a.

Table 2: Coefficients to define the solar velocity model using splines, generated from the model S. On
each interval [x1, x2], the model is given by the function a(x− x1)3 + b(x− x1)2 + c(x− x1) + d.

Interval start Interval end Spline coe� a Spline coe� b Spline coe� c Spline coe� d

0 0.0001248 8.5965113 · 106 5.6334513 · 105 9.2473625 · 104 5.0356619 · 105

0.0001248 0.0188748 8.5965113 · 106 5.6656237 · 105 9.2614581 · 104 5.0357774 · 105

0.0188748 0.0376248 −2.2302045 · 107 1.0501161 · 106 1.229273 · 105 5.0557011 · 105

0.0376248 0.0563748 −4.046857 · 107 −2.043739 · 105 1.3878497 · 105 5.0809717 · 105

0.0563748 0.0751248 −2.3953166 · 107 −2.480731 · 106 8.8439254 · 104 5.1036078 · 105

0.0751248 0.0938748 −6.4827862 · 106 −3.8280965 · 106 −2.9851263 · 104 5.1098899 · 105

0.0938748 0.1126248 6.1274876 · 106 −4.1927533 · 106 −1.802422 · 105 5.0904073 · 105

0.1126248 0.1313748 1.2578428 · 107 −3.8480821 · 106 −3.3100786 · 105 5.0422756 · 105

0.1313748 0.1501248 1.4673379 · 107 −3.1405455 · 106 −4.6204463 · 105 4.9675124 · 105

0.1501248 0.1688748 1.549011 · 107 −2.315168 · 106 −5.6433926 · 105 4.8708053 · 105

0.1688748 0.1876248 1.4359805 · 107 −1.4438493 · 106 −6.3482083 · 105 4.7578735 · 105

0.1876248 0.2063748 1.0138205 · 107 −6.3611027 · 105 −6.7382007 · 105 4.6347151 · 105

0.2063748 0.2251248 6.1668004 · 106 −6.5836217 · 104 −6.8698157 · 105 4.5068058 · 105

0.2251248 0.2438748 4.5230315 · 106 2.8104631 · 105 −6.8294638 · 105 4.3781718 · 105

0.2438748 0.2626248 3.296957 · 106 5.3546683 · 105 −6.6763676 · 105 4.2514056 · 105

0.2626248 0.2813748 3.0122119 · 106 7.2092066 · 105 −6.4407949 · 105 4.1283235 · 105

0.2813748 0.3001248 −1.2519474 · 106 8.9035758 · 105 −6.1386802 · 105 4.0102916 · 105

0.3001248 0.3188748 −1.4725971 · 106 8.1993554 · 105 −5.8180003 · 105 3.898239 · 105

0.3188748 0.3376248 −5.5787909 · 105 7.3710195 · 105 −5.5260558 · 105 3.791937 · 105

0.3376248 0.3563748 −4.0520594 · 105 7.0572126 · 105 −5.2555264 · 105 3.6908781 · 105

0.3563748 0.3751248 −1.6387087 · 106 6.8292842 · 105 −4.9951546 · 105 3.5947913 · 105

0.3751248 0.3938748 −6.1433805 · 105 5.9075106 · 105 −4.7563397 · 105 3.503425 · 105

0.3938748 0.4126248 −1.3627564 · 105 5.5619454 · 105 −4.5412874 · 105 3.41628 · 105

0.4126248 0.4313748 −1.5380114 · 106 5.4852904 · 105 −4.3341517 · 105 3.3330773 · 105

0.4313748 0.4501248 −2.4515616 · 105 4.620159 · 105 −4.1446745 · 105 3.253639 · 105

0.4501248 0.4688748 −9.9023438 · 105 4.4822586 · 105 −3.9740042 · 105 3.1775345 · 105

0.4688748 0.4876248 −8.3097292 · 105 3.9252518 · 105 −3.8163634 · 105 3.1045324 · 105

0.4876248 0.5063748 −9.876261 · 105 3.4578295 · 105 −3.6779306 · 105 3.0343008 · 105

0.5063748 0.5251248 −1.5564943 · 105 2.9022898 · 105 −3.5586784 · 105 2.9664901 · 105

0.5251248 0.5438748 −2.2539198 · 106 2.814737 · 105 −3.4514841 · 105 2.900775 · 105

0.5438748 0.5626248 7.3921187 · 105 1.5469071 · 105 −3.3697033 · 105 2.8369006 · 105

0.5626248 0.5813748 −4.0477424 · 106 1.9627138 · 105 −3.3038979 · 105 2.7743113 · 105

0.5813748 0.6001248 2.0580451 · 106 −3.1414129 · 104 −3.2729872 · 105 2.7127864 · 105

0.6001248 0.6188748 −7.0544998 · 106 8.4350905 · 104 −3.2630615 · 105 2.6514431 · 105

0.6188748 0.6376248 4.8225952 · 106 −3.1246471 · 105 −3.3058329 · 105 2.5900922 · 105

0.6376248 0.6563748 −1.0507944 · 107 −4.1193729 · 104 −3.3721438 · 105 2.5273272 · 105

0.6563748 0.6751248 1.8470242 · 106 −6.3226556 · 105 −3.4984174 · 105 2.463262 · 105

0.6751248 0.6843403 2.3986315 · 105 −5.2837045 · 105 −3.7160367 · 105 2.3955657 · 105

0.6843403 0.6938748 −5.3840623 · 107 −5.2173907 · 105 −3.8128095 · 105 2.3608737 · 105

0.6938748 0.6968403 −8.835186 · 107 −2.0617693 · 106 −4.0591341 · 105 2.3235795 · 105

0.6968403 0.7093403 −8.7080603 · 106 −2.8477917 · 106 −4.2047272 · 105 2.3113378 · 105

0.7093403 0.7126248 7.3387194 · 107 −3.1743439 · 106 −4.9574941 · 105 2.2541589 · 105

0.7126248 0.7218403 5.9056073 · 107 −2.4512232 · 106 −5.1422659 · 105 2.2375596 · 105

0.7218403 0.7313748 4.6738917 · 107 −8.1852948 · 105 −5.4435899 · 105 2.1885515 · 105

0.7313748 0.7501248 −1.4128445 · 107 5.1836715 · 105 −5.4722089 · 105 2.1363106 · 105

0.7501248 0.7688748 5.9224776 · 106 −2.7635787 · 105 −5.4268322 · 105 2.0345978 · 105

0.7688748 0.7876248 −5.8563137 · 106 5.6781493 · 104 −5.4680027 · 105 1.9322635 · 105

0.7876248 0.8063748 1.4925678 · 106 −2.7263615 · 105 −5.5084755 · 105 1.829552 · 105

0.8063748 0.8251248 −2.4281431 · 106 −1.8867921 · 105 −5.5949721 · 105 1.725408 · 105

0.8251248 0.8438748 −3.3351645 · 106 −3.2526226 · 105 −5.6913361 · 105 1.6196789 · 105

0.8438748 0.8626248 −2.3718634 · 106 −5.1286527 · 105 −5.8484851 · 105 1.511603 · 105
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0.8626248 0.8813748 −4.303895 · 106 −6.4628258 · 105 −6.0658253 · 105 1.3999845 · 105

0.8813748 0.9001248 −6.1965032 · 106 −8.8837668 · 105 −6.3535739 · 105 1.2836945 · 105

0.9001248 0.9188748 −1.0805591 · 107 −1.23693 · 106 −6.7520689 · 105 1.1610333 · 105

0.9188748 0.9268075 −7.8233197 · 106 −1.8447445 · 106 −7.3298828 · 105 1.0293712 · 105

0.9268075 0.9376248 −4.0647786 · 107 −2.0309258 · 106 −7.6373301 · 105 9.7002513 · 104

0.9376248 0.9393075 1.1189644 · 108 −3.3500176 · 106 −8.2194002 · 105 8.8451927 · 104

0.9393075 0.9518075 −5.6206069 · 107 −2.7851364 · 106 −8.3226395 · 105 8.7059855 · 104

0.9518075 0.9533675 −2.712999 · 108 −4.892864 · 106 −9.2823895 · 105 7.6111601 · 104

0.9533675 0.9563748 2.0022128 · 108 −6.1625475 · 106 −9.4548539 · 105 7.4650611 · 104

0.9563748 0.9643075 −2.5846327 · 108 −4.3562012 · 106 −9.771179 · 105 7.1757014 · 104

0.9643075 0.9658675 2.91817 · 108 −1.0507175 · 107 −1.0950253 · 106 6.3602628 · 104

0.9658675 0.968422 3.8830861 · 108 −9.1414712 · 106 −1.1256772 · 106 6.1869926 · 104

0.968422 0.9718033 −6.8085932 · 108 −6.1656682 · 106 −1.1647793 · 106 5.8941204 · 104

0.9718033 0.9719283 7.9528012 · 108 −1.3072135 · 107 −1.2298271 · 106 5.4905983 · 104

0.9719283 0.9720533 −1.0405377 · 109 −1.2773905 · 107 −1.2330579 · 106 5.4752052 · 104

0.9720533 0.9721783 2.3273007 · 109 −1.3164107 · 107 −1.2363002 · 106 5.4597718 · 104

0.9721783 0.9723033 −5.3376184 · 109 −1.2291369 · 107 −1.2394821 · 106 5.4442979 · 104

0.9723033 0.9751248 1.6866833 · 109 −1.4292976 · 107 −1.2428051 · 106 5.4287841 · 104

0.9751248 0.9783675 −1.6216581 · 108 −1.6044623 · 104 −1.283178 · 106 5.0705368 · 104

0.9783675 0.979321 4.1085498 · 108 −1.5936341 · 106 −1.2883978 · 106 4.6538644 · 104

0.979321 0.980922 3.5197506 · 108 −4.1838346 · 105 −1.2903163 · 106 4.5309064 · 104

0.980922 0.9816958 −5.1998225 · 109 1.2721528 · 106 −1.2889494 · 106 4.324364 · 104

0.9816958 0.9826908 −4.5353758 · 109 −1.0797935 · 107 −1.29632 · 106 4.2244668 · 104

0.9826908 0.9851908 −6.1873693 · 109 −2.4336032 · 107 −1.3312783 · 106 4.0939672 · 104

0.9851908 0.98675 −2.0752238 · 109 −7.0741302 · 107 −1.5689716 · 106 3.7362698 · 104

0.98675 0.986821 6.0252292 · 1010 −8.044868 · 107 −1.8047146 · 106 3.4736422 · 104

0.986821 0.9868215 −9.9730508 · 1012 −6.7614942 · 107 −1.8152271 · 106 3.4607903 · 104

0.9868215 0.9870715 5.7302679 · 109 −8.2574518 · 107 −1.8153022 · 106 3.4606995 · 104

0.9870715 0.9873215 −1.9482435 · 108 −7.8276817 · 107 −1.855515 · 106 3.4148098 · 104

0.9873215 0.9875715 5.7448459 · 109 −7.8422935 · 107 −1.89469 · 106 3.3679324 · 104

0.9875715 0.9876908 8.563036 · 109 −7.4114301 · 107 −1.9328243 · 106 3.320084 · 104

0.9876908 0.9878215 4.5710986 · 109 −7.1050875 · 107 −1.9501352 · 106 3.2969311 · 104

0.9878215 0.988 2.1450425 · 1010 −6.9257861 · 107 −1.9684806 · 106 3.2713127 · 104

0.988 0.98925 4.589262 · 109 −5.7771159 · 107 −1.9911553 · 106 3.2359668 · 104

0.98925 0.9901908 2.7195561 · 1010 −4.0561426 · 107 −2.114071 · 106 2.978942 · 104

0.9901908 0.9905 1.0270578 · 1010 3.6191247 · 107 −2.1181822 · 106 2.7787353 · 104

0.9905 0.9908675 −5.3284279 · 1010 4.5719776 · 107 −2.0928513 · 106 2.713607 · 104

0.9908675 0.991696 1.4845111 · 1010 −1.3026141 · 107 −2.0808363 · 106 2.6370477 · 104

0.991696 0.991721 4.0145258 · 1011 2.3871381 · 107 −2.0718511 · 106 2.4646005 · 104

0.991721 0.991746 3.1072857 · 1011 5.3980325 · 107 −2.0699048 · 106 2.459423 · 104

0.991746 0.99175 −3.4007032 · 1012 7.7284968 · 107 −2.0666231 · 106 2.4542521 · 104

0.99175 0.991771 5.1690929 · 1011 3.6476529 · 107 −2.0661681 · 106 2.4534256 · 104

0.991771 0.991796 −9.5776893 · 1010 6.9041814 · 107 −2.0639522 · 106 2.4490887 · 104

0.991796 0.991821 1.7599631 · 1011 6.1858547 · 107 −2.0606797 · 106 2.443933 · 104

0.991821 0.991846 −4.6468553 · 1010 7.5058271 · 107 −2.0572568 · 106 2.4387854 · 104

0.991846 0.991871 3.6977122 · 1010 7.1573129 · 107 −2.053591 · 106 2.4336469 · 104

0.991871 0.991896 1.4792608 · 1011 7.4346414 · 107 −2.049943 · 106 2.4285175 · 104

0.991896 0.991921 −1.5505596 · 1011 8.544087 · 107 −2.0459483 · 106 2.4233975 · 104

0.991921 0.991946 4.8140778 · 1011 7.3811673 · 107 −2.041967 · 106 2.4182877 · 104

0.991946 0.9926908 −4.2461762 · 1010 1.0991726 · 108 −2.0373738 · 106 2.4131882 · 104

0.9926908 0.993422 −2.2398648 · 109 1.5047064 · 107 −1.9443066 · 106 2.2657973 · 104

0.993422 0.9938748 9.6792057 · 109 1.013336 · 107 −1.9258934 · 106 2.1243369 · 104

0.9938748 0.9941958 −1.1321291 · 1010 2.3280141 · 107 −1.9107655 · 106 2.0374397 · 104

0.9941958 0.994321 −1.1167542 · 1010 1.2377738 · 107 −1.8993193 · 106 1.9763065 · 104

0.994321 0.9951908 1.2143136 · 1010 8.1815344 · 106 −1.8967442 · 106 1.9525348 · 104

0.9951908 0.9967765 −5.061124 · 109 3.9866011 · 107 −1.8549549 · 106 1.7889833 · 104

0.9967765 0.997357 −2.2037852 · 1010 1.5788979 · 107 −1.7667 · 106 1.5028404 · 104

0.997357 0.9973813 1.2526581 · 1011 −2.2589941 · 107 −1.7706479 · 106 1.4003844 · 104

0.9973813 0.9974038 1.1684825 · 1011 −1.3476853 · 107 −1.7715226 · 106 1.3960894 · 104

0.9974038 0.9976908 −4.1265222 · 1010 −5.5895969 · 106 −1.7719516 · 106 1.392103 · 104

0.9976908 0.9980265 −3.6644545 · 1010 −4.1118953 · 107 −1.7853569 · 106 1.3411044 · 104

0.9980265 0.998114 8.3659854 · 1010 −7.802917 · 107 −1.8253609 · 106 1.2805588 · 104

0.998114 0.9983623 −1.3385974 · 1011 −5.6068459 · 107 −1.8370944 · 106 1.2645327 · 104

0.9983623 0.998607 −3.5568462 · 1010 −1.557605 · 108 −1.889681 · 106 1.2183765 · 104

0.998607 0.9986313 3.0784292 · 1011 −1.8187665 · 108 −1.9723177 · 106 1.1711414 · 104

0.9986313 0.9986538 −2.4671884 · 1011 −1.5948107 · 108 −1.9805956 · 106 1.1663483 · 104

0.9986538 0.9992765 −2.2464418 · 1011 −1.761346 · 108 −1.9881469 · 106 1.1618836 · 104

0.9992765 0.9992985 −3.3438978 · 1012 −5.9582608 · 108 −2.4688855 · 106 1.0258155 · 104

0.9992985 0.999364 −1.5352094 · 1012 −8.1652333 · 108 −2.4999571 · 106 1.0203515 · 104

0.999364 0.9994285 −5.0645096 · 1011 −1.118192 · 109 −2.626681 · 106 1.0035834 · 104
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0.9994285 0.9994865 1.5025164 · 1012 −1.2161902 · 109 −2.7772486 · 106 9.8616247 · 103

0.9994865 0.9995485 1.2879654 · 1012 −9.5475238 · 108 −2.9031633 · 106 9.6967462 · 103

0.9995485 0.9995773 −9.2000902 · 1011 −7.1519081 · 108 −3.0066998 · 106 9.513387 · 103

0.9995773 0.9996123 −5.4278771 · 1012 −7.9454159 · 108 −3.0501046 · 106 9.4263313 · 103

0.9996123 0.9996785 −4.0122689 · 1012 −1.3644687 · 109 −3.12567 · 106 9.3183716 · 103

0.9996785 0.9997023 7.379071 · 1012 −2.1619071 · 109 −3.3592924 · 106 9.1041406 · 103

0.9997023 0.9997365 3.5562138 · 1013 −1.6361483 · 109 −3.4494962 · 106 9.0232368 · 103

0.9997365 0.9997985 5.37386 · 1013 2.0178613 · 109 −3.4364225 · 106 8.9046011 · 103

0.9997985 0.9998273 −1.5309891 · 1014 1.2013241 · 1010 −2.5664942 · 106 8.7121069 · 103

0.9998273 0.999857 −4.2740774 · 1014 −1.1915398 · 109 −2.2553703 · 106 8.6446117 · 103

0.999857 0.9998813 3.0511372 · 1013 −3.9337681 · 1010 −3.4611146 · 106 8.565206 · 103

0.9998813 0.9999038 5.3460507 · 1014 −3.7117978 · 1010 −5.3151643 · 106 8.458576 · 103

0.9999038 0.9999285 2.0758213 · 1014 −1.0321365 · 109 −6.1735419 · 106 8.3262834 · 103

0.9999285 0.9999523 4.2080678 · 1013 1.4380836 · 1010 −5.8431616 · 106 8.1760031 · 103

0.9999523 0.9999865 −3.9223533 · 1013 1.7379085 · 1010 −5.0888634 · 106 8.0459034 · 103

0.9999865 1.0000485 −4.0699553 · 1013 1.3348867 · 1010 −4.0364311 · 106 7.8904207 · 103

1.0000485 1.0000773 −3.6445618 · 1013 5.7787499 · 109 −2.8505189 · 106 7.6817752 · 103

1.0000773 1.0001675 −1.1291565 · 1013 2.6353154 · 109 −2.6086145 · 106 7.6037332 · 103

1.0001675 1.0001785 2.3744333 · 1013 −4.2187597 · 108 −2.4088516 · 106 7.3814702 · 103

1.0001785 1.0002365 1.0221445 · 1013 3.6168703 · 108 −2.4095137 · 106 7.3549534 · 103

1.0002365 1.0002703 1.3767596 · 1013 2.1402185 · 109 −2.2644031 · 106 7.2184126 · 103

1.0002703 1.0002925 9.8935884 · 1012 3.5341876 · 109 −2.0728919 · 106 7.1449561 · 103

1.0002925 1.0002985 4.4489743 · 1013 4.1945847 · 109 −1.9009267 · 106 7.1006929 · 103

1.0002985 1.0004175 −4.1658653 · 1011 4.9954 · 109 −1.8457868 · 106 7.089448 · 103

1.0004175 1.0004285 −2.9717144 · 1013 4.8466786 · 109 −6.7457948 · 105 6.9398372 · 103

1.0004285 1.0004865 −1.4444854 · 1013 3.8660129 · 109 −5.7873987 · 105 6.9329637 · 103

1.0004865 1.0005203 −1.3288582 · 1013 1.3526083 · 109 −2.7605984 · 105 6.9095837 · 103

1.0005203 1.0005265 −1.8551767 · 1013 7.1393744 · 106 −2.3016836 · 105 6.9012965 · 103

1.0005265 1.0005425 1.1857911 · 1013 −3.4070626 · 108 −2.3225315 · 105 6.8998537 · 103

1.0005425 1.000614 −5.8000946 · 1012 2.2847346 · 108 −2.3404888 · 105 6.896099 · 103

1.000614 1.0006675 2.0143887 · 1013 −1.0156468 · 109 −2.9033177 · 105 6.8784124 · 103

1.0006675 1.0007703 −7.2308314 · 1012 2.2174471 · 109 −2.2603546 · 105 6.8630573 · 103

1.0007703 1.0008623 5.0089928 · 1010 −1.1456696 · 107 6.3005486 · 102 6.8553991 · 103

1.0008623 1.0010203 −6.7324916 · 109 2.3681243 · 106 −2.0609371 · 102 6.8553991 · 103

1.0010203 1.001107 4.4352981 · 109 −8.2307674 · 105 3.8023795 · 101 6.8553991 · 103

1.001107 1.0011313 −5.7581594 · 109 3.3120959 · 105 −4.6456802 · 100 6.8553991 · 103

1.0011313 1.0011538 1.4096984 · 109 −8.7696511 · 104 1.2595118 · 100 6.8553991 · 103

1.0011538 1.0012703 −2.3800009 · 107 7.4581314 · 103 −5.458517 · 10−1 6.8553991 · 103

1.0012703 1.0017765 8.2924545 · 105 −8.5997167 · 102 2.2283391 · 10−1 6.8553991 · 103

1.0017765 1.001821 −3.7696179 · 106 3.9944486 · 102 −1.0307792 · 10−2 6.8553991 · 103

1.001821 1.001864 8.7232639 · 105 −1.0379913 · 102 2.8484428 · 10−3 6.8553991 · 103

1.001864 1.0021123 −1.5056455 · 104 8.7309761 · 100 −1.2394877 · 10−3 6.8553991 · 103

1.0021123 1.002357 4.9369419 · 103 −2.4823188 · 100 3.1174145 · 10−4 6.8553991 · 103

1.002357 1.0023813 −2.004318 · 104 1.1426308 · 100 −1.6147184 · 10−5 6.8553991 · 103

1.0023813 1.0024038 4.7812066 · 103 −3.1551051 · 10−1 3.9104829 · 10−6 6.8553991 · 103

1.0024038 1.003114 −4.2671381 · 100 7.2209382 · 10−3 −3.0260325 · 10−6 6.8553991 · 103

1.003114 1.0033623 2.2975848 · 100 −1.8712663 · 10−3 7.7357194 · 10−7 6.8553991 · 103

1.0033623 1.005922 2.2115351 · 10−2 −1.6014005 · 10−4 2.6927531 · 10−7 6.8553991 · 103

1.005922 1.0066958 1.0157171 · 10−2 9.6892578 · 10−6 −1.1584111 · 10−7 6.8553991 · 103

1.0066958 1.0126248 −2.7111595 · 10−3 3.3266592 · 10−5 −8.2604017 · 10−8 6.8553991 · 103

1.0126248 1.0191958 1.3192554 · 10−3 −1.4956802 · 10−5 2.5954727 · 10−8 6.8553991 · 103

1.0191958 1.0313748 −8.7896014 · 10−4 1.1049679 · 10−5 2.8102735 · 10−10 6.8553991 · 103

1.0313748 1.0498763 1.4794156 · 10−3 −2.1064887 · 10−5 −1.2169419 · 10−7 6.8553991 · 103

1.0498763 1.0500013 1.4794156 · 10−3 6.1049335 · 10−5 6.1807807 · 10−7 6.8553991 · 103
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