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Abstract. Nowadays, Complex networks are used to model and analyze
various problems of real-life e.g. information diffusion in social networks,
epidemic spreading in human population etc. Various epidemic spreading
models are proposed for analyzing and understanding the spreading of
infectious diseases in human contact networks. In classical epidemiologi-
cal models, a susceptible person becomes infected after getting in contact
with an infected person among the human population only. However, in
vector-borne diseases, a human can be infected also by a living organism
called a vector. The vector population that also help in spreading dis-
eases is very sensitive to environmental factors such as temperature and
humidity. Therefore, new researches are required to derive more realis-
tic models to relate the dynamics of epidemics in the human population
with environmental conditions. In order to integrate the impact of the
temperature in the spreading of infection, we propose and investigate a
modified SIR (Susceptible-Infected-Recovered) model tailored to vector-
borne diseases. Simulations of the proposed model inspired by real data-
sets of infectious diseases are performed using an homogeneous human
contact network. Results show that the proposed model corroborates the
real-world data behavior, and it demonstrates its effectiveness to account
for the temperature influence on the epidemic dynamics.

Keywords: Epidemic Spreading, Complex Network, Temperature, Dy-
namics on Network, SIR model

1 Introduction

More than 17% of all infectious diseases are vector-borne infections like dengue,
cholera, small-pox which has been recognized in over 100 countries, and an
estimated 50 - 100 million cases occur annually. The diseases are threatening
about 60% of the world’s population [1]. The disease is transmitted to the host
population (human or animal) through physical contact with infectious hosts,
or through infected vectors such as mosquitoes, ticks, flies, sandflies, fleas and
bugs. The structure of the host population interactions, mobility and contacts
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patterns are key ingredients in the epidemic spreading process that find their
best representation in the form of networks. Hence, network science is used to
study the dynamics processes on network such as epidemic spreading in human
networks [2]. The model has inspired many researchers in order to investigate
the transmission dynamics of infectious diseases with various modifications. Es-
teva and Vargas proposed the SIR model to address dengue disease transmis-
sion considering constant and variable human populations [3]. Since then, many
mathematical models have been proposed to study different aspects of infec-
tious disease transmission. Pinho et al. used a mathematical model for dengue
transmission analysis based on non-linear differential equations [4]. In this study,
they performed a comparative analysis of epidemics that occurred in Salvador
and Brazil, in 1995-1996 and 2002 showing the effect of vector control.

Vectors are generally sensitive to climatic factors. Indeed, weather influences
survival and reproduction rates of vectors. One can note that the replication
rates of mosquito-transmitted dengue viruses and malaria parasites increase at
warmer temperatures [5]. Other factors such as habitat destruction, land use,
pesticide application, and host density influence the vector activity (particularly
biting rates) throughout the year. These assumptions provide a mathematical
framework which connects the environmental conditions to vector-borne dis-
eases. One of the principal components of the spreading of infectious disease is
temperature, which is related to seasonal changes. Indeed, dengue, cholera and
malaria are sensitive to climate change. Changing climate factors affect the po-
tential for the spread of future vector-borne diseases. As temperature plays an
important role in the behavior of the vectors, mathematical studies have been
conducted to understand its influence in the transmission dynamics of vector-
borne diseases. A large body of recent works concentrate on environmental data
that affect vector populations to predict the epidemic process. These models
do not explicitly include the host populations interactions and the underlying
network structure, which also plays an important part in epidemic spreading [6,
2]. Thus, rigorous studies are needed to understand the interplay between the
various components of the epidemic processes : the host and vector population,
the contact patterns and the environmental conditions. Such knowledge is es-
sential to the development of novel and more effective intervention measures for
vector-borne diseases.

In this paper, our main goal is to investigate the impact of environmental
temperature on the spreading process of vector-borne diseases in the host pop-
ulation. Based on real-world data, we formulate the biting rate of vectors, and
we derive the basic reproduction rate.

The rest of this paper is organized as follows: Section II discusses the related
work on epidemic spreading. Section III describes the proposed model and section
IV gives its mathematical formulation. Section V presents numerical simulations
of the model and the analysis of the results. Finally, Section VI describes the
conclusions and outlines future research directions.
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2 Related Work

In this section, we recall two surges of appropriate literature related to this
work. First of all, we briefly recall important results about the influence of the
environmental conditions on the vector population and its ability to transmit
diseases to the host population. Then we turn to the epidemic spreading in
the host population through its contact network. The most influential studies
are related to SIR and SIS (Susceptible, Infected, Susceptible) models and the
epidemic spreading in various types of the underlying contact network topology
in the host population.

2.1 Environmental factors of vector-borne epidemic spreading

It is essential to get a good understanding of the potential of the vector to
transmit diseases in various environmental conditions in order to predict accu-
rately the underlying dynamic of vector-borne diseases in the host population.
Therefore a large body of literature has been devoted to the complex biological
and ecological relationships that exist between vectors and their environments.
Liu-Helmersson et al. studied the vectorial capacity of Aedes aegypti and made
investigations on the effects of temperature and implications for global dengue
epidemic potential [7]. Polwiang discussed the seasonal basic reproduction of
the number of dengue and impacts of climate on the transmission of the disease
[8]. An epidemic model was proposed by Wang and Mulone to describe the dy-
namics of disease spread between two patches due to population dispersal. They
proved that the reproduction number is a threshold of the uniform persistence
and disappearance of the disease [9]. Dynamics of malaria disease was studied
in the patchy environment by Auger et al. by using Ross-Macdonald model to
n-patches to describe the transmission dynamics of the disease [10].

2.2 Contact network of the host population

Due to the stochastic nature of epidemic spreading as it changes with time, dif-
ferent underlying network structures are used by various researchers to show the
different spreading patterns. The advancement in the area of complex networks
sets the base for the epidemic dynamics and initiated several related studies [11].
For example, a lot of emergent events in social networks and biological networks
are pretended using the concept of complex networks [12]. Therefore, disease
spreading patterns in the human population can be seen and analyzed by using
the different topological structure [13].

Vespignani et al. [14] proposed the epidemic spreading model on the scale-free
network to analyze the absence of epidemic threshold and its associated critical
behaviour. Their proposal was based on computer virus spreading on communi-
cation and social networks. Moreno et al. [15] presented a new epidemiological
framework characterized by a highly heterogeneous response of the system to
the introduction of infected individuals with different connectivity considering
the underlying scale-free network. Li et al. [16] proposed the general spreading
dynamical behaviours in small-world evolving networks where control strategies
are applied to suppress the propagation of diseases, viruses, and disasters.



4 Md Arquam, Anurag Singh and Hocine Cherifi

Significant gaps in the above studies and the necessity of further understand-
ing of the effects of environmental variability on the dynamics of vector-host
interactions inspire the present study. Temperature influences vector-borne dis-
eases dynamics by affecting the dynamics of vector-host interactions. We present
a dynamical system approach to explain the dynamics of vector-host interactions
in order to integrate the impact of temperature. A model is developed by modi-
fying the classical SIR model for the same purpose. The proposed work explains
how adaptation occurs with temperature parameters, that can enable and re-
spond to the occurrence of diseases, and how temperature-related parameters
inhibit basic reproduction number.

3 Description of the model
Fig. 1 reports the number of infected persons for four different vector-born dis-
eases, i.e. smallpox, malaria, dengue and typhoid. These data have been collected
from Al-Shifa Hospital New Delhi during 2018 civil year. It appears that dis-
eases spreading is slow in winter while in summer it is very high. This figure
highlights the fact that temperature plays an important role in epidemic spread-
ing. Corresponding average temperature and humidity are also plotted in Fig.
2. These figures suggest that the total number of infection increases after the
rainy season. During this period, the weather is favourable for vector produc-
tion. Indeed, rainfall increases the number and sizes of breeding sites, leading
to an increase in the survival of juvenile stages of mosquitoes, a corresponding
increase in the emergence rate of new adults, and a higher egg-laying rate and
host-seeking behaviour in adults. Higher temperatures decrease the incubation
period of the virus in mosquitoes, while very high or very low temperatures
increase the mortality rate of mosquitoes. Fig. 2 shows that the temperature
evolution throughout the year can be well approximated by a Gaussian shape
ranging from 4◦C to 34◦C. Note that previous models suggest that vector-borne
diseases appear between 12◦C and 34◦C [7] [8].

Based on the analysis of the collected data from Al-Shifa Hospital and a liter-
ature review [8], we formulate the biting rate of a vector in term of temperature
as follows:

b(T ) = b0e
−(T−T0)

2

(1)

where b0 is biting rate of vector at temperature T0.
T0 is the ambient temperature where biting is maximum. According to Polwiang
[8] the maximum biting rate is equal to 0.4 at 25◦C.
We assume the following points for further formulation of the proposed model.

– The total host population of size Nh follow the SIR model. It is subdivided
into three classes: Susceptible Shk

(t), Infected Ihk
(t), and Recovered Rhk

(t)
.

– The total vector population follow the SI model. It is subdivided into two
classes: Susceptible Sv, and Infected Iv. Recovered class in the mosquito
population is not considered due to their short lifespan.



Integrating temperature into the SIR Model for vector-borne diseases 5

1 2 3 4 5 6 7 8 9 10 11 12

Month(Jan to Dec 2018)

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

N
u

m
b

e
r 

o
f 

In
fe

c
te

d
 P

e
rs

o
n

Smallpox Infection

2 4 6 8 10 12

Month(Jan to Dec 2018)

50

100

150

200

250

300

N
u

m
b

e
r 

o
f 

In
fe

c
te

d
 P

e
rs

o
n

Malaria Infection

(a) Infection due to Smallpox each month (b) Infection due to Malaria in each month

1 2 3 4 5 6 7 8 9 10 11 12

Month(Jan to Dec 2018)

10

20

30

40

50

60

70

80

N
u

m
b

e
r 

o
f 

In
fe

c
te

d
 P

e
rs

o
n

Dengue Infection

1 2 3 4 5 6 7 8 9 10 11 12

Month(Jan to Dec 2018)

15

20

25

30

35

40

45

50

55

N
u

m
b

e
r 

o
f 

In
fe

c
te

d
 P

e
rs

o
n

Typhoid Infection

(c) Infection due to Dengue each month (c) Infection due to Typhoid each month

Fig. 1. Number of infected persons each month recorded at Al-shifa Hospital New
Delhi for various diseases during the 2018 civil year
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Fig. 2. Average temperature and humidity of Delhi-NCR monthwise during the 2018
civil year

– The Susceptible vectors are infected by biting infected hosts with rate of
βhvb(T ) where βhv is the spreading rate of disease from host to vector. b(T )
is the biting rate that depends on temperature.

– The Susceptible hosts are infected by biting of infected vectors with rate of
βvhb(T ) where βvh is the spreading rate of disease from vector to host.

– Infected hosts recover at the rate of µh
– Susceptible host get infected by interaction with infected hosts at the rate

of βh, where βh is the spreading rate of disease from host to host.

Figure 3 represents a block diagram of the proposed model. It summarizes
the interactions between vector and host as well as host to host interaction. A
susceptible host may be infected by being bitten by an infected vector, and by
interacting with an infected host. A susceptible vector can never be infected by
interacting with an infected vector. A susceptible vector may become infected
after biting an infected host. Both population are different, as population size of
vector is much larger than host population. Both follow the different population
dynamics as production rate as well as death rate of vectors are too high as
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compared to host population. Life span of vectors are also very small. Adaptive
nature of vector towards environmental change is also not too strong. Therefore,
change in environmental condition causes severe effect on vector population.
Dynamics of both population are connected with each other by biting of vectors.

Sv Iv

Sh Ih Rh

b(T )

b(T )

βh µh

βhv

βvh

Layer 2 :
Vector Population

Layer 1:
Host Population

Fig. 3. Block diagram of the proposed model incorporating the temperature influence
on the biting rate

4 Mathematical formulation

In this section, we integrate the effect of the environmental temperature con-
ditions on the epidemic model. Let G(N , E) defines the network of N nodes
that represent the total host population and E denotes the connections between
nodes representing the interaction between individuals through which epidemic
spreads. There are two type of population: host and vector population.
Let Nh be the total host population, where Shk

(t), Ihk
(t) and Rhk

(t) are the
fraction of the Susceptible, Infected and Recovered nodes at time t with degree
k with Shk

(t) + Ihk
(t) + Rhk

(t) = 1. Let p(k) be the degree distribution of the
network during the epidemic process, which describes the degree of the nodes
where k ∈ [1, N − 1]. The infection rate is given by βh, and µh is the recovery
rate in the host population.βh and µh are ∈ [0, 1]. let Nv be the vector pop-
ulation size andSv(t) and Iv(t) are respectively the fraction of the susceptible
and infected nodes at time t. The vector-borne diseases spread between hosts
by direct contact and from host to vector or vector to host by vectors biting
humans. For the sake of simplicity, we consider fixed populations sizes for both
human and vector population. The transition rules of nodes from one state to
another state is defined as follows:

– A healthy host node may become infected after getting in contact with an
infected host node at time t or by getting bitten by an infected vector.

– A healthy vector node may become infected by biting an infected host node.
– The vector population depends upon temperature hence biting also follow

the same trend as biting depends on population.
– A host node may recover spontaneously at any time with rate µh. Recovery

of a node doesn’t require any contact. Hence, we consider µh =1, at each
time stamp a host node recover.

– Once a node recover it never get infected again.
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– In addition, we are not considering demography for the host and vector
population. Therefore, the total number of hosts and vectors are constant
throughout the transition.

Based on the above transitions for homogeneous networks, the mean-field
rate equations are defined as follows:

dShk
(t)

dt
= −βh〈k〉Shk

(t)Ihk
(t)− βvhb(T )Shk

(t)Iv(t) (2)

dIhk
(t)

dt
= βh〈k〉Shk

(t)Ihk
(t) + βvhb(T )Shk

(t)Iv(t)− µhIhk
(t) (3)

dRhk
(t)

dt
= µhIhk

(t) (4)

We always consider dNh

dt = 0 and dNv

dt = 0

dSv(t)

dt
= −βhvb(T )Sv(t)Ihk

(t)− µvSv(t) (5)

dIv(t)

dt
= βhvb(T )Sv(t)Ihk

(t)− µvIv(t) (6)

Table 1. Description of the parameters used in the model

Name of Parameter Interpretation

Shk Fraction of Susceptible host

Ihk Fraction of Infected host

Rhk Fraction of Recovered host

Sv Fraction of Susceptible Vector

Iv Fraction of Infected Vector

βh Transmission probability from host to host

βvh Transmission probability from vector to host

βhv Transmission probability from host to vector

b(T ) Temperature dependent biting rate of vector

µv Death rate of vector population

µh Recovery rate of host population

An epidemic occurs if the number of infected vectors increases, i.e., dIv(t)dt > 0,
Hence, from equation 6,

dIv(t)

dt
> 0

βhvb(T )Sv(t)Ihk
(t)− µvIv(t) > 0

Iv(t) <
βhvb(T )Sv(t)Ihk

(t)

µv
(7)

At the outset of an epidemic, Sv(t) ≈ 1. Death is an instantaneous process,
therefore µv = 1 then, βhvb(T )Ihk

(t) > Iv(t). This should be greater than one.
The basic reproduction number of vector is given by:
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R0v = βhvb(T )Ihk
(t).

By reporting the value of Iv(t) into equation 2and 3, the above equation can be
written:

dShk
(t)

dt
= −βh〈k〉Shk

(t)Ihk
(t)− βvhb(T )Shk

(t){βhvb(T )Ihk
(t)} (8)

dIhk
(t)

dt
= βh〈k〉Shk

(t)Ihk
(t) + βvhb(T )Shk

(t){βhvb(T )Ihk
(t)} − Ihk

(t) (9)

dRhk
(t)

dt
= Ihk

(t) (10)

Generally, a healthy host node is infected, and this infected node is converted
into a recovered node. So we can say Shk

(t) is converted into Rhk
(t). Therefore,

from Eq.8 and Eq.10,
dShk

(t)

dRhk
(t)

=
−(βh〈k〉Skh(t) + βvhb(T )Shk

(t)βhvb(T )Ihk
(t)

Ihk
(t)

(11)

where, Eq. 11 shows the rate of change of susceptible nodes to recovered nodes.
Integrating both side of Eq.11

Skh(t) = e−(βh〈k〉+βvhb(T )2βhv)Rhk
(t) (12)

The negative exponent in Eq. 12 shows that the number of susceptible nodes is
decreasing and converted into recovered nodes. Epidemic reaches a steady state
at t→∞ hence, Ihk

(∞) = 0. Therefore, the normalized condition for the steady
state is

Skh(∞) = e−(βh〈k〉+βvhb(T )2βhv)Rhk
(∞) (13)

Rhk
(∞) = 1− e−(βh〈k〉+βvhb(T )2βhv)Rhk

(∞) (14)

Now let f(Rhk
(∞)) = 1−e−(βh〈k〉+βvhb(T )2βhv)Rhk

(∞) be a function ofRhk
(∞)

and strictly increasing. If we put Rhk
(∞) = 0, then the whole population of host

recover and it gives us a trivial solution. It also explains about disease free state.
Now we need to find some non trivial solution which lies between 0 and 1.

For this the following condition must satisfy

df(Rhk
(∞))

dRhk
(∞)

∣∣∣
Rhk

(∞)=0
> 1

(βh〈k〉+ βvhb(T )2βhv)e
−(βh〈k〉+βvhb(T )2βhv)Rhk

(∞)
∣∣∣
Rhk

(∞)=0
> 1

(βh〈k〉+ βvhb(T )2βhv) > 1

Now, we can say that basic reproduction R0h must be (βh〈k〉+βvhb(T )2βhv) > 1
to spread the epidemic in the host population.

Therefore,
R0h = (βh〈k〉+ βvhb(T )2βhv)

where βh, 〈k〉, βvh and βhv are constant. Hence, R0h is directly proportional
to the square of biting rate i.e. b(T )2. This basic reproduction rate is also called
the critical threshold of spreading of disease.
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5 Simulation of the model and results analysis

In this section, we first report the simulation setup, and then we discuss the
results of the simulation performed using the temperature dependent SIR model
using a homogeneous network (WattsStrogatz model) as the underlying contact
network. The various parameters values used for simulations are listed in Table
2. These values have been chosen according to a literature review

Table 2. Parameters values used in the simulation

Name of Parameter Value

Host contact network size 2000

Connectivity probability for WattsStrogatz model 0.2

Number of neighbour of each node 300

Vector population size 100000

Spreading Rate between host to host (βh) 0.6

Recovery Rate (µh) 1

Death Rate of vector (µv) 1

Spreading Rate between vector to host (βvh) 0.4

Spreading Rate between host to vector (βhv) 0.6

Biting rate of vector (b0) at T0 0.4

T0 25◦C

Range of temperature (T ) [4.3, 37]◦C

We focus on the effect of temperature on the dynamics of epidemics on the
host contact network as well as the vector population. In the simulation, if the
temperature is in the range T < 0◦C or T > 37◦C, the vector biting rate is zero.
In other words, outside the limit temperatures, no vectors are present. Within
that range of temperature the critical threshold is given by:

R0h = (βh〈k〉+ βvhb(T )2βhv)
The epidemic spreading with the modified SIR Model on homogeneous net-

work as underlying topology (WattsStrogatz model) is shown in Fig. 4. We took
the value of temperature T ranging from 4.3◦C to 37◦C to analyze the effect of
temperature in the infection process (temperature of Delhi NCR in 2018). The
epidemic spreading evolution of the SIR spreading model for the host popula-
tion is reported in Fig. 4(a). Similar results for the vector population is shown
in Fig. 4(b). These figures show that the infection increases with time until the
optimum temperature is reached. After that, the infection starts decreasing. The
timespan of the existence of epidemic depends upon the existence of the vector
population as shown in Fig. 4(b).

One can observe that the vector population vanished as much as quick due
to short life span but it increases the epidemic threshold as mentioned in Fig.5.
Fig.5(a)&(b) illustrate the evolution in the epidemic threshold in the vector pop-
ulation with the temperature variation. Fig.5(c)&(d) present also the variation of
the epidemic threshold but in the host population with a change in temperature.
The infection threshold varies from 0.8 to more than 0.9 in the host population
while it does not change a lot in the vector population because the life span
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of the vector is very small. These results corroborate researches reported in the
literature that have already proved that the transmission probability from host
to vector is greater than transmission probability from vector to host.
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Fig. 5. Effect of temperature on infection threshold in SIR considering a homogeneous
contact network

We also analyse the effect of temperature on the biting rate that depends
upon the total population of vectors. As temperature increases from 25◦C, then
mosquitoes start biting till the maximum temperature. After that once temper-
ature reaches 37◦C then biting becomes null as the vector population vanish.
The biting rate is plotted in Fig. 6. Fig. 6(a) shows that biting is maximum at
the middle of the spreading process, while Fig. 6(b) shows that biting increases
with the increase of temperature till ambient temperature. After that, the vec-
tor population starts dying.Finally, after reaching the maximum temperature
the vector population is eliminated.

Fig. 7 explains the effect of temperature on infection spreading in vector as
well as the host population. An infected vector can cause infection in multiple
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hosts. Vector population is much larger than the host population. Therefore,
infection in the host population increases more than in vector population.
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Fig. 7. Effect of Temperature on infection spreading in vector and host populations

6 Conclusion and Future work
In this work, we propose and investigate a modified SIR model which integrates
the effect of temperature on spreading of vector-borne diseases. Here, we con-
sider two type of populations: 1) the host population with the three states of the
SIR Model and 2) the vector population with the two states of the SI Model.
Favourable temperature increases the disease spreading from vector to host and
by cascading effect to the host population. We show that the threshold of spread-
ing rate of the disease is proportional to the square of the biting rate (b(T ))
which is defined as the function of temperature. Simulations are performed us-
ing the proposed modified SIR model using an homogeneous contact network.
They show that temperature increases the critical threshold value of the spread-
ing rate. Additionally, if the temperature increases above 37◦C, the epidemic die
out due to the extinction of the vector population. Result of real data of diseases
are plotted, which shows similar infection pattern in host population. We plan
to develop this work in various future directions. An important extension is to
include the effect of humidity in our future studies as most diseases spread after
the rainy season in India especially. Furthermore more realistic scenario need to
be considered concerning the host contact network topology such as scale-free
networks, modular networks and dynamic networks [17] [18] [19]. The movement
of population may also be considered.
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