
HAL Id: hal-02423835
https://hal.science/hal-02423835

Submitted on 26 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Centrality-based Opinion Modeling on Temporal
Networks

E Eeti, Anurag Singh, Hocine Cherifi

To cite this version:
E Eeti, Anurag Singh, Hocine Cherifi. Centrality-based Opinion Modeling on Temporal Networks.
IEEE Access, inPress, pp.1-1. �10.1109/ACCESS.2019.2961936�. �hal-02423835�

https://hal.science/hal-02423835
https://hal.archives-ouvertes.fr


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2961936, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Centrality-based Opinion Modeling on
Temporal Networks
Eeti1, Anurag Singh2 (Sr. Member, IEEE), Hocine Cherifi3
1Department of Computer Science & Engineering, National Institute of Technology Delhi, New Delhi, India-110040 (e-mail: eetijain@nitdelhi.ac.in)
2Department of Computer Science & Engineering, National Institute of Technology Delhi, New Delhi, India-110040 (e-mail: anuragsg@nitdelhi.ac.in)
3Department of Computer Science, University of Burgundy, Dijon, France (e-mail: hocine.cherifi@gmail.com)

Corresponding author: Anurag Singh (e-mail: anuragsg@nitdelhi.ac.in).

This paragraph of the first footnote will contain support information, including sponsor and financial support acknowledgment. For
example, “This work was supported in part by the U.S. Department of Commerce under Grant BS123456.”

ABSTRACT While most of opinion formation models consider static networks, a dynamic opinion
formation model is proposed in this work. The so-called Temporal Threshold Page Rank Opinion Formation
model (TTPROF) integrates temporal evolution in two ways. First, the opinion of the agents evolve with
time. Second, the network structure is also time varying. More precisely, the relations between agents
evolve with time. In the TTPROF model, a node is affected by part of its neighbor’s opinions weighted
by their Page Rank values. A threshold is introduced in order to limit the neighbors that can share their
opinion. In other words, a neighbor influences a node if the difference between their opinions is below
the threshold. Finally, a fraction of top ranked nodes in the neighborhood are considered influential nodes
irrespective of the threshold value. Experiments have been performed on random temporal networks in
order to analyze how opinions propagate and converge to consensus or multiple clusters. Preliminary results
have been presented [1]. In this paper, this work is extended in two directions. First, the impact of various
centrality measures on the model behavior is investigated. Indeed, in earlier work, the influence of a node
is measured using Page Rank. New results using Directed Degree centrality and Closeness Centrality are
derived. They allow to compare global against local influence measures as well as distance-based centrality,
and to better understand the impact of the weighting parameter on the model convergence. Second, the
results of an extensive experimental investigation are reported and analyzed in order to characterize the
model convergence in various situations.

INDEX TERMS Clusters, Consensus, Opinion Dynamics, Page Rank, In-Degree Centrality, Closeness
Centrality, Temporal network

I. INTRODUCTION

PEOPLE share information and exchange their opinions
in their day to day life through various offline and online

interactions. For example, they may discuss about a brand
in order to make an opinion about it. Spreading of fake news
related to any issue or a product on social platforms can affect
the opinions of the people [2]. Politicians can pick influen-
tial people in order to attract voters [3]. Through all these
evolving interactions, opinions keep on changing. Many re-
searchers use static networks to study opinion dynamics [4],
[5]. The nodes of the network represent the people and the
edges account for their interactions. However, this is far from
the real-world scenario, where opinions, interactions and the
population is continuously changing. Nodes and edges may
appear as well as disappear at different time instances.

Deffuant et al. [4] introduced a model where opinions

are continuous variables and exchanges are limited to agents
with similar opinion. In this model, two agents update their
opinion only if the difference between their opinion is smaller
in magnitude than a threshold. The rationale for the threshold
that can be apprehended as openness to discussion is that
agents interact only when their opinions are close enough.
Otherwise, they do not even bother to discuss. Kandiah and
Shepelyansky proposed The Page Rank Opinion Formation
model (PROF). In this model, binary opinions shared among
linked individuals are weighted by their Page Rank probabil-
ity [6]. Thus the model allows to give a greater importance to
the opinion of an influential neighbor (with high Page Rank
probability) as compared to the opinion of a less influential
neighbor (with low Page Rank probability).

These models have been introduced on static networks,
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while many networks are time-varying. Their evolution oc-
curs on a timescale which may have an impact on the
dynamical processes occurring between the nodes. Some
researchers [7]–[9] have studied the opinion dynamics on
temporal networks. In their setting, the number of nodes
is fixed and the links between the nodes are evolving with
time. However, they do not consider the "Page Rank effect".
This gives us the motivation to introduce and to extend the
TTPROF model [1]. As this model considers dynamics on
the network together with its temporal evolution, it repre-
sents a major improvement compared to previous works.
The concept of threshold on difference in opinion values of
adjacent nodes is introduced in the proposed model along
with the sharing of weighted opinions. In order to take the
proposed model one more step closer to reality, opinions
of a fraction of top ranked nodes (according to a centrality
measure) are also considered during the sharing of opinions
process independently of the threshold value. Indeed, these
nodes are the most influential in the network, and therefore
they can impact the opinion of their neighbors even if their
opinions are quite different.

The rest of the paper is organized as follows. In Section II,
related works are discussed. Section III introduces the pro-
posed opinion dynamics model formulation. In this model,
centrality measures ( In-Degree, Page Rank and Closeness
centrality) are used to weight the opinion of the nodes. It
allows to compare the impact of global, local and distance-
based centrality measures on opinion dynamics. Experimen-
tal results are reported and discussed in Section V. Fur-
thermore, different network size are considered in order to
investigate how it affects the opinion convergence. Finally,
the conclusion is presented in Section VI.

II. RELATED WORK
Interactions in social networks play a vital role for framing
opinions among individuals about a product, brand or a topic.
Indeed, people take advice from their acquaintances to make
their opinion. After taking opinion from different people of
different thinking, individual can make better decisions. This
phenomenon is termed as the wisdom of crowd effect [10].

Starting from a random state, and using simple rules of
opinion formation, the system self-organizes through local
interactions. It can lead to the emergence of a global consen-
sus, in which all agents share the same opinion. Alternatively,
the system can reach a state of polarization, in which a
finite number of groups with different opinions survive, or
of fragmentation, with a final number of opinions scaling
with the system size. Different rules of opinion sharing have
been proposed including the following features: biased con-
formity, compromise, and stubbornness [11]. In conformity
models, individuals adopt the opinion of their neighbors.
Clifford and Sudbury [12] proposed the discrete conformity
opinion model called voter model in which agents adopts the
opinion of one of their neighbors chosen at random. This
model always leads to a global consensus. A variant of the
voter model known as LPA (Label Propagation Algorithm)

has been proposed [13]. In LPA, agents adopt the opinion of
the majority of their neighbors. In this model, polarization
is achieved instead of consensus. The system converges into
two sets of clusters of opinions who disagree with each other.

Degroot proposed an averaging and compromise model
[14] in which agents update their opinion with an average
opinion of their neighbours and the average of their previous
opinion as well. This model leads to consensus. In biased
conformity models, more weight is given to the neighbors
with similar opinions leading to the flocking behavior [15].
Considering the flocking model along with the averaging
model, Hegselman and Krause [5] proposed a model in which
a confidence region for an individual is used. It is made
of the set of neighbors whose difference in opinions with
the individual is in the limit of a given threshold. Opin-
ion update is made with the average value of neighbour’s
opinions in the confidence region. Suppose an individual i
has opinion yi. Considering a fixed threshold value, µ, the
confidence region of the individual k is denoted by the set:
Si(y) = {k : |yk − yi| ≤ µ}. Deffuant et al. [4] proposed
a model for opinion sharing in which every pair of nodes
randomly interacts relating it to random graph. Here, one to
one interaction among the nodes is considered. Two nodes
readjust their opinions if it lies within a threshold value i.e. if
there are 2 nodes with opinion x and y such that |x− y| < d
(threshold), there is a readjustment among the opinions. Page
Rank Opinion Formation (PROF) model has been proposed
in [6]. In this model, individuals share binary opinions which
are weighted by their Page Rank value.

All the studies discussed above consider static network.
However, in real-world situations, the network structure
evolve with time. Recently, analysis of various aspects of
temporal network have been performed, giving an insight
into the day to day changes on social networks [16]–[18].
Several studies on opinion formation on evolving/ temporal
networks are reported in the literature. One can refer to the
survey made by Vazquez and Federico [7] on the threshold
model and the voter model [12] considering static as well as
evolving network.

Kozma et al. [9] have implemented Deffuant model [4]
on static and adaptive network. In their setting, nodes can
break their connection and get linked to other nodes. Results
show that in such adaptive networks, consensus is difficult
to achieve compared to static network. Maity et al. [8] have
studied opinion dynamics on time-varying datasets in which
the interval of variation is different. These works on evolving
networks consider one to one interaction between nodes.
Weighted opinions are not taken into consideration while
sharing the opinions.

Many researchers have focused on the clusters/community
formation in networks based on two factors: similarity in
opinion and similarity in structure. The work of Newman
et al. [19] concentrates on finding the communities in the
network based on its structure. Nodes which are densely
connected comes in one community preserving the com-
munity structure. This direction of research is one of the
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most popular in the literature for static networks [20]–[22].
Greene et al. [23] have discussed the community structure in
evolving/temporal network. They apply the cosine similarity
index for finding the common neighbors among the nodes to
measure the similarity between the nodes. They focused on
the structure of the network to cluster the nodes in a commu-
nity instead of focusing on the characteristics of the nodes.
Some authors [4], [13], [24] consider the characteristics of
the nodes i.e. opinions are considered according to which
nodes are grouped into clusters/communities as discussed
earlier as well. Note that cluster formation in a network is
very useful in various applications like politics, marketing
[25]. It can be used to see the groups of people thinking
in different directions related to a product. This can be of
great help to design an efficient marketing policy. Research
moves in the direction to find the important nodes among
the communities. Centrality measures are used to find the
important nodes in the network. Various centrality measures
are discussed and have been divided into different groups
according to the similar application in [26]. Some authors
have worked on finding the most central nodes within a
community [27]–[30] and evaluating the effect of central
nodes within a network.

III. THE OPINION FORMATION MODEL
In [1], a model is introduced that integrates 1) confidence
region, 2) weighted opinion update according to the influence
of the neighbors, and 3) temporal aspects of the opinion
formation process. In this model, the influence is directed.
In other words, nodes can be influenced by their first degree
neighbors if there is incoming link and that the neighbor
belongs to their confidence region. A neighbor belongs to the
confidence region of a given node, if the difference between
their opinions is below a threshold or if this neighbor belongs
to a defined fraction of the most influential nodes of the
network. Weights are assigned to the opinion of each node in
the network according to their centrality values (Page Rank,
In-Degree or Closeness centrality). It allows to specify the
importance of a node in the network for sharing its opinion
with its neighbours. Note that it is the opinion of the nodes
that are weighted and not the nodes or link of the network.
Indeed, In this work we restrict our attention to directed but
unweighted networks.

In real-world situations, networks grow with time. Indeed,
new individuals are introduced in the network and new con-
nections are formed among individuals. In this work for the
sake of simplicity, we restrict our attention to networks with
a fixed number of nodes. However, the interactions between
the nodes change with time. It may happen that some of the
old connections disappear, but generally the rate of forming
new connections is greater than the disappearance of old
connections. This phenomenon is also visible in infrastruc-
ture networks such as railway network, airport network [31].
Thus, taking inspiration from this phenomena, we consider
that the network model is growing in terms of edges. In
other words, at every new time stamp, the probability of

adding new edges is higher than the probability of deletion
of existing edges. Variables used in the paper are listed in
Table 1.

TABLE 1. Common used terms and their respective symbols

Terms Symbol
ith Node vi

Directed edge from node j to node i eji
Network Size N

Shortest distance from node j to node i d(j, i)

Size of kth connected component gk Ngk

kth connected component gk
Rank of ith node ri

Opinion of ith node oi
Weighted Opinion of ith node wi

Opinion Difference Threshold α
Fraction of Top Ranked Nodes β

Single TimeStamp t
TimeStamp at convergence tc

Number of Clusters at convergence nc

Opinion at convergence Oc

Size of cluster at convergence Sc

Initially, each node vi is assigned a continuous random
uniform opinion value (denoted by oi) in the range [0,1]. This
opinion value keeps on evolving with the effect of neighbor’s
opinion until it stabilizes, and there is no more change in the
values of opinion. At each timestamp t, the opinion value
of a node i is denoted by oi(t). The set of opinion values
for all the nodes in a network of size N at timestamp t
is denoted by O(t) = (o1(t), ..., oN (t)). At timestamp tc,
opinions converge into certain number of clusters (nc).

Update rules for opinion sharing among the nodes in
temporal network
At every timestamp, the opinion of an individual might
change as it gets influenced by its neighbors opinion. The
proposed model for opinion dynamic is summarized by Al-
gorithm 1 and discussed next.

Individuals in a network are considered to have their own
opinion for some social issues, and that it is modeled as a
continuous variable in the range [0.0, 1.0]. Each individual
has also a set of confidence bound indicating the individuals
with whom he can share its opinion. Nodes in the confidence
bound are calculated on the basis of two parameters. First, if
the difference in opinion between two neighbors is lower than
a threshold (α) value, they can influence one another, incre-
mentally changing opinions to become more similar to each
other. In the proposed model, we assume that individuals are
homogeneous and that they share the same threshold value
α. This parameter allows to integrate the real-world scenario
where an individual is not influenced by another node if their
opinions are too different. In this case, he does not bother
to exchange with this neighbor. Second, if his neighbor is
an important individual at the overall network scale. Indeed,
some individuals are very influential and it is somehow dif-
ficult to ignore their opinions even if the difference between
their opinion and their neighbors opinion is higher than the
threshold α. For example, in a working environment we have
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Algorithm 1 Evolving_Opinions(G(V,E(t)), α, β, oi)
1: Form the initial Erdos Renyi directed random Graph G(V,E(t)) with p value and a fixed number of nodes N at timestamp
t = 0.

2: Assign opinion values oi(t) to the node vi according to a uniform random distribution where oi(t) ∈ [0,1] and vi ∈ [1, N]
3: Fix a confidence bound value α for the network where α ∈ [0,1].
4: Fix a fraction value of top ranked nodes β on the network where β ∈ [0,1].
5: Do
6: Compute the centrality value of all the nodes ci(t), i ∈ [1, N].
7: Rank the nodes in the decreasing order of their centrality value ria(t), i ∈ [1,N]

8: Assign a score to the nodes according to their rank: wi(t) =
[
1− ri(t)− 1

N

]
, i ∈ [1, N]

9: Weight the opinions of the nodes xi(t) = oi(t)wi(t).
10: Add the β fraction of the top ranked nodes in the set T .
11: Find the nodes in the confidence bound. i.e belonging to the neighbour set of node vi, S(i) and satisfying one of the

conditions |oi(t)− ol(t)| < α or vj ∈ T where α ∈ R[0, 1] and vl ∈ S(i) and vj ∈ S(i)
12: Average the opinion of the node i with the weighted opinions of all the nodes in the confidence bound xi(t + 1) =

xi(t) +
∑
l,vl∈S(i) xl(t) +

∑
j,vj∈S(i),T xj(t).

13: Normalize the updated opinion oi(t+ 1) = xi(t+1)
wi+

∑
l,vl∈S(i) wl(t)+

∑
j,vj∈S(i),T wj(t)

.

14: Addition and deletion of the edges E in Graph G(V,E(t)) to make it G(V,E(t+ 1)) for the next time stamp.
15: Until the convergence i.e. (oi(t+ 1)) - oi(t) = 0∀i.
16: Return the convergence timestamp tc and the number of clusters of opinions nc.

to consider the opinions of superiors even if it is far from
ours. Thus, there might be some influential individuals whose
opinions have to be considered whatever the threshold value.
These two sets of nodes constitute the confidence bound that
can influence a node opinion.

Let’s consider that the neighboring set of a node vi is
represented by S(i) where i ∈ [1, N ] and the size of the set
S(i) is equal to the In-Degree ki of the node vi. Indeed, we
consider as neighbors only nodes that have an edge directed
to node i. These nodes can share their opinion with it. Node
i can share its opinion with a node in its incoming neighbors
if their difference of opinions is below the threshold value
α or if the incoming neighbors belong to the set of the top
influential nodes. In other words, if any of the following
conditions are satisfied.
• Case 1: If the difference between the opinion of the

node vi and the neighboring node with an incoming link
from S(i) is under the threshold limit. |Oi − Ol| < α
where α ∈ R[0, 1] and the node vl with opinion Ol ∈
S(i)

• Case 2: If the incoming neighboring node vj ∈ S(i) is
in the set of the top influential nodes T

To share the weighted opinions from the nodes in the
confidence region, importance of nodes are calculated using
Page Rank, In-Degree and Closeness centrality measures.
The Page Rank [32] of a node i is given by,

PR(i) =
1− d
N

+ d
∑
j∈Ne(i)

PR(j)

Kout(j)
(1)

where, N is the total number of nodes in the network, d is
the damping factor ranging ∈ [0,1], Kout(j) is the outgoing
links from the node j, Ne(i) is the set of the neighbouring

nodes from where there are incoming links towards i. To
calculate the Page Rank in the given network, if there is
an out-link from node i to node j then an in-link is created
towards i from j i.e. edges are considered in reverse manner
in which node j tries to request information from node i or
try to follow node i. Therefore, the edges in the network are
reversed and Page Rank of nodes is calculated.

The In-Degree of a node i is given by,

Kin(i) =
∑
j

aj,i : eji ∈ G (2)

where, a(j,i) is the value of adjacency matrix A of directed
network G, if there is a directed edge from node j to node i
then it will be 1 otherwise 0.

The Closeness centrality of a node is a measure of cen-
trality in a network, calculated as the reciprocal of the sum
of the length of the shortest paths between the node and all
other nodes in the graph. The Closeness centrality of a node
i is given by,

CC(i) =
Ngk − 1∑
j d(j, i)

, i, j ∈ gk (3)

where, gk is the kth connected component in a network
with size Ngk , node j and i belongs to same connected
component gk, d(j, i) is the length of the shortest distance
from node j to node i considering the In-Degree towards the
node i. If disconnected components are there in the network,
then the closeness centrality values are computed for each
connected component respectively as mentioned in Eq. 3.

All the computation for finding the important nodes are
done by using incoming links. Nodes are ranked in the
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decreasing order of their centrality values. If two nodes have
same centrality values, then the nodes are selected as per their
node ids from low to high value. Low node id is preferred
over higher node id in such case. The rank of a node i is
given by ri ∈ [1, N ]. The set of rank is given by,

R(t) = [r1(t), r2(t), ..., rN (t)] (4)

A score wi is assigned to each node according to its rank:

wi =

[
1− ri − 1

N

]
(5)

The set of Scores at time t is given by:

W (t) = [w1(t), w2(t), ..., wN (t)] (6)

W and R ∈ RN .
The actual opinion at time t is given by: (7)

O(t) = [o1(t), o2(t), ...., oN (t)] (7)

The weighted opinions xi(t) are calculated according to
the score wi(t) as follows:

X(t) = 〈O(t)W (t)〉 (8)
xi(t) = oi(t)wi(t) (9)

xi at next timestamp is calculated by finding the average
of the weighted opinions of the nodes from the set S(i) at
previous time stamp which lies in the confidence bound of
node i as:

xi(t+ 1) = xi(t) +
∑

l,vl∈S(i)

xl(t) +
∑

j,vj∈S(i),T

xj(t) (10)

Finally, to scale down the values of oi between 0 and 1,
we normalize the average weighted opinions to find the oi at
next timestamp:

oi(t+1) =
xi(t+ 1)

wi +
∑
vl∈S(i) wl(t) +

∑
vj∈S(i),T wj(t)

(11)

Update of opinions is sequential with deterministic node
selection.
This procedure of opinion update to find the opinion at next
time stamp iterates until the opinions converge at timestamp
tc

A temporal Erdos Renyi Random graph G(N,P ) is gen-
erated with a probability p, 0.2 of having an edge among the
N nodes [33]. At each timestamp t, new edges are added and
existing are deleted. In order to mimic real-world situations
the number of links keep growing. Indeed, 10% of the edges
are added and the 5% of the edges are deleted at every
timestamp.

IV. EXPERIMENTAL SETUP
We analyze the influence of the two input parameters i.e.
opinion difference threshold (α) and the fraction of top
ranked nodes (β) on the opinion convergence in the further
sections. Indeed the opinion formation model is controlled
by the opinion difference threshold α and the fraction of top
ranked nodes β. Initially, the fraction of top ranked nodes is
set to zero. The impact of the opinion difference threshold,
α is studied on the convergence of opinions (number of
clusters & convergence time). The threshold value varies
in the range [0,1] with a non-linear variation. We set the
opinion difference threshold, α to zero and let the fraction
of top ranked nodes varies in the range [0,100%]. In order
to get more insight into the influence of its size, we con-
sider networks of size 100, 500,1000. In each case, results
obtained with the opinion model based on Page Rank are
compared with the opinion model that uses the In-Degree and
Closeness centrality. Finally, the same type of experiments
are performed combining both control parameters of the
opinion model. The different cases that can be formed to
analyze the results are reported in Table 2. We first report
the results of experiments for networks of size N = 500
before investigating the network size influence on the opinion
dynamics.

TABLE 2. Summary of the different combination of parameters used in the
experiments. For each set of parameters the opinion formation model based
on Page Rank is compared to the opinion formation model based on
In-Degree and Closeness centrality.

Cases Size of Network α β

case 1 100 [0,1] 0
case 2 500 [0,1] 0
case 3 1000 [0,1] 0
case 4 100 0 [0,100]
case 5 500 0 [0,100]
case 6 1000 0 [0,100]
case 7 100 [0,1] [0,100]
case 8 500 [0,1] [0,100]
case 9 1000 [0,1] [0,100]

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. INFLUENCE OF THE THRESHOLD ON THE
CONVERGENCE OF OPINIONS
First, we investigate that how does the threshold influence
the opinion dynamics independently of the other parameters
(case 2 in Table 2). Hence, the fraction of top ranked nodes is
fixed to 0%. In this case, the top rank nodes have no influence
and the confidence region depends only on the value of the
threshold α ∈ [0,1]. Initially, there are as many opinions as
nodes in the network of size N=500. The opinions of the
nodes are weighted using the Page Rank, In-Degree centrality
and Closeness centrality.

1) Relating the threshold to the number of clusters in
which opinions converge
First we report the result using the Page Rank-based opinion
formation model. Let’s start with the trivial limiting case.

VOLUME 4, 2019 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2961936, IEEE Access

Eeti et al.: Centrality-based Opinion Modeling on Temporal Networks

10 -3 10 -2 10 -1 10 0
10 0

10 1

10 2

10 3

Page Rank

In-Degree

Closeness

FIGURE 1. Plot representing the number of clusters of opinions at
convergence (nc) versus the threshold value (α). Page Rank, In-Degree and
Closeness based opinion formation models are plotted in blue, red and green
color respectively. Vertical dashed lines at point 0.005 and 0.3 shows the
different threshold value ranges as low, medium and high. The fraction of top
ranked nodes (β) is fixed at 0%. Five simulations are performed on networks
of size 500. Mean values and Standard deviation are reported.

When the threshold value, α equal to 0, the nodes do not take
into account any of their neighbors opinion. Consequently,
none of them changes their opinion, and there are as many
clusters as initial opinions i.e. the number of nodes. As the
threshold value increases, the number of clusters in which
opinions converge decreases exponentially. A log-log plot is
used in Figure 1 with blue color. It reports the number of
clusters versus the threshold values in order to highlight this
behavior. First of all, we can notice that we can consider
three range of threshold values. For small threshold values
the number of clusters decreases slowly from the initial
number of nodes. For medium threshold values we observe
a linear decreasing slope. As we use a log-log scale, it
means that the number of clusters decreases exponentially
with the threshold value. Finally, for high threshold values,
the consensus is reached. We observe 3 different ranges for
the threshold values. In the range [0,0.005], the number of
clusters decrease monotonically from 500 to 100. It shows
that a linear relationship in the range α ∈ [0.005, 0.3] which
is an exponential decrease. Finally, the consensus is always
reached for α ∈ [0.3, 1]. Indeed, in this range, all the opinions
converge to a single cluster.

Figure 2 (a)-(d) report typical examples of the evolution of
the opinions versus the timestamp. The Page Rank of a node
is used to provide the weight of the respective node’s opinion
and initially, the size of the network is 500. Figure 2 (a) shows
that no convergence found with the 0 threshold value and
each node keeps its opinion. Figure 2 (b) shows that opinion
converges in 19 timestamp to 300 clusters with a threshold
value of 0.004. If the threshold value is very low then only
few nodes change their respective opinions,. Figure 2 (c) with
a threshold value of 0.08 shows that the opinion converges in
12 timestamp to 5 clusters. In this case the threshold value
is enough high so that groups of nodes share their opinions
among them. Opinion values cover all the range of opinions
uniformly at convergence. Indeed, observed values are 0.09,

0.24, 0.42, 0.70 and 0.91. Note that the cluster size are quite
variable. Indeed, the biggest cluster is more than the three
times bigger than the smallest one (cluster size= 51, 71, 83,
119 and 176). Finally, Figure 2 (d) shows that the consensus
is reached in 5 timestamps with a threshold value of 0.5. In
this case, all the nodes are influenced by the large number of
its neighbors, hence, consensus is easily reached. Note that
the polarization (2 clusters) is reached for α = 0.2.

Figure 1 in blue and red color reports the results of the
same set of experiments comparing page rank centrality with
In-Degree centrality to weight the opinions instead of Page
Rank. The fraction of top ranked nodes is still fixed at 0%.
The similar behavior for the change in number of clusters
against threshold value is observed in case of In-Degree as
observed in Page Rank centrality. One can also observe that
the opinions converge to the same or a higher number of
clusters with In-Degree centrality as compared to the Page
Rank centrality. The number of clusters is slightly higher at
convergence when In-Degree centrality is considered instead
of Page Rank centrality in the [0.05, 0.08] and [0, 0.01]
threshold value interval. Very limited differences are found
with the Page Rank centrality. Hence, the small differences
between the two centrality measures are not visible as men-
tioned in Figure 1 in blue and red color. At all the other
threshold values, the number of clusters in which opinions
converge is quite comparable for the two centralities.

Figure 3 (a)-(d) reports typical examples of the evolution
of opinions versus the timestamp using the In-Degree central-
ity. Figure 3 (a) shows that no convergence is reached with a
threshold value of 0 . Figure 3 (b) shows that the opinion
converges in 19 timestanp to 310 clusters with a threshold
value of 0.004. Figure 3 (c) shows that the opinion converges
in 13 timestanp to 6 clusters with a threshold value of 0.08.
It is higher than the 5 clusters which is obtained with the
Page Rank centrality. Opinion values are 0.17, 0.32, 0.49,
0.59, 0.74, 0.89 in which they converge with cluster size
as 165, 11, 126, 11, 94, 93. Finally, Figure 3 (d) with a
threshold value of 0.5 shows that the consensus is reached.
Note that polarization (2 clusters) is reached for alpha 0.2.
These results suggest that the clusters in which opinions
converge is quite insensitive to the centrality used to weight
the opinion of the nodes.

Figure 1 reports the results of the same set of experi-
ments comparing Page Rank centrality with In-Degree and
Closeness centrality to weight the opinions of the nodes. The
fraction of top ranked nodes is still fixed at 0%. Similar
behavior for the variation of the number of clusters against
threshold value is observed in the case of Closeness centrality
as well as Page Rank and In-Degree centrality. One can
also observe that the number of clusters at convergence is
different with Closeness and In-Degree centrality as com-
pared to the Page Rank centrality. The number of clusters
is slightly higher when Closeness centrality is considered
instead of Page Rank centrality in the [0, 0.01] threshold
value interval. The number of clusters is slightly lower at
when Closeness centrality is considered instead of In-Degree
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(a)

(b)

(c)

(d)

FIGURE 2. Evolution of opinion of the respective nodes versus timestamp
until get convergence. The fraction of the top ranked nodes (β) fixed at 0%.
The centrality used to weight the opinions is Page Rank on network of size
500. Different values of the threshold (α) are considered as (a) No
Convergence with α = 0 (b) Convergence with α = 0.004 (c) Convergence
with α = 0.08 (d) Consensus with α = 0.5. Different colors represent
different opinion values in the range [0, 1].

(a)

(b)

(c)

(d)

FIGURE 3. Evolution of the opinions versus the timestamp until convergence.
The fraction of top ranked nodes (β) is fixed at 0%. The centrality used to
weight the opinions is In-Degree centrality on a network of size 500. Different
values of the threshold (α) are considered as (a) No Convergence with α = 0
(b) Convergence with α = 0.004 (c) Convergence with α = 0.08 (d)
Consensus with α = 0.5. Different colors represent different opinions.
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centrality in the [0.05, 0.08] threshold value interval. Overall,
very limited differences are found when comparing all the
three centralities. Hence, the small differences between the
three centrality measures are not visible as illustrated in
Figure 1. At all the other threshold values, the number of
clusters in which opinions converge is quite comparable for
the three centralities.

Figure 4 (a)-(d) reports typical examples of the evolution
of opinions versus the timestamp using the Closeness cen-
trality. Figure 4 (a) shows that no convergence is reached
with a threshold value of 0. Figure 4 (b) shows that the
opinion converges in 20 timestamps to 305 clusters with a
threshold value of 0.004. Figure 4 (c) shows that the opinion
converges in 13 timestamps to 5 clusters with a threshold
value of 0.08. It is higher than the 12 timestamps to converge
considering Page Rank centrality. The number of clusters in
which opinions converge using the Closeness Centrality is
similar to the Page Rank centrality but higher than In-Degree
centrality. Opinion values at convergence are well distributed
(0.15, 0.39, 0.52, 0.69, 0.90 ) with cluster size varying from
36 to 128. Finally, Figure 4 (d) with a threshold value of 0.5
shows that the consensus is reached. Note that polarization (2
clusters) is reached for alpha 0.2. These results suggest that
the clusters in which opinions converge are quite insensitive
to the centrality used to weight the opinion of the nodes.

Figure 5 (a), (b) and (c) reports the distribution of the clus-
ter size at convergence (Sc) for small values of the threshold
using Page Rank, In-Degree and Closeness centrality. Sc is a
set of size of all the clusters at convergence. Fifteen simula-
tions are performed at threshold value, α = 0.08. Bins of size
10 are used to compute the frequency of the opinion cluster
size. Figure 5 (a) and (c) shows that there is a higher number
of clusters in the high range of cluster size in comparison
to the low range in the case of Page Rank and Closeness
centrality. Figure 5 (a) shows that there is more clusters in
the low range of cluster size in comparison to the high range
in case of the In-Degree centrality. Opinions converge in
more clusters with In-Degree centrality in comparison with
the Page Rank centrality and Closeness Centrality. Hence,
considering In-Degree centrality, there is more small size
clusters as compared to Page Rank and Closeness centrality.
One more thing is shown in Figure 5. A large number of
medium size clusters emerge during simulations. In case of
Page Rank, large number of clusters occurs in the range
[80-160], in the range [80-120] in case of In-Degree, in the
range [70-140] in case of Closeness. This means there are
few large and small size clusters in comparison to medium
size clusters. Furthermore, there is comparatively a higher
number of clusters in case of the In-Degree centrality.

Figure 6 reports the estimated distribution of the opinion
cluster values at convergence (Oc). Oc is a set of opinion
values of all the clusters at convergence. Fifteen simulations
are performed at threshold value α = 0.08. Bins of size 0.2
are used. Page Rank, In-Degree and Closeness centrality is
considered for the simulations in Figure 6 (a), (b) and (c). It
is observed that the distribution of the opinion values is well

(a)

(b)

(c)

(d)

FIGURE 4. Evolution of the opinions versus the timestamp until convergence.
The fraction of top ranked nodes (β) is fixed at 0%. The centrality used to
weight the opinions is Closeness centrality on a network of size 500. Different
values of the threshold (α) are considered as (a) No Convergence with α = 0
(b) Convergence with α = 0.004 (c) Convergence with α = 0.08 (d)
Consensus with α = 0.5. Different colors represent different opinions.
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FIGURE 5. Histogram of the Cluster size at convergence (Sc) for small values
of the threshold. The threshold value (α) is fixed at 0.08 and the fraction of top
ranked nodes (β) is fixed at 0%. The centrality used to weight the opinions is
(a) Page Rank, (b) In-Degree and (c) Closeness centrality shown in blue, red
and green color. 15 simulations are performed on a network of 500 nodes.

approximated by a uniform distribution in all the cases.

2) Relating the threshold to the convergence time of the
opinions
In this section, we study the number of iterations (Times-
tamps) needed to reach the convergence and how it relates to
the threshold value. Let’s first consider the Page Rank-based
opinion model. Globally, it is observed that if the threshold
value increases then the number of timestamp needed to
reach convergence decreases as reported in Figure 7 in blue
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16

(a)
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(b)

0 0.2 0.4 0.6 0.8 1
0

5
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15
16

(c)

FIGURE 6. Histogram of the cluster opinion values at convergence (Oc). The
threshold value (α) is fixed at 0.08 and the fraction of top ranked nodes (β) is
fixed at 0%. The centrality used to weight the opinions is (a) Page Rank, (b)
In-Degree and (c) Closeness centrality shown in blue, red and green color. 15
simulations are performed on a network of 500 nodes.

color. Indeed, an increase in the threshold allows more and
more nodes to share their opinion, the convergence is reached
more quickly. Figure 7 reports the number of timestamps
needed to reach convergence versus the threshold value. At
α = 0, none of the nodes change their opinions, hence
convergence is considered at a number of timestamps equal to
zero. As the threshold value increases to 0.001, the number
of timestamps to reach consensus reached to 20. Then, the
number of timestamps needed for the opinion convergence
decreases till α = 0.5. From α = 0.5 to 1, a constant value of
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5 timestamps is needed to reach the convergence (consensus).
Indeed, a larger number of nodes try to share their opinions
and this makes the convergence faster.

0.001 0.05 0.1 0.2 0.3 0.4 0.5
5

10

15

20

25

Page Rank

In-Degree

Closeness

FIGURE 7. Plot representing the number of timestamps needed to reach
convergence versus the threshold value (α). Page Rank, In-Degree and
Closeness based opinion formation model are plotted in blue, red and green
color respectively. The fraction of top ranked nodes (β) is fixed at 0 % . Five
simulations are performed on networks of size 500. Mean values and
Standard deviation are reported.

Figure 7 in blue and red color reports the results of the
same set of experiments comparing page rank centrality
with In-Degree centrality to weight the opinions instead of
Page Rank. The fraction of top ranked nodes is still fixed
at 0%. The similar behavior for the change in number of
timestamps against threshold value is observed in case of In-
Degree centrality as observed in Page Rank centrality. One
can also observe that the opinions converge in an equal or
higher number of timestamps when the In-Degree centrality
is used instead of Page Rank. The number of timestamps
at convergence is higher when the In-Degree centrality is
considered in the threshold value interval [0.2, 0.09] and
[0.04, 0.02]. In the other intervals, the number of timestamps
in which opinions converge is almost the same for In-Degree
and Page Rank centrality.

Figure 7 reports the results of the same set of experiments
comparing page rank centrality with In-Degree and Close-
ness centrality to weight the opinions instead of Page Rank.
The fraction of top ranked nodes is still fixed at 0%. Results
are quite similar for the three centrality measures.. One can
also observe that the opinions converge in an equal or higher
number of timestamps when the Closeness centrality is used
instead of Page Rank and the In-Degree centrality in the
threshold value interval [0, 0.2]. In the other intervals, the
number of timestamps in which opinions converge are almost
the same for Closeness, In-Degree and Page Rank centrality.

3) Relating the convergence time to the number of
clusters at convergence
Figure 8 (a) in blue color shows the relationship between
the number of timestamps at convergence versus the number
of clusters using page rank centrality. The magnified view
of Figure 8 (a) in blue color for the range of number of

clusters in [0, 20] can be seen in Figure 8 (b) in blue color
as it is difficult to have a clear view in Figure 8 (a) in blue
color in this range of cluster values. For threshold values
in the range [0.3, 1], opinions converge to 1 cluster, but
the convergence rate vary from 5 to 7 timestamps. As the
threshold value decreases, the number of clusters increases
and the number of timestamps in which opinion converge
increases monotonically.
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FIGURE 8. (a) Plot representing the number of timestamps needed to reach
convergence versus the number of clusters with varying threshold value (α).
The fraction of top ranked nodes (β) fixed at 0%. Page Rank, In-Degree and
Closeness based opinion formation models are plotted in blue, red and green
color respectively. Network size is 500. (b) Magnified view of (a) for the
number of clusters in the range [1,20]

Figure 8 (a) in blue and red color reports the results of
the same set of experiments comparing page rank centrality
with In-Degree centrality to weight the opinions instead of
Page Rank. The fraction of top ranked nodes is still fixed at
0%. The magnified view of Figure 8 (a) in blue and red color
for the number of clusters in the range [0,20] can be seen in
Figure 8 (b) in blue and red color.The similar behavior for the
change in number of timestamps against number of clusters
is observed in case of In-Degree centrality as observed in
Page Rank centrality. As the number of clusters increases, the
number of timestamps in which opinion converge increases
monotonically. Overall, the number of clusters or timestamps
at convergence is higher when In-Degree centrality is con-
sidered rather than Page Rank but the difference is not very
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large.
Figure 8 (a) reports the results of the same set of exper-

iments comparing page rank centrality with In-Degree and
Closeness centrality to weight the opinions. The fraction of
top ranked nodes is still fixed at 0%. The magnified view of
Figure 8 (a) for the number of clusters in the range [0,20] can
be seen in Figure 8 (b).The similar behavior for the change
in the number of timestamps against the number of clusters
is observed in Closeness centrality as observed in Page Rank
and In-Degree centrality. As the number of clusters increases,
the number of timestamps in which opinion converge in-
creases monotonically. Overall, the number of clusters or
timestamps in which opinions converge is higher when In-
Degree or Closeness centrality is considered rather than Page
Rank but the difference is not very large.

B. INFLUENCE OF THE TOP RANKED NODES ON THE
CONVERGENCE OF OPINIONS
In the previous experiments, we considered the centrality
values of the nodes only to weight the opinions, and the top
ranked nodes could not influence their neighbors directly.
In order to take into account the influence of the fraction
of top ranked nodes β in the opinion formation dynamics
independently of the other parameters (case 4, 5, 6 in Table
2), a series of experiments are reported with the threshold
value fixed at 0. In this case the threshold has no influence,
and the confidence region depends only on the value of the
top ranked nodes. Initially, there are as many opinions as
nodes in the network. The opinions of the nodes are weighted
using Page Rank, In-Degree and Closeness centrality.

1) Relating the top ranked nodes to the number of
clusters in which opinions converge
In this section, we study how the number of clusters in which
opinions converge evolves with the fraction of top ranked
nodes that can influence their neighbors using Page Rank
centrality on network of size N=500. When β = 0%, nodes
cannot take into account any of their neighbors opinion.
Consequently, none of them changes its opinion, and there
are as many clusters as initial opinions i.e. number of nodes.
As β increases to 1%, opinions start reaching consensus
(1 cluster). After this, there is no change in the number of
clusters in which opinions converge as β increases. This is a
quite different scenario as compared to the previous case. The
reason for this observation is the consideration of top ranked
nodes. In the case of the threshold value, different nodes are
considered for the opinion sharing purpose for every node.
Therefore, multiple opinions or clusters of opinions emerge.
But in the case of top ranked nodes, it is the same limited set
of nodes that is considered for opinion sharing purpose by
the other nodes. The opinion of the top ranked nodes has a
greater influence on the other nodes. Indeed, five top ranked
nodes are enough in a network of size 500 to make all the
population reach a consensus.

Let’s now turn to the results obtained with the In-Degree
and Closeness centrality. The same conditions lead to the

same behavior. Opinions converge to reach consensus (1
cluster) in any case when the In-Degree or the Closeness
centrality is taken into consideration except in the case where
β = 0%.

2) Relating the fraction of the top ranked nodes to the
convergence time of opinions
In this section, we study how the number of timestamps in
which opinions converge evolves with the fraction of top
ranked nodes using Page Rank centrality on network of size
N=500. If β = 0%, none of the nodes change its opinion,
hence the convergence timestamp is considered as 0. As
β increases, the number of timestamps in which opinions
converge decreases. At β = 0.4%, few top ranked node’s
opinion can propagate, so the number of timestamps needed
to reach the consensus is large (33) because the influence of
the Top Ranked nodes needs to propagate in the network.
When β increases to the value 5%, the number of timestamps
in which opinions converge decreases rapidly to the value 7.
When β further increases to the value 50%, the number of
timestamps in which opinions converge decreases up to 5
which is not a major decrease. A plot is reported in Figure
9 in blue color showing the number of timestamps versus
the fraction of top ranked nodes in order to highlight this
behavior observed when β ranges from 0% to 50%. It shows
that for the low range values of β [0%, 5%] the number
of timestamps needed to reach convergence exhibit more
variation in comparison to the range [5%, 50%]. In the range
[50%, 100%] opinions convergence is always reached in five
timestamps. At this point adding new influential nodes does
not increase the convergence rate.
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FIGURE 9. Plot representing the number of timestamps needed to reach
convergence versus the fraction of top ranked nodes (β). Page Rank,
In-Degree and Closeness based opinion formation model are plotted in blue,
red and green color respectively. Vertical dashed line at point 5% shows the
two observations: rapid and slow decrease in timestamp .The threshold value
(α) is fixed at 0 %. Five simulations are performed on networks of size 500.
Mean values and Standard deviation are reported.

Figure 10 (a)-(c) reports a typical examples of the evolu-
tion of the opinions versus the number of timestamps. The
centrality used to weight the opinions is Page Rank and the
size of the network is 500. In all cases, consensus is reached.
Figure 10 (a) with fraction of top ranked nodes fixed at 0.4%

VOLUME 4, 2019 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2961936, IEEE Access

Eeti et al.: Centrality-based Opinion Modeling on Temporal Networks

shows that consensus is reached in 31 timestamps. Figure 10
(b) with a fraction of top ranked nodes as 1% shows that
the consensus is reached in 20 timestamps. Finally, Figure
10 (c) with fraction of top ranked nodes as 10% shows that
the consensus is reached in 7 timestamps. As the value of
β decreases, the number of timestamps to reach consensus
increases. It appears that when the number of top rank nodes
considered is small, extreme opinion values evolve slowly
making the convergence more difficult to reach.

(a)

(b)

(c)

FIGURE 10. Evolution of the opinions reaching convergence versus the
number of timestamp. The threshold (α) is fixed at 0%. The centrality used to
weight the opinions is Page Rank on a network of size 500. Different values of
the fraction of top ranked nodes β are considered. (a) Consensus with
β = 0.4% (b) Consensus with β = 1% (c) Consensus with β = 10%.
Different colors represent different opinions.

Figure 9 in blue and red color reports the results of the
same set of experiments comparing page rank centrality with
In-Degree centrality to weight the opinions instead of Page
Rank. The threshold value is fixed at 0% . Similar behavior

for the number of timestamps against the fraction of top
ranked nodes is observed in case of In-Degree centrality as
compared to Page Rank centrality. One can also observe that
the opinions converge in either the same or a higher number
of timestamps when In-Degree centrality is taken into con-
sideration instead of the Page Rank centrality. Results are
quite similar for the higher values of top ranked nodes in
comparison to its lower values. The number of timestampsat
convergence is higher when the In-Degree centrality is con-
sidered compared to Page Rank centrality in the fraction of
top ranked nodes interval [0%, 5%]. In the other intervals, the
number of timestamps in which opinions converge is almost
the same for In-Degree and Page Rank centrality.

Figure 11 (a)-(c) reports a typical examples of the evolu-
tion of the opinions versus the timestamp. The centrality used
to weight the opinions is In-Degree centrality and the size of
the network is 500. Results are in the same vein that the ones
obtained with Page Rank. Indeed, in all the cases, consensus
is reached. Figure 11 (a) with fraction of top ranked nodes
as 0.4% shows that the consensus is reached in 36 times-
tamps. Figure 11 (b) with a fraction of top ranked nodes as
1% shows that the consensus is reached in 25 timestamps.
Finally, Figure 11 (c) with fraction of top ranked nodes as
10% shows that consensus is reached in 7 timestamps. As
the value of β increases, the number of timestamps to reach
consensus decreases. Note that the number of timestamps to
reach consensus for In-Degree centrality is slightly higher in
comparison to the Page Rank.

Figure 9 reports the results of the same set of experiments
comparing Page Rank centrality and In-Degree centrality
with Closeness Centrality to weight the opinions. The thresh-
old value is fixed at 0%. A similar behavior for the number
of timestamps versus the fraction of top ranked nodes is
observed in case of the three centrality measures. One can
also observe that the opinions converge in either the same or
higher number of timestamps when Closeness centrality is
taken into consideration instead of Page Rank. Results are
quite similar for the higher values of top ranked nodes in
comparison to its lower values. The number of timestamp
at convergence is higher when the Closeness centrality is
considered compared to Page Rank centrality in the fraction
of top ranked nodes interval [0%, 5%]. In the other intervals,
the number of timestamps at convergence is almost the same
for both centralities. Results are quite similar when Closeness
centrality is taken into consideration instead of the In-Degree
centrality.

Figure 12 (a)-(c) reports typical examples of the evolution
of the opinions versus the timestamp. The centrality used to
weight the opinions is Closeness centrality and the size of
the network is 500. Results are in the same vein that the
ones obtained with Page Rank and the In-Degree centrality.
Indeed, in all the cases, consensus is reached. Figure 12 (a)
with the fraction of top ranked nodes as 0.4% shows that the
consensus is reached in 36 timestamps. Figure 12 (b) with the
fraction of top ranked nodes as 1% shows that the consensus
is reached in 25 timestamps. Finally, Figure 12 (c) with the
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(a)

(b)

(c)

FIGURE 11. Evolution of the opinions reaching convergence versus the
number of timestamp. The threshold (α) is fixed at 0%. The centrality used to
weight the opinions is In-Degree centrality on a network of size 500. Different
values of the fraction of top ranked nodes (β) are considered (a) Consensus
with β = 0.4% (b) Consensus with β = 1% (c) Consensus with β = 10%.
Different colors represent different opinions.

fraction of top ranked nodes as 10% shows that consensus
is reached in 7 timestamps. As the value of β increases,
the number of timestamps to reach consensus decreases.
Note that the number of timestamps to reach consensus for
Closeness centrality is slightly higher than for the Page Rank
but almost similar to the In-Degree centrality.

C. COMBINED INFLUENCE OF THE THRESHOLD AND
THE FRACTION OF THE TOP RANKED NODES ON THE
CONVERGENCE OF OPINIONS

Previous results show that we can consider three cases con-
cerning the threshold values. Extreme small threshold values

(a)

(b)

(c)

FIGURE 12. Evolution of the opinions reaching convergence versus the
number of timestamp. The threshold (α) is fixed at 0%. The centrality used to
weight the opinions is Closeness centrality on a network of size 500. Different
values of the fraction of top ranked nodes (β) are considered (a) Consensus
with β = 0.4% (b) Consensus with β = 1% (c) Consensus with β = 10%.
Different colors represent different opinions.

in the range [0, 0.005], medium threshold values in the range
[0.005, 0.3] and high threshold values in the range [0.3, 1] can
be considered. One can consider three situations concerning
the fraction of top rank nodes: extremely small fraction of
top rank nodes in the range [0%, 0.8%], medium fraction
of top rank nodes values in the range [0.8%, 5%] and high
fraction of top rank node values in the range [5%, 100%].
Therefore, in order to study the impact of the combination of
both parameters we consider values in each range. A small
threshold value (0.04) , a medium threshold value (0.1) and
a high threshold value (0.5), and a small fraction of top rank
nodes (0.4%), a medium fraction of top rank nodes (1%) and
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a high fraction of top rank nodes (50%) are considered.

1) Relating the combination of the threshold and the
fraction of the top ranked nodes to the number of
clusters at convergence
Whatever the values of threshold and fraction of top rank
nodes, when both parameters values are different from zero,
the opinions converge to a single cluster. The only case
where opinion converge in more than one cluster is when
the threshold values are in the range [0, 0.2] keeping the
fraction of top ranked nodes at 0%. For other values of
threshold, keeping the fraction of top ranked nodes fixed at
0%, opinions converge in 1 cluster. Keeping threshold value
fixed and considering any value of top ranked nodes, opinions
converge in 1 cluster. This implies, the fraction of top rank
nodes is the main parameter to converge the opinions towards
consensus. This behavior is always observed whatever cen-
trality measure is considered out of three.

2) Relating the threshold and the fraction of the top
ranked nodes to the convergence time
The effect of both parameters on the number of timestamps
at convergence is reported in Table 3. For a given a threshold
value, we change the fraction of top rank nodes from lower
to higher range. Until both parameters values are zero. There
is no convergence and we denote the number of timestamp
value as zero. For small fraction of top rank and small values
of the threshold, convergence is very slow. For example,
180 timestamps are needed for a fraction of top rank nodes
equal to 0.4% and a threshold value of 0.04. When the
fraction of top rank nodes increases to a medium range
value convergence accelerates, and this is also true when the
threshold value increases from lower range to medium range
values. Finally, when both parameters are in the higher range,
convergence is always reached in five timestamps.

When only the threshold value (low range) is considered,
few nodes change their opinions and opinions converge easily
but in multiple clusters. But when the fraction of top ranked
nodes is also considered in the low range, few nodes of high
importance are very influential. In this case, opinions con-
verge to a single cluster but this is done gradually in a higher
number of timestamps. Indeed, different top ranked nodes go
through different clusters of opinion with their neighbouring
nodes before that all the nodes reach a global consensus.
In other words, it takes time for all the nodes to share
the same opinion. Furthermore, because of the threshold
value, neighboring nodes other than the top ranked ones are
also propagating their opinions. Hence, convergence of these
opinions along with the opinions of top ranked nodes increase
the time to converge. When the fraction of top ranked nodes
increases further, the influence of small threshold values
decreases and a smaller number of timestamps is required for
convergence. This is because a higher number of important
nodes share their opinions accelerating the convergence.

As the threshold value further increases to high range
values, the effect of threshold value reduces the effect of

low fraction of top ranked nodes and a maximum of nodes
are sharing their opinions and convergence is fast. If both
parameters have low range values, opinion convergence is
reached in a large number of timestamps because opinions
do not propagate easily. If any one of the parameters has a
high range value, opinion convergence accelerates because
more nodes can share their opinions.

TABLE 3. Combined effect of the threshold value (α) and the fraction of top
ranked nodes (β) on the number of timestamps at convergence. 1st row
consists of β value. 1st column consists of α value. Every cell reports the
number of timestamp at convergence for the corresponding α and β value
considering the Page Rank centrality on a network of size 500.

α / β 0 0.4% 1% 50%
0 0 33 22 5

0.04 12 180 75 5
0.1 10 130 55 5
0.5 5 5 5 5

Table 4 reports the results of the same set of experiments
using the In-Degree centrality. Globally, the similar behavior
for the change in number of timestamps against threshold
and fraction of top ranked nodes is observed as in Page
Rank centrality. One can also observe that the convergence
is always slightly slower in case of In-Degree centrality
compared to Page Rank.

TABLE 4. Combined effect of the threshold value (α) and the fraction of top
ranked nodes (β) on the number of timestamps at convergence . 1st row
consists of β value. 1st column consists of α value. Every cell reports the
number of timestamps at convergence for the corresponding α and β value
considering the In-Degree centrality on a network of size 500.

α / β 0% 0.4% 1% 50%
0 0 36 25 5

0.04 13 185 75 6
0.1 12 135 60 6
0.5 5 5 5 5

Table 5 reports the results of the same set of experiments
using the Closeness centrality centrality. Globally, the similar
behavior for the change in number of timestamps against
threshold and fraction of top ranked nodes is observed as
in Page Rank centrality. One can also observe that the
convergence is always slightly slower in case of Closeness
centrality compared to Page Rank but almost similar to In-
Degree centrality.

TABLE 5. Combined effect of the threshold value (α) and the fraction of top
ranked nodes (β) on the number of timestamps at convergence . 1st row
consists of β value. 1st column consists of α value. Every cell reports the
number of timestamps at convergence for the corresponding α and β value
considering the Closeness centrality on a network of size 500.

α / β 0% 0.4% 1% 50%
0 0 36 25 5

0.04 13 186 78 6
0.1 12 140 60 6
0.5 5 5 5 5
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D. INFLUENCE OF THE NETWORK SIZE ON THE
CONVERGENCE OF OPINIONS
In the initial experiments, we considered a network of size of
500. Now in order to analyze the influence of this parameter,
we report the results of the experiments performed with a
smaller network of size 100 and a bigger one of size 1000.

1) Relating the network size to the threshold at
convergence
Figure 13 reports the evolution of the number of clusters
versus the threshold value, keeping fraction of top ranked
nodes fixed at 0% for the three size of networks under
experiment. First of all, we can notice that we can consider
three ranges of threshold value independently of the network
size. For small threshold values, the number of clusters de-
creases slowly from the initial number of nodes. For medium
threshold values, we observe a linear decreasing slope. As
we use a log-log scale, it means that the number of clusters
decreases exponentially with the threshold value. Finally, for
high threshold values, the consensus is reached irrespective
the network size.

Consider the case of small size network i.e. 100 nodes.
Initially, when the threshold is 0, the number of clusters at
convergence is equal to the total number of nodes i.e. 100.
For small threshold values in range [0, 0.01], convergence
clusters for 100 nodes is less than 500 and 1000 nodes. For
medium threshold values in range [0.01, 0.3], convergence
clusters for 100 nodes is equal to or little bit higher than
500 and 1000 nodes, but the difference is to small extent.
For high threshold values in range [0.3, 1], convergence
clusters for 100 nodes is equal to 500 and 1000 nodes as
consensus is reached. This observation can be explained as,
at extremely small values of threshold, number of clusters
in which opinions converge is near to 100 which is always
smaller than values near to 500 clusters. As the value of
threshold further increases, 100 nodes shared network split
into multiple components and emerge in large number of
clusters. As the threshold value further increases, irrespective
of size of network, opinions reach to consensus state.

Figure 14 shows the number of timestamps at convergence
versus the threshold value for networks of size 100, 500
and 1000. The fraction of top ranked nodes is fixed at 0%.
For the case of small network size i.e. 100 nodes, and for
small values of threshold i.e. in the range [0, 0.002], opinions
convergence is fast as the number of nodes that are changing
their opinions is small (4 to 5) and this is done at early
stage. When the threshold value increases the number of
timestamps needed to reach convergence is large compared
to bigger networks. Indeed, as there is a small number of
nodes, many disconnected components arise while sharing
the opinion. Sharing network (nodes and edges that exist
according to the threshold value and fraction of top ranked
nodes constitute the sharing network) remains disconnected
for a long time even after addition and deletion of edges.
As soon as it becomes connected, opinions converge. For
the case of large size network i.e. 500, 1000, as the size of
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FIGURE 13. Plot representing the number of clusters of opinions versus the
threshold value (α). Five simulations are performed on network of size 100,
500 and 1000 which are plotted in blue, red and green color respectively.
Vertical dashed lines at point 0.001 and 0.3 shows the different threshold value
ranges as low, medium and high. The fraction of top ranked nodes (β) is fixed
at 0 %.The centrality used to weight the opinions is Page Rank centrality.
Mean values and Standard deviation are reported.

the network increases, the number of timestamps in which
opinions converge increases but to a small extent.
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FIGURE 14. Plot representing the number of timestamps needed to reach
convergence versus the threshold value (α). Five simulations are performed
on network of size 100, 500 and 1000 which are plotted in blue, red and green
color respectively. The fraction of top ranked nodes (β) is fixed at 0 %.The
centrality used to weight the opinions is Page Rank centrality. Mean values
and Standard deviation are reported.

2) Relating the network size to the fraction of top rank
nodes at convergence
Figure 15 shows the evolution of the number of timestamp
needed to reach convergence versus the fraction of top rank
nodes for networks of size 100, 500 and 1000. The threshold
value is fixed at 0. Note that whatever the network size,
the number of cluster at convergence remains the same, i.e.
all the nodes reach a consensus (except for 0% top ranked
nodes). As the size of network increases, the number of
timestamps in which opinions converge decreases. As soon
as sharing network becomes connected, opinions converge.
In the case of top ranked nodes, sharing network of 100
nodes becomes connected comparatively late as compared
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to the 500 nodes network. Hence, in 100 nodes network,
opinions take more time to converge than 500 nodes network.
Similarly, 500 nodes network takes more time to converge
than 1000 nodes network.
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FIGURE 15. Plot representing the number of timestamps needed to reach
convergence versus the fraction of top ranked nodes (β). Five simulations are
performed on network size of 100, 500 and 1000 which are plotted in blue, red
and green color respectively. The threshold value (α) is fixed at 0.The
centrality used to weight the opinions is Page Rank centrality. Mean values
and Standard deviation are reported.

3) Relating the network size to the combined effect of
threshold and the fraction of top ranked nodes at
convergence
In this section, we analyze the evolution of the number of
clusters when both threshold and the fraction of the top
ranked nodes are combined and the size of the network
changes. First of all, one may notice that whatever the net-
work size, the number of cluster at convergence remains the
same, i.e. all the nodes reach a consensus. The only difference
is how long it takes to reach convergence. Table 6 reports
the number of timestamps needed to reach convergence for
various values of the threshold and the fraction of the top
ranked nodes for networks of size 100, 500 and 1000 respec-
tively. When both parameters values are in the high range,
convergence is fast. Indeed, 5 to 7 timestamps are needed
for the all population to reach a consensus. In this case, we
can conclude that convergence is almost independent of the
network size. This is due to the fact that a large number of
neighbors share their opinions. It takes a few more iterations
for the smallest network because in some situations, isolated
nodes may occur. The highest number of iterations needed to
reach convergence is always observed when both parameters
are in the smallest range, and it increases with the size of the
network when the size ranges from 100 to 500.

Small number of iterations are required for networks of
size 1000 as compared to networks of size 500. This is
because network of size 500 converges quickly in comparison
to 1000 nodes network in case of only threshold value and
network of size 1000 converges quickly in comparison to 500
nodes in case of only fraction of top ranked nodes. But the
effect of fraction of top ranked nodes is more in reducing the

timestamps for 1000 nodes network. Furthermore, increasing
any of the parameter values improves the convergence rate.
Indeed, more interactions allows to reach the consensus
quicker.

.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present and study a directed and weighted
model for opinion dynamics on temporal networks. This
model incorporates various parameters allowing the nodes
to exchange their opinions with their neighbors. A node can
be influenced by its neighbors if their opinions is not too
far from its own opinion according to a threshold value or
if these neighbors are globally influential in the network
according to their centrality value. Three centrality measures
are considered and compared in the proposed model: 1)Page
Rank and 2) In-Degree centrality and 3) Closeness centrality.
The first considers global information, the second considers
local information and the third one is linked to the distance
among the nodes. The underlying topology of the network
is temporal and continuous opinions are considered. The
threshold value, α and the fraction of top ranked nodes, β
act as tuning parameters for the number of clusters in which
opinions converge and for the number of timestamps needed
to reach convergence. Various simulations and analysis are
made to understand the effect of all the parameters. Opinions
converge in more than 1 cluster only when low threshold
values in the range [0, 0.2] are considered without consid-
ering the fraction of top ranked nodes. As the threshold value
increases in the given range, the number of clusters at conver-
gence decreases. Otherwise, opinions converge in 1 cluster.
As the threshold value increases, the number of timestamps
to reach convergence increases and then it decreases. The
number of timestamps in which opinions converge decreases
with the increase of fraction of top ranked nodes. The number
of timestamps to reach convergence remains same even if the
fraction of top ranked nodes increases for the threshold value
belonging to the high range. Similar scenario is observed
while keeping the fraction of top ranked nodes fixed and
changing the threshold value. Experimental results about the
centrality comparisons (Page Rank, In-Degree and closeness
centrality) show that the main differences are in the number
of clusters at convergence and the number of timestamps
needed to reach convergence. The local "In-Degree central-
ity" centrality measure takes more time to reach convergence
with a larger number of clusters as compared to the global
Page Rank centrality measure. Furthermore, it appears that
opinions converge in an equal or larger number of clusters
and the same or larger number of timestamps are needed to
reach convergence when Closeness centrality is considered
in comparison to Page Rank centrality. Results on networks
of different size is analyzed. In small networks (100 nodes),
convergence is slower compared to large size networks (500
and 1000). However, convergence is faster in network of size
500 as compared to networks with 1000 nodes when the
fraction of top ranked nodes is fixed. In future work, we plan
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TABLE 6. Combined effect of the threshold value α and the fraction of top ranked nodes β and the size of network on the number of timestamps at convergence .
1st row consists of β value. 1st column consists of α value. Every cell reports the number of timestamp at convergence for the corresponding α and β value
considering the Page Rank centrality on networks of size 100, 500 and 1000 nodes.

α / β (Size of Network) 0.4% (100/ 500/ 1000) 1% (100/ 500/ 1000) 50% (100/ 500/ 1000)
0.04 63/ 190/ 170 50/ 75/ 70 7/ 6/ 5
0.1 49/ 135/ 135 48/ 68/ 56 7/ 6/ 5
0.5 7/ 5/ 5 7/ 5/ 5 7/ 5/ 5

to extend the model in various direction in order to increase
its effectiveness. Instead of random opinion assignment to
nodes, we plan to consider biased assignment. The impact
of addition and deletion of nodes in the network need also
to be investigated. Link weights may also be considered to
contribute in the opinion sharing process [34]. Trust factor
among the nodes may be used for defining the link weights.
Instead of a fixed threshold value for every pair of node
and at every timestamp, a variable threshold value can be
considered for different pair of nodes which is also a function
of time.
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