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Abstract: Discrete-time approach is used in survival data analysis when 

only the time interval in which the event of interest has occurred is known or 

when this event occurs in a discrete - time scale. The work presented in this 

paper is motivated by the analysis of HIV/AIDS follow-up data collected in 

Burkina Faso during the 5-YEAR Global Fund program implemented to 

fight AIDS, Tuberculosis and Malaria. The research question that motivated 

the work is the likely existence of different mortality risk profiles of people 

infected with HIV/AIDS, depending on their characteristics and health status 

at the beginning of their care. In order to answer these questions, we 

considered a binary tree regression approach for survival data analysis since 

such a model owns the ability to handle interaction effects between the 

outcome covariates without a tight specification of such effects during the 

model statement step. This helps to prevent specification and interpretation 

errors. The fitted model resulted in splitting patients into three disjoint 

subgroups, corresponding each to a specific hazard profile. 
 

Keywords: Model-Based Binary Regression Tree, Discrete Time-to-Event, 

Hazard Probability, Survival Analysis, HIV/AIDS, Antiretroviral Therapy 
 

Introduction 

From 2003 to 2007, the Global Fund supported 

health institutions in Burkina Faso to promote the 

access of HIV infected persons to Antiretroviral 

Therapy (ART), considered as a therapeutic advance in 

the fight against HIV/AIDS (Kouanda et al., 2008). 

Every six months, health data were recorded during 

clinical visits. An evaluation of this program was done 

in 2008 in order to assess the efficiency of the program 

and it involved the analysis of follow-up data gathered 

during the program execution. We sought to address 

two research questions in this paper: are there groups of 

patients with different and specific risk profiles? Which 

characteristics, among those that are recorded, are 

correlated with this risk and can help to predict 

accurately the hazard of death? To achieve this goal, 

we will use survival tree methods for the analysis of 

survival data. The main characteristic of this approach 

is its ability to capture interaction effects between 

predictors, specifically when there is a large number of 

predictors considered for modeling the distribution of a 

response variable. A binary tree is fitted to the dataset by 

recursively splitting covariates to create partitions of 

covariate space in order to obtain homogeneous groups 

with respect to the studied response. 
Contributions in tree-based methods for discrete-time 

survival analysis include (Bou-Hamad et al., 2009) and 
(Schmid et al., 2016). Both methods consider that time-
to-event data are observed jointly with covariates that 
describe individuals and consider that hazard of event 
occurrence is a function of time and covariates. Let us 
consider X = (X1, X2,…, Xp) a vector of covariates, and 
{Nk, k = 1,…, K} a partition of the covariates space 
denoted by D(X). Let h denote the hazard function. In 
Bou-Hamad et al. (2009) approach, hazard probability has 
been modeled as follows: for all x  D(X) and time index t, 
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where, I(x  A) is the indicator function of the set A. In the 

Schmid et al. (2016) approach, the time variable denoted T 

is a candidate splitting variable for tree construction. 

Schmid et al. (2016) consider a partition {Nk, k = 1,…, K} 

of the input space D(T,X) and a hazard model specified by: 
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where t is a time index and x is an observed value of the 

covariate vector X. 
Our present work proposes a semiparametric model-

based binary tree for the analysis of the follow-up data of 

the HIV infected people who were included in the Global 

Fund program, with the aim of analyzing the correlation 

between the survival of the people who had access to this 

therapy, and their health status at the time of admission to 

the program, as well as the means by which these patients 

arrived at the program, the characteristics of the patients and 

the attributes of care facilities. Unlike (Bou-Hamad et al., 

2009) and (Schmid et al., 2016) methods, the proposed 

approach distinguishes two groups of covariates: the first 

group is involved in the binary tree construction, and the 

second group is involved in the statement of a parametric 

regression model in each node of the tree. 
The rest of the paper unfolds as follows. Section 2 is 

devoted to the exposition of the statistical model 

proposed for discrete-time survival analysis and the 

model fitting algorithm; in section 3, survival data are 

analysed on the basis of the fitted model; section 4 is 

devoted to the discussion of the results. 

Statistical Methods 

Notations 

Let us consider a sequence of time intervals 

[0,t1[,[t1,t2[,…,[ts–1,ts[,... where the subscript s indexes a 

time interval. The covariates are splited into two parts. 

The first one is made of covariates Z1, Z2,…, Zq, called 

moderators according to (Fokkema et al., 2018) and will 

be involved in the binary tree construction. These 

covariates are used to characterize subgroups of the 

population through a partition of the input space 
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D D  where Z = (Z1, Z2,…, Zq) and D(Zj) 

denotes the set of all possible outcomes of Zj, j = 1,…, q. 

The second set of covariates X1, X2,…,Xp, is involved in 

the statement of a parametric regression model, the 

linear prediction of a generalized linear model (glm). 

Let X = (X1, X2,…, Xp). We consider TE = 1, 2,… and   

TC = 1, 2,…, a random event time interval index, and a 

random censoring time interval index respectively. Let T 

:= min (TE, TC). We denote by := I(TE ≤ TC) the 

random binary variable that indicates whether TE, the 

time to event, is censored1 or not. The observed sample 

is denoted by {(ti, i, xi, zi), i = 1,…, n} where ti is the 

observed time of individual i, i indicating whether the 

individual is censored or not, zi = (z1i, z2i,…, zqi), xi = 

(x1i,x2i,…, xpi) are the observed values of Z and X.  

Binary Regression Tree Model for Discrete-Time 

Hazard 

The discrete-time hazard function h is the conditional 
probability that a randomly selected individual will 
experience death in time interval s, given that he didn’t 
experience death prior to s. For a time index s, the 
discrete hazard is defined by: 
 

   | , Pr | , ,E Eh s x z T s T s X x Z z      (3) 
 
where X is the vector of the predictors, Z is the vector of 

the moderators, TE is the time-to-event variable and s is 

the observed time. We consider a discrete hazard model 

specified by: 
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where s is a time index, x is an observed value of the 

covariate vector X, z is an observed value of the 

moderator vector Z and g is a strictly monotically 

increasing link function. It clearly appears that the model 

is a varying-coefficient model (Hastie and Tibshirani, 

1993): coefficients αs and l change with the value of 

moderator variables Zm, m = 1,…, q. Those variables, 

called effect modifiers by (Hastie and Tibshirani, 1993) 

are distinct from covariates Xl, l = 1,…, p involved in the 

linear model. Given a partition {Nk, k = 1,…, K} of the 

moderators space D(Z), let us consider: 
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It turns out that: 

 

   1

1

1 1

| , ( ) .
pK

k lK k

k l

h s x z g s x I z N 

 

 
   

 
   (6) 

 

Let    1

1

1

| : .
p

k k lK

l

h s x g s x 



 
  

 
  

Then      
1

| , | .
K

k k

k

h s x z h s x I z N


   

                                                           
1 A patient is censored if he is lost sight of after his last follow-up visit 
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When there are no covariates but only moderators, 

Equation (4) reduces to: 
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which is the model considered by Bou-Hamad et al. 
(2009). It is claimed in (Singer and Willett, 1993) that 
the specification of time effect as αk(s) in (6) is the most 
general parameterization of time effect. Classical link 
functions include probit, logit and cloglog functions. The 
latter leads to discrete-time counterpart of an extended 
Cox proportional hazard model with respect to a link 
function f(h(s|x)) = -log(1-h(s | x)) = exp((s))exp(x) 
where exp(α(s)) stands for the baseline hazard. 

Augmented Design Matrix 

For any individual i, let ti be the index of the time 

interval where i experienced the event or was censored 

and 
iit

y  = i. Let us define sequences yi = (0,0,…,
iit

y )   

= (0,0,…, 1) if i is uncensored and yi = (0,0,…,
iit

y )        

= (0,0,…, 0) if i is censored. The length of sequence yi is 

ti. The tree construction is based on moderators. The 

likelihood of model (4) is given by: 
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One can consider (8) as the likelihood of a binomial 

model with probabilities h(s | xi, zi) and independent 
observations yis of independent statistical binary variables 
yis. It turns out that the model parameters can be estimated 
by using binary response regression techniques. For that 
purpose, we need to create an (augmented) data matrix 
(Berger and Schmid, 2017) with ti rows derived from the 
initial data {(ti, i, xi, zi), i = 1,…, n}. In this matrix, the sth 
row contains information about the sth time interval. The 
first column of the data matrix is related to , the second is 
related to T (observed time), the p subsequent columns 
consist of the observed values of X and the last q columns 
are the observed values of Z. The rows of the augmented 
design matrix corresponding to a subject i that has 
experienced the event (i = 1) are given by: 
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In the case of a censored subject i (i = 0), the rows 

corresponding to i are given by: 
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By stacking these augmented matrices one obtains a 

design matrix that will be used by the model fitting 

algorithm. Singer and Willet (1993) proposed a similar 

design matrix. In short, the difference is on the Time 

variable. Instead of one variable, the Time variable is 

represented by tmax time indicators  
max

1 2, ,...,
t

D D D with 

tmax the maximum length of time an individual was alive. 

Model Fitting 

Model-Based recursive partitioning (MOB) is an 
algorithm that aims to produce unbiased binary tree 
where fitted parametric models are associated with each 
terminal node (Zeileis et al., 2008; Hothorn et al., 2006). 
We have used MOB to build the tree. The algorithm 
finds the partitions after completion of four steps 
(Algorithm 1). More details on parameter instability tests 
can be found in (Hornik and Zeileis, 2007; Hothorn et al., 
2006). Unlike other binary regression tree methods, MOB 
does not require post-pruning to avoid overfitting and it 
results in an optimally sized tree. For tree construction, two 
hyperparameters are provided to run the algorithm: the 
significance level for parameter instability tests denoted  
and the minimum terminal node size denoted minsize. The 
terminal node size refers to rows of the augmented data 
matrix. The final tree is obtained by the selection of an 
optimal value among hyperparameter values. This can be 
achieved by looking for an optimal joint value of a minimal 
terminal node size minsize and a numeric significance level 
 by using Bayesian Information Criterion (BIC).  
 

Algorithm 1 MOB Algorithm 
 Step 1: Fit the model to the dataset. 
 Let us consider the augmented data matrix previously 

described to be the dataset. It consists of two sets of 
variables: model variables and moderator variables. 
The model can be fitted by maximizing the log-
likelihood resulting from (8). We denote by ̂  the 
parameter estimate. 

 Step 2: Test for parameter instability with respect 

to every partitioning variable. 
 Let  be the current node and ˆ

 the estimate of 

parameter   in . We denote by L and R the 

children nodes resulting from a binary partition of . 

The estimate ˆ
  is said to be unstable if there is a 

moderator covariate Zj, j = 1: q such that  ˆ
L

jz

  and 
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 ˆ
R

jz

  respectively the parameter estimates in L 

and R are significantly different. Generalized M-

fluctuation tests are used for that purpose (Hornik 

and Zeileis, 2007). The sup LM statistic is used for 

numerical moderators and a 2 statistic is used for 

categorical moderators (Hornik and Zeileis, 2007). See 

supplementary material for details on sup LM statistic. 

 Step 3: If there is some overall parameter 

instability, split the dataset with respect to the 

variable associated with the highest instability (the 

smallest p-value) into two children nodes. 
 To determine whether there is some overall 

instability, it is checked whether the minimal p-value 
falls below , a pre-specified significance level. The 
Bonferroni method can be used to adjust for multiple 
testing. The split point is found by applying an 
exhaustive search procedure: for every conceivable split 
point, the parametric model is fitted in each one of the 
two children nodes generated by this split point and then 
the split associated with the maximum sum of the two 
observed log-likelihoods in the children nodes is chosen. 

 Step 4: Repeat the procedure in each of the resulting 
subgroups until no significant instability is detected 

or a minimum terminal node size criterion is met. 
 
This method allowed us to cover a large set of 

hyperparameter values and then to select the optimal tree 

using the BIC criterion. We used the partykit package 

(Hothorn and Zeileis, 2016) to fit the model. Hazard 

probabilities were estimated using (6). 

Stability Analysis 

The success of binary trees among statistical methods 
of decision-making should not obscure the potential 
instability of models resulting from the execution of the 
algorithm used to fit the data. Therefore, it is essential to 
ensure the stability of the fitted model before its 
subsequent use, as for prediction task. Stability 
assessment can be done by fitting the same model to 
bootstrapped samples from the training dataset. 
Bootstrap trees may select variables and cutpoints that 
were not selected by the original tree. Metrics for 
stability assessment include the relative variable 
selection frequency, the mean frequency of the variable 
selections per tree and the frequency of each cutpoint 
over the trees (Philipp et al., 2016): 

 

 The relative variable selection frequency for a splitting 
variable zj, j = 1,…, q equals the total number of 
bootstrap trees that have selected zj at least once, 
divided by the total number of bootstrap trees. 

 The mean frequency of the variable selections per 
tree for zj is the total number of times zj is selected 
for splitting by a bootstrap tree over the repetitions, 
divided by the total number of bootstrap trees. 

 The relative frequency of a cutpoint c(zj) equals the 
total number of bootstrap trees that have selected 
c(zj) to split the variable zj, divided by the total 
number of bootstrap trees. 

 
A variable selection is stable if its frequency of 

selection is close to 100% and its average split count is 
close to its number of selections in the original tree. 
Different graphics are used to hightlight a variable cutpoint 
variability depending on the nature of the variable 
(categorical, numerical). For an ordered categorical 
variable, a barplot is used to show the frequency of all 
possible cutpoints. A histogram is used to illustrate the 
cutpoint variability when the splitting variable is numerical. 
It is expected that the cutpoints selected in the original tree 
have the highest frequencies (one or more peaks in the 
histogram). For an unordered categorical variable, a specific 
plot is used to visualize the partitions’ variability over the 
repetitions. The plot uses the same color for categories that 
belong to the same node. The combination of categories 
that corresponds to a partition observed in the original tree 
is marked on the right side of the plot by a solid red line. In 
addition, two dashed lines enclose the area representing the 
partition. The level(s) of the corresponding split(s) in the 
original tree are indicated by the number(s) on the right side 
of the area. To sum up, a cutpoint is stable if it is selected 
by most resampling trees. More details on the approach can 
be found in (Philipp et al., 2016). 

We resort to a semiparametric bootstrap method 

which consists of two steps: a sampling step and an 

assignment step. During the first step, we sample with 

replacement from the survival data (ti, i), i = 1,…, n. In 

the second step, we assign covariate vectors xi, zi 

conditional on the (ti, i) sampled on the basis of a 

probability distribution determined by the fitted model 

(Zelterman et al., 1996). The fitted hazard probability is 

used for uncensored individuals (i = 1) and the fitted 

survival probability is used for censored individuals (i = 0). 

Data Analysis 

Study Population and Measurements 

The population concerned by the study is the overall 

HIV infected patients that had started antiretroviral therapy 

in Burkina Faso between 1st January 2003 and 31st 

December 2007. The country health system is splitted into 

13 health regions totalizing 55 health districts and 77 ART 

centers. Among other initiatives, the ART centers had 

received funding from the Global Fund to fight AIDS, 

Tuberculosis and Malaria. For the purpose of the Global 5-

Year program evaluation, those centers were classified as 

low, medium and high scale, according to the level of 

funding received by health districts in 2007. In each ART 

center, all the patients older than 15 that had laboratory 

documentation of HIV infection and that had received 

Highly Active Antiretroviral Therapy (HAART) in the 
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center for at least 6 months of follow-up were included in 

the data collection. Among the 5608 patients initially 

studied by (Kouanda et al., 2011), 1267 patients with 

missing initial CD4 count or unknown WHO clinical stage 

were excluded for the present analysis. People who had 

begun ART before they joined the ART centers involved in 

the evaluation were not included in this study. We didn’t 

consider the covariates Body Mass Index (BMI) and time-

dependent CD4 count because of the large proportion of 

missing values. 

Data Description 

4341 patients were included in our analyses: 

70.6% were Female and 71.0% were under 40 years 

old (Table 1). The data are made of five cohorts: 

among the patients, 4.9% started HAART in 2003, 

16% in 2004, 26.0% in 2005, 29.0% in 2006 and 

24.1% in 2007. At initiation, most of the patients had 

advanced HIV infection: 83.3% had started ART with 

CD4 count < 200 cells/µL and 80.5% were at WHO 

clinical stages III or IV. In 95% of all cases, the 

treatment regimen was two Nucleoside Reverse 

Transcriptase Inhibitors (NRTI), plus one non-

Nucleoside Reverse Transcriptase Inhibitor (NNRTI). 

At the date of collection, 77.5% were alive, 7.0% 

were lost-to-follow-up and 11.6% were dead. The 

empirical hazard function decreased from 7.49% in 

semester 1 to 2.02% in semester 2 (Table 2).

 
Table 1: Characteristics of patients at the time of starting treatment 
 2003 2004 2005 2006 2007 Total 
Variable (n = 215) (n = 681) (n = 1127) (n = 1274) (n = 1044) (n = 4341) 
(acronym) n (%) n (%) n (%) n (%) n (%) n (%)  
Gender (Genre) 
Female 157 (73.0) 485 (71.2) 808 (71.7) 878(68.9) 739 (70.8) 3067 (70.6) 
Male 58 (27.0) 196 (28.8) 319 (28.3) 396 (31.1) 305 (29.2) 1274 (29.4) 
Age (Age)  
15-29  58 (27.0) 158 (23.2) 274 (24.3) 298 (23.4) 268 (25.7) 1056 (24.3) 
30-39  109 (50.7) 345 (50.7) 544 (48.3) 575 (45.1) 452 (43.3) 2025 (46.7) 
>= 40  48 (22.3) 178 (26.1) 309 (27.4) 401 (31.5) 324 (31.0) 1260 (29.0) 
HIV type (Serologie) 
HIV1 206 (95.8) 650 (95.5) 1063 (94.3) 1210 (95.0) 993 (95.1) 4122 (95.0) 
Others 9 (4.2) 31 (4.5) 64 (5.7) 64 (5.0) 51(4.9) 219 (5.0) 
CD4 count (inCD4) 
< 50 38 (17.7) 126 (18.5) 289 (25.6) 256 (20.0) 189 (18.0) 898 (20.7) 
50-99 61 (28.4) 146 (21.4) 213 (18.9) 257 (20.2) 181 (17.4) 858 (19.8) 
100-199 85 (39.5) 265 (38.9) 470 (41.7) 564 (44.3) 478 (45.8) 1862 (42.9) 
>=200 31 (14.4) 144 (21.2) 155 (13.8) 197 (15.5) 196 (18.8) 723 (16.6) 
WHO clinical 
stage (StadeOMS) 
WHO stage I or II 68 (31.6) 112 (16.4) 199 (17.7) 250 (19.6) 216 (20.7) 845 (19.5) 
WHO stage III 96 (44.6) 325 (47.7) 639 (56.7) 705 (55.3) 575 (55.1) 2340 (53.9) 
WHO stage IV 51 (23.7) 244 (35.8) 289 (25.6) 319 (25.0) 253 (24.2) 1156 (26.6) 
Outcome (death) 
Censored 187 (87.0) 585 (85.9) 960 (85.2) 1142 (89.6) 961 (92.0) 3835 (88.3) 
Dead 28 (13.0)  96 (14.1) 167 (14.8) 132 (10.4) 83 (8.0) 506 (11.7) 
Entry mode (EntryMod) 
NGO 30 (13.9) 85 (12.5) 184 (16.3) 191 (15.0) 174 (16.7) 664 (15.3) 
Health facilities 111 (51.6) 467 (68.6) 718 (63.7) 818 (64.2) 701 (67.1) 2815 (64.8) 
Relatives 25 (11.6) 25 (3.7) 68 (6.0) 136 (10.7) 67 (6.4) 321 (7.4) 
Transfer 49 (22.8) 104 (15.3) 157 (13.9) 129 (10.1) 102 (9.8) 541 (12.5) 
Health District (District) 
Bogodogo 92 (42.8) 176 (25.8) 261 (23.2) 229 (18.0) 229 (16.7) 932 (21.5) 
Boulmiougou 118 (54.9) 492 (72.2) 693 (61.5) 747 (58.6) 613 (58.7) 2663 (61.3) 
 Others 5 (2.3) 13 (1.9) 173 (15.3) 298 (23.4) 257 (24.6) 746 (17.2) 
Intensity of 
intervention (Scale) 
low scale 3 (1.4) 9 (1.3) 95 (8.4) 107 (8.4) 81 (7.8) 295 (6.8) 
medium scale 31 (14.4) 18 (2.6) 146 (12.9) 286 (22.4) 231 (22.13) 712 (16.4) 
high scale 181 (84.2) 654 (96.0) 886 (78.6) 881 (69.1) 732 (70.1) 3334 (76.8) 
Note: NGO, Non-governmental organization 
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Table 2: Empirical risks table 
Time index Number at risk Number of deaths Number of dropouts Hazard (%) 
1 4341 325 202 7.49 
2 3814 77 370 2.02 
3 3367 42 669 1.25 
4 2656 25 542 0.94 
5 2089 17 517 0.81 
6 1555 10 499 0.64 
7 1046 10 1036 0.96 
 

For statistical analysis, time indexes 7, 8, 9, 10 and 11 

have been grouped into a single category 7. For the model 

building, we consider the variables Gender (Genre), Age, 

Entry mode (EntryMod) that describes the patients as 

predictors in the linear model. Potential partitioning 

variables were baseline CD4 count (inCD4), WHO clinical 

stage (StadeOMS), Intensity of the intervention (Scale) and 

health district category (District). 

Results 

Identified Subgroups and Hazards of Death 

Profiles 

The fitted tree results in three terminal nodes (Fig. 1). 

The WHO clinical stage (StadeOMS) is selected for the 

first split, revealing that among the predictors, the 

baseline disease stage is the most closely correlated with 

the mortality hazard trajectories. Within the group of 

patients with one of the first three WHO clinical stages, the 

baseline CD4 count (inCD4) is the most correlated with the 

mortality hazard trajectories and induces a new split of the 

group. CD4 count is known to be a good predictor of the 

HIV dynamics during treatment in resource-limited 

countries. Patients with baseline CD4 count ≤ 50 cells/µL 

have a risk profile that is different from that of patients with 

baseline CD4 count > 50 cells/µL. Figures 2 to 4 illustrate 

the correlation between covariates and the hazard function. 

In the subgroup of patients with WHO clinical stage 4, the 

hazard function highly decreases from semester 1 to 

semester 2 (Fig. 2). The hazards of death in semester 1 are 

slightly higher for male patients, compared to female 

patients in all categories of patients and higher for 30-40 

age group compared to the other age groups. But there is no 

significant difference in hazards of death between the 

categories of patients from the semester 2. 
In the subgroup of patients with baseline CD4 count  

≤ 50 cells/µL and WHO clinical stage ≤ 3, patients 

supported by NGOs or Relatives have similar hazard 

profiles and the lowest hazard estimates in semester 1 

(Fig. 3). Transferred patients have the highest hazard 

estimates in semester 1. Patients aged 40 and over have 

the highest hazard estimates. The difference in risk 

between age categories is lower in patients followed by 

NGOs or supported by relatives than in transferred 

patients. In addition, the hazard function increases 

between semester 6 and time interval 7. The increase is 

lower in patients followed by NGOs or supported by 

relatives compared to patients from other modes of entry.  
In the subgroup of patients with baseline CD4 count 

> 50 cells/µL and one of the first three WHO clinical 

stages (Fig. 4), the hazards of death in semester 1 are 

slightly higher for male patients compared to female 

patients and significantly higher for transferred patients 

compared to patients from other modes of entry. The 

hazard estimates are also higher for patients between the 

ages of 30 and 40. Patients from other age categories 

have similar hazard profiles. For all categories, the 

hazard function remains constant after the third semester. 
A comparison of the results from the three subgroups 

reveals main features. First, in all subgroups, the hazard 

function decreases significantly between semester 1 and 

semester 2. The hazard estimates during these two 

semesters are higher in the subgroup of patients with 

baseline WHO clinical stage 4, compared to the two 

other subgroups of patients. The subgroup with baseline 

CD4 count > 50 cells/µL and one of the first three 

disease stages has the lowest hazard estimates during 

these two semesters. These findings underline, on the 

one hand the treatment efficacy for all HIV infected 

persons and on the other hand, that the efficacy is best 

for patients that initiate treatment at an early stage of 

infection. Secondly, hazard profiles differ significantly 

depending on how patients are entered into the active list 

of persons living with HIV/AIDS under ART. Patients 

supported by parents or NGOs have similar risk profiles. 

Patients recruited through health facilities and transfers 

also have comparable profiles. Thirdly, except in the 

subgroup of patients with baseline CD4 count ≤ 50 

cells/µL and WHO clinical stage ≤ 3, hazard estimates in 

semester 1 are higher for male patients compared to 

female patients. Lastly, for all subgroups, there is a 

difference in hazard between age categories in the first 

semester. This difference is well illustrated in the 

subgroup of patients with baseline CD4 count > 50 

cells/µL and one of the first three disease stages (Fig. 4). 

Assessment of the Fitted Binary Tree Stability 

We used 500 bootstrap samples for the stability 

analysis. Figure 5 and Table 3 show that the relative 

frequency of selecting WHO clinical stage (StadeOMS 

on the table), was 100%. In addition, Fig. 7 shows that 
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all the bootstrap trees have splitted StadeOMS at stage 

≤ 3 on the first level as in the original tree. Thus, the 

variable WHO clinical stage can be considered as 

stable. For the variable inCD4, the relative frequency of 

selection is also 100% but, unlike in the original tree, 

the variable is selected 1.9 times for splitting by each 

bootstrap tree (Table 3). Most bootstrapped trees have 

selected the same cutpoint as in the original tree (CD4 

count ≤ 50 cells/µL) on the second level. In most 

cases, an additional cutpoint (between 80 and 200) is 

also selected. This second cutpoint indicates that the 

subgroup of patients with CD4 count > 50 cells/µL 

may be splitted into two categories with specific 

survival profiles by a cutpoint between 80 cells/µL 

and 200 cells/µL. The upper bound of the possible 

cutpoints is known to be a threshold limit under which 

a HIV infected person is immunodepressed and in 

very urgent need of treatment. To sum up, the variable 

CD4 count is definitely relevant for predicting 

survival of ART patients although its split is less 

stable than the split of the variable WHO clinical 

stage. About 69.8% of the trees were built by 

selecting only the variables WHO clinical stage and 

baseline CD4 count as in the original tree (Fig. 6). 

 

 
 
Fig. 1: Estimated discrete-time cloglog - hazard tree. The optimal hyperparameters (determined by BIC criterion) for model fitting 

are α = 0.01 and minsize = 1950 

Estimated hazard model parameters: 
timeInt1: −2.96700 
timeInt2: −4.54858 
timeInt3: −4.61380 
timeInt4: −5.50342 
timeInt5: −20.25546 
timeInt6: −20.27145 
timeInt7: −5.09034 

GenreMale: 0.02615 
clAge.L: 0.13528 
clAge.Q: 0.23084 

EntryModHealth facility: 0.79725 
EntryModRelatives: 0.33913 
EntryModTransfer: 1.45412 

1 

Estimated hazard model parameters: 
timeInt1: −4.32992 
timeInt2: −4.92705 
timeInt3: −5.51838 
timeInt4: −5.53705 
timeInt5: −5.64978 
timeInt6: −5.73555 
timeInt7: −5.71861 

GenreMale: 0.46749 
clAge.L: 0.40008 
clAge.Q: 0.01635 

EntryModHealth facility: 0.43717 
EntryModRelatives: 0.68847 
EntryModTransfer: 1.21884 

> Stage 3 

 

Estimated hazard model parameters: 
timeInt1: -2.08681 
timeInt2: -3.74726 
timeInt3: -4.28951 
timeInt4: -4.65373 
timeInt5: -4.53404 
timeInt6: -4.99678 
timeInt7: -4.65978 

GenreMale: 0.23523 
clAge.L: 0.07684 
clAge.Q: -0.15032 

EntryModHealth facility: 0.32601 
EntryModRelatives: 0.14426 
EntryModTransfer: 0.35153 

2 

3 

5 

inCD4 
p< 0.001 

4 
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Fig. 2: Mortality hazard trajectories for different categories of patients that exist in the subgroup of patients with WHO clinical stage 

4. At the top of the figure, hazard of deaths for male patients are depicted. At the bottom, those for female patients are 

illustrated 
 

 
 
Fig. 3: Mortality hazard trajectories for different categories of patients that exist in the subgroup of patients with baseline CD4 count 

≤ 50 cells/μL and WHO clinical stage ≤ 3. At the top of the figure, hazard of deaths for male patients are depicted. At the 

bottom, those for female patients are illustrated 
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Fig. 4: Mortality hazard trajectories for different categories of patients that exist in the subgroup of patients with baseline CD4 count 

> 50 cells/μL and WHO clinical stage ≤ 3. At the top of the figure, hazard of deaths for male patients are depicted. At the 

bottom, those for female patients are illustrated 
 

 
 
Fig. 5: Stability of variable selection for partioning. Variables StadeOMS, inCD4, colored in dark gray were selected in the original 

tree. The variables District and Scale were selected by 30% and 1.2% of the bootstrapped trees respectively. They were not 

selected in the original tree 

 

About 30% of bootstrap trees have selected the 

variable District for splitting in addition to StadeOMS 

and inCD4 (Table 3 and Fig. 6). This occurred mostly in 

the subgroup of patients with CD4 count > 50 cells/μL. 
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In most cases, the Boulmiougou district forms a first 

node and Bogodogo and other districts are directed to the 

second node. As District was not selected by the original 

tree and its selection frequency is less than 50%, this 

means that this variable may carry some information that 

is useful for predicting survival, but it is not among the 

most important ones. For instance, patients in the 

Boulmiougou district were followed-up by Médecins 

Sans Frontières, an NGO from Luxembourg. As a result, 

health workers involved in the care of HIV infected 

persons in that district received salaries three times 

higher than those of other public health centers 

(Perelman, 2003). Thus, patients may receive a better 

care compared to patients in the rest of the districts. 

Finally, very few bootstrap trees (1.2%) have selected 

the variable Scale for splitting. It need not be retained. 

 

 

 
Fig. 6: Frequencies of the different trees built over the repetitions. Dashed horizontal two red lines mark the frequency of the original 

tree. It is enclosed by a solid vertical red line at the right of the plot 

 

 

 
Fig. 7: Stability of the cutpoint selection for partioning. Dashed vertical lines mark the original tree cutpoints. The number above a 

dashed vertical red line indicates the level at which the split occurred in the tree. For the variable District, categories that 

belong to the same subgroup are illustrated by the same color 

 
Table 3: Variable selection overview 
 Relative Selected by Mean frequency of Selection frequency 
 frequency (%) initial tree selections per tree in initial tree 
StadeOMS 100 yes 1 1 
inCD4 100 yes 1.9 1 
District 30 no 0.3 0 
Scale 1.2 no 0.012 0 
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Concluding Discussion and Remarks 

In this study, we proposed a tree-based approach 

for the analysis of discrete time-to-event data. The 

method is related to previously proposed methods by 

(Bou-Hamad et al., 2009; Schmid et al., 2016). But 

there are important differences between our method and 

the two others. First, our method distinguishes two 

groups of covariates: those used to build a binary tree 

and those that define a linear model in the nodes of the 

binary tree; the former are called moderators and the 

latter have kept the qualifiers of covariates. For example, 

unlike (Schmid et al., 2016) where Time is a splitting 

covariate (moderator variable in our approach) and each 

terminal node corresponds to one time interval, our method 

uses Time as a model covariate and each terminal node 

corresponds to the whole set of time intervals. When Time 

alone is included as a covariate, our model is reduced to the 

Bou-Hamad et al. (2009) model. 
The second difference is found in the algorithm 

used to fit the model. An important advantage of our 

method is that it uses Model-Based algorithm (MOB) 

(Zeileis et al., 2008). The objective is to search for 

subsets of the data that have the best fits of the hazard 

model, assuming that the model may not fit perfectly all 

the dataset. It turns out that each leaf is associated with a 

fitted model. The algorithm uses the model likelihood 

function both for parameter estimation and split point 

search. A benefit of this approach is that the parameter 

estimates and the corresponding score functions have to 

be evaluated once in a node. Score functions are then 

reordered and aggregated into a scalar test statistic each 

time a parameter instability test is performed. Finally, a 

Model-Based algorithm is suitable for the identification 

of subgroups of individuals with similar survival 

behaviors (Seibold et al., 2016). 
We have used our method for the analysis of HAART 

data from Burkina Faso. The model has identified three 

subgroups of patients with different survival behaviors. The 

subgroups are determined by the combination of baseline 

WHO clinical stage and baseline CD4 count. They differ in 

the shape of the hazard function as well as in the existence 

and the amount of correlation between the hazard function 

and at least one predictor variable among Age, Gender and 

Entry Mode. In each subgroup, the hazard of death is 

highest in the 1st semester. This early mortality is probably 

explained by late presentation. Most patients started ART 

with an advanced HIV infection level. The median baseline 

CD4 count was 122 (60; 180). As expected, the WHO 

clinical stage 4 subgroup had the highest within 6-months 

mortality. Some of the clinical criteria used to assign the 

disease stage 4 were found to be the main causes of ART 

patients’ deaths in Burkina Faso (Kouanda et al., 2011). 

Patients in other WHO clinical stages that had a low 

baseline CD4 count (CD4 count < 50 cells/µL) were the 

second high-risk subgroup. CD4 count < 50 cells/µL was 

found to be associated with a higher risk of death in other 

studies (Lawna et al., 2008; Kouanda et al., 2011). Gender 

and Age identified as correlated with the hazard function 

in the subgroup of patients with WHO clinical stage ≤ 3 

and baseline CD4 > 50 cells/µL have been reported by 

other studies as predictors of mortality (De Beaudrap et al., 

2008; Kouanda et al., 2011). Bila and Egrot (2008) 

reported that the representations of masculinity in Burkina 

Faso are a factor of men’s reluctance to attend health care 

for persons living with HIV/AIDS (Bila and Egrot, 2008). 

On the other hand, in each subgroup, categories of 

patients’ hazard profiles differ by the hazard of death 

estimate in the 1st semester. Patients supported by NGOs 

or Relatives have lower hazards of death. Social support is 

important for persons living with HIV/AIDS in the 

Subsaharan context, where fear of exclusion may lead to 

poor adherence to treatment (Merten et al., 2010). In 

contrast, transferred patients were found to have the 

highest hazard of death in the semester 1. The explanation 

can be the fact that transfer generally occurs in 

emergency circumstances. The stability analysis showed 

that a slight instability occurred in the third subgroups of 

patients defined by WHO clinical stage ≤ 3 and CD4 

count > 50 cells/µL. In contrast, the subgroup of patients 

defined by WHO clinical stage 4 and the one defined by 

WHO clinical stage ≤ 3 and CD4 count ≤ 50 cells/µL 

were stable. Therefore the fitted model is fairly stable. 

On the other hand, we have analysed data for HIV 

patients on treatment in the thirteen health districts selected 

for the evaluation of the 5-YEAR Global fund program and 

in the Boulmiougou district. So our findings should be valid 

for HIV patients in Burkina Faso and in low-income 

Subsaharan countries with a similar health system. 

Acknowledgment 

A large part of the work was carried out at the 
Laboratoire de Mathématiques et de leurs Applications de 
Pau (LMAP). We are grateful to the members of LMAP for 
the facilities and resources they have made available to me. 
We express our special gratitude to Prof. Marc Artzrouni 
and to Mrs Marie Henriette Somda for their fine work in the 
correction of the English text in the manuscript. 

Author Contributions 

Simon Tiendrébéogo: Analyzed data, wrote analysis 

tools and wrote the paper. 
Blaise Somé: Contributed to write the paper and 

reviewed the manuscript. 
Séni Kouanda: Contributed to write the paper and 

provide guidance on the clinical interpretation of the 

findings. 
Simplice Dossou-Gbété: Contributed to the data 

analysis and to the writing of both analysis tools and 

the paper. 



Simon Tiendrébéogo et al. / Journal of Mathematics and Statistics 2019, Volume 15: 354.365 
DOI: 10.3844/jmssp.2019.354.365 
 

365 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that the 

other authors have read and approved the manuscript and 

no ethical issues involved. 

References 

Berger, M. and M. Schmid, 2017. Semiparametric 

regression for discrete time-to-event data. Stat. 

Model.,18: 322-345. 

 DOI: 10.1177/1471082X17748084 
Bila, B. and M. Egrot, 2008. Accès au traitement du sida 

au Burkina Faso: Les hommes vulnérables? Science 

et Technique, Sciences de la Santé. 
Bou-Hamad, I., Denis Larocque, H. Ben‐Ameur, L.C. 

Mâsse and Frank Vitaro et al., 2009. Discrete-time 

survival trees. Can J. Stat., 37: 17-32. 
 DOI: 10.1002/cjs.10007 
De Beaudrap, P., J.F. Etard, R. Ecochard, A. Diouf and 

A.B. Dieng et al., 2008. Change over time of 

mortality predictors after HAART initiation in a 

Senegalese cohort. Eur. J. Epidemiol., 23: 227-234. 
DOI: 10.1007/s10654-007-9221-3 

Fokkema, M., N. Smits, A. Zeileis, T. Hothorn and H. 

Kelderman, 2018. Detecting treatment-subgroup 

interactions in clustered data with generalized linear 

mixed-effects model trees. Behav. Res. Methods, 

50: 2016-2034. DOI: 10.3758/s13428-017-0971-x. 
Hastie, T. and R. Tibshirani, 1993. Varying-coefficient 

models. J. R Stat. Soc, 55: 757-796. 
 DOI: 10.1111/j.2517-6161.1993.tb01939.x 
Hornik, K. and A. Zeileis, 2007. Generalized m-

fluctuation tests for parameter instability. Inform. 

Syst., 61: 488-508. 
 DOI: 10.1111/j.1467-9574.2007.00371.x 
Hothorn, T. and A. Zeileis, 2016. Partykit: A modular 

toolkit for recursive partytioning in r. J. Mach. 

Learn. Res., 16: 3905-3909. 
Hothorn, T., K. Hornik and A. Zeileis, 2006. Unbiased 

recursive partitioning: A conditional inference 

framework. J. Comput. Graph Stat., 15: 651-674. 
DOI: 10.1198/106186006X133933 

Kouanda, S., 2008. Evaluation des 5 années du fonds 

mondial: Evaluation globale des districts, [5years 

evaluation of global fund: District comprehensive 

assessment]. Technical Report, Institut de 

Recherche en Sciences de la Santé. Ouagadougou. 
Kouanda, S., I.B. Meda, L. Nikiema, S. Tiendrebeogo 

and B. Doulougou et al., 2011. Determinants and 

causes of mortality in HIV-infected patients 

receiving antiretroviral therapy in Burkina Faso: A 

five-year retrospective cohort study. AIDS Care, 24: 

478-90. DOI: 10.1080/09540121.2011.630353 

Lawna, S.D., A.D. Harries, X. Anglaret, L. Myer and R. 

Wood, 2008. Early mortality among adults 

accessing antiretroviral treatment programmes in 

sub-Saharan Africa. Acquired Immunodeficiency 

Syndrome, 22: 1-20. 

 DOI: 10.1097/QAD.0b013e32830007cd. 
Merten, S., E. Kenter, O. McKenzie, M. Musheke and H. 

Ntalasha et al., 2010. Patient-reported barriers and 

drivers of adherence to antiretrovirals in sub-

Saharan Africa: A meta-ethnography. Tropical Med. 

Int. Health, 15: 16-33. 
 DOI: 10.1111/j.1365-3156.2010.02510.x 
Perelman, B., 2003. Les associations de lutte contre le 

sida à ouagadougou: Contexte d’émergence, profils, 

pratiques. Mathesis, Université Paris I. 
Philipp, M., A. Zeileis and C. Strobl, 2016. A toolkit for 

stability assessment of tree-based learners. 

Proceedings of the 22nd International Conference on 

Computational Statistics, (CCS’ 16), pp: 315-325. 
Schmid, M., H. Küchenhoff, A. Hoerauf and G. Tutz, 

2016. A survival tree method for the analysis of 

discrete event times in clinical and epidemiological 

studies. Stat. Med., 35: 734-751. 
 DOI: 10.1002/sim.6729 
Seibold, H., A. Zeileis and T. Hothorn, 2016. Model-

based recursive partitioning for subgroup analyses. 

Int. J. Biostat., 12: 45-63. 
 DOI: 10.1515/ijb-2015-0032 
Singer, J.D. and J.B. Willett, 1993. It’s about time: 

Using discrete-time survival analysis to study 

duration and the timing of events. J. Educ. Behav. 

Stat., 18: 155-195. 
 DOI: 10.3102/10769986018002155 
Zeileis, A., T. Hothorn and K. Hornik, 2008. Model-

based recursive partitioning. J. Comput. Graph Stat., 

17: 492-514. DOI: 10.1198/106186008X319331 
Zelterman, D., C.T. Le and T.A. Louis, 1996. Bootstrap 

techniques for proportional hazards models with 

censored observations. Stat. Comput., 6: 191-199. 
DOI: 10.1007/BF00140864 


