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Asymptotic enumeration of perfect matchings in

m-barrel fullerene graphs

Afshin Behmaram∗, Cédric Boutillier†

July 11, 2018

Abstract

A connected planar cubic graph is called an m-barrel fullerene and denoted
by F (m, k), if it has the following structure: The first circle is an m-gon. Then
m-gon is bounded by m pentagons. After that we have additional k layers
of hexagons. At the last circle m-pentagons connected to the second m-gon.
In this paper we asymptotically count by two different methods the number
of perfect matchings in m-barrel fullerene graphs, as the number of hexagonal
layers is large, and show that the results are equal.

2010 Mathematics Subject Classification. 05C30, 05C70, 15A15.
Keywords. perfect matchings, fullerene graph, m-barrel fullerene

1 Introduction

A fullerene graph is a cubic, planar, 3-connected graph with only pentagonal and
hexagonal faces. It follows easily from the Euler’s formula that there must be
exactly 12 pentagonal faces, while the number of hexagonal faces can be zero or
any natural number greater than one. The smallest possible fullerene graph is the
dodecahedron on 20 vertices, while the existence of fullerene graphs on an even
number of vertices greater than 22 follows from a result by Grünbaum and Motzkin
[12]. Classical fullerene graphs have been intensely researched since the discovery
of buckminsterfullerene in the fundamental paper [18], which appeared in 1985, and
gave rise to the whole new area of fullerene science.

A connected 3-regular planar graph G = (V,E) is called an m-generalized
fullerene if exactly two of its faces are m-gons and all other faces are pentagons
and/or hexagons. (We also count the outer (unbounded) face of G.) In the rest
of the paper we only consider m ≥ 3; note that for m = 5, 6 an m-generalized
fullerene graph is a classical fullerene graph. As for the classical fullerenes it is easy
to show that the number of pentagons is fixed, while the number of hexagons is not
determined. The smallest m-generalized fullerene has 4m vertices and no hexagonal

∗Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
email : behmaram@tabrizu.ac.ir
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faces. By inserting k ≥ 0 layers of m hexagons between two layers of pentagons we
reach the symmetric class of m-generalized fullerenes called m-barrel fullerenes.

The m-barrel fullerene with k layers of hexagons, denoted by F (m, k), can be
defined as a sequence of concentric layers as follows: the first circle is an m-gon.
This m-gon is bounded by m pentagons. After that we have additional k layers of
m of hexagon. Then one again has a circular layer with m-pentagons connected
to the second m-gon, represented by the outer face. m-barrell fullerenes can be
neatly represented graphically using a sequence of k + 3 concentric circles with
monotonically increasing radii such that the innermost and the outermost circle
each have m vertices (representing, hence, two m-gons), while all other circles have
2m vertices each, connecting alternatively to vertices of the larger or smaller circle
to create hexagonal an pentagonal faces. An example is shown in Figure 1.

Figure 1: The m-barrel fullerene F (8, 2).

The m-barrel fullerenes are the main subjects of the present paper, since their
highly symmetric structure allows for obtaining good bounds and even exact results
on their quantitative graph properties. For example Kutnar and Marušič in [19]
studied Hamiltonicity and cyclic edge-conectivity of F (5, k). See also [3] for some
structural results about m-barrel fullerene graphs, such as the diameter, Hamiltonic-
ity and the leapfrog transformation.

A matching M in a graph G is a collection of edges of G such that no two edges of
M share a vertex. If every vertex of G is incident to an edge of M , the matching M
is said to be perfect. A perfect matching is also often called a dimer configuration in
mathematical physics and chemestry. Perfect matchings have played an important
role in the chemical graph theory, in particular for benzenoid graphs, where their
number correlates with the compound’s stability. Although it turned out that for
fullerenes they do not have the same role as for benzenoids, there are many results
concerning their structural and enumerative properties. See [2, 1, 5, 6, 13] for more
result on perfect matchings in fullerenes. We denote by Φ(G) the number of perfect
matchings of G.

The goal of this paper is to compute the growth constant ρ(m) for the number
of perfect matchings for the family of graphs F (m, k) for a fixed m, as k goes to
infinity:

ρ(m) = lim
k→∞

Φ(F (m, k))1/k. (1.1)

Behmaram, Doslic and Friedland in [3] obtained some exact results for the num-
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ber of perfect matching for the values of m ≤ 5, using the transfer matrix method,
described in Section 3, allowing in particular for a direct computation of the growth
ρ(m) for m ∈ {3, 4, 5}, see Theorem 3.1.

In this paper, we estimate the number of perfect matchings of F (m, k) for large
k, and compute exactly ρ(m) for any m.

Theorem 1.1. Let m ≥ 3. The growth constant for the family of m-barrel fullerenes
is equal to

ρ(m) =

bm+1
3
c∏

j=1

(
2 cos

π(2j − 1)

m

)2

.

We propose two proofs using two different methods from combinatorics:

• the transfer matrix approach (Section 3), which is explicitly diagonalized using
(a baby version) of the Bethe Ansatz [4], method from integrable systems to
diagonalize the Hamiltonian of integrable spin chains for example;

• an approach using coding with non-intersecting paths, counted by determi-
nants via the Lindström-Gessel-Viennot lemma.

These two approaches are classical in some branches of combinatorics, and be-
lieve that they can be of great use to study properties of fullerene graphs, especially
those with some symmetry.

Before we introduce these methods, we apply some transformations to the graph
F (m, k) to see it as piece of the hexagonal lattice wrapped on the cyclinder, with
specific boundaray conditions, in order to finally reformulate the question of perfect
matchings on F (m, k) as a problem of tilings with rhombi.

2 Perfect matchings on m-barrel fullerenes and tilings
of cylinders with rhombi

To begin with, instead of presenting the graph on the sphere, as on Figure 1, we
draw it on the cylinder, where now the m-gons represent the two components of the
boundary of this cylinder. These two cycles of size m are separated by k + 1 cycles
of size 2m winding around the cylinder, each of them connected to their left and
right neighboring cycle by m horizontal edges to create the pentagonal/hexagonal
faces, arranged in a brickwall pattern on the cylinder. See Figure 2 (left). This
brickwall pattern can in turn be deformed so that the hexagonal faces are now
regular polygonal, so that the bulk of the graph looks like the regular honeycomb
lattice wrapped on a cylinder. See Figure 2 (right).

It is obvious that perfect matchings such a hexagonal graph on the cylinder with
pentagonal faces on the boundary are in bijection with tilings of the cylinder with
unit rhombi, where some of the rhombi are allowed to stick out of the boundary.
See Figure 3.

In the sequel, we will use indifferently the language of perfect matchings and
tilings with rhombi. In particular horizontal edges in a perfect matching of F (m, k)
correspond exactly to horizontal rhombi in the tiling picture. Note that as long as
there is at least a horizontal rhombus in the tiling, the position of all horizontal
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Figure 2: Left: an m-barrel fullerene, represented on the cylinder. The top and
bottom are identified to create the cylinder. The cycles Cm on the extremities are
the boundary of the cylinder and correspond to the boundaries of the m-gons in the
representation of Figure 1. Right: the same graph on the cylinder, slightly deformed
so that hexagonal faces are regular.

Figure 3: The correspondence between perfect matchings on F (6, 5) (left) and
rhombi tiling on the cylinder. Recall that the graph is drawn on a cylinder, so
that the edges at the top are connected to vertices at the bottom.

rhombi is sufficient to reconstruct the whole tiling. On the other hand, the two
other types of rhombi (with vertical edges) form non-interesecting paths connecting
the left and right boundaries. The collection of these paths also characterize the
whole tiling.

In the next two sections, we present two methods to count the number of perfect
matchings of F (m, k): the transfer matrix method, which uses the horizontal rhombi,
and a method using the collection of non-intersecting paths.
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3 The transfer matrix method

The first method we present, using a transfer matrix, is well suited to count the
number of perfect matchings on graphs with some regularity or periodicity, which
is indeed the case here.

Before introducing the transfer matrix, we need to fix some notation. For j ∈
{1, .., k}, denote by Ej the subset of horizontal edges of F (m, k) between the jth
and the (j + 1)th cycle C2m. Extend this definition to E0 (resp. Ek+1) to be the
subset of horizontal edges before the first (resp. after the last) cycle C2m, which
come from the pentagons at the left (resp. right) end.

ej−1,l+1

ej−1,l

ej,l

Figure 4: Labeling of the horizontal edges of F (m, k).

We label the edges of Ej by ej,l, l ∈ {0, . . . ,m − 1}. Indices l increase when
going “up”, and they should be thought modulo m, so that ej,l+m is the same as
ej,l. For consistency of the labeling between different layers of horizontal edges, we
take the convention that ej,l has on its left ej−1,l just below and ej−1,l+1 just above.
See Figure 4. Subsets of Ej are thus in bijection of subsets of Im = {0, . . . ,m− 1}.

Given two subsets Sj−1 and Sj of respectively Ej−1 and Ej , let aj(Sj−1, Sj1) be
the number of perfect matchings of the j-th cycle where we removed vertices attached
to the edges in Sj−1∪Sj . Because of invariance by translation, this number does not
really depend on j, but only on the subsets S, T ⊂ Im in bijection with Sj−1 and Sj
respectively. We store all these numbers in a matrix A = (aS,T )S,T⊂Im . This matrix
A (which implicitly depends on m) is called the transfer matrix of the model.

It will be convenient to use the bra and ket notation from quantum mechanics.
The matrix A is thought as the matrix of a linear operator on a vector space in
the orthonormal basis (|T 〉)T⊂Im of some vector space of dimension 2m, indexed by
subsets of Im.

The dual basis (〈S|)S⊂Im satisfies that for all S, T ⊂ Im,

〈S|T 〉 =

{
1 if S = T ,

0 otherwise.

With these notations, we have A =
∑

S,T aS,T |S〉〈T | and aS,T = 〈S|A|T 〉.
Let us make a few remarks on this matrix A:

• A is invariant by “vertical translation”.

• because of the left/right and top/bottom symmetry, we have 〈S|A|T 〉 = 〈T |A|S〉:
in this basis, A is symmetric, thus diagonalisable, with orthogonal eigenspaces.
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• Due to geometric constraints of the problem, two sets Sj−1 and Sj coming from
a perfect matching should interlace. In particular if |S| 6= |T |, 〈S|A|T 〉 = 0.
If we write down the matrix, with subsets indexing rows and columns ordered
according to their cardinal, then A has a block diagonal structure.

• Perron-Frobenius theorem guarantees, that on each block, the largest eigen-
value is non-degerate, and associated with an eigenvector wich can be chosen
with all its entries in that block to be positive.

In this vector space, one can also define a boundary vector |Ω〉, corresponding to
a formal linear combination of possible configurations coming from possible perfect
matchings of F (m, k). Then it is a simple observation that the number of perfect
matchings Φ(F (m, k)) of F (m, k) can be expressed with A and |Ω〉 as follows

Φ(F (m, k)) = 〈Ω|Ak+1|Ω〉, (3.1)

as there are k + 1 transitions between Ej−1 and Ej , for 1 ≤ j ≤ k + 1, each of of
them being encoded by a matrix A.

Computing explicitly the reduced form of A for m = 3, 4 and 5, the authors
of [3] gave an exact formula for Φ(F (3, k), Φ(F (4, k), and Φ(F (5, k):

Theorem 3.1 ([3]). let Φ(F (m, k)) denote the number of perfect matching in F (m, k)
then for m=3,4,5 we have:

Φ(F (3, k)) = 3k+2 + 1,

Φ(F (4, k)) = 2(2 +
√

2)k+1 + 2(2−
√

2)k+1 + 2k+3 + 1,

Φ(F (5, k)) = 5k+2 + 5

(5 +
√

5

2

)k
+

(
5−
√

5

2

)k+ 1.

3.1 The Bethe Ansatz

It turns out that it is possible to express the eigenvalues (and eigenvectors) of A for
any value of m, using the so-called Bethe Ansatz [4], a method used in theoretical
physics to diagonalize the Hamiltonian of integrable systems with interaction, by
looking for eigenvectors as a superposition of plane waves.

In our problem, the situation is particularly simple: it turns out, as we will
see later, that all the eigenvectors are expressed in terms of determinants (Slater
determinants in quantum mechanics terminology). This is a feature of the dimer
model and its free-fermionic nature.

As mentioned above, A has a block diagonal structure. The blocks (or sectors)
are indexed by p ∈ {0, . . . ,m}, the number of elements of the corresponding subsets
indexing rows and columns. The block indexed with p has size

(
m
p

)
.

For any p, we look for
(
m
p

)
eigenvectors as linear combination of basis vectors

|S〉, where |S| = p.
For the counting problem we are interested in, the structure of eigenvectors and

eigenvalues is a bit degenerated. In order to perform the computations, it is easier to
introduce a weighted version of the transition matrix: Fix b, and c positive, distinct
real numbers, and put weight b (resp. c) on every upgoing (downgoing) edge from
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left to right. let B = (〈S|B|T 〉) be the matrix such that 〈S|B|T 〉 is the sum of
all perfect matchings on a layer with boundary conditions described by S and T :
if S and T are empty, then 〈S|B|T 〉 = bm + cm. If S and T are not empty and
compatible, then there is only one perfect matching for the transition from S to T
and 〈S|B|T 〉 is of the form bjcm−j−|S| for some j.

3.2 The p = 0 and p = 1 sectors

The sector p = 0 is one-dimensional, and spanned by ∅. If we don’t remove any
vertices, the cycle of length 2m has 2 perfect matchings, consisting of odd and even
edges respectively. Therefore, we have

B|∅〉 = (bm + cm)|∅〉.

The sector p = 1 is m-dimensional. For l = 0, . . . ,m − 1, if S = {l}, we note
simply |l〉 for |S〉.

We have:

B|l〉 =
l∑

l′=0

cl−l
′
bm−1+l

′−l|l′〉+
m−1∑
l′=l+1

bl
′−l−1cm+l−l′ |l′〉.

For z ∈ C∗, we define the vector

|z〉 =
∑
l

zl|l〉.

Let us compute the action of B on |z〉, by exchanging the sums over l and l′:

B|z〉 =
m−1∑
l′=0

(
m−1∑
l=l′

bm+l′−1−lcl−l
′
zl +

l′−1∑
l=0

bl
′−1−lcm−l

′+lzl

)
|l′〉

=
m−1∑
l′=0

(
bm+l′c−l

′ (cz/b)m − (cz/b)l
′

cz − b
+ bl

′
cm−l

′ (cz/b)l
′ − 1

cz − b

)
|l′〉

=
m−1∑
l′=0

cm − bm

cz − b
zl
′ |l′〉+

zm − 1

cz − b

m−1∑
l′=0

bl
′
cm−l

′ |l′〉

The first term is exactly cm−bm
cz−b |z〉. If we choose z to be a mth root of unity, then

the factor in front of the second sum vanishes. Then |z〉 (which is also an eigenvector
of the translation operator) is an eigenvector of B, with eigenvalue cm−bm

cz−b . The

eigenvalues are all distinct for b 6= c, and z = zr = exp
(
2irπ
m

)
, with r = 0, . . . ,m− 1

These give m =
(
m
1

)
orthogonal eigenvectors, and the one associated to the

largest eigenvalue cm−bm
c−b corresponds to z = 1 and has all its entries equal.

3.3 The p = 2 sector

If S = {l1, l2}, with 0 ≤ l1 < l2 ≤ m−1, we write |l1, l2〉 instead of |S〉. Let us write
explicitly the action of B on such a vector.

As for p = 1, there are two cases to consider:
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• either 0 ≤ l′1 ≤ l1 < l′2 ≤ l2 ≤ m− 1,

• or 0 ≤ l1 < l′1 ≤ l2 < l′2 ≤ m− 1

Therefore the action of B on the vector |l1, l2〉 can be splitted into two sums:

B|l1, l2〉 =

l1∑
l′1=0

l2∑
l′2=l1+1

cl1−l
′
1bl
′
2−l1−1cl2−l

′
2bm+l′1−l2−1|l′1, l′2〉+

l2∑
l′1=l1+1

m−1∑
l′2=l2+1

bl
′
1−l1−1cl2−l

′
1bl
′
2−l2−1cm+l1−l′2 |l′1, l′2〉.

Define for z1, z2 ∈ C∗, the vector

|z1, z2〉 =
∑
l1,l2

zl11 z
l2
2 |l1, l2〉,

where the summation is over all the allowed positions 0 ≤ l1 < l2 ≤ m − 1. We
compute B|z1, z2〉 and exchange sums over li’s and l′i’s.

B|z1, z2〉 =
∑
l′1<l

′
2

 l′2−1∑
l1=l′1

m−1∑
l2=l′2

bm+l′1+l
′
2−l1−l2−2cl1−l

′
1+l2−l′2zl11 z

l2
2


+

l′1−1∑
l1=0

l′2−1∑
l2=l′1

bl
′
1+l
′
2−l1−l2−2cL+l1+l2−l

′
1−l′2zl11 z

l2
2

 |l′1, l′2〉.
We compute explicitly the geometric series and obtain:

B|z1, z2〉 =
∑
l′1<l

′
2

[
bm+l′1+l

′
2c−l

′
1−l′2 (cz1/b)

l′2 − (cz1/b)
l′1

cz1 − b
(cz2/b)

m − (cz2/b)
l′2

cz2 − b
+

bl
′
1+l
′
2cm−l

′
1−l′2 (cz1/b)

l′1 − 1

cz1 − b
(cz2/b)

l′2 − (cz2/b)
l′1

cz2 − b

]
|l′1, l′2〉

We can factor the denominator (cz1 − b)(cz2 − b). When we expand the numer-
ators, we get eight terms which can be split into several categories:

wanted terms those with z
l′1
1 z

l′2
2 :

(bm + cm)z
l′1
1 z

l′2
2 ,

boundary terms those appearing with a zmi or z0i = 1:

−zl
′
1
1 z

m
2 b

l′2cm−l
′
2 − z01z

l′2
2 b

l′1cm−l
′
1 + z

l′2
1 z

m
2 b

l′1cm−l
′
1 + z

l′1
2 b

l′2cm−l
′
2 ,

crossed terms those appearing with z1 and z2 with the same power l′i (i = 1, 2):

−zl
′
2
1 z

l′2
2 b

m+l′1−l′2cl
′
2−l′1 − zl

′
1
1 z

l′1
2 b

l′2−l′1cm+l′1−l′2 .
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We would like to get rid of terms of the last two categories, but keep those of
the first one, which once resummed over l′1 and l′2 would look like the action of B
on an eigenvector.

If instead of |z1, z2〉, we look at the antisymmetric version of it

|z̃1, z2〉 = |z1, z2〉 − |z2, z1〉,

the contribution of crossed terms will cancel, by symmetry considerations.
When subtracting the antisymmetric counterpart (where z1 and z2 are exchanged)

to boundary terms, the total contribution of boundary terms would cancel exactly,
at the (sufficient) condition that z1 and z2 are mth root of −1 (and not 1 this time).
There are m such roots, but taking z1 = z2 gives identically 0 and exchanging z1
and z2 gives the same vector, up to a global sign. So there is

(
m
2

)
choices, yielding

distinct eigenvalues. The vectors |z̃1, z2〉 form a basis of eigenvectors for the p = 2
sector.

In this p = 2 sector, the largest (positive) eigenvalue is bm+cm

|c exp(iπ/m)−b|2 , obtained

by taking the two roots of −1 the closest to 1: {z1, z2} = {exp(iπ/m), exp(−iπ/m)}.

3.4 Sectors for general p

For general p, we look for eigenvectors1 of the form:

| ˜z1, . . . zp〉 =
∑

l1<···<lp

∑
σ∈Sp

(−1)σ
p∏
j=1

z
lj
σ(j)|l1, . . . , lp〉

where Sp is the symmetric group over p elements, and z1, . . . , zp ∈ C∗.
When looking at the action of B on this vector, then there are still terms of

different types. The numeric factor in front of the wanted terms will have the form

cm + (−1)pbm∏p−1
j=0(czj − b)

. (3.2)

The crossed terms (where two zj appear with the same exponent) cancel by anti-
symmetry, and the boundary terms will cancel if all the zj are mth roots of (−1)p+1.

Therefore the
(
m
p

)
eigenvectors are obtained by choosing p distinct roots among

the mth roots of (−1)p+1.

Remark 3.2. It is important to notice that the eigenvectors do not depend on b and
c. In particular, they are also the eigenvectors for the transfer matrix A. Moreover,
for generic values of b and c, they are associated to disctinct eigenvalues: they are
linearly independent and thus form a basis of the corresponding sector.

Note that the largest eigenvalue of this sector, as in the case for p = 1 and p = 2,
is obtained by choosing the zj to be the closest as possible to 1.

When p = 2q is even, we chose the zj to be exp(±iπ 2r+1
m ), r = 0, . . . q − 1, and

the associate eigenvalue is

(cm + bm)

q−1∏
r=0

|ceiπ
2r+1
m − b|−2.

1In more general form of the Bethe Ansatz, the coefficients (−1)σ are replaced by amplitude Cσ
depending in a more involved way on the permutation σ.
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When p = 2q + 1 is odd, we chose the zj to be 1, and exp(±iπ 2r
m ), r = 1, . . . q,

and the associate eigenvalue is

cm − bm

(c− b)

q∏
r=1

|ceiπ
2r
m − b|−2.

Remark 3.3. Denote by Up,m the set of mth roots of (−1)p+1. Because of the
fundamental identity satisfied by roots of unity:∏

z∈Up,m

(b− cz) = bm + (−1)pcm,

Equation (3.2) can be rewritten as

cm + (−1)p∏p−1
j=0(czj − b)

=
∏

z∈Up,m
z 6=z0,...,zp−1

(b− czj).

3.5 Taking the limit b, c→ 1

By a continuity argument, the eigenvectors of the transfer matrix A are those com-
puted above, and the associated eigenvalues are obtained by taking the limit as b
and c go to 1 in (3.2). In particular, the highest eigenvalue of the matrix A in sector
p is given by:

λ(p)max =


2

q−1∏
r=0

|eiπ
2r+1
2m 2i sin(π

2r + 1

2m
)|−2 =

2∏q−1
r=0 4 sin2(π 2r+1

2m )
if p = 2q is even,

m

q∏
r=1

|eiπ
r
m 2i sin(π

r

m
)|−2 =

m∏q
r=1 4 sin2(πrm )

. if p = 2q + 1 is odd.

(3.3)
Now notice that because of parity constraints, the number of vertices matched

with edges of one of the m-gons at the boundary is even. Thus the only values of
p that one can see for m-barrel fullerenes are exactly those with the same parity as
m.

The leading contribution to the number of perfect matchings of Φ(F (m, k)) as k
goes to infinity is given, up to corrections coming from the scalar product between
the corresponding normalized eigenvector and |Ω〉, by the (k + 1)th power of the
largest of the largest eigenvalues of sectors of A with p and m of same parity.

Since the function sin is increasing from 0 to π/2, the value of λ
(p)
max is (for a

given parity of p) is nondecreasing as a function of p as long as sin
(π(p−1)

2m

)
is less or

equal to 1
2 , i.e. if p−1

2m is less or equal to 1
6 , As a consequence, the largest value λmax

of the transfer matrix A is λ
(p0)
max, for p0 given by:

p0 =

{
2bm+3

6 c if m is even

2bm6 c+ 1 if m is odd

}
= m− 2

⌊
m+ 1

3

⌋
.

One can indeed check that the leading terms of Φ(F (3, k)), Φ(F (5, k)) correspond
to p0 = 1 and the one for Φ(F (4, k)) corresponds to p0 = 2. We are garanteed that
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the prefactor term coming from the scalar product is nonzero since |Ω〉 has nonneg-
ative coefficients in the sector p0 and the coefficients of the eigenvector associated

to λ
(p0)
max are all strictly positive. So we can conclude that:

Theorem 3.4. For any fixed m ≥ 3, the growth constant Equation (1.1) for the
family of m-barrel fullerenes (F (m, k))k is given by

ρ(m) = λ(p0)max.

with p0 = m − 2
⌊
m+1
3

⌋
. Moreover, the number of horizontal rhombi on every slice

converges in probability as k goes to infinity to p0.

The proof of the last statement comes from the fact that for a fixed m, the
contribution of the sectors for p 6= p0 to 〈Ω|Ak+1|Ω〉 are exponentially small in k

when compared to λ
(p0)
max.

4 Enumeration of perfect matchings of F (m, k) through
non-intersecting paths

Another alternative, now classical, technique to enumerate perfect matchings or
tilings, is to encode the tiling with a family of non-intersecting paths, and use the
Lindström-Karlin-McGregor-Gessel-Viennot lemma [10, 14] to write the number of
such paths as a determinant which can then be evaluated. It turns out that the
family of paths corresponding to m-barrel fullerenes has been studied already in
great detail [11, 17].

In order to relate our problem to existing results in the litterature, we need to
apply a last transformation to our rhombic tiling. This is done in the following way:
in the centers of the vertical edges of the leftmost and rightmost non horizontal
rhombi, one places vertices, which will be the starting and ending points of the
paths. See Figure 5, where there are four vertices on each side. Then one starts a
path in each of the vertices on the left by connecting midpoints of opposite vertical
edges of rhombi. These paths necessarily terminate in the midpoints of the vertical
edges on the right. In the Figure 5 on the left these paths are marked by dotted
lines. On the right, we have slightly stretched vertically these paths so that they
consist of up-steps (1, 1) and down-steps (1,−1). They have the property that two
paths do not have any point in common, and thus form a family of non-intersecting
paths viewed on the cylinder.

These paths on the right of Figure 5, can be understood as the trajectories of a
particle system evolving with time, flowing along the horizontal axis. Each vertical
line x = t represents the particle configuration. From time t to time t + 1, each of
these particles jumps one unit down or up. Initially, the mutual distances between
particles are even, and they will stay even at all times, but two particles will never
be at the same site at the same time. Michael Fisher [7] coined the term “vicious
walkers” for this model of particles. More precisely, in his model, we start with a
fixed number of particles, and at each time step, every particle moves one unit in
the positive or the negative direction so that at no time two particles sit in the same
place. Since we started with a cylindrical graph, these particles do not actually
move along a line but actually along a circle with 2m sites. Due to the particular

11



Figure 5: Conversion of the rhombic tiling (left) to a family of non-intersecting paths
(right). Notice how the path starting from the left topmost starting point winds
around the cylinder to connect to the bottom most ending point on the right.

matching problem that we started with, namely, due to the fact that to the left and
to the right of the cylinder there is a ring of pentagons, the starting points of the
particles must come in pairs, with the particles in each pair at distance 2, and the
same applies to the end points.

Exact determinantal formulas have been given by Grabiner [11] to count various
families of such paths and Krattenthaler [17] answered the question of computing
the asymptotics for this number of paths, as the number of steps goes to infinity. To
stick with the notation of [17], positions of particles on the circles will be labeled by
half-integers. At t = 0, and all the even times, the positions of all particles will be
(distinct) integers between 0 and m−1, and at odd times, they will be odd multiples
of 1

2 . If there are k layers of hexagons, then the particle systems will evolve until
time k + 1.

Theorem 19 from [17] give the number of families of n paths with a given starting
and ending positions (or equivalently, the number of perfect matchings of F (m, k),
with a fixed configuration on the two m-gons at extremities). The starting and
ending positions are recorded in two sequences of numbers η = (η1, . . . , ηn) and
λ = (λ1, . . . , λn) respectively. We adapt it slightly to the context of k + 1 time
steps:

Theorem 4.1 ([17], Theorem 19). Let η = (η1, . . . , ηn) be a vector of integers of
half-integers with m > η1 > · · · > ηn ≥ 0 and λ = (λ1, . . . , λn) be a vector of integers
of half-integers with m > λs+1 > · · · > λn > λ1 > · · · > λs ≥ 0 for some s. Then,
as k tends to ∞, in such a way that for all j, k + 1 ≡ 2ηj + 2λj [2], the number
of perfect matchings of F (m, k) with boundary configurations encoded by η and λ is
asymptotically equal to

2n
2−n

nmn

2n
n∏
j=1

cos
π(j − n+1

2 )

m

k+1 ∏
1≤h<t≤n

(
sin

π(ηh − ηt)
m

·
∣∣∣∣sin π(λh − λt)

m

∣∣∣∣) .
(4.1)
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For getting the exact asymptotics for our problem, one would simply have to
sum this formula over all possible starting and ending positions, that is, over all
λ’s and η’s which have the property that their coordinates come in pairs, the two
coordinates in each pair differing by 1 (cyclically) and sum over n, as the number of
paths is not fixed, but can be any even number up to m. Nevertheless, for fixed m,
we are talking about a finite sum.

Clearly, not all choices of starting and ending points will contribute to the leading
term of the asymptotics. Inspection of (4.1) shows that the relevant term in the
formula is (

2n
n∏
j=1

cos
π(j − n+1

2 )

m

)k+1

,

as everything else doesn’t depend on k. In order to find the leading order of the
asymptotics, The task is thus to find the (even) n which maximises

2n
n∏
j=1

cos
π(j − n+1

2 )

m
. (4.2)

But after closer inspection, we notice (unsurprisingly!) that, by Remark 3.32, the

quantity in Equation (4.2) is equal to λ
(p)
max from (3.3) with n+p = m, and the value

of n maximizing (4.2) is n0 = m− p0 = 2bm+1
3 c.

We thus recovered from another method the value of the growth constant

ρ(m) = 22b
m+1

3
c
2bm+1

3
c∏

j=1

cos
π(j − n+1

2 )

m
=

b(m+1)/3c∏
j=1

(
2 cos

π(2j − 1)

2m

)2

,

as in Theorem 3.4.

5 The entropy of the family (F (m, k))

Recall that the graph F (m, k) has 2m(k + 2) vertices. The dimer entropy [9, 8]
h(m) of the family (F (m, k))k≥0 is defined as

h(m) := lim sup
k→∞

log Φ(F (m, k))

2m(k + 2)
.

From the previous sections we deduce

h(m) =
log ρ(m)

2m
.

Equivalently, it says that the number of matchings if F (m, k) for m fixed and k � 1
is of order ekh(m).

The quantity h(m) can be written as a Riemann sum, which increases and con-
verges to the corresponding integral as m goes to infinity:

h =
−3

2π

∫ π/3

0
log(2 sin t)dt ' 0.1615329736 . . .

2More precisely, when taking the limit when b and c go to 1.
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which is the maximal entropy for ergodic Gibbs measure on uniform dimer config-
urations of the infinite hexagonal lattice [15, 16].

As m = 5 or 6, we see that the entropy for the family F (m, k) is strictly smaller
than h. This is due to the geographic localisation of the pentagons in our family
of fullerenes. However, if the pentagons are far enough from one another, their
presence pentagons seems very unlikely to have a great nfluence on the number of
perfect matchings of a large fullerene which would behave in this respect just as a
the hexagonal lattice. That motivates us to advance the following conjecture:

Let n be an integer number greater than 11 so that there is a fullerene with 2n
vertices. Denote by µ2n the maximal number of perfect matchings in all fullerene
graphs with 2n vertices. Define

hF := lim sup
n→∞

logµ2n
2n

.

We conjecture that hF = h.
A similar claim seems plausible also for m-generalized fullerenes. Fix an integer

m ≥ 3,m 6= 5, 6. Let µ2m(k+2),m be the maximal number of perfect matchings in all
m-generalized fullerene graphs with 2m(k + 2) vertices. Define

hF (m) := lim sup
k→∞

logµ2m(k+2),m

2m(k + 2)
.

We conjecture that hF (m) is also equal to h (and thus strictly greater than h(m)).
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[13] F. Kardoš, D. Král’, J. Mǐskuf, and J.-S. Sereni. Fullerene graphs have expo-
nentially many perfect matchings. Journal of Mathematical Chemistry, 46(2):
443–447, Aug 2009. ISSN 1572-8897. doi: 10.1007/s10910-008-9471-7. URL
https://doi.org/10.1007/s10910-008-9471-7.

[14] S. Karlin and J. McGregor. Coincidence probabilities. Pacific J. Math., 9:
1141–1164, 1959. ISSN 0030-8730.

[15] R. Kenyon. Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab.
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