Algebraic structure of classical integrability for complex sine-Gordon - Archive ouverte HAL
Article Dans Une Revue SciPost Physics Année : 2020

Algebraic structure of classical integrability for complex sine-Gordon

Résumé

The algebraic structure underlying the classical $r$-matrix formulation of the complex sine-Gordon model is fully elucidated. It is characterized by two matrices $a$ and $s$, components of the $r$ matrix as $r=a-s$. They obey a modified classical reflection/Yang--Baxter set of equations, further deformed by non-abelian dynamical shift terms along the dual Lie algebra $su(2)^*$. The sign shift pattern of this deformation has the signature of the twisted boundary dynamical algebra. Issues related to the quantization of this algebraic structure and the formulation of quantum complex sine-Gordon on those lines are introduced and discussed.

Dates et versions

hal-02423742 , version 1 (25-12-2019)

Identifiants

Citer

Jean Avan, L. Frappat, E. Ragoucy. Algebraic structure of classical integrability for complex sine-Gordon. SciPost Physics, 2020, 8 (3), pp.033. ⟨10.21468/SciPostPhys.8.3.033⟩. ⟨hal-02423742⟩
33 Consultations
0 Téléchargements

Altmetric

Partager

More