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EXISTENCE OF SOLUTIONS TO THE LICHNEROWICZ EQUATION: A NEW

PROOF

ROMAIN GICQUAUD

ABSTRACT. We provide a complete study of existence and uniqueness of solutions to the Lich-

nerowicz equation in general relativity with arbitrary mean curvature.
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1. INTRODUCTION

The Lichnerowicz equation is an elliptic equation that appears in the construction of initial data

in general relativity. In the setting of this note, let pM, gq be a compact Riemannian manifold of

dimension n ą 2, g P W 2,p, p ą n{2, and assume given two functions τ P L2p and A P L2p. The

Lichnerowicz equation has a positive function φ as unknown and reads

(1.1) ´
4pn ´ 1q

n ´ 2
∆φ ` Scal φ “ ´

n ´ 1

n
τ2φN´1 `

A2

φN`1
,

where Scal is the scalar curvature of g and N :“
2n

n ´ 2
.

We refer the reader to [3, 5] for an overview of the context in which this equation appears.

It has attracted attention a couple of decades ago culminating at the classification of constant

mean curvature initial data by J. Isenberg in [14]. Recently, important efforts have been put in

constructing non-constant mean curvature initial data, see [12, 13, 16, 6] and [10].

The main aim of this note is to give a short proof of existence/non-existence of solutions to (1.1)

in the generic case A ı 0. This result is well-known to a large extent, see e.g. [16, Theorem 1].

The main novelty here is that there is no need to give separate proofs according to the sign of the

Yamabe quotient of pM, gq. The particular case A ” 0 is the prescribed scalar curvature equation

which is similar to the problem addressed in [19, 17, 18, 20], see also [7, 8]. We will study it in

Section 4.
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2 R. GICQUAUD

This paper is a byproduct of the techniques developed in [7, 8].

The outline of this paper is as follows. In Section 2, we introduce the main tool to discrimitate

which function τ lead to existence of solutions to (1.1). In Section 3, we study the case A ı 0.

The main result of this section is Theorem 3.1 which is the main result of the paper. Section 4 is

devoted to the case A ” 0 which, as we indicated before, deserves a particular treatment.

Acknowledgements: The author is grateful to Marie-Françoise Bidaut-Véron for useful com-

ments on a preliminary version of this article.

2. LOCAL YAMABE INVARIANT AND FIRST CONFORMAL EIGENVALUE

For any measurable subset V Ă M , we define the space

(2.1) FpV q :“ tu P W 1,2, u ” 0 a.e. on MzV u

of Sobolev functions vanishing outside V . This set is obviously reduced to t0u if V has Lebesgue

measure zero but there are larger V with FpV q “ t0u, see for example [1, Chapter 6]. Much of

this section is adapted from [8].

For any u P W 1,2, we set

(2.2) Ggpuq :“

ż

M

„
4pn ´ 1q

n ´ 2
|du|2 ` Scal u2


dµg

We also introduce, for any u P W 1,2, u ı 0, the Rayleigh and the Yamabe quotients:

QR
g puq :“ Gpuq{}u}2L2,

QY
g puq :“ Gpuq{}u}2LN .

With these definitions at hand, we introduce the local first conformal eigenvalue λgpV q and the

local Yamabe invariant YgpV q of any measurable subset V Ă M as follows:

λgpV q :“ inf
uPFpV qzt0u

QR
g puq,

YgpV q :“ inf
uPFpV qzt0u

QY
g puq.

From the definition of an infimum, we have λgpV q “ YgpV q “ 8 if FpV q is reduced to t0u.

Proposition 2.1. The functional G defined in (2.2) is sequentially weakly lower semi-continuous

on W 1,2: for every weakly converging sequence pukqk, uk á u8, we have lim inf
kÑ8

Gpukq ě

Gpu8q.

Proof. Note that Gg can be decomposed as

(2.5) Ggpuq “
4pn ´ 1q

n ´ 2

ż

M

|du|2dµg `

ż

M

Scal u2dµg.

The first term is weakly lower semi-continuous with respect to u P W 1,2 as a continuous non-

negative quadratic form. For the second one, we shall prove that, given a sequence pukqk in W 1,2,

converging weakly to u8, uk ákÑ8 u8, we have
ż

M

Scal u2

kdµ
g Ñ

ż

M

Scal u2

8dµg.
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To make the notation less cluttered, we denote the second term in (2.5) as Spuq:

Spuq :“

ż

M

Scal u2dµg.

Assume by contradiction that pSpukqqk does not converge to Spu8q, there exists an ǫ ą 0 such

that, for an infinite number of integers k, we have

(2.6) |Spukq ´ Spu8q| ą ǫ.

Without loss of generality, we can assume that (2.6) holds for all integer k and also that pukqk
converges strongly in L2 to some u8 P L2 since the embedding W 1,2

ãÑ L2 is compact. Then

we have u8 ” u8 a.e. Indeed, the linear form

u ÞÑ

ż

M

upu8 ´ u8qdµg

is (strongly) continuous for the L2-topology and, hence, for the W 1,2-topology. As a consequence,
ż

M

u8pu8 ´ u8qdµg “ lim
kÑ8

ż

M

ukpu8 ´ u8qdµg “

ż

M

u8pu8 ´ u8qdµg,

where the first equality holds by the W 1,2-weak convergence of pukqk to u8 and the second one

by the L2-strong convergence of pukqk to u8. Subtracting both equalities, we get
ż

M

|u8 ´ u8|2dµg “ 0,

which proves that u8 ” u8 a.e. Finally note that, since pukqk is weakly convergent in W 1,2, it

is bounded and thus (by interpolation) converges in all Lq spaces, q P r2, Nq. Since Scal P Lp,

p ą n{2, letting q be such that 1 “
1

p
`

2

q
, we have q P r2, Nq and, by Hölder’s inequality, S is a

bounded quadratic form on Lq. In particular S is continuous on Lq:

Spukq Ñ Spu8q.

This contradicts (2.5): S is sequentially weakly continuous on W 1,2. This ends the proof of

Proposition 2.1. �

In what follows, we let s ą 0 be the largest constant so that

(2.7) }u}2W 1,2 ě s}u}2LN @u P W 1,2.

Proposition 2.2. Given any measurable set V Ă M , λgpV q and YgpV q have the same sign (i.e.

they are either both positive, both negative or both zero).

Proof. We can assume, without loss of generality, that FpV q ‰ t0u for otherwise YgpV q “
λgpV q “ 8. If YgpV q ă 0, there exists u P FpV q such that Ggpuq ă 0 so λgpV q ă 0. Assume

now that YgpV q ą 0, then, for all u P FpV qzt0u, we have

QR
g puq “

Ggpuq

}u}2
L2

ě
Ggpuq

}u}2
LN VolgpV q2{n

ě
YgpV q

VolgpV q2{n
.

We conclude that

λgpV q ě
YgpV q

VolgpV q2{n
ą 0.

All we have to show now is that, if YgpV q “ 0, we have λgpV q “ 0. Assume for the rest of the

proof that YgpV q “ 0. If λgpV q were negative, there would exits u P FpV q such that Ggpuq ă 0

so YgpV q ď QY
g puq ă 0. This proves that λgpV q ě 0. Since YgpV q “ 0, there exists a sequence
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of functions uk P FpV q such that QY
g pukq Ñ 0. Without loss of generality, we can assume that

}uk}LN “ 1 so Ggpukq Ñ 0.

Let q be as in the proof of the previous proposition. Then we have that

Gpukq ě
4pn ´ 1q

n ´ 2
}uk}2W 1,2 ´

4pn ´ 1q

n ´ 2
}uk}2L2 ´ }Scal}Lp }uk}2Lq

ě
4pn ´ 1q

n ´ 2
}uk}2W 1,2 ´

4pn ´ 1q

n ´ 2
VolgpV q1´2{q}uk}2Lq ´ }Scal}Lp }uk}2Lq .

Hence, setting C “ 4pn´1q
n´2

VolgpV q1´2{q ` }Scal}Lp , we arrive at

(2.8) Ggpukq ` C}uk}2Lq ě
4pn ´ 1q

n ´ 2
}uk}2W 1,2 .

Since q ă N , we have that }uk}W 1,2 is bounded independently of k. Arguing as in the proof of

the previous proposition, we can assume that pukqk converges weakly in W 1,2 and strongly in L2

to some u8 P FpV q. Combining Equation (2.8) with the Sobolev estimate (2.7), we get

Ggpukq ` C}uk}2Lq ě
4pn ´ 1q

n ´ 2
s}uk}2LN “

4pn ´ 1q

n ´ 2
s.

Passing to the limit as k goes to infinity, we conclude that }u8}Lq ą 0, i.e. u8 ı 0. By the lower

semicontinuity of Gg , we have Ggpu8q ď lim infkÑ8 Ggpukq “ 0. Since Ggpu8q ě 0, we have

Ggpu8q “ 0. We have proven that

0 ď λgpV q ď QR
g pu8q “ 0,

i.e. λgpV q “ 0. This concludes the proof of the fact that YgpV q and λgpV q have the same

sign. �

The reason why it is more convenient to work with YgpV q than with λgpV q is given by the

following proposition.

Proposition 2.3. Assume that g and h are two conformally related metrics, h “ φN´2g, for some

positive function φ P W 2,p. Then for any measurable V we have

YgpV q “ YhpV q.
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Proof. The proof is a simple calculation. Given any u P W 1,2, we have

Ghpuq “

ż

M

„
4pn ´ 1q

n ´ 2
|du|2h ` Scal

h u2


dµh

“

ż

M

„
4pn ´ 1q

n ´ 2
φ2´N |du|2g `

ˆ
´
4pn ´ 1q

n ´ 2
∆

gφ ` Scal
g φ

˙
φ1´Nu2


φNdµg

“

ż

M

„
4pn ´ 1q

n ´ 2
φ2|du|2g `

ˆ
´
4pn ´ 1q

n ´ 2
∆

gφ ` Scal
g φ

˙
φu2


dµg

“

ż

M

„
4pn ´ 1q

n ´ 2

`
φ2|du|2g ´ pφ∆gφqu2

˘
` Scal

g pφuq2

dµg

“

ż

M

„
4pn ´ 1q

n ´ 2

`
φ2|du|2g ` xdφ, dpφu2qyg

˘
` Scal

g pφuq2

dµg

“

ż

M

„
4pn ´ 1q

n ´ 2

`
φ2|du|2g ` u2|dφ|2g ` 2xφdφ, uduyg

˘
` Scal

g pφuq2

dµg

“

ż

M

„
4pn ´ 1q

n ´ 2
|dpφuq|2g ` Scal

g pφuq2

dµg

“ Ggpφuq.

Similarly,

}u}LN
h

“

ˆż

M

uNdµh

˙1{N

“

ˆż

M

uNφNdµg

˙1{N

“ }φu}LN
g
.

So

QY
h puq “ QY

g pφuq.

Since φ is bounded away from zero, multiplication by φ defines an automorphism of FpV q. Hence,

YgpV q “ inf
uPFpV q

QY
g puq “ inf

uPFpV q
QY

g pφuq “ inf
uPFpV q

QY

h puq “ YhpV q.

�

3. EXISTENCE OF SOLUTIONS TO THE LICHNEROWICZ EQUATION

Theorem 3.1. Let pM, gq be a compact Riemannian manifold with g P W 2,p, p ą n{2. Assume

that τ P L2p is given. Then the following statements are equivalent:

(1) There exists a solution to (1.1) for all A P L2p, A ı 0

(2) There exists a solution to (1.1) for at least one A P L2p, A ı 0,

(3) The set Z “ τ´1p0q satisfies YgpZq ą 0.

Further, the solution to (1.1), when it exists, is unique unless YgpMq “ 0 and τ, A ” 0 for which

all solutions are proportional one to another.

It should be noted that the theorem can be applied in particular when Z has zero Lebesgue

measure. This is the case if τ never vanishes or if 0 is a regular value for τ .

This theorem reproduces results from [12, 13, 15, 16] and references therein (see also [9])

in which several proofs are given according to the sign of YgpMq and the nullity of τ . The main

novelty is that the proof establishes a direct link between existence of solutions to the Lichnerowicz

equation and the fact that YgpZq ą 0. We first state a lemma:
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Lemma 3.2. Under the assumptions of the theorem, if YgpZq ą 0, there exists a constant K ą 0

such that the operator

u ÞÑ ´
4pn ´ 1q

n ´ 2
∆u ` Scal u ` K

n ´ 1

n
τ2u

has positive first eigenvalue.

Proof. Assume by contradiction that for all k P N, the first eigenvalue of

Lk : u ÞÑ ´
4pn ´ 1q

n ´ 2
∆u ` Scal u ` k

n ´ 1

n
τ2u

is non-positive. We denote it by λk and let uk P W 2,p{2 be the first eigenfunction normalized so

that uk ě 0 and }uk}L2 “ 1. The sequence pλkqk is increasing since

λk`1 “

ż

M

uk`1Lk`1uk`1dµ
g

“

ż

M

uk`1Lkuk`1dµ
g `

ż

M

n ´ 1

n
τ2u2

k`1

ě

ż

M

uk`1Lkuk`1dµ
g

ě λk.

We claim that the sequence pukqk is bounded in W 1,2. Indeed, we have, using the Hölder inequal-

ity:

0 ě

ż

M

„
4pn ´ 1q

n ´ 2
|duk|2 ` Scal u2

k


dµg

ě
4pn ´ 1q

n ´ 2

ż

M

|duk|2dµg ´ }Scal}Lp}uk}
n
p

LN }uk}
2´ n

p

L2

ě
4pn ´ 1q

n ´ 2

ż

M

|duk|2dµg ´ 2}Scal}Lp

„
n

p
ǫ}uk}2LN `

2p ´ n

2p
}uk}2L2ǫ

´n{p2p´nq



ě
4pn ´ 1q

n ´ 2

ż

M

|duk|2dµg ´ }Scal}Lp

„
2n

sp
ǫ}uk}2W 1,2 `

2p ´ n

p
}uk}2L2ǫ

´n{p2p´nq


,

where we used the ǫ-Young inequality and the Sobolev inequality (2.7). Assuming that Scal ı 0

(if Scal ” 0 the argument is simpler), we choose ǫ such that

}Scal}Lp

2n

sp
ǫ “

2pn ´ 1q

n ´ 2
,

so

0 ě
2pn ´ 1q

n ´ 2

ż

M

|duk|2dµg ´ C}uk}2L2 ,

for some explicit constant C “ Cpn, s, p, }Scal}Lpq. Since }uk}L2 “ 1, this proves the claim that

pukqk is bounded in L2.

From Rellich theorem, we now extract a subsequence pkiqi of k such that

uki
Ñ u8 in L2

for some u8 P W 1,2. In particular, }u8}L2 “ 1. We can also assume that

uki
á u8 in W 1,2.
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We claim that u8 ” 0 a.e. on MzZ . Otherwise,
ż

M

τ2u2

ki
dµg Ñ

ż

M

τ2u2

8dµg “ 0,

so

λki
“

ż

M

uki
Lki

uki
dµg

“

ż

M

uki
L0uki

dµg ` ki
n ´ 1

n

ż

M

τ2u2

ki
dµg

ě λ0 ` ki
n ´ 1

n

ż

M

τ2u2

ki
dµg

ÑiÑ8 8,

contradicting the fact that pλkqk is bounded. Since }u8}L2 “ 1 and belongs to FpZq, we have a

contradiction if FpZq “ t0u. In the case where FpZq “ t0u, we also get a contradiction since

λki
“ Ggpuki

q ` k
n ´ 1

n

ż

M

τ2u2

ki
ě Ggpuki

q,

so, since Gg is weakly lower semicontinuous,

lim inf
iÑ8

λki
ě lim inf

iÑ8
Ggpuki

q ě Ggpu8q ě λgpZq ą 0.

This gives the final contradiction. �

Proof of Theorem 3.1. The statement 1 ñ 2 is obvious. We now prove that 2 ñ 3. The proof

is similar to that of Proposition 2.3. If FpZq “ t0u, Statement 3 is satisfied since YgpZq “ 8.

Otherwise, assume given A P L2p and φ P W 2,p satisfying (1.1). We set pg “ φN´2g and

pu “ uφ´1. For all u P FpZq, we have

Ggpuq “ Gg pφpuq

“

ż

M

„
4pn ´ 1q

n ´ 2

´
φ2 |dpu|

2

g `
@
φdφ, dppu2q

D
g

` pu2 |dφ|
2

g

¯
` Scal φ2pu2


dµg

“

ż

M

„
4pn ´ 1q

n ´ 2

´
φ2 |dpu|2g ´ pφ∆φqpu2

¯
` Scal φ2pu2


dµg

“

ż

M

„
4pn ´ 1q

n ´ 2
φ2 |dpu|

2

g `

ˆ
A2

φN
´

n ´ 1

n
τ2φN

˙
pu2


dµg

“

ż

M

„
4pn ´ 1q

n ´ 2
|dpu|

2

pg `

ˆ
A2

φ2N
´

n ´ 1

n
τ2

˙
pu2


dµpg

ě

ż

M

„
4pn ´ 1q

n ´ 2
|dpu|

2

pg `
A2

φ2N
pu2


dµpg (since pu P FpZq).

This immediately rules out the possibility that YgpZq ă 0 since Ggpuq ě 0 for all u P FpZq.

Assume next that MzZ has positive Lebesgue measure. Then, pu ” 0 on MzZ . As a consequence,

from the Poincaré inequality, there is a constant µ “ µpg, τq so that

Ggpuq ě
4pn ´ 1q

n ´ 2

ż

M

|dpu|
2

pg dµ
pg ě µ}pu}2W 1,2 ,

(see e.g. [11, Lemma 7.16]) and, hence, from the Sobolev embedding theorem,

Ggpuq ě sµ}pu}2LN .
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This proves that

YgpZq “ sµ ą 0.

The only remaining possibility is that τ ” 0 a.e. that is to say Z “ M and YgpMq “ 0. From the

proof of Proposition 2.2, there exists a function u8 ě 0, u8 ı 0 so that Ggpu8q “ 0. From the

inequality

Ggpu8q ě
4pn ´ 1q

n ´ 2

ż

M

|dpu8|
2

pg dµ
pg,

we have dpu8 ” 0: pu8 is a constant function. This gives a contradiction since

0 “ Ggpu8q “

ż

M

A2

φ2N
pu2

8dµpg ą 0.

We finally prove that 3 ñ 1. The proof goes as usual by the sub- and super-solution method

(see e.g. [21, Chapter 14]). Let K be as in the statement of Lemma 3.2. We let u denote the

solution to

(3.1) ´
4pn ´ 1q

n ´ 2
∆u ` Scal u ` K

n ´ 1

n
τ2u “ A2.

Since the operator on the left hand side is positive, its Green function is positive, so u P W 2,p is

also positive (note that u is Hölder continuous). We set

"
u` “λ`u,

u´ “λ´u

for some positive constants λ˘ to be chosen later. We want u` to be a super-solution to the

Lichnerowicz equation (1.1), i.e. u` has to satisfy

´
4pn ´ 1q

n ´ 2
∆u` ` Scal u` `

n ´ 1

n
τ2uN´1

` ě
A2

uN`1

`

.

From Equation (3.1), this is equivalent to

n ´ 1

n
τ2

`
λN´1

` uN´1 ´ Kλ`u
˘

` λ`A
2 ě

A2

λN`1

` uN`1
.

This inequality holds true if both the following inequalities are fulfilled:
#
λN´2

` uN´2 ě K,

λN`2

` ě u´N´1.

Since u is bounded from above and away from zero, they are true for large enough λ`. Calcula-

tions for the sub-solution are similar: if λ´ is a small enough positive constant u´ is a sub-solution

to the Lichnerowicz equation (1.1). By the sub- and super-solution argument, we get existence of

u P W 2,p solving (1.1). Uniqueness of u will be proven in the next proposition. �

Proposition 3.3. Let pM, gq be a compact Riemannian manifold with g P W 2,p, p ą n{2. Let

τ, A P L2p be two given functions. Assume given two positive functions φ1, φ2 P W 2,p solving the

Lichnerowicz equation (1.1).

‚ If τ ı 0 or A ı 0, we have φ1 ” φ2,

‚ If τ, A ” 0, φ1 and φ2 are proportional.
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Proof. The proof of this fact is well known, we refer the reader e.g. to [16, Proposition 2] or to [6].

We present here the argument from [4]. Since φ1 and φ2 are bounded from below, we have that

φ2

1
{φ2 and φ2

2
{φ1 both belong to W 2,p. By an integration by parts and some routine calculations,

we have

(3.2)

ż

M

ˆ
´
∆φ1

φ1

`
∆φ2

φ2

˙
pφ2

1 ´ φ2

2qdµg

“

ż

M

ˇ̌
ˇ̌dφ1 ´

φ1

φ2

dφ2

ˇ̌
ˇ̌
2

dµg `

ż

M

ˇ̌
ˇ̌dφ2 ´

φ2

φ1

dφ1

ˇ̌
ˇ̌
2

dµg.

If we set

fpφq :“
n ´ 2

4pn ´ 1q

„
A2

φN`2
´ Scal ´

n ´ 1

n
τ2φN´2


,

we have

´
∆φ1

φ1

“ fpφ1q and ´
∆φ2

φ2

“ fpφ2q,

so the identity (3.2) givesż

M

rfpφ1q ´ fpφ2qs pφ2

1
´ φ2

2
qdµg

“

ż

M

ˇ̌
ˇ̌dφ1 ´

φ1

φ2

dφ2

ˇ̌
ˇ̌
2

dµg `

ż

M

ˇ̌
ˇ̌dφ2 ´

φ2

φ1

dφ1

ˇ̌
ˇ̌
2

dµg.

Since f is a decreasing function, we have

rfpφ1q ´ fpφ2qs pφ2

1
´ φ2

2
q ď 0 a.e.

This impose that
ż

M

ˇ̌
ˇ̌dφ1 ´

φ1

φ2

dφ2

ˇ̌
ˇ̌
2

dµg `

ż

M

ˇ̌
ˇ̌dφ2 ´

φ2

φ1

dφ1

ˇ̌
ˇ̌
2

dµg “ 0.

In particular, we have

dφ1 ´
φ1

φ2

dφ2 “ 0 a.e. ô d

ˆ
φ1

φ2

˙
“ 0 a.e.

meaning that φ1 and φ2 are proportional one another and they are equal unless f is a constant

function at all points of M , i.e. unless τ, A ” 0. �

4. EXISTENCE OF SOLUTIONS TO THE PRESCRIBED SCALAR CURVATURE EQUATION

Our focus in this section is Equation (1.1) with A ” 0, namely

(4.1) ´
4pn ´ 1q

n ´ 2
∆φ ` Scal φ “ ´fφN´1,

where f “ n´1

n
τ2 ě 0. This equation is the well-known prescribed scalar curvature equation (see

e.g. [2] for an introduction). The aim of this section is to give a full proof of Theorem 4.1 with

an argument that is simpler than the one in [19, 7], following the lines of [8]. One difficulty in the

study of Equation (4.1) is to show that φ ı 0 since φ ” 0 is a trivial solution to (4.1). This is

overcome by studying the asymptotics of φ in the non-compact case while here the argument has

to be different. The theorm we prove is the following:

Theorem 4.1. Let pM, gq be a compact Riemannian manifold with g P W 2,p{2, p ą n. Assume

that f P Lp, f ě 0, f ı 0, is given. Then the following statements are equivalent:

(1) There exists a positive solution φ P W 2,p to (4.1),
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(2) We have YgpMq ă 0 and the set Z “ f´1p0q satisfies YgpZq ą 0.

Further, the solution to (4.1), when it exists, is unique.

The proof of 1ñ YgpZq ą 0 is entirely similar to the one given in the proof of Theorem 3.1 so

we omit it. Note also that the metric h :“ φN´2g has scalar curvature ´f so

YgpMq “ YhpMq ď QY
h p1q “

Ghp1q

VolhpMq2{N
ă 0.

The proof of the converse implication will occupy the remaining of this note. We first prove it

assuming that f P L8 and deduce the general case from this particular case.

We introduce the functional F defined for all φ P W 1,2 by

(4.2) F pφq :“

ż

M

„
4pn ´ 1q

n ´ 2
|dφ|2 ` Scal φ2 `

2

N
f |φ|N


dµg

Note that the assumption that f P L8 is required in order to ensure that

Ipφq “

ż

M

f |φ|Ndµg ă 8

for all φ P W 1,2. Note that φ ÞÑ Ipφq is continuous for the strong topology and convex since

f ě 0. In particular, it is weakly lower semi-continuous. From Proposition 2.1, we conclude that

F is sequentially weakly lower semi-continuous.

We now show that F is coercive. This will imply the existence of a minimizer for F . The proof

is similar (yet simpler) than the one given in [8, Proposition 4.8].

Lemma 4.2. Assume that 2 in Theorem 4.1 is satisfied, then the functional F is coercive.

Proof. We assume, by contradiction, that there exists a constant B ą 0 and a sequence of elements

uk P W 1,2 such that, for all k, F pukq ď B while }uk}W 1,2 Ñ 8.

We first remark that F p|uk|q “ F pukq so, upon replacing uk by |uk|, we can suppose that

uk ě 0. Let q be as in the proof of Proposition 2.1. We have

4pn ´ 1q

n ´ 2
}uk}2W 1,2 ď F pukq `

ż

M

ˆ
4pn ´ 1q

n ´ 2
` Scal

˙
u2

kdµ
g

ď B `
´
VolgpMq1´2{q ` }Scal}Lp

¯
}uk}2Lq .

This proves that }uk}Lq Ñ 8 and that }uk}W 1,2 . }uk}Lq . We set γk “ }uk}Lq and vk :“ γ´1

k uk

so that the sequence pvkqk is bounded in W 1,2 and satisfies }vk}Lq “ 1. We can assume, without

loss of generality, that vk converges weakly in W 1,2 and strongly in Lq to some v P W 1,2. Since

}v}Lq “ 1, we have v ı 0.

We now claim that v P FpZq. Indeed, we have

(4.3) B ě F pukq “ γ2

kGpvkq ` γN
k

ż

M

fvNk dµg “ γN
k

ˆż

M

fvNk dµg ` op1q

˙
.

If we were able to prove that

(4.4)

ż

M

fvNk dµg Ñ

ż

M

fvNdµg,

we would immediately conclude that
ż

M

fvNdµg “ 0.
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Yet, convergence of pvkqk to v is so weak that proving that (4.4) (if true) holds is delicate. We

bypass this issue by the following argument. Assume, by contradiction, that v R FpZq, then there

exist a set W Ă MzZ with positive measure and an ǫ ą 0 such that v ě ǫ1W a.e. (here 1W is the

indicator function of W ). Then,
ż

M

fvqdµg ě ǫq
ż

M

f1
q
Wdµg “ ǫq

ż

W

fdµg ą 0.

As a consequence, we have, for k large enough,
ż

M

fv
q
kdµ

g ě
ǫq

2

ż

W

fdµg.

From Hölder’s inequality, we have

ˆż

M

fvNk dµg

˙q{N ˆż

M

fdµg

˙1´q{N

ě

ż

M

fv
q
kdµ

g ě
ǫq

2

ż

W

fdµg.

This shows that

ż

M

fvNk dµg is bounded from below by a positive constant. This yields a contra-

diction with (4.3). As a consequence, we have v P FpZq.

Due to our assumption on Z , we have Ggpvq ě YgpV q}v}
2{N
LN ą 0. So

lim inf
kÑ8

Ggpvkq ě Ggpvq ą 0.

In particular, we have

lim inf
kÑ8

F pukq ě lim inf
kÑ8

Ggpukq “ lim inf
kÑ8

γ2

kGgpvkq “ 8.

This contradicts the assumption F pukq ď B. �

We have now all the ingredients to conclude that F admits a minimizer φ. Since F p|φ|q “
F pφq, we can assume, without loss of generality, that φ ě 0. φ is then a solution in a weak sense

to (4.1). By elliptic regularity, we conclude that φ P W 2,p and by Harnack’s inequality that φ ą 0

provided φ ı 0.

We rule out the possibility that φ ” 0 as follows. Since YgpMq ă 0, there exists w P W 1,2

such that Ggpwq ă 0. For any λ ą 0 we have

F pλwq “ λ2Ggpwq ` λNIpwq.

In particular, if λ is small enough we have F pλwq ă 0. This shows that the zero function is not a

global mimimum of F . This forces φ ı 0.

Uniqueness of φ is obtained by applying Proposition 3.3.

We now need to get rid of the assumption f P L8. For all k ą 0, we set fk :“ mintf, ku P L8.

Let φk denote the solution to (4.1) with f replaced by fk. Note that the zero set of fk is the same

as that of f so the preceding construction applies. It follows from the maximum principle that

φk`1 ď φk for all k ą 0 (the argument is similar to the one in the proof of Proposition 3.3).

Since φ1 P W 2,p Ă L8, the sequence fkφ
N´1

k is uniformly bounded in Lp. Hence, from elliptic

regularity, the sequence pφkqk is bounded inW 2,p. By the compactness of the embeddingW 2,p
ãÑ

L8 together with elliptic regularity, there exists a subsequence pφθpkqqk of pφkqk that converges

to some φ P W 2,p, φ ě 0 solving (4.1). Note that, from Dini’s theorem, pφkqk converges in L8

to φ. All we need to do is to exclude that φ ” 0.

This can be done as follows. Let w P W 1,2 be, as before, such that Ggpwq ă 0. Since W 2,p

is dense in W 1,2, we can assume that w P W 2,p Ă L8. As before, considering u “ λw in the
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functional (4.2), we get existence of v such that F pvq ă 0. Set

Fkpuq :“

ż

M

„
4pn ´ 1q

n ´ 2
|dφ|2 ` Scal φ2 `

2

N
fk|φ|N


dµg

So we have Fkpφkq ď Fkpvq ď F pvq ă 0. Now remark that Fkpφkq ÑkÑ8 F pφq. This forces

F pφq ď F pvq ă 0 which shows that φ ı 0. By constructionφ ě 0 and from Harnack’s inequality,

we have φ ą 0. This ends the proof of Theorem 4.1. Uniqueness is obtained from Proposition 3.3.
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[10] R. Gicquaud and Q.A. Ngô, A new point of view on the solutions to the Einstein constraint equations with arbitrary

mean curvature and small TT-tensor, Class. Quantum Grav. 31 (2014), no. 19, 195014 (20pp). 1

[11] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics,

Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. 7

[12] M. Holst, G. Nagy, and G. Tsogtgerel, Far-from-constant mean curvature solutions of Einstein’s constraint equations

with positive Yamabe metrics, Phys. Rev. Lett. 100 (2008), no. 16, 161101, 4. 1, 5

[13] , Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Comm.

Math. Phys. 288 (2009), no. 2, 547–613. 1, 5

[14] J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Class. Quan-

tum Grav. 12 (1995), no. 9, 2249–2274. 1

[15] D. Maxwell, Rough solutions of the Einstein constraint equations on compact manifolds, J. Hyperbolic Differ. Equ.

2 (2005), no. 2, 521–546. 5

[16] , A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature, Math.

Res. Lett. 16 (2009), no. 4, 627–645. 1, 5, 9

[17] T. Ouyang, On the positive solutions of semilinear equations ∆u`λu`hup
“ 0 on compact manifolds. II, Indiana

Univ. Math. J. 40 (1991), no. 3, 1083–1141. 1

[18] , On the positive solutions of semilinear equations ∆u ` λu ´ hup
“ 0 on the compact manifolds, Trans.

Amer. Math. Soc. 331 (1992), no. 2, 503–527. 1

[19] A. Rauzy, Courbures scalaires des variétés d’invariant conforme négatif, Trans. Amer. Math. Soc. 347 (1995), no. 12,

4729–4745. 1, 9

[20] J. Tang, Solvability of the equation ∆gu ` S̃uσ
“ Su on manifolds, Proc. Amer. Math. Soc. 121 (1994), no. 1,

83–92. 1

[21] M. E. Taylor, Partial differential equations III. Nonlinear equations, second ed., Applied Mathematical Sciences, vol.

117, Springer, New York, 2011. 8

(R. Gicquaud) INSTITUT DENIS POISSON, UFR SCIENCES ET TECHNOLOGIE, FACULTÉ DE TOURS, PARC DE
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