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INTRODUCTION

The Lichnerowicz equation is an elliptic equation that appears in the construction of initial data in general relativity. In the setting of this note, let pM, gq be a compact Riemannian manifold of dimension n ą 2, g P W 2,p , p ą n{2, and assume given two functions τ P L 2p and A P L 2p . The Lichnerowicz equation has a positive function φ as unknown and reads (1.1) ´4pn ´1q

n ´2 ∆φ `Scal φ " ´n ´1 n τ 2 φ N ´1 `A2 φ N `1 ,
where Scal is the scalar curvature of g and N :" 2n n ´2 . We refer the reader to [3,5] for an overview of the context in which this equation appears. It has attracted attention a couple of decades ago culminating at the classification of constant mean curvature initial data by J. Isenberg in [14]. Recently, important efforts have been put in constructing non-constant mean curvature initial data, see [START_REF] Holst | Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics[END_REF][START_REF]Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions[END_REF][START_REF] Dahl | A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method[END_REF]6] and [START_REF] Gicquaud | A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor[END_REF].

The main aim of this note is to give a short proof of existence/non-existence of solutions to (1.1) in the generic case A ı 0. This result is well-known to a large extent, see e.g. [START_REF] Dahl | A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method[END_REF], Theorem 1]. The main novelty here is that there is no need to give separate proofs according to the sign of the Yamabe quotient of pM, gq. The particular case A " 0 is the prescribed scalar curvature equation which is similar to the problem addressed in [19,[START_REF] Ouyang | On the positive solutions of semilinear equations ∆u `λu `hu p " 0 on compact manifolds[END_REF]18,[START_REF] Tang | Solvability of the equation ∆gu `Su σ " Su on manifolds[END_REF], see also [START_REF] Dilts | Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting[END_REF][START_REF] Gicquaud | Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation[END_REF]. We will study it in Section 4. This paper is a byproduct of the techniques developed in [START_REF] Dilts | Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting[END_REF][START_REF] Gicquaud | Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation[END_REF].

The outline of this paper is as follows. In Section 2, we introduce the main tool to discrimitate which function τ lead to existence of solutions to (1.1). In Section 3, we study the case A ı 0. The main result of this section is Theorem 3.1 which is the main result of the paper. Section 4 is devoted to the case A " 0 which, as we indicated before, deserves a particular treatment.

Acknowledgements: The author is grateful to Marie-Franc ¸oise Bidaut-Véron for useful comments on a preliminary version of this article.

LOCAL YAMABE INVARIANT AND FIRST CONFORMAL EIGENVALUE

For any measurable subset V Ă M , we define the space (2.1)

F pV q :" tu P W 1,2 , u " 0 a.e. on M zV u of Sobolev functions vanishing outside V . This set is obviously reduced to t0u if V has Lebesgue measure zero but there are larger V with F pV q " t0u, see for example [START_REF] Adams | Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften[END_REF]Chapter 6]. Much of this section is adapted from [START_REF] Gicquaud | Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation[END_REF].

For any u P W 1,2 , we set

(2.2) G g puq :" ż M " 4pn ´1q n ´2 |du| 2 `Scal u 2  dµ g
We also introduce, for any u P W 1,2 , u ı 0, the Rayleigh and the Yamabe quotients:

Q R g puq :" Gpuq{}u} 2 L 2 , Q Y g puq :" Gpuq{}u} 2 L N .
With these definitions at hand, we introduce the local first conformal eigenvalue λ g pV q and the local Yamabe invariant Y g pV q of any measurable subset V Ă M as follows:

λ g pV q :" inf uPF pV qzt0u Q R g puq, Y g pV q :" inf uPF pV qzt0u Q Y g puq.
From the definition of an infimum, we have λ g pV q " Y g pV q " 8 if F pV q is reduced to t0u.

Proposition 2.1. The functional G defined in (2.2) is sequentially weakly lower semi-continuous on W 1,2 : for every weakly converging sequence pu k q k , u k á u 8 , we have lim inf kÑ8 Gpu k q ě Gpu 8 q.

Proof. Note that G g can be decomposed as

(2.5) G g puq " 4pn ´1q n ´2 ż M |du| 2 dµ g `żM Scal u 2 dµ g .
The first term is weakly lower semi-continuous with respect to u P W 1,2 as a continuous nonnegative quadratic form. For the second one, we shall prove that, given a sequence pu k q k in W 1,2 , converging weakly to u 8 , u k á kÑ8 u 8 , we have ż

M Scal u 2 k dµ g Ñ ż M Scal u 2 8 dµ g .
To make the notation less cluttered, we denote the second term in (2.5) as Spuq:

Spuq :" ż M Scal u 2 dµ g .
Assume by contradiction that pSpu k qq k does not converge to Spu 8 q, there exists an ǫ ą 0 such that, for an infinite number of integers k, we have (2.6) |Spu k q ´Spu 8 q| ą ǫ.

Without loss of generality, we can assume that (2.6) holds for all integer k and also that pu k q k converges strongly in L 2 to some u 8 P L 2 since the embedding W where the first equality holds by the W 1,2 -weak convergence of pu k q k to u 8 and the second one by the L 2 -strong convergence of pu k q k to u 8 . Subtracting both equalities, we get ż

M |u 8 ´u8 | 2 dµ g " 0,
which proves that u 8 " u 8 a.e. Finally note that, since pu k q k is weakly convergent in W 1,2 , it is bounded and thus (by interpolation) converges in all L q spaces, q P r2, N q. Since Scal P L p , p ą n{2, letting q be such that 1 " 1 p `2 q , we have q P r2, N q and, by Hölder's inequality, S is a bounded quadratic form on L q . In particular S is continuous on L q :

Spu k q Ñ Spu 8 q.

This contradicts (2.5): S is sequentially weakly continuous on W 1,2 . This ends the proof of Proposition 2. [START_REF] Adams | Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften[END_REF].

In what follows, we let s ą 0 be the largest constant so that (2.7)

}u} 2 W 1,2 ě s}u} 2 L N @u P W 1,2 .
Proposition 2.2. Given any measurable set V Ă M , λ g pV q and Y g pV q have the same sign (i.e. they are either both positive, both negative or both zero).

Proof. We can assume, without loss of generality, that F pV q ‰ t0u for otherwise Y g pV q " λ g pV q " 8. If Y g pV q ă 0, there exists u P F pV q such that G g puq ă 0 so λ g pV q ă 0. Assume now that Y g pV q ą 0, then, for all u P F pV qzt0u, we have

Q R g puq " G g puq }u} 2 L 2 ě G g puq }u} 2
L N Vol g pV q 2{n ě Y g pV q Vol g pV q 2{n . We conclude that λ g pV q ě Y g pV q Vol g pV q 2{n ą 0. All we have to show now is that, if Y g pV q " 0, we have λ g pV q " 0. Assume for the rest of the proof that Y g pV q " 0. If λ g pV q were negative, there would exits u P F pV q such that G g puq ă 0 so Y g pV q ď Q Y g puq ă 0. This proves that λ g pV q ě 0. Since Y g pV q " 0, there exists a sequence of functions u k P F pV q such that Q Y g pu k q Ñ 0. Without loss of generality, we can assume that }u k } L N " 1 so G g pu k q Ñ 0.

Let q be as in the proof of the previous proposition. Then we have that

Gpu k q ě 4pn ´1q n ´2 }u k } 2 W 1,2 ´4pn ´1q n ´2 }u k } 2 L 2 ´}Scal} L p }u k } 2 L q ě 4pn ´1q n ´2 }u k } 2 W 1,2 ´4pn ´1q n ´2 Vol g pV q 1´2{q }u k } 2 L q ´}Scal} L p }u k } 2 L q .
Hence, setting C " 4pn´1q n´2 Vol g pV q 1´2{q `}Scal} L p , we arrive at

(2.8) G g pu k q `C}u k } 2 L q ě 4pn ´1q n ´2 }u k } 2 W 1,2 .
Since q ă N , we have that }u k } W 1,2 is bounded independently of k. Arguing as in the proof of the previous proposition, we can assume that pu k q k converges weakly in W 1,2 and strongly in L 2 to some u 8 P F pV q. Combining Equation (2.8) with the Sobolev estimate (2.7), we get

G g pu k q `C}u k } 2 L q ě 4pn ´1q n ´2 s}u k } 2 L N " 4pn ´1q n ´2 s.
Passing to the limit as k goes to infinity, we conclude that }u 8 } L q ą 0, i.e. u 8 ı 0. By the lower semicontinuity of G g , we have G g pu 8 q ď lim inf kÑ8 G g pu k q " 0. Since G g pu 8 q ě 0, we have G g pu 8 q " 0. We have proven that 0 ď λ g pV q ď Q R g pu 8 q " 0, i.e. λ g pV q " 0. This concludes the proof of the fact that Y g pV q and λ g pV q have the same sign.

The reason why it is more convenient to work with Y g pV q than with λ g pV q is given by the following proposition.

Proposition 2.3. Assume that g and h are two conformally related metrics, h " φ N ´2g, for some positive function φ P W 2,p . Then for any measurable V we have

Y g pV q " Y h pV q.
Proof. The proof is a simple calculation. Given any u P W 1,2 , we have

G h puq " ż M " 4pn ´1q n ´2 |du| 2 h `Scal h u 2  dµ h " ż M " 4pn ´1q n ´2 φ 2´N |du| 2 g `ˆ´4 pn ´1q n ´2 ∆ g φ `Scal g φ ˙φ1´N u 2  φ N dµ g " ż M " 4pn ´1q n ´2 φ 2 |du| 2 g `ˆ´4 pn ´1q n ´2 ∆ g φ `Scal g φ ˙φu 2  dµ g " ż M " 4pn ´1q n ´2 `φ2 |du| 2 g ´pφ∆ g φqu 2 ˘`Scal g pφuq 2  dµ g " ż M " 4pn ´1q n ´2 `φ2 |du| 2 g `xdφ, dpφu 2 qy g ˘`Scal g pφuq 2  dµ g " ż M " 4pn ´1q n ´2 `φ2 |du| 2 g `u2 |dφ| 2 g `2xφdφ, uduy g ˘`Scal g pφuq 2  dµ g " ż M " 4pn ´1q n ´2 |dpφuq| 2 g `Scal g pφuq 2  dµ g " G g pφuq.
Similarly,

}u} L N h " ˆżM u N dµ h ˙1{N " ˆżM u N φ N dµ g ˙1{N " }φu} L N g . So Q Y h puq " Q Y g pφuq.
Since φ is bounded away from zero, multiplication by φ defines an automorphism of F pV q. Hence,

Y g pV q " inf uPF pV q Q Y g puq " inf uPF pV q Q Y g pφuq " inf uPF pV q Q Y h puq " Y h pV q.

EXISTENCE OF SOLUTIONS TO THE LICHNEROWICZ EQUATION

Theorem 3.1. Let pM, gq be a compact Riemannian manifold with g P W 2,p , p ą n{2. Assume that τ P L 2p is given. Then the following statements are equivalent:

(1) There exists a solution to (1.1) for all A P L 2p , A ı 0 (2) There exists a solution to (1.1) for at least one

A P L 2p , A ı 0, (3) The set Z " τ ´1p0q satisfies Y g pZq ą 0.
Further, the solution to (1.1), when it exists, is unique unless Y g pM q " 0 and τ, A " 0 for which all solutions are proportional one to another.

It should be noted that the theorem can be applied in particular when Z has zero Lebesgue measure. This is the case if τ never vanishes or if 0 is a regular value for τ .

This theorem reproduces results from [START_REF] Holst | Far-from-constant mean curvature solutions of Einstein's constraint equations with positive Yamabe metrics[END_REF][START_REF]Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions[END_REF]15,[START_REF] Dahl | A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method[END_REF] and references therein (see also [START_REF]Solutions to the Einstein constraint equations with a small TT-tensor and vanishing Yamabe invariant[END_REF]) in which several proofs are given according to the sign of Y g pM q and the nullity of τ . The main novelty is that the proof establishes a direct link between existence of solutions to the Lichnerowicz equation and the fact that Y g pZq ą 0. We first state a lemma: Lemma 3.2. Under the assumptions of the theorem, if Y g pZq ą 0, there exists a constant K ą 0 such that the operator

u Þ Ñ ´4pn ´1q n ´2 ∆u `Scal u `K n ´1 n τ 2 u
has positive first eigenvalue.

Proof. Assume by contradiction that for all k P N, the first eigenvalue of

L k : u Þ Ñ ´4pn ´1q n ´2 ∆u `Scal u `k n ´1 n τ 2 u
is non-positive. We denote it by λ k and let u k P W 2,p{2 be the first eigenfunction normalized so that u k ě 0 and }u k } L 2 " 1. The sequence pλ k q k is increasing since

λ k`1 " ż M u k`1 L k`1 u k`1 dµ g " ż M u k`1 L k u k`1 dµ g `żM n ´1 n τ 2 u 2 k`1 ě ż M u k`1 L k u k`1 dµ g ě λ k .
We claim that the sequence pu k q k is bounded in W 1,2 . Indeed, we have, using the Hölder inequality:

0 ě ż M " 4pn ´1q n ´2 |du k | 2 `Scal u 2 k  dµ g ě 4pn ´1q n ´2 ż M |du k | 2 dµ g ´}Scal} L p }u k } n p L N }u k } 2´n p L 2 ě 4pn ´1q n ´2 ż M |du k | 2 dµ g ´2}Scal} L p " n p ǫ}u k } 2 L N `2p ´n 2p }u k } 2 L 2 ǫ ´n{p2p´nq  ě 4pn ´1q n ´2 ż M |du k | 2 dµ g ´}Scal} L p " 2n sp ǫ}u k } 2 W 1,2 `2p ´n p }u k } 2 L 2 ǫ ´n{p2p´nq  ,
where we used the ǫ-Young inequality and the Sobolev inequality (2.7). Assuming that Scal ı 0 (if Scal " 0 the argument is simpler), we choose ǫ such that

}Scal} L p 2n sp ǫ " 2pn ´1q n ´2 , so 0 ě 2pn ´1q n ´2 ż M |du k | 2 dµ g ´C}u k } 2 L 2 ,
for some explicit constant C " Cpn, s, p, }Scal} L p q. Since }u k } L 2 " 1, this proves the claim that pu k q k is bounded in L 2 . From Rellich theorem, we now extract a subsequence pk i q i of k such that

u ki Ñ u 8 in L 2
for some u 8 P W 1,2 . In particular, }u 8 } L 2 " 1. We can also assume that

u ki á u 8 in W 1,2 .
We claim that u 8 " 0 a.e. on M zZ. Otherwise, ż

M τ 2 u 2 ki dµ g Ñ ż M τ 2 u 2 8 dµ g " 0, so λ ki " ż M u ki L ki u ki dµ g " ż M u ki L 0 u ki dµ g `ki n ´1 n ż M τ 2 u 2 ki dµ g ě λ 0 `ki n ´1 n ż M τ 2 u 2 ki dµ g Ñ iÑ8 8,
contradicting the fact that pλ k q k is bounded. Since }u 8 } L 2 " 1 and belongs to F pZq, we have a contradiction if F pZq " t0u. In the case where F pZq " t0u, we also get a contradiction since

λ ki " G g pu ki q `k n ´1 n ż M τ 2 u 2 ki ě G g pu ki q,
so, since G g is weakly lower semicontinuous,

lim inf iÑ8 λ ki ě lim inf iÑ8 G g pu ki q ě G g pu 8 q ě λ g pZq ą 0.
This gives the final contradiction.

Proof of Theorem 3.1. The statement 1 ñ 2 is obvious. We now prove that 2 ñ 3. The proof is similar to that of Proposition 2.3. If F pZq " t0u, Statement 3 is satisfied since Y g pZq " 8. Otherwise, assume given A P L 2p and φ P W 2,p satisfying (1.1). We set p g " φ N ´2g and p u " uφ ´1. For all u P F pZq, we have

G g puq " G g pφp uq " ż M " 4pn ´1q n ´2 ´φ2 |dp u| 2 g `@φdφ, dpp u 2 q D g `p u 2 |dφ| 2 g ¯`Scal φ 2 p u 2  dµ g " ż M " 4pn ´1q n ´2 ´φ2 |dp u| 2 g ´pφ∆φqp u 2 ¯`Scal φ 2 p u 2  dµ g " ż M " 4pn ´1q n ´2 φ 2 |dp u| 2 g `ˆA 2 φ N ´n ´1 n τ 2 φ N ˙p u 2  dµ g " ż M " 4pn ´1q n ´2 |dp u| 2 p g `ˆA 2 φ 2N ´n ´1 n τ 2 ˙p u 2  dµ p g ě ż M " 4pn ´1q n ´2 |dp u| 2 p g `A2 φ 2N p u 2  dµ p g (since p u P F pZq).
This immediately rules out the possibility that Y g pZq ă 0 since G g puq ě 0 for all u P F pZq.

Assume next that M zZ has positive Lebesgue measure. Then, p u " 0 on M zZ. As a consequence, from the Poincaré inequality, there is a constant µ " µpg, τ q so that

G g puq ě 4pn ´1q n ´2 ż M |dp u| 2 p g dµ p g ě µ}p u} 2 W 1,2 ,
(see e.g. [11, Lemma 7.16]) and, hence, from the Sobolev embedding theorem,

G g puq ě sµ}p u} 2 L N .
This proves that Y g pZq " sµ ą 0.

The only remaining possibility is that τ " 0 a.e. that is to say Z " M and Y g pM q " 0. From the proof of Proposition 2.2, there exists a function u 8 ě 0, u 8 ı 0 so that G g pu 8 q " 0. From the inequality

G g pu 8 q ě 4pn ´1q n ´2 ż M |dp u 8 | 2 p g dµ p g ,
we have dp u 8 " 0: p u 8 is a constant function. This gives a contradiction since

0 " G g pu 8 q " ż M A 2 φ 2N p u 2 8 dµ p g ą 0.
We finally prove that 3 ñ 1. The proof goes as usual by the sub-and super-solution method (see e.g. [21, Chapter 14]). Let K be as in the statement of Lemma 3.2. We let u denote the solution to

(3.1) ´4pn ´1q n ´2 ∆u `Scal u `K n ´1 n τ 2 u " A 2 .
Since the operator on the left hand side is positive, its Green function is positive, so u P W 2,p is also positive (note that u is Hölder continuous). We set " u `"λ `u,

u

´"λ ´u for some positive constants λ ˘to be chosen later. We want u `to be a super-solution to the Lichnerowicz equation (1.1), i.e. u `has to satisfy

´4pn ´1q n ´2 ∆u ``Scal u ``n ´1 n τ 2 u N ´1 `ě A 2 u N `1 `.
From Equation (3.1), this is equivalent to

n ´1 n τ 2 `λN´1 `uN ´1 ´Kλ `u˘`λ `A2 ě A 2 λ N `1 `uN `1 .
This inequality holds true if both the following inequalities are fulfilled:

# λ N ´2 `uN ´2 ě K, λ N `2 `ě u ´N ´1.
Since u is bounded from above and away from zero, they are true for large enough λ `. Calculations for the sub-solution are similar: if λ ´is a small enough positive constant u ´is a sub-solution to the Lichnerowicz equation (1.1). By the sub-and super-solution argument, we get existence of u P W 2,p solving (1.1). Uniqueness of u will be proven in the next proposition.

Proposition 3.3. Let pM, gq be a compact Riemannian manifold with g P W 2,p , p ą n{2. Let τ, A P L 2p be two given functions. Assume given two positive functions φ 1 , φ 2 P W 2,p solving the Lichnerowicz equation (1.1). ' If τ ı 0 or A ı 0, we have φ 1 " φ 2 , ' If τ, A " 0, φ 1 and φ 2 are proportional.

Proof. The proof of this fact is well known, we refer the reader e.g. to [START_REF] Dahl | A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method[END_REF]Proposition 2] or to [6].

We present here the argument from [4]. Since φ 1 and φ 2 are bounded from below, we have that φ 2 1 {φ 2 and φ 2 2 {φ 1 both belong to W 2,p . By an integration by parts and some routine calculations, we have

(3.2) ż M ˆ´∆φ 1 φ 1 `∆φ 2 φ 2 ˙pφ 2 1 ´φ2 2 qdµ g " ż M ˇˇˇd φ 1 ´φ1 φ 2 dφ 2 ˇˇˇ2 dµ g `żM ˇˇˇd φ 2 ´φ2 φ 1 dφ 1 ˇˇˇ2 dµ g .
If we set

f pφq :" n ´2 4pn ´1q " A 2 φ N `2 ´Scal ´n ´1 n τ 2 φ N ´2 , we have ´∆φ 1 φ 1 " f pφ 1 q and ´∆φ 2 φ 2 " f pφ 2 q, so the identity (3.2) gives ż M rf pφ 1 q ´f pφ 2 qs pφ 2 1 ´φ2 2 qdµ g " ż M ˇˇˇd φ 1 ´φ1 φ 2 dφ 2 ˇˇˇ2 dµ g `żM ˇˇˇd φ 2 ´φ2 φ 1 dφ 1 ˇˇˇ2 dµ g .
Since f is a decreasing function, we have rf pφ 1 q ´f pφ 2 qs pφ 2 1 ´φ2 2 q ď 0 a.e. This impose that ż

M ˇˇˇd φ 1 ´φ1 φ 2 dφ 2 ˇˇˇ2 dµ g `żM ˇˇˇd φ 2 ´φ2 φ 1 dφ 1 ˇˇˇ2 dµ g " 0.
In particular, we have

dφ 1 ´φ1 φ 2 dφ 2 " 0 a.e. ô d ˆφ1 φ 2 ˙" 0 a.e.
meaning that φ 1 and φ 2 are proportional one another and they are equal unless f is a constant function at all points of M , i.e. unless τ, A " 0.

EXISTENCE OF SOLUTIONS TO THE PRESCRIBED SCALAR CURVATURE EQUATION

Our focus in this section is Equation (1.1) with A " 0, namely

(4.1) ´4pn ´1q n ´2 ∆φ `Scal φ " ´f φ N ´1,
where f " n´1 n τ 2 ě 0. This equation is the well-known prescribed scalar curvature equation (see e.g. [2] for an introduction). The aim of this section is to give a full proof of Theorem 4.1 with an argument that is simpler than the one in [19,[START_REF] Dilts | Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting[END_REF], following the lines of [START_REF] Gicquaud | Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation[END_REF]. One difficulty in the study of Equation (4.1) is to show that φ ı 0 since φ " 0 is a trivial solution to (4.1). This is overcome by studying the asymptotics of φ in the non-compact case while here the argument has to be different. The theorm we prove is the following: Theorem 4.1. Let pM, gq be a compact Riemannian manifold with g P W 2,p{2 , p ą n. Assume that f P L p , f ě 0, f ı 0, is given. Then the following statements are equivalent:

(1) There exists a positive solution φ P W 2,p to (4.1),

(2) We have Y g pM q ă 0 and the set Z " f ´1p0q satisfies Y g pZq ą 0. Further, the solution to (4.1), when it exists, is unique.

The proof of 1ñ Y g pZq ą 0 is entirely similar to the one given in the proof of Theorem 3.1 so we omit it. Note also that the metric h :" φ N ´2g has scalar curvature ´f so

Y g pM q " Y h pM q ď Q Y h p1q " G h p1q Vol h pM q 2{N ă 0.
The proof of the converse implication will occupy the remaining of this note. We first prove it assuming that f P L 8 and deduce the general case from this particular case.

We introduce the functional F defined for all φ P W 1,2 by (4.2)

F pφq :" ż M " 4pn ´1q n ´2 |dφ| 2 `Scal φ 2 `2 N f |φ| N  dµ g
Note that the assumption that f P L 8 is required in order to ensure that

Ipφq " ż M f |φ| N dµ g ă 8
for all φ P W 1,2 . Note that φ Þ Ñ Ipφq is continuous for the strong topology and convex since f ě 0. In particular, it is weakly lower semi-continuous. From Proposition 2.1, we conclude that F is sequentially weakly lower semi-continuous. We now show that F is coercive. This will imply the existence of a minimizer for F . The proof is similar (yet simpler) than the one given in [START_REF] Gicquaud | Prescribed non positive scalar curvature on asymptotically hyperbolic manifolds with application to the Lichnerowicz equation[END_REF]Proposition 4.8].

Lemma 4.2. Assume that 2 in Theorem 4.1 is satisfied, then the functional F is coercive.

Proof. We assume, by contradiction, that there exists a constant B ą 0 and a sequence of elements u k P W 1,2 such that, for all k, F pu k q ď B while }u k } W 1,2 Ñ 8.

We first remark that F p|u k |q " F pu k q so, upon replacing u k by |u k |, we can suppose that u k ě 0. Let q be as in the proof of Proposition 2.1. We have

4pn ´1q n ´2 }u k } 2 W 1,2 ď F pu k q `żM ˆ4pn ´1q n ´2 `Scal ˙u2 k dµ g ď B `´Vol g pM q 1´2{q `}Scal} L p ¯}u k } 2 L q .
This proves that }u k } L q Ñ 8 and that }u k } W 1,2 }u k } L q . We set γ k " }u k } L q and v k :" γ ´1 k u k so that the sequence pv k q k is bounded in W 1,2 and satisfies }v k } L q " 1. We can assume, without loss of generality, that v k converges weakly in W 1,2 and strongly in L q to some v P W 1,2 . Since }v} L q " 1, we have v ı 0.

We now claim that v P F pZq. Indeed, we have

(4.3) B ě F pu k q " γ 2 k Gpv k q `γN k ż M f v N k dµ g " γ N k ˆżM f v N k dµ g `op1q
˙.

If we were able to prove that (4.4)

ż M f v N k dµ g Ñ ż M f v N dµ g , we would immediately conclude that ż M f v N dµ g " 0.
Yet, convergence of pv k q k to v is so weak that proving that (4.4) (if true) holds is delicate. We bypass this issue by the following argument. Assume, by contradiction, that v R F pZq, then there exist a set W Ă M zZ with positive measure and an ǫ ą 0 such that v ě ǫ½ W a.e. (here ½ W is the

indicator function of W ). Then, ż M f v q dµ g ě ǫ q ż M f ½ q W dµ g " ǫ q ż W f dµ g ą 0.
As a consequence, we have, for k large enough, ż

M f v q k dµ g ě ǫ q 2 ż W f dµ g .
From Hölder's inequality, we have

ˆżM f v N k dµ g ˙q{N ˆżM f dµ g ˙1´q{N ě ż M f v q k dµ g ě ǫ q 2 ż W f dµ g .
This shows that ż M f v N k dµ g is bounded from below by a positive constant. This yields a contradiction with (4.3). As a consequence, we have v P F pZq.

Due to our assumption on Z, we have G g pvq ě Y g pV q}v}

2{N L N ą 0. So lim inf kÑ8 G g pv k q ě G g pvq ą 0.
In particular, we have

lim inf kÑ8 F pu k q ě lim inf kÑ8 G g pu k q " lim inf kÑ8 γ 2 k G g pv k q " 8.
This contradicts the assumption F pu k q ď B.

We have now all the ingredients to conclude that F admits a minimizer φ. Since F p|φ|q " F pφq, we can assume, without loss of generality, that φ ě 0. φ is then a solution in a weak sense to (4.1). By elliptic regularity, we conclude that φ P W 2,p and by Harnack's inequality that φ ą 0 provided φ ı 0.

We rule out the possibility that φ " 0 as follows. Since Y g pM q ă 0, there exists w P W 1,2 such that G g pwq ă 0. For any λ ą 0 we have F pλwq " λ 2 G g pwq `λN Ipwq.

In particular, if λ is small enough we have F pλwq ă 0. This shows that the zero function is not a global mimimum of F . This forces φ ı 0.

Uniqueness of φ is obtained by applying Proposition 3.3. We now need to get rid of the assumption f P L 8 . For all k ą 0, we set f k :" mintf, ku P L 8 . Let φ k denote the solution to (4.1) with f replaced by f k . Note that the zero set of f k is the same as that of f so the preceding construction applies. It follows from the maximum principle that φ k`1 ď φ k for all k ą 0 (the argument is similar to the one in the proof of Proposition 3.3). Since φ 1 P W 2,p Ă L 8 , the sequence f k φ N ´1 k is uniformly bounded in L p . Hence, from elliptic regularity, the sequence pφ k q k is bounded in W 2,p . By the compactness of the embedding W 2,p ãÑ L 8 together with elliptic regularity, there exists a subsequence pφ θpkq q k of pφ k q k that converges to some φ P W 2,p , φ ě 0 solving (4.1). Note that, from Dini's theorem, pφ k q k converges in L 8 to φ. All we need to do is to exclude that φ " 0.

This can be done as follows. Let w P W 1,2 be, as before, such that G g pwq ă 0. Since W 2,p is dense in W 1,2 , we can assume that w P W 2,p Ă L 8 . As before, considering u " λw in the functional (4.2), we get existence of v such that F pvq ă 0. Set

F k puq :" ż M " 4pn ´1q n ´2 |dφ| 2 `Scal φ 2 `2 N f k |φ| N  dµ g
So we have F k pφ k q ď F k pvq ď F pvq ă 0. Now remark that F k pφ k q Ñ kÑ8 F pφq. This forces F pφq ď F pvq ă 0 which shows that φ ı 0. By construction φ ě 0 and from Harnack's inequality, we have φ ą 0. This ends the proof of Theorem 4.1. Uniqueness is obtained from Proposition 3.3.
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