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ABSTRACT
Using the motion of accreting particles on to haloes in cosmological N-body simulations, we
study the radial phase-space structures of cold dark matter (CDM) haloes. In CDM cosmology,
formation of virialized haloes generically produces radial caustics, followed by multistream
flows of accreted dark matter inside the haloes. In particular, the radius of the outermost
caustic called the splashback radius exhibits a sharp drop in the slope of the density profile.
Here, we focus on the multistream structure of CDM haloes inside the splashback radius. To
analyse this, we use and extend the SPARTA algorithm developed by Diemer. By tracking the
particle trajectories accreting on to the haloes, we count their number of apocentre passages,
which is then used to reveal the multistream flows of the dark matter particles. The resultant
multistream structure in radial phase space is compared with the prediction of the self-similar
solution by Fillmore & Goldreich for each halo. We find that ∼30 per cent of the simulated
haloes satisfy our criteria to be regarded as being well fitted to the self-similar solution. The
fitting parameters in the self-similar solution characterize physical properties of the haloes,
including the mass accretion rate and the size of the outermost caustic (i.e. the splashback
radius). We discuss in detail the correlation of these fitting parameters and other measures
directly extracted from the N-body simulation.

Key words: methods: numerical – dark matter – cosmology: theory.

1 IN T RO D U C T I O N

The concordant cosmological model, i.e. lambda cold dark matter
(�CDM) model, provides a simple picture of both the cosmic
expansion and structure formation in the Universe with a min-
imal set of model parameters. The model consistently explains
multiple cosmological observations, and the model parameters are
measured precisely with the statistical error of a few per cent
level by the cosmic microwave background experiment (Planck
Collaboration VI 2018). According to this model, the large-scale
matter inhomogeneities have evolved under the influence of gravity
and cosmic expansion, starting with tiny density fluctuations that
would have been generated in the early universe. An important
ingredient of late-time structure formation driven by gravity is the
cold dark matter (CDM), which amounts to more than 80 per cent
of the matter components (Blumenthal, Pagels & Primack 1982;

� E-mail: sugiura@tap.scphys.kyoto-u.ac.jp

Bond, Szalay & Turner 1982; Peebles 1982). As it is named, the
CDM was initially cold with negligibly small velocity dispersion,
and behaved like dust fluid at the very early stage of structure
formation. Later, due to the attractive force of gravity, the CDM
gradually accretes into overdense regions, and matter concentration
grows. When the amplitude of the density contrast exceeds unity,
the growth of fluctuations becomes non-linear, finally ending up
with the formation of self-gravitating bounded objects called dark
matter haloes through the collapse and virialization (Binney &
Tremaine 2008). Since a sufficient amount of baryon has been
accumulated by the gravitational potential well of dark matter after
the recombination epoch, the dark matter halo is an ideal site of
galaxy and star formation, and thus observationally important to
probe the structure formation and cosmology.

Within the CDM paradigm, there have been numerous works to
characterize the kinematical, dynamical, and statistical properties
of dark matter haloes. One important feature found in numerical
simulations but not yet clearly understood is the cuspy density
profile called the NFW profile (Navarro, Frenk & White 1996).
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Unlike naive theoretical expectations, the radially averaged density
profile ρ(r) near the halo centre exhibits a shallow cusp, whose
logarithmic slope, defined by d log ρ/d ln r, is larger than −2, mostly
independent of cosmology and the size of haloes. Another striking
feature, also found in the cosmological N-body simulations, is the
power-law nature of the pseudo-phase-space density profile defined
by ρ(r)/σ 3(r), with σ (r) being the velocity dispersion (Taylor &
Navarro 2001; Ludlow et al. 2010; Navarro et al. 2010). The
slope found in the simulations closely matches the prediction of
the Bertschinger’s secondary infall model (Bertschinger 1985),
suggesting that the structure of haloes is built up with continuous
accretion flow and mergers. Yet, recalling the fact that the haloes are
not fully spherical but generically asymmetric with sizable amount
of substructures, how such a simple picture can reconcile with the
actual halo formation processes still remains unclear. Viewing the
halo formation from the viewpoint of collisionless self-gravitating
system, CDM haloes generally have some memories of the initial
condition, and due to its cold nature, unique and characteristic
features appear manifest, in particular, in phase space. In fact,
generic properties of the CDM halo mentioned above are linked
with each other, and one expects that these are originated from
the phase-space dynamics of the CDM haloes. In this respect, the
structural and statistical properties of the haloes in phase space are
worth investigating, and there are thus numerous works along the
line of this (e.g. Drakos, Taylor & Benson 2017; Halle, Colombi
& Peirani 2019, for recent works). Also, a quantitative phase-space
study would serve as a clue to discriminate CDM from non-standard
dark matter scenarios, and in combination with observations, it may
help to clarify the nature of dark matter (e.g. Sikivie, Tkachev &
Wang 1997).

To be more precise, the CDM inside haloes is expected to have
underwent shell crossing during the accretion, and the velocity
at a given position gets multivalued. On the other hand, the
regions outside haloes exhibit a single-stream flow, for which the
velocity of accreting matter is uniquely determined as a function
of position. Importantly, the collisionless and Hamiltonian nature
of the system ensures that the phase-space density is conserved,
and its topological structure remains unchanged. Thus, the single-
stream flow should smoothly be connected to the multistream flow.
Recently, Diemer & Kravtsov (2014) pointed out that there is a
significant deviation of the density profile from the NFW profile at
the outskirt of haloes, and this can happen exactly at the boundary
between single- and multistream flow regions (Adhikari, Dalal &
Chamberlain 2014). In N-body simulation, the location of this
boundary corresponds to the first apocentre of the accreting dark
matter particles, particularly referred to as the splashback radius.
Because of its clear manifestation, the observational prospects and
the theoretical understanding of the splashback feature as a unique
signature of the CDM paradigm have attracted much attention
(More, Diemer & Kravtsov 2015; More et al. 2016a,b; Shi 2016;
Busch & White 2017; Diemer 2017; Diemer et al. 2017; Adhikari
et al. 2018; Chang et al. 2018; Okumura et al. 2018).

It is theoretically expected that the splashback feature in the
radial density profile appears more prominent in spherically sym-
metric haloes, for which several self-similar solutions are known
in the Einstein–de Sitter universe (e.g. Fillmore & Goldreich
1984; Bertschinger 1985; White & Zaritsky 1992; Ryden 1993;
Zukin & Bertschinger 2010; Lithwick & Dalal 2011; Vogelsberger,
Mohayaee & White 2011; Alard 2013). Because of the exact
spherical symmetry, the density profile of self-similar solution
exhibits apparent divergences called caustics at the apocentres of
each flow of accreting matter. The outermost caustic particularly

shows the most notable feature, and its location exactly corresponds
to the splashback radius (Adhikari et al. 2014). Shi (2016) used the
self-similar solution by Fillmore & Goldreich (1984) to give an
analytical prediction of the splashback radius, and Diemer et al.
(2017) found good agreement with numerical simulations. This
suggests that the self-similar solution may capture the overall
trends in the dynamics of accreting material on to CDM haloes
in simulations, and possibly those in the real universe if the CDM
scenario is true, although it is very hard to imagine that spherically
symmetric and isolated halo is realized in reality. In fact, even
when starting from a nearly spherically symmetric initial condition,
non-sphericity is rapidly developed due to the so-called radial
orbit instability (e.g. Binney & Tremaine 2008), and a deviation
from the top-hat spherical collapse model is significant (Suto et al.
2016a). The resultant halo exhibits an elongated triaxial shape (e.g.
Jing & Suto 2002; Suto et al. 2016b), rather different from the
prediction of the self-similar solution (e.g. MacMillan, Widrow
& Henriksen 2006). Nevertheless, the growth of haloes and the
evolved density profile are found to match the prediction of the
self-similar solution. There are also several works advocating that
taking spherical average, the phase-space structures of haloes in N-
body simulations resemble the spherical self-similar solutions (e.g.
Bertschinger & Gelb 1991; Henriksen & Widrow 1997; Mohayaee
et al. 2006; Vogelsberger et al. 2009; Vogelsberger & White 2011;
Dolag, Dolgov & Tkachev 2013). In these respects, it is still
interesting to further clarify the similarities and differences between
the self-similar solution and the full dynamics in N-body simulations
in more quantitative manner. In particular, little work has focused
on the multistream structure of CDM haloes, and a detailed analysis
from the phase space point of view has not yet been made.

In this paper, we compare the phase-space structure of haloes in a
cosmological N-body simulation with those predicted from the self-
similar solution, and try to clarify to what extent the multistream
features agree between the two descriptions. Although the internal
structures of haloes are driven by the collisionless gravitational
dynamics and thus the memory of initial condition should still
remain preserved to some extent, generic properties of haloes,
including the universality in the density profile or the pseudo-
phase-space density scaling, are built up along the halo formation
processes. In this respect, a phase-space comparison with self-
similar solution would give a useful guideline or hint to understand
how the generic features emerge and what environment-dependent
features remain especially in the internal halo structures. In doing so,
the statistical analysis using a large number of haloes is important,
and in this paper, we will make a detailed comparison of radial
phase-space structures with self-similar solution for massive haloes
found in an N-body simulation. A crucial point in this work is to
extract different streams in each halo to reveal the multistreaming
structure. For this purpose, we adopt and extend the SPARTA
algorithm by Diemer (2017). In short, using a number of output
data at different redshifts, we keep track of the trajectories of
dark matter particles around the haloes, and count the number of
apocentre passages for each dark matter particle. Sorting out all the
particles around a halo with the number of apocentre passages, we
can visualize, in phase space, each stream line of multistream flows
inside the halo.

This paper is organized as follows. In Section 2, we present a brief
review of the spherical self-similar solutions. Section 3 describes the
method that we adopt to analyse the dark matter haloes identified in
an N-body simulation. We show our results in Section 4 and discuss
its implication in Section 5. Our conclusion from the analysis and
further discussions are finally presented in Section 6.
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2 SPHERICAL SELF-SIMILAR SOLUTIONS

In this section, we present a brief review of the self-similar solution
described by Fillmore & Goldreich (1984) and Bertschinger (1985).

Consider a spherically symmetric density contrast in the
Einstein–de Sitter universe, with surrounding materials stationary
accreting towards the centre. The dynamics of such a system is de-
scribed by a collection of spherical shells moving radially. Although
all the shells move outward in the radial direction according to the
Hubble–Lemaı̂tre law at first, as increasing the central density due
to the gravitational growth, the motion of surrounding shells ceases
to follow the cosmic expansion, and start to infall into the central
region (e.g. Gunn & Gott 1972; Gunn 1977; Peebles 1980). The
time of this critical point is referred to as the turnaround time tta,
and the physical size/radius of the shell at that time is called the
turnaround radius rta, which is given as the function of tta. Since
each shell has different turnaround time, the properties of the system
can be characterized by a family of the shell radii parametrized by
tta, hence we denote it by r(t, tta).

Imposing the self-similarity, the function r(t, tta) can be written
in the form as

r(t, tta) = rta(tta)λ(t/tta), (1)

where λ is a dimensionless quantity. The functional form of rta(tta)
depends on the initial condition. Assuming a power law for the
initial density contrast given by δi∝r−3/s, we have

rta(tta) ∝ t
β
ta, β = 2

3
+ 2

9
s. (2)

The parameter, s, introduced above is related to the mass accretion
rate, and it is expressed as s = dln Mta/dln a, where Mta is the
enclosed mass within rta at the turnaround epoch tta and a∝t2/3 is
the scale factor of the Universe (Adhikari et al. 2014; Shi 2016).1

Note that this parameter s fully determines the asymptotic inner
slope of the density profile, γ ≡ dln ρ/dln r, through

γ = − 9

3 + s
for s ≤ 3

2
, γ = −2 for s ≥ 3

2
. (3)

With these set-ups, the solution in the special case with s = 1 cor-
responds to the self-similar solution of the collisionless secondary
infall by Bertschinger (1985).

In equation (1), the function λ(τ ) is obtained by solving the
equation of motion for shells

d2r

dt2
= −GM

r2
, (4)

where M is the mass enclosed by the shell. Under the assumption
of self-similarity, this equation is reduced to the non-dimensional
form (Fillmore & Goldreich 1984)

d2λ

dτ 2
= −π2

8

τ 2s/3

λ2
M(λ/τβ ). (5)

Here, the function M(ξ ) is a non-dimensional mass variable
corresponding to the enclosed mass M in equation (4), i.e. the mass
profile normalized by the turnaround mass, given in the integral
form

M(ξ ) = 2s

3

∫ ∞

1


[
ξ − λ(τ ′)

τ ′β

]
dτ ′

τ ′1+2s/3
, (6)

where (x) is the Heaviside step function. Thus, equation (5) is the
integro–differential equation, which has to be solved numerically

1In Fillmore & Goldreich (1984), they use ε = 1/s, instead of s.

based on an iterative method. That is, first we take an initial guess for
the mass profile and solve the equation of motion. We setM(ξ ) = ξ

as our simple initial guess. The solution for λ obtained at the first
trial is then used to estimate M through equation (6), which will
be next used to solve equation (5) in the second trial. We repeat
this procedure until the radial positions of the first five apocentres
(i.e. the position at which dλ/dτ = 0 is satisfied) are converged
well within the accuracy of 0.1 per cent. In solving equation (5) in
practice, we need to introduce a small angular momentum to avoid
the singular behaviour at λ = 0 (Bertschinger 1985; Mohayaee &
Shandarin 2006). This alters the solution near the centre, and we
adjust the angular momentum so that its impacts on the locations
of first five apocentres are less than 0.1 per cent. We calculated the
self-similar solutions in the parameter range 0.1 ≤ s ≤ 9.

The numerical solution of λ, given as a function of τ = t/tta,
describes the motion of a single shell specified by a value of tta. If
we instead fix t and draw λ as a function of tta, it can give a snapshot
of the distribution of a family of shells parametrized by tta. In other
words, at a given time t, the function r(t, tta) and its time derivative
∂r/∂t, plotted as function of tta, forms radial phase-space trajectories
for a collection of shells

(
r(t, tta),

∂r

∂t
(t, tta)

)
tta∈(0,t]

=
(

rta(t)τ−βλ(τ ),
rta(t)

t
τ 1−β dλ

dτ
(τ )

)
τ∈[1,∞)

. (7)

Fig. 1 shows the snapshots of the self-similar solution for specific
values of the parameter, s = 1 (left), 2 (middle), and 3 (right).
Here, the horizontal axis in each panel is normalized by the radius
R200, within which the mean overdensity exceeds 200 times the
background mass density (or equivalently the critical density in
the Einstein–de Sitter universe), and the vertical axis represents
the dimensionless velocity, i.e. τ 1 − β (dλ/dτ ). The size of haloes
is supposed to be characterized by the radius R200 roughly corre-
sponding to the virial radius, but the actual size/region where the
multistream flow can be extended out to a larger radius depending
on the mass accretion rate parameter s. Overall, the size of the
multistream region tends to get compressed as increasing s. In this
respect, the so-called splashback radius, rsp, as indicated by the
vertical dotted line in Fig. 1, provides a more appropriate definition
of the size of a halo. Here, the location of the splashback radius
is determined by the outermost location that satisfies the condition
(∂r/∂t)rsp = 0. Note that in general, the location of the outermost
caustic, defined by dv/dr = 0, does not precisely coincide with the
splashback radius defined here, although several works have used
the outermost caustic as the boundary of a halo, which can be clearly
seen from the sudden change in the slope of the radial density profile
(e.g. Diemer & Kravtsov 2014; More et al. 2015). The reason why
the locations of the caustic and the apocentre are different in phase
space basically follows from the stationary mass accretion. That is,
looking at the motion of shells, we see that the apocentre radius
for each shell becomes gradually increasing in time tta due to the
continuous mass growth at the centre. Then, viewing a collection of
shells in phase space at a given time t, we can find a small segment
in the flow line that have a positive radial velocity, i.e. the shells that
have not yet experienced an apocentre passage, but have a radial
coordinate larger than the preceding shell that has just undergone
an apocentre passage (v = 0), i.e. the splashback radius. In general,
the radial location of the caustic tends to be larger than that of the
apocentre in the presence of mass accretion.

MNRAS 493, 2765–2781 (2020)
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2768 H. Sugiura et al.

Figure 1. Phase-space portraits of the self-similar solution for s = 1 (left), 2 (middle), and 3 (right). The horizontal axis represents the radial position normalized
by the radius R200, at which the mean overdensity of the halo reaches 200 times the background mass density. The vertical axis means the dimensionless
velocity, τ 1 − β (dλ/dτ ). The plot shows the trajectories up to the seventh apocentre passages. The vertical dotted lines indicate the splashback radius Rsp at
which the trajectory crosses the zero-velocity line.

Table 1. Summary of the cosmological parameters used in this
paper. �m is the matter density, �r is the radiation density, �b is
the baryon density, σ 8 and ns give the normalization and slope
of the primordial matter power spectrum, and h is the hubble
parameter.

�m �r �b σ 8 ns h

0.99992 0.00008 0.04356 0.801 0.963 0.72

3 ME T H O D

3.1 N-body simulation

We performed an N-body simulation with N = (512)3 particles
distributed in a (164.0625 h−1Mpc)3 volume with an (almost)
Einstein–de Sitter cosmology. The choice of this cosmology is
driven by the secondary infall model that is only valid in Einstein–
de Sitter cosmology. We, however, prefer to keep a radiation
component so that our early universe calculation with the CAMB

code (Lewis, Challinor & Lasenby 2000) remains accurate. This
component is completely negligible in the late universe of interest
in this paper (z < 2). The cosmological parameters are given in
Table 1.

We use the same simulation set-up as in Blot et al. (2015)
focusing on a single realization. Initial conditions are generated at
an initial redshift of zi = 40 with MPGRAFIC (Prunet et al. 2008) and
assuming second-order Lagrangian perturbation theory (2LPT) for
the displacement. The dynamical evolution of dark matter particles
is calculated with RAMSES (Teyssier 2002). In order to trace the
motions of particles, it is necessary to store enough snapshots of
the simulation (Diemer 2017). We stored 60 snapshots between
redshifts 1.43 and 0, and labelled them by n in ascending order of
time. The snapshots are regularly spaced in expansion factor a with
δa ≈ 0.01. The snapshot n = 40 corresponds to a = 0.411 or z =
1.43 and the snapshot n = 99 corresponds to a = 1 or z = 0.

From these snapshots, we compute the density on a grid with
10243 elements using a Cloud-In-Cell assignment scheme (CIC).
The density at the location of the particles ρ i is linearly interpolated
from the density in the grid (i.e. using an inverse CIC scheme). We
detect haloes at z = 0 (only) with a parallel version (called pSOD) of
the spherical overdensity (SO) halo finder algorithm (Lacey & Cole
1994). The centre of haloes is defined as the most dense particle
(which is close to the minimum of potential). A sphere is then grown

around this centre until the overdensity �m = 200 (relative to the
mean matter density in the universe) is reached. We found 11 296
haloes. After all haloes are detected, we obtain a list of halo centres
at z = 0. Note that the size R200 and mass M200 of the SO haloes as
well as the location of SO haloes at higher redshift do not play a
role in the tracking procedure described below: this procedure only
depends on the location of the centre and the orbits of the particles
around the centre. This is in contrast from other tracking procedures
(such as in Diemer 2017) where the tracking can start only after halo
finders have been run on all snapshots.

3.2 Tracking haloes and particles

In order to study the radial phase-space structure for each halo,
we analyse snapshots densely sampled in time to keep track of the
trajectories of dark matter particles. We, in particular, classify the
trajectory of each dark matter particle by the number of apocentre
passages experienced before z = 0. To do so, we first need to
identify the centre of each halo at each snapshot, and then define
the distance to each dark matter particle from the halo centre, as
well as the velocity of dark matter subtracting the bulk motion of the
halo at the centre. In Section 3.2.1, we present the prescription to
determine the location of the halo centre at each snapshot. Then, in
Section 3.2.2, we analyse the particle trajectories with the velocity
and position re-defined with respect to the halo centres.

3.2.1 Tracking of halo centre

CDM haloes typically have asymmetric shape with many substruc-
tures, and in a strict sense, the centre of halo is not a well-defined
notion. Nevertheless, we may identify the centre-of-mass position
near the most significant high-density region as a proxy of the halo
centre, and use it to keep track of the bulk motion of a halo. This
would provide a robust estimate of the central part of a halo as long
as we consider relatively massive haloes.

We start with the haloes identified at z = 0 using SO algorithm.
We track the identities of the particles near the centre of mass back
in time. The exact procedure is summarized as follows:

(i) First, at z = 0 data (n = 99), pick up the Npickup particles
closest to the centre position of halo.

(ii) Go to one snapshot backward (n = 98), and use the Npickup

particles identified previously to estimate their density-weighted

MNRAS 493, 2765–2781 (2020)
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Figure 2. An example of particle trajectory for DM infalling into halo. Points with lines show the time evolution of a DM trajectory stored in the N-body
snapshots. Left-hand panel plots the radial position as function of redshift, while right-hand panel shows the trajectory in radial phase space. Note that the
colours indicate the different number of apocentre passages: p = 0 (blue), 1 (orange), 2 (cyan), 3 (red), and 4 (purple).

centre-of-mass position given below

xhalo =
Npickup∑

i=1

ρi xi

ρi

, (8)

where xi is the position of ith dark matter (DM) particle, and ρ i is
the local density at the particle.

(iii) Near the newly estimated centre-of-mass position, pick up
again the Npickup closest particles at n = 98.

(iv) Go to n = 97 data, and use the Npickup particles identified at
n = 98 to estimate their centre-of-mass position.

(v) Repeat the above steps until we reach the snapshot at z =
1.43 (n = 40).

In this paper, we choose Npickup = 128 particles. The reason
why we adopt the density-weighted centre-of-mass position is that
rather than a true centre-of-mass position, we wanted to know the
densest region of the halo, which would be more stable against
the merger event and any disturbances. We have checked that a
robust estimation of the halo centre is possible with the density-
weighted method above, and the location of the halo centre changes
monotonically with time.

After identifying the halo centre at the snapshots n = 40–99, the
bulk velocity of the halo, vhalo, is computed using these positions
by the second-order finite difference method.

3.2.2 Identifying particle’s apocentre passages

Having determined the halo centre, we next focus on the trajectories
of dark matter particles, and characterize their orbital motion with
respect to the halo centre, subtracting its bulk motion. In particular,
we wish to clarify the multistream nature of CDM in phase space.

For this purpose, using the multiple snapshots, we identify the
apocentre, and count the number of apocentre passages for each
particle. To do this, we implement the SPARTA algorithm proposed
by Diemer (2017). To be precise, this algorithm is originally used
only to identify the splashback radius, i.e. the radius of the first
apocentre passage. In this paper, we generalize the algorithm and
apply it to identify the subsequent apocentre passages in the inner
regions. That is, using the 60 snapshots from z = 1.43 to 0, we keep
track of each particle trajectory, and measure the radial velocity, vr,
that is the difference in the peculiar velocities of the DM particle and

the halo centre of mass projected along the line of their separation.
Namely, at the nth snapshot, this is expressed as

vr,n ≡ (vn − vhalo,n) · r̂n, (9)

where vn, vhalo,n, and r̂n are the velocity of a DM particle, that
of the halo centre, and the unit vector pointing the DM particle
from the halo centre, respectively. The sign convention is such
that the radial velocity defined above has a negative value for a
particle approaching the halo centre. The sign flips to positive when
a particle passes the pericentre of the orbit. Conversely, a sign
flip from positive to negative happens at the apocentre passage.
The location of the first apocentre passage is particularly used
to define the splashback radius (Diemer 2017). We further keep
tracking the sign flips of radial velocity beyond the first apocentre
passage. Counting the number of apocentre passages p for each
particle, we classify the particle distribution in phase space by p,
which is indeed useful to characterize the multistream structure of
haloes.

Fig. 2 shows an example of a particle trajectory extracted from our
simulation. Based on the procedure mentioned above, the apocentre
passages are identified, and the number of apocentre passages p
is incremented after passing through an apocentre (indicated in
different colours). As shown in this figure, the procedure works
well for isolated haloes with a stationary accretion flow. However,
when DM particles are captured by another halo or substructures,
they may orbit around the centre of this secondary gravitational
source, not the centre of the most prominent haloes of our interest,
relative to which the apocentre passages should be examined. In
such situations, the sign flip in the radial velocity can also occur
due to the internal motion, not at the time of apocentre or pericentre
passages. To avoid misidentification of an apocentre passage, we
thus monitor the direction of the relative position vector, r̂n, and
require an additional condition that the vector must rotate by more
than π /2 between adjacent apocentre passages. We checked that this
ensures in most of the cases that the number p is incremented only
at the apocentre passage.

Finally, we repeat the procedure for all of the DM particles within
4R200 at z = 0, and create, for each halo, the list of the number
of apocentre passages p for the DM particles, which is used to
classify the particles in the phase-space distribution. Fig. 3 shows
the representative examples. Here, we select four specific haloes,
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2770 H. Sugiura et al.

Figure 3. Radial phase-space distribution of DM particles for representative four haloes. Left-hand panels show the phase-space distribution for all DM
particles near the selected haloes without classification. Darker colour indicates higher density. Right-hand panels also plot the same phase-space distribution
as shown in the left-hand panels, but DM particles are classified with the number of apocentre passages, p, and are plotted in different colours. Note that in
right-hand panels, we plot only the particles with p ≤ 5, and others with p ≥ 6 are removed.
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Phase-space structure of CDM haloes 2771

and plot for each halo the radial phase-space structure. Left-hand
panels show all DM particles near the halo, while in right-hand
panels, DM particles are classified with the number of apocentre
passages, p, and plot them in different colours.

Comparing between left-hand and right-hand panels, we see that
the bulk of the phase-space distribution is dominated by the particles
with p = 0, which are not properly the members of halo. The
distribution of these DM particles exhibits irregular and extended
structures in the presence of the merging haloes/subhaloes. On
the other hand, except the last case (bottom panels), phase-space
distributions of the particles with p ≥ 1 look rather regular shape
with a clear segregation of the particles with different p. Apart
from the thick width of their distributions, each of the phase-space
structures resembles the multistream features predicted by self-
similar solution as shown in Fig. 2.

To see more clearly, in Figs 5–8, we separately plot in top panels
the radial phase-space distributions tagged with the number of apoc-
entre passages, p. Here, darker colour implies higher density. Also,
projected particle distributions in position space are shown in middle
panels, while in bottom panels, the cumulative contribution of the
density profile from the particles larger than p is shown in different
colours. As increasing p, we see clearly that particle distribution
tends to get more clustered and rounder, though asymmetric features
or substructures are also observed unlike the spherical self-similar
solution. These trends motivate us to compare with the self-similar
solution in more quantitative way. We will thus discuss in detail how
to compare the measured phase-space distributions with self-similar
solution in next subsection.

3.3 Fitting the self-similar solution to the phase-space diagram

We here describe the procedure to compare the simulation data
with self-similar solution by Fillmore & Goldreich (1984). The
self-similar solution provides both the time evolution of each mass
element and the resultant snapshot of particle distribution in phase
space at a given epoch [see equation (7)]. As shown in Figs 5–8, we
are particularly interested in characterizing the multistream nature
of DM velocity flow, constructed with particle distributions tagged
with the number of apocentre passages, p. Since the particles having
the same value of p are supposed to reside at the same stream line,
we can conversely use the information on the apocentre passages
for each DM particle to detect and identify the stream lines, whose
location and shape can be predicted by the self-similar solution for
a given set of model parameters. We shall thus fit the self-similar
solution to the multiple stream lines for each halo in radial phase
space.

To best reproduce the multistream flow from self-similar solution,
for each p, we divide the particle distribution in phase space into
14 linearly equal bins in radial velocity, ranging from −(7/4)V200

to (7/4)V200, where V200 = √
GM200/R200 is the circular velocity

at the radius R200. The corresponding bin width is V200/4. For
each velocity bin labelled by i, we use particles inside the bin
to compute the median rp , i and the standard deviation σ p , i of the
radial position. In top panels of Figs 5–8, the estimated values of
rp, i and σ p , i are depicted as filled black diamonds with errorbars.
Large radial velocity bins tend to have small number of particles,
which potentially lead to a biased estimation of median values. To
compensate it, we inflate the error bars as

E2
p,i = σ 2

p,i

(
1 +

√
2

np,i − 1

)
, (10)

where np , i is the number of particles in the ith radial velocity bin.
Note that the second term at right-hand side of this equation is the
‘error of error’ due to the Poisson noise. Since the fitting result is
generally prone to be strongly affected by bins with small number of
particles, the correction given above alleviates this to some extent.
To be more conservative, we also ignore bins with np , i < 5, in fitting
the data to self-similar solution.

Note that instead of the standard deviation given above, one may
adopt the error on the mean in our fitting analyses given below.
This would give us much smaller error bars by an extra 1/

√
np,i

scaling, and one can test the spherical self-similar solution in a
very strict sense. However, given the non-sphericity and the non-
stationary accretion of haloes in simulations, it is easy to expect
that the χ2 values of the fitting using the error on the mean would
be much larger than the number of degrees of freedom. We have
confirmed this explicitly using some of the haloes in our sample.
In the same sense, the non-zero scatter in rp , i also implies that
there exists no exact spherical halo with stationary accretion. Since
we are rather interested in the bulk properties of each halo taking
spherical average, we prefer to use the median of rp , i and the
standard deviation at equation (10) as the representative radial
distance and spread in the particle distributions, and test the phase-
space trajectories of DM particles in a statistical sense.

Having obtained the binned data set in radial velocity space for
each p, we compare these data with self-similar solution expressed
in the dimensionless coordinates as follows:

(r/R200, vr/V200) =
(

C�(τ ), Uτ 1−β dλ

dτ
(τ )

)
, (11)

with the function � defined by �(τ ) = τ−βλ(τ )/{τ−β
sp λ(τsp)}. Note

that τ sp corresponds to the epoch of the first apocentre passage.
Here, the quantities C and U are the scaling parameters for
position and velocity, respectively. Comparison of equation (11)
with equation (7) implies C = Rsp/R200 and U = {rta(t)/t}/V200,
where t is the age of the universe. In principle, the parameter U can
be determined once the values of C, t, β or equivalently s, and R200

are fixed. However, the relation between U and other parameters
assumes strict self-similarity and spherical symmetry during the
entire history of halo evolution in an isolated set-up. In particular,
the age of the Universe t in the self-similar solution corresponds to
the age of halo counting from its formation time, which is somewhat
ambiguous notion. Hence, in our fitting analysis, we do not relate U
with other parameters, but rather treat both U and C as independent
free parameters.

To sum up, the free model parameters in self-similar solution
are C, U, and s. These are determined by the likelihood analysis
minimizing the function χ2

χ2(C,U, s) =
pmax∑
p=1

imax∑
i=1

1

E2
p,i

[
rp,i − R200 Ri,p(C, U, s)

]2
, (12)

where p and i respectively run over the label of apocentre passages
and the radial velocity bins, and we set pmax and imax to 5 and 14,
respectively. Note that the summation over the radial velocity bins
in equation (12) is performed for the bins having more than five
particles (np, i ≥ 5). Here, rp, i is the median value of the radial
positions for particle data at ith radial velocity bin with the number
of apocentre passage p. The function Rp,i represents the prediction
of self-similar solution, which is the radial position for the stream
line corresponding to the number of apocentre passage p at the
ith radial velocity bin, given by equation (11). For a given set of
parameters, self-similar solution is computed, and the output results
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2772 H. Sugiura et al.

Figure 4. An example of the MCMC parameter estimation for a typical
massive halo. The plot summarizes the marginalized two-dimensional
posterior distribution for the parameters characterizing the self-similar
solution, C, U, and the accretion rate s, discarding the steps in the burn-
in period. Note that the parameters C and U are related to R200 and V200

through C = R200/Rsp and U = rta/t/V200, where Rsp is the splashback radius,
and rta is the turnaround radius. In each panel, the vertical and horizontal dot–
dashed lines indicate the best-fitting values of model parameters. Top panels
summarize the one-dimensional projected posterior distribution for each
parameter. Visualization of these MCMC results was made with CORNER

(Foreman-Mackey 2016).

are tabulated numerically in the form of equation (11) as function
of τ . Then, we can identify the stream line that corresponds to the
pth apocentre passage, from which we can further read off the radial
position r/R200 at the ith radial velocity bin. In this way, we obtain
Ri,p, which is finally plugged into equation (12). For an efficient
computation of Ri,p , we store the tabulated data set of self-similar
solution finely sampled with every 0.1 in parameter space of s,
and linearly interpolate these data to obtain a new solution for the
target value of s. We confirmed that the linearly interpolated results
are converged to those obtained by quadratic interpolation and no
significant difference is found.

Based on equation (12), we use the Markov chain Monte Carlo
(MCMC) algorithm to explore the model parameters for each
haloes, imposing the following uniform priors:

C ∈ [0, 5], U ∈ [0, 5], s ∈ [0, 9]. (13)

These parameter ranges are large enough that they do not affect the
best-fitting values and tails of the posterior distributions. Making use
of the public python code, EMCEE (Foreman-Mackey et al. 2013), we
calculated 4000 steps with 12 walkers for all the 11 296 haloes. The
length of the chain would be sufficient to obtain convergent posterior
distributions: the autocorrelation time of the MCMC chain is less
than 1000 steps (typically a few hundred steps with slight variation
among different haloes).

For illustration, we show in Fig. 4 the results of MCMC analysis
for a cluster-sized halo. The plotted results are the marginalized
two-dimensional posterior distribution for the model parameters,
discarding the first 800 steps for each walkers as the burn-in period.
As shown in Fig. 4, there is a unique maximum in density which is
very close to the best-fitting values of model parameters, depicted
as the crossing point of the dot–dashed lines. We checked that the

example shown here is typical, and the best-fitting value is close to
the peak position of posterior distribution.

4 R ESULTS

This section presents the main results of this paper, and gives a
detailed comparison of the multistream flow of DM particles in the
N-body simulation with the prediction of the self-similar solution
from the phase-space point of view. Section 4.1 presents the MCMC
analysis based on Section 3.3. Section 4.2 presents the properties
of the MCMC results for all of the haloes identified at z = 0, and
discusses the selection of halo samples better fitted to the self-
similar solution. Then, Section 4.3 shows the statistical properties
of the model parameters for the well-fitted haloes.

4.1 Comparison of representative haloes with self-similar
solution

Here, for illustrated purpose, we pick up four representative haloes
among the total of 11 296, and in the upper panels of Figs 5–8, the
binned phase-space distribution of the DM particles labelled by the
number of apocentre passage p (black filled circles with errorbars)
is compared with the best-fitting self-similar solution, depicted as
the yellow solid lines. Also, as we have seen in Section 3.2.2,
the middle and bottom left panels of Figs 5–8 present the particle
distributions for each p on a two-dimensional projected position
space, while the bottom right panels plot the density profiles for
the cumulative contributions of the particles experienced at least p
apocentre passages.

The first and second example of the haloes, shown in Figs 5
and 6, are the phase-space structure well fitted by the self-similar
solution, with the best-fitting values of s being s = 1.81 and 2.81,
respectively. The mass of these haloes are M200 = 1.23 × 1015 and
1.16 × 1014 M, respectively. As it is clear from the figures, the
predictions with the best-fitting parameters reproduce the measured
phase-space distribution binned along the velocity axis remarkably
well. The particle distributions of these haloes in position space,
seen in the bottom left panels of Figs 5 and 6, exhibit substructures or
clumps, and their global shape is indeed asymmetric. Nevertheless,
as increasing p, the particle distributions gets smoother, and tend
to be rounder. Further, the best-fitting values of s indicate that
the asymptotic slope of the density profile is −2, i.e. ρ∝r−2 [see
equation (3)], which in fact agrees well with inner slope of the
measured density profile, shown in the bottom right panels of Figs 5
and 6.

The third example, shown in Fig. 7, is a halo with mass 3.07 ×
1014 M, three times larger than the second example. Although the
best-fitting self-similar solution seems to explain the overall trends
of the binned phase-space distribution from the simulation well,
a closer look at the simulation data at p = 1 reveals a structure
elongated vertically at vr/V200 < −1, and a systematic discrepancy
between the simulation and the model is manifest around this
structure. This corresponds in position space to a large blob at
(x, y) � (0.5 R200, 0) shown in the leftmost panel in the middle
row. The discrepancy is mostly ascribed to this component with
significant scatter in the radial velocity, just experienced the first
apocentre passage after a major merger. Also, in the position plot for
the particles with p = 0 (second from the left in the bottom row), we
can observe several significant substructures near the centre. These
are before the merger to the main halo as indicated by the fact that
they have p = 0. The existence of these features might also have
disturbed the orbits of the already accreted DM particles. Since the
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Phase-space structure of CDM haloes 2773

Figure 5. A cluster-sized halo with M200 = 1.227 × 1015 M, which apparently shows a good agreement with self-similar solution (see Section 4.2). This
is the same halo as shown in the top panels of Fig. 3. Top: radial phase-space distribution of N-body particles with p = 1, 2, ···, 5 (denoted by blue colour
contrast) with the best-fitting self-similar solution (denoted by orange lines). Particles with different number of apocentre passages, p, are shown in different
panels. Filled diamonds indicate the medians of N-body distributions in each velocity bin with error bars defined at equation (10). Middle and bottom: projected
distribution of DM particles in position space (middle five panels and bottom two panels) and cumulative contribution to the radial density profile (bottom right
panel), classified with number of apocentre passages, p.

self-similar solution by Fillmore & Goldreich (1984) describes an
isolated halo with stationary accreting matter, this is, in a sense, a
typical example violating the basic assumption of the model.

On the other hand, the fourth example, shown in Fig. 8, has a
mass similar to the second example with a much smaller value of
the best-fitting parameter, s � 0. Visually, the agreement between
the self-similar solution and the simulation is bad. In contrast to
the third example, a large discrepancy is now found in the phase-
space distribution at p > 3. Because of this, the inner slope of the
measured density profile does not agree well with that of the best-
fitting self-similar solution (see the bottom right panel). Looking
at the particle distribution in position space at z = 0, we find
that unlike the previous examples, the spatial extent of the particle
distribution does not shrink with increasing p for p ≥ 3. Although,
we do not see any clear signature of the clumps or substructures
at p ≥ 1, we suspect that the discrepancy is due to the remnant
of orbiting substructures which is tidally stripped. In fact, going

back to the snapshots at slightly earlier time, we confirm that this
halo underwent a major merger with a small impact parameter, and
the infalling halo exhibited a rapid orbital decay followed by the
tidal stripping. Thus, the example shown here may not be regarded
as a relaxed halo, though it is difficult to judge only from the
spatial distribution at the final snapshot. In this respect, the phase-
space distribution is more informative, and is powerful to probe the
dynamical properties of halo structure.

In Figs 5–8, we also show the values of both χ2 and the reduced
χ2 for the best-fitting model. Note that the number of degree of
freedom to derive the reduced χ2 varies by haloes because of the
different number of available velocity bins, but it typically ranges
from 50 to 70. In agreement with visual inspection of the radial
phase-space plots, the first example has the smallest χ2 among the
four representative examples, and the fourth example has the largest
χ2 value. However, their reduced χ2 values are rather small, and
both are less than 1. These small values basically come from the
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2774 H. Sugiura et al.

Figure 6. Same as in Fig. 5, but for a slightly less massive halo with M200 = 1.163 × 1014 M. This is the same halo as shown in the second from the top in
Fig. 3.

rather loose error we adopted in estimating χ2 [see equation (10)
and the subsequent paragraph on our choice of the error bars]. Thus,
in order to study the properties of haloes ‘well fitted’ by the self-
similar solution in our sense, the χ2 values or the reduced χ2 values
alone are insufficient. We have to come up with other additional
requirements or criteria to form a sample of well-fitted haloes.

4.2 Sample selection

Applying the method described in Section 3, we have analysed
11 296 haloes whose virial masses M200 are greater than 1013 M. As
we have seen in Section 4.1, the self-similar solution sometimes fails
to describe the multistream structure of phase-space distribution for
haloes in N-body simulation. A part of the reason is ascribed to the
fact that some haloes near the low-mass end do not have sufficient
number of particles to determine the location of the streams to
be compared in detail with the self-similar solutions. In order to
quantitatively clarify the extent to which the self-similar solution
can describe the multistream feature of haloes in radial phase space,
one may introduce strict selection criteria for each halo well fitted
by the self-similar solution. Although this leaves us only a biased

subset of simulated haloes, their statistics would give us useful
insight on the structure of more realistic haloes.

First condition we impose is that the number of radial velocity
bins having DM particles more than five should be at least 48 out of
70 over p = 1–5 [condition (i)]. This excludes 2924 haloes, leaving
8372. Next, we exclude the haloes for which the radial position of
the stream line is not well determined like those shown in Fig. 8 (p
= 3–5). This can be originated from different reasons: a significant
fraction of particles failed to be assigned the correct number of
apocentre passages due to the limitation of our algorithm, or the
actual phase-space distribution is far from self-similar solutions
due to the major merger, a large number of substructures, or
highly asymmetric shape. The χ2 defined at equation (12) alone
cannot perfectly isolate these haloes as ‘badly fitted’ because a poor
determination of the particle trajectories generally leads to a large
value of Ep, i [see equation (10)]. We thus impose another condition
to exclude those haloes from the later analyses as follows. For
each stream line and at each radial velocity bin, we compute the
ratio, Ep,i/r̄p,i , where r̄p,i is the median value of radial position for
particles in the ith velocity bin for particles after the pth apocentre
passage. This ratio indicates how well we can determine the median
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Phase-space structure of CDM haloes 2775

Figure 7. Same as in Fig. 5, but for a halo excluded by the condition (iii) given by equation (14) (See Section 4.2). Note that this is the same halo as shown in
the second from the bottom in Fig. 3.

location of the stream line. We then exclude the halo in which the
seventh largest value of this ratio is greater than 0.625 [condition
(ii)]. With this condition, 4108 haloes are excluded.

Applying the conditions mentioned above, we now assess the
goodness of fit using the minimum value of χ2 obtained from the
MCMC analysis. We impose [condition (iii)]

[χ2]p ≤ 3.5, (p = 1, · · · , 5), (14)

where the subscript p indicates that χ2 is computed only for the
particles with p apocentre passages. The halo shown in Fig. 7 is a
typical example excluded by this third condition, and a significant
deviation from the self-similar solution is found for the first apocen-
tre passage p = 1, χ2

p=1 = 5.968. Note that with this last condition,
haloes whose phase-space particle distribution apparently resembles
the best-fitting self-similar solution are sometimes excluded. In this
respect, the resultant samples that meet all the selection criteria
may be regarded as conservative and high-quality haloes well
described by self-similar solution. We label these haloes as ‘well-
fitted’ samples.

Table 2 summarizes the number of haloes that meet each of the
selection criteria. To see how our criteria gives (un-)biased halo

samples, we plot in Fig. 9 the frequency distribution of haloes
against the quantities characterizing the individual halo properties.
The left-hand panel shows the distribution against the reduced χ2.
We see that the condition (i) preferentially removes haloes having
a rather large value of reduced χ2. Combining the condition (ii)
further excludes haloes mainly with large reduced χ2, but there
still remain haloes with a moderately large reduced χ2 survived.
Adding the third condition, those haloes are finally removed, and
the resultant frequency distribution exhibits a sharp cut-off around
the reduced χ2 ∼ 0.3, which is consistent with equation (14) for the
individual orbit specified by p given that the total degree of freedom
over 1 ≤ p ≤ 5 in the likelihood analysis is roughly around 50–70.

The middle panel of Fig. 9 shows the frequency distribution
against the mass accretion rate, �200, directly measured from the
N-body simulation, which is defined as follows (e.g. Diemer &
Kravtsov 2014):

�200 := � ln M200

� ln a
, �X ≡ X(z = 0) − X(z = 0.5). (15)

The definition above has been used in the literature as an indicator
to characterize the environmental dependence of the splashback
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Figure 8. Same as in Fig. 5, but for a halo excluded by the condition (ii). This is the same halo as shown in the bottom panel of Fig. 3.

Table 2. The number of haloes meeting our selection conditions.

Conditions Number of haloes

None 11 296 (100 per cent)
(i) Sufficient particles in most of the bins 8372 (74.1 per cent)
(i) + (ii) Good orbit determination 4264 (37.0 per cent)
(i) + (ii) + (iii) Well fitted by the self-similar solution 3561 (31.5 per cent)

radii on top of the rather trivial mass dependence. A notable feature
seen in the frequency distribution is that the condition (ii), which
rejects haloes with large uncertainties in the locations of stream
shells, almost determines the accessible range of �200 for the final
samples, excluding the haloes having a large value of �200. This
implies that a rapid mass accretion tends to disturb the trajectories
of DM particles inside the halo, thus leading to a wider stream
line/shell, i.e. the radial distribution of particles having the same
value of p for a given radial velocity.

Finally, the right-hand panel of Fig. 9 shows the frequency
distribution against the halo mass M200. While the condition (i)
removes light haloes almost only in the range M200 � 2 × 1013 M,
the other two conditions do not change the shape of the distribution.

As a result, the final sample of haloes can be regarded as a
representative sample of the original in terms of mass, except for the
lightest end. This is in marked contrast to the effect of the selection
on the accretion rate.

To conclude, one should keep in mind that our final sample
is biased towards low accretion rate, but nearly representative in
terms of the halo mass in later analyses. Once these are in mind,
a large number of haloes that meet all conditions would allow us
to study statistical properties of the multistream nature of CDM
haloes.

4.3 Statistical properties of well-fitted halo samples

The halo sample selected in Section 4.2 is characterized not only by
the measured values of the mass M200 and accretion rate �200 from
usual SO halo definition, but also by the best-fitting parameters
in the self-similar solution, i.e. the accretion rate parameter sbest,
and the two dimensionless quantities Cbest and Ubest. Note that
Cbest represents the ratio of the splashback radius to the radius
R200, i.e. Rsp/R200. As shown in Fig. 4, the parameter Ubest is
strongly correlated with sbest. Hence, focusing on four other physical
parameters, M200, �200, sbest, and Cbest, and also the reduced χ2 of
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Figure 9. Frequency distributions of haloes against reduced χ2 (left), accretion rate �200 (middle), halo mass M200 (right) for haloes that meet our selection
criteria (see Table 2). Vertical axis represents the number of haloes per bin.

Figure 10. Frequency distribution of haloes plotted in two-dimensional
plane of the reduced χ2 and best-fitting parameter of s, sbest. Top and bottom
panels show the results for well-fitted halo samples with mass greater and
less than 1014 M, respectively. Colour depth in each pixel indicates the
number of haloes falling into the pixel in logarithmic scales.

the best-fitting model, we examine the statistical properties of the
selected haloes.

First look at the distribution of the parameter sbest. Fig. 10 shows
the distribution of the haloes in our sample after the selection
projected on the sbest–reduced χ2 plane. We here divide the samples
into two subsamples with the halo mass larger than (upper) and less
than (lower) 1014 M. Fig. 10 shows a clear trend that the massive
haloes tend to have smaller reduced χ2. That is, the multistream
structure in the massive haloes is better described by the self-similar
solution. A part of the reason may be that massive haloes are not so
severely affected by the outer environment, where merger event and
asymmetric matter accretion occur. A closer look at the distribution
of sbest suggests that a larger value of sbest is generally favoured

Figure 11. 25 per cent and 75 per cent quantiles of MCMC s-distributions
for well-fitted haloes. Horizontal axis denotes the best-fitting s-values. The
solid line is plotted for reference, indicating the linear relation, sbest =
s(25 per cent) or s(75 per cent). Due to the positively skewed posterior
distribution, the s(25 per cent) is larger than sbest for most of the haloes.

for massive haloes. Looking at the uncertainty in the parameter
estimation, however, this is not statistically significant.

In Fig. 11, the 25 per cent and 75 per cent quantiles of the
posterior distribution of s are evaluated in each halo from the MCMC
analysis, and the results are plotted as function of the best-fitting
value, sbest. As we have seen in Fig. 4, the posterior distribution of
s is largely skewed with a long tail. This trend is generally seen in
most of the haloes in the selected sample, and the size of the 1σ

error, �s, is almost the same as sbest, i.e. �s/sbest ∼ 1. Note that as
increasing sbest, the distribution of 75 per cent quantile apparently
converges to 7–8. This might be partly ascribed to our set-up of the
prior s ∈ [0, 9], but the number of haloes having s(76 per cent) ∼ 8
is actually small, and it does not affect the best-fitting values of s at
least for the selected halo samples. In any case, with a large scatter
in the posterior distribution, the only thing that one can clearly say
from the distribution of sbest is that the accretion rate parameter lies
at 1� s� 3 for the selected halo samples, and there is no statistically
significant difference between massive and less massive haloes.

Next look at the statistical correlation between the measured halo
properties and the best-fitting parameters in self-similar solution.
Fig. 12 shows the distribution in the plane of Cbest and �200 (top)
and Cbest and sbest (bottom). Since �200 and sbest are expected
to characterize roughly the same thing, i.e. the accretion rate, a
naive expectation is that these two panels exhibit a similar trend.
However, the resultant correlation properties are rather different.
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Figure 12. Correlation among the best-fitting parameters in self-similar
solution and measured quantity. Top panel shows the correlation between
the best-fitting parameter of C (i.e. Cbest) and the measured accretion rate
�200, while bottom panels present the result between best-fitting values Cbest

and sbest. Colour depth in each pixel indicates the number of haloes falling
into the pixel.

While the measured accretion rate �200 exhibits an anticorrelation
with Cbest, the best-fitting accretion rate sbest looks a weak but
positive correlation. Recalling the fact that Cbest corresponds to
Rsp/R200, the former trend is pretty much consistent with those found
in the literature (e.g. More et al. 2015; Diemer et al. 2017).

On the other hand, the weakly positive correlation between Cbest

and sbest looks bit puzzling, and seems to contradict with theoretical
prediction by Shi (2016), who has derived the analytical relation
between the accretion rate and splashback radius based on the self-
similar solution. A large difference between Shi (2016) and our
analysis is that we treat these parameters free to be determined
by fitting the measured phase-space structures to the self-similar
solutions. As we discussed in Section 3.3, the parameters C and
s are tightly related with each other in an idealistic situation, and
Shi (2016) actually used this to derive the correlation property
in an analytical way. Thus, the results shown in Fig. 12 suggest a
departure from the idealistic situation in the simulated halo samples.
In this respect, the fitted values of the accretion rate parameter, sbest,
may not necessarily correspond to the net accretion rate measured
at r200, �200.

To see it more explicitly, we plot in Fig. 13 the statistical
correlation between sbest and �200. Here, dividing the selected halo
samples into two subsamples with mass larger than (upper) and
less than (lower) 1014 M, the frequency distributions of haloes
are shown in the two-dimensional plane. As anticipated, there is
little correlation between sbest and �200, and the trend is almost

Figure 13. Correlation between the best-fitting value of s and measured
accretion rate �200 for well-fitted halo samples. Top and bottom panels,
respectively, show the results for haloes greater and less than mass M200 =
1014 M. Colour depth indicates the number of haloes in each pixel.

similar between light and heavy subsamples, although the scatter
is relatively large for massive haloes. The result indicates that the
two parameters are probing different aspects of the halo accretion
history.

5 D ISCUSSION

In this section, to better understand the results shown in Figs 12
and 13, we investigate the physical meaning of the parameter sbest,
and look for a link to other quantities measured from N-body
simulations. For this purpose, we decompose the mass of each halo
into different contributions, each of which consists of DM particles
with different numbers of apocentre passages. Then, we consider
the contribution coming from the DM particles having p ≥ pmin at
redshift z. Denoting the mass of such a contribution by Mp≥pmin (z),
we define the new accretion rate parameters, which should be more
relevant to the multistream flows inside the splashback radius as

�p≥pmin = � ln Mp≥pmin

� ln a
. (16)

In evaluating equation (16), the finite difference, � ln Mp≥pmin , is
taken between z = 0 and z = 0.11, not z = 0 and z = 0.5, which
we adopted in measuring �200 [see equation (15)]. The reason is
that increasing z as well as p, a reliable estimation of the number
of apocentre passages becomes difficult due to the limited range of
available redshifts (z ≤ 1.43 in our case). The closer redshift interval
used in equation (16) gives us a more instantaneous estimate of the
mass accretion.
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Figure 14. Correlation between sbest and �p≥pmin defined at equation (16)
for well-fitted halo samples. From top to bottom, the results with pmin = 1–5
are respectively shown. Colour depth in each pixel indicates the number of
haloes in logarithmic scales. Dotted lines are the linear regression estimated
by least-squares method, and the derived values of Pearson’s correlation
coefficient, denoted by r, are also shown in each panel. For reference, linear
relations of sbest = �p≥pmin are also plotted in black solid lines.

Fig. 14 shows the correlations between sbest and �p≥pmin for pmin =
1–5 (from top to bottom). In each case, we perform linear regression
and plot the result by the red dotted line. Also, we estimate the
Pearson correlation coefficient r, and the derived values are shown
in each panel. For reference, the linear relation of sbest = �p≥pmin

is also plotted in black solid line. As increasing pmin, the estimated
values of �p≥pmin get large and exceed the mean value of �200

(roughly ∼1). This is presumably because we are preferentially
looking at the inner halo structures, where the inward streaming
flows become dominant. By contrast, the inward accretion flow
near the halo boundary is prone to be disturbed by the outer
environment, and hence �p≥pmin tends to get larger than �200. A
notably interesting trend we find is that the correlation between
sbest and �p≥pmin gets tighter as increasing the minimum number
of apocentre passages, pmin. The trend is, indeed, more clearly
seen in the Pearson correlation coefficient, and quantitatively, the
coefficient increases from 0.079 to 0.505 as we change pmin from
1 to 5. Further, the slope of the linear regression gets inclined,
approaching to sbest = �p≥pmin , though the regression coefficient is
still 0.67 at pmin = 5. The result suggests that the parameter sbest is
determined by the inner multistream flows with a large value of p. In
other words, the best-fitting value of s carries some information on
the memories of the early-phase mass accretion history. By contrast,
the accretion rate �200 is sensitive to the recently accreting matter
near the halo boundary. In this sense, little correlation between
sbest and �200, shown in Fig. 13, may be regarded as a reasonable
outcome.

Finally, it would be interesting if the quantity similar to sbest can
be measured directly from observations. The complementarity of
the parameter s to �200 gives a fruitful insight into the history of
the halo formation and evolution over a longer period of time. Due
to the fact that we can measure only the line-of-sight component
of the velocity and/or confusion between Hubble flow and peculiar
velocity, it is not actually straightforward to get access to the phase-
space structure (but see e.g. Biviano et al. 2013; Munari, Biviano
& Mamon 2014; Abdullah, Wilson & Klypin 2018). Nevertheless,
as we have seen in Section 2, the parameter s is related to the inner
slope of a halo [equation (3)]. Although it is indirect, the density
slope could provide a useful hint to infer or pin down the early-
phase mass accretion history of a halo. Other proxies, such as the
colour or morphological information for galaxies, might be useful
to infer the streams in the phase space.

6 C O N C L U S I O N S

In this paper, we have studied the radial phase-space properties of
CDM haloes in a cosmological N-body simulation. In particular,
we have quantified the multistream structures of haloes inside the
splashback radius, and their radial phase-space distributions are
compared with the spherically symmetric self-similar solution by
Fillmore & Goldreich (1984). In order to trace and characterize
the multistream nature of each halo in N-body simulation, we
implemented the SPARTA algorithm developed by Diemer (2017)
to keep track of the trajectories of dark matter particles. We extended
it to identify the inner apocentre passages inside the so-called
splashback radius, and count its number along each trajectory of
dark matter particle. With the particle distribution characterized
by the number of apocentre passages, the multistream nature of
dark matter velocity flows can be visualized in phase space, and
we were able to make a detailed comparison of the phase-space
properties with the predictions of the self-similar solution. Using
MCMC technique, we have analysed in total 11 296 haloes with
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mass M200 ≥ 1013 M to obtain the best-fitting parameters of the
self-similar solution characterizing the multistream flows inside the
haloes in N-body simulation.

Our important findings are summarized as follows:

(i) About 30 per cent of the haloes among those we analysed are
classified as well described by the self-similar solution (Fillmore &
Goldreich 1984). These haloes are selected by imposing the three
conditions discussed in Section 4.2, i.e. (i) sufficient number of
particles in most of the radial velocity bins, (ii) a clear determination
of stream line/shell tagged with the number of apocentre passages,
(iii) a condition for the goodness of fit for each stream given by
equation (14) (see also Table 2). Typical examples of well-fitted
haloes are shown in Figs 5 and 6. We found that more massive
haloes tend to be better described by the self-similar solution with
a smaller value of the reduced χ2 (see Fig. 10).

(ii) The self-similar solution by Fillmore & Goldreich (1984) is
characterized by the three parameters: stationary accretion rate s,
and scaling parameters in radial position and velocity, C and U,
where the parameters C is related to the ratio of splashback to virial
radius through C = Rsp/R200. Allowing these parameters to be free,
we determined their best-fitting values in each halo, and found that
for the well-fitted halo sample, the best-fitting values of s and C are
distributed around the ranges 1 � sbest � 3 and 0.9 � Cbest � 1.5
(see Fig. 12).

(iii) Statistical analysis of the well-fitted halo sample reveals that
the best-fitting model parameter Cbest shows an anticorrelation with
the measured accretion rate at R200, �200 [see equation (15)]. While
this is fully consistent with those previously found in the literature,
the parameter Cbest exhibits a weak but positive correlation with
the best-fitting accretion rate parameter, sbest, which apparently
contradicts with previous findings. In particular, we found that there
is no clear correlation between sbest and �200. A detailed study on
the mass accretion rate (Section 5) indicates that the best-fitting
parameter sbest in the self-similar solution rather characterizes the
accretion rate determined by the inner structure of haloes with a
large value of p (number of apocentre passage). In other words, sbest

is the quantity complementary to �200 and carries the information
on the early-phase mass accretion history, also linked to the slope
of density profile inside the splashback radius.

Note that these findings are based on an N-body simulation per-
formed in an Einstein–de Sitter cosmology. One obvious question
is whether these behaviours persist in standard �CDM cosmology
or not. Although we lose strict self-similarity, recalling the fact that
dynamical time-scale of halo formation is shorter than the time-
scale of cosmic expansion, one expects that the similar features
can be still seen, especially at the inner streams in massive haloes
formed at an early time. In fact, with a slight extension of the self-
similar solution, the analytical relation derived by Shi (2016) is
found to describe the N-body haloes well in a �CDM cosmology
(Diemer et al. 2017). In any case, a quantitative study on the radial
phase-space structure of haloes in non-Einstein–de Sitter Universe
is worth for further investigation, and we will address this issue in
near future.

From the observational point of view, a more crucial and inter-
esting aspect to be clarified would be the phase-space structure of
subhaloes and satellite galaxies inside a halo in connection with dark
matter multistream flows. These objects are known to be affected
by dynamical friction, and because of this, their splashback features
are systematically different from that of the dark matter (Adhikari,
Dalal & Clampitt 2016; Adhikari et al. 2018). In this respect,

their phase-space distribution would not exactly trace the multi-
stream structure of dark matter. Characterizing and modelling their
phase-space properties are important for confronting observations.
For this purpose, a systematic study using high-resolution cosmo-
logical simulations with a large boxsize is indispensable, and it may
even give a hint to probe the nature of CDM from observations.

Finally, the phase-space study of DM haloes definitely provides
an important and new clue to understand the physical properties of
CDM haloes. Recently, alternative to the N-body simulation, a more
fundamental numerical method directly solving Vlasov–Poisson
equations in 6D phase space is developing (Yoshikawa, Yoshida &
Umemura 2013; Hahn & Angulo 2016; Sousbie & Colombi 2016).
Such a technique would be certainly essential to resolve the phase-
space structures deep inside the splashback, thus giving a hint to
clarify the nature of cuspy density profile as well as the power-law
nature of pseudo-phase-space density profile. Although this paper
focuses on the phase-space structure inside the splashback radius,
it is still regarded as the outer part of the halo system away from
the cuspy structure. Nevertheless, an extension of the analysis to
the inner phase space is straightforward. The investigation of the
self-similarity and the structural properties is a crucial step towards
the understanding of generic features of CDM haloes, and this is
left for future work.
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