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Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion

We prove that the topological recursion formalism can be used to compute the WKB expansion of solutions of second order differential operators obtained by quantization of any hyperelliptic curve. We express this quantum curve in terms of spectral Darboux coordinates on the moduli space of meromorphic sl 2 -connections on P 1 and argue that the topological recursion produces a 2gparameter family of associated tau functions, where 2g is the dimension of the moduli space considered. We apply this procedure to the 6 Painlevé equations which correspond to g = 1 and consider a g = 2 example.

Introduction

Since the pioneering works of Kontsevich [START_REF] Konsevich | Intersection theory on the moduli space of curves and the matrix Airy function[END_REF] proving Witten conjecture [START_REF] Witten | Two-dimensional gravity and intersection theory on moduli space[END_REF] on intersection numbers on the moduli space of Riemann surfaces, it is known that there is a big interplay between the theory of integrable systems and enumerative geometry, going through mirror symmetry. The original presentation states that there exists a generating function for intersections of ψ classes on M g,n which is a KdV tau function. However, one can present it in a slightly different way as follows. Let us define a different generating series by

Ψ K (x, ) := exp   ∞ g=0 ∞ n=1 2g-2+n n! k∈N n Mg,n n j=1 ψ kj j (2k i -1)!! x ki+ 1 2   .
(1-1)

The Virasoro constraints satisfied by the corresponding KdV tau function is equivalent to the Airy equation

2 ∂ 2 ∂x 2 - x 4 Ψ K (x, ) = 0. (1-2)
This differential operator is related to our enumerative problem by mirror symmetry. Indeed, Ψ K (x, ) is a generating series for Gromov-Witten invariants of the point. This Gromov-Witten theory turns out to have a Landau-Ginzburg model defined on the Riemann surface {y 2 = x 4 } ⊂ C 2 . The Airy equation can thus be interpreted as a quantization of the curve mirror symmetric to the Gromov-Witten theory of the point.

One may wonder if this procedure mixing mirror symmetry and quantization of algebraic curves can be applied to other problems of enumerative geometry. More precisely, given an problem of enumerative geometry, can one build a generating series Ψ(x, ) for the numbers of interest such that it is annihilated by a differential operator P x, ∂ ∂x Ψ(x, ) = 0 (1-3)

whose classical limit P (x, y) := lim →0 P (x, y) defines a Riemann surface {P (x, y) = 0} ⊂ C 2 which is mirror to our enumerative problem? The topological recursion formalism [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] developed in the last 10 years and giving a universal solution to semi-simple Gromov-Witten theories [START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF] is conjectured to give a positive answer to this question in a large setup. This problem consists in proving that the application of the topological recursion to a classical curve Σ := {P (x, y) = 0} allows to build a generating series Ψ(x, ) solution to a differential equation P x, ∂ ∂x Ψ(x, ) = 0 [START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF]. This claim has been proved in the case when Σ has genus zero [START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Marchal | Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl 2 case[END_REF] and in a variety of examples (see [START_REF] Norbury | Quantum curves and topological recursion[END_REF] for a nice review of this topic) when considering variables in C * instead of C as well. Unfortunately, until recently no example with higher genus Riemann surface Σ was worked out. Some attempts in this direction have been made in the context of Painlevé equation where the expected genus is equal to 1. In [START_REF] Eynard | Counting surfaces: CRM Aisenstadt Chair Lectures[END_REF][START_REF] Iwaki | Painlevé 2 equation with arbitrary monodromy parameter, topological recursion and determinantal formulas[END_REF][START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF][START_REF] Iwaki | Quantum Curve and the First Painlevé Equation[END_REF], solutions to Painlevé equations where built using topological recursion starting from a singular genus 0 curve, namely by considering a singular point in a corresponding moduli space of quadratic differentials. These works use the general result of [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF] which is valid only for genus 0 Riemann surfaces.

A breakthrough has been made in [START_REF] Iwaki | 2-parameter τ -function for the first Painlevé equation :Topological recursion and direct monodromy problem via exact WKB analysis[END_REF] where the author proved that the topological recursion can be used to quantize the Weierstrass curve y 2 = x 3 + αx + β for generic values of α and β. On the way, this allows to provide with a 2-parameter solution of Painlevé 1 equation. This quantization procedure may not only be used to find solutions to Painlevé type equations but also to compute enumerative invariants as Gromov-Witten invariants or Hurwitz numbers [START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF] as explained above. The research activity on this topic is nowadays very active for its possible applications to the computation of knot invariants in the context of the volume conjecture [START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF].

In the present article, we generalize Iwaki's wonderful result to the quantization of any hyperelliptic curve, paving the way to a possible generalization to any algebraic curve. Let us now summarize how this is done.

In Section 2, we recall the topological recursion formalism in the case of hyper-elliptic curves. Given a meromorphic quadratic differential φ 0 on P 1 , let Σ φ0 := {(x, y) ∈ C / y 2 (dx) 2 = φ 0 } be an associated compact Riemann surface. We explain how the recursion associates a set of multilinear forms ω h,n on Σ n φ0 to such a quadratic differential together with a Torelli marking of Σ φ0 . In Section 3, we recall some well-known facts about the moduli space of quadratic differentials and explain how the output (ω h,n ) h,n varies when φ 0 moves in this space.

After these background sections, we present the first important result of this paper. Given the same data as above, one can collect the result of the topological recursion into a single generating series (see definition 4.3)

ψ(x, ) = exp   h≥0 n≥1 2h-2+n n! γ(x) • • • γ(x) ω h,n   (1-4)
where γ(x) is a well chosen integration path in Σ φ0 with end points in the fiber above a point x in the base curve P 1 . If this function does not satisfy any differential equation by quantization of Σ φ0 , we prove in Theorem 4.1 that it is a solution to a PDE with respect to x and a subset of coordinates on the moduli space of quadratic differentials. The proof of this first important result follows the line of [START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF] taking into account the additional contributions involved by the non-vanishing genus of Σ φ0 .

In order to obtain a function annihilated by a quantum curve, one needs to correct ψ(x, ) by exponentially small corrections in to build a "non-perturbative" analog. This non-perturbative wave function Ψ(x, ) is built in Definition 5.1 as a Fourier transform of ψ(x, ). We finally prove the main result of this article in Theorem 5.1. The latter proves that Ψ(x, ) is annihilated by "quantum curve"

2 ∂ 2 ∂x 2 -2 R(x) ∂ ∂x -Q(x) -H(x) Ψ(x, ) = 0. (1-5)
In this expression, all functions are rational functions of x with poles at the poles of φ 0 together with simple poles at a set of "apparent singularities" (q i ) g i=1 where g is the genus of Σ φ0 . Theorem 5.1 provides explicit expressions of these different functions. The proof of this theorem mainly relies on the fact that Ψ(x, ) is a solution to a PDE similar to the one satisfied by ψ(x, ) but that additionally it also has "good" monodromies along non-trivial cycles as explained in Lemma 5.1. This simple property allows to prove that some corresponding Wronskian functions are rational in x eventually leading to the result.

In order to have a better geometrical understanding of the quantum curve thus produced, we linearize the system in Section 6 replacing the quantum curve by a sl 2 -connection on P 1 . We then study the corresponding characteristic variety, the -deformed spectral curve in Theorem 6.1. From this point of view, the topological recursion produces some flows in the -direction in a moduli space of quadratic differentials starting from the initial value φ 0 . Finally, in Section 7, we embed the result in a corresponding isomonodromic system explaining how our procedure allows to build isomonodromic tau functions.

In Section 8, we apply the procedure to the simplest cases. We thus get 2-parameter solutions to the 6 Painlevé equations as well as corresponding tau functions. We also consider a genus 2 example leading to the second element in Painlevé 2 hierarchy.

The present work gives one possible quantization of a spectral curve and is partly motivated by applications in mathematical physics. Indeed, recent progresses have been made in the computation of isomonodromic tau functions motivated by the possibility of interpreting the latter in terms of conformal blocks in associated Conformal Field Theories [START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Iorgov | Isomonodromic Tau-Functions from Liouville Conformal Blocks[END_REF][START_REF] Teschner | Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I[END_REF]. From this perspective, our work only considers a base curve equal to P 1 and the Lie algebra sl 2 . We shall naturally consider a generalization of our work to the higher genus base curves and arbitrary semi-simple Lie algebras. We hope that the present article could generalize nicely to these cases. Indeed, the PDE of Theorem 4.1 can be thought of as a loop equation in the general topological recursion formalism and should possibly be obtained for this general setup. The second step starting from this PDE to the quantum curve only uses the monodromy properties of the non-perturbative wave functions along cycles in the spectral cover. We believe that this step can be adapted to the general setup as well.

On another hand, we build only formal trans-series solutions to differential equations in the present article. It is fundamental to understand if, and when, these formal objects admit some Borel summability properties in order to study their Stokes properties in the spirit of the exact WKB analysis of [START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF][START_REF] Iwaki | Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras[END_REF]. We hope to address this issue as well as the related questions of the dependance of the wave functions to a choice of Torelli marking in a future work. This second question can be interpreted as asking if our quantization procedure depends on a choice of polarization. A choice of Torelli marking can indeed probably be interpreted as a choice of real polarization. Changing such a polarization will probably lead to modular properties related to cluster transformations as in the recent works on exact WKB computations mentioned above.
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Quadratic differentials and topological recursion

In this section, we recall the formalism of topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF] starting from the data of a quadratic differential on the Riemann sphere.

Quadratic differentials and initial data

Let φ be a meromorphic quadratic differential on P 1 , namely it reads

φ(x) = f φ (x) (dx) 2 (2-1)
where f φ (x) is a rational function of x. Let us denote by Σ φ the compact Riemann surface:

Σ φ = {(x, y) ∈ C 2 |y 2 = f φ (x)} (2-2)
where • denotes the compactification at x = ∞. For reasons explained below, we sometimes call Σ φ a classical spectral curve.

Definition 2.1 (Admissible curves).

A quadratic differential φ is called admissible if Σ φ is a smooth algebraic curve such that, away from x = ∞, the poles of φ are distinct from the critical values of the map x : Σ φ → P 1 .

Let us denote by P φ the set of poles of φ on P 1 and by P φ the set composed of the pre-images by x of those poles on Σ φ .

Let us denote by R φ := {a i } the set of finite ramification points of the map x defined by

x(a i ) = u i = ∞ dx(a i ) = 0 . (2-3)
In addition, we will the set {u i = x(a i )} will be referred to as critical points.

In its original version [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], the topological recursion is a procedure taking as input an algebraic curve together with a Torelli marking. For this purpose, in the present paper, our input is defined in the following way.

Definition 2.2 (Admissible initial data). An admissible initial data is the data of a pair

φ 0 , (A i , B i ) g(φ0) i=1
where φ 0 is an admissible quadratic differential, g(φ 0 ) denotes the genus of Σ φ0 and

(A i , B i ) g(φ0) i=1 is a symplectic basis of H 1 (Σ φ0 , Z).

To any such initial data, one associates the initial values ω

0,1 ∈ H 0 Σ φ0 \ P φ , K Σ φ 0 \P φ and ω 0,2 ∈ H 0 Σ φ0 × Σ φ0 , p * 1 K Σ φ 0 ⊗ p * 2 K Σ φ 0 (-2∆)
where p 1 and p 2 the projections Σ φ0 × Σ φ0 → Σ φ0 on the first and second factor respectively and ∆ is the diagonal divisor in Σ 2 φ0 in the following way. By choosing a branch of the square root once and for all, one defines

ω 0,1 [φ 0 ] := [φ 0 ] 1 2 := ydx (2-4)
where

y 2 = f φ . ω 0,2 [φ 0 , (A i , B i ) g i=1
] is defined as the unique differential on Σ φ0 × Σ φ0 whose only singularities are double poles without residue on the diagonal and normalized by

ω 0,2 (z 1 , z 2 ) = dz 1 ⊗ dz 2 (z 1 -z 2 ) 2 + O(dz 1 ⊗ dz 2 ) (2-5)
in any local coordinates as z 1 → z 2 and

∀ i ∈ 1, g : z1∈Ai ω 0,2 (z 1 , z 2 ) = 0. (2-6)
It is worth noticing that ω 0,1 does not depend on the Torelli marking while the latter fixes ω 0,2 uniquely.

Topological recursion

Let us now present the topological recursion formalism in this simple setup. It is an inductive procedure associating to any admissible initial data φ 0 , (A i , B i )

g(φ0) i=1
, a set of differential forms

ω h,n φ 0 , (A i , B i ) g(φ0) i=1 ∈ H 0 Σ n φ0 , K ⊗n Σ φ 0 (-(6h -6 + 4n)R [n] ) where R [n] = n i=1
p -1 i (R), p i : Σ n φ0 → Σ φ0 being the projection along the i th component. It is defined as follows:

Definition 2.3. For any admissible initial data φ 0 , (A i , B i ) g(φ0) i=1 , let us define ω 0,1 [φ 0 ] and ω 0,2 [φ 0 , (A i , B i )]
as above and, for 2h

-2 + n ≥ 0, ω h,n φ 0 , (A i , B i ) g(φ0) i=1 ∈ H 0 Σ n φ0 , K ⊗n Σ φ 0 (-(6g -6 + 4n)R [n]
) is defined inductively by

ω h,n (z 1 , . . . , z n ) := p∈R Res z→p z σ(z) ω 0,2 (z 1 , •) 2 (ω 0,1 (z) -ω 0,1 (σ(z))) ω h-1,n+1 (z, σ(z), z 2 , . . . , z n ) + h 1 + h 2 = h A B = {z 2 , . . . , z n } (h 1 , |A|) / ∈ {(0, 0), (h, n -1)} ω h1,|A|+1 (z, A) ω h2,|B|+1 (z, B)
where σ : Σ φ0 → Σ φ0 is the hyper-elliptic involution, namely, it is defined by

∀ z ∈ Σ φ0 \ R , x(z) = x(σ(z)) and σ(z) = z. (2-7)
For h ≥ 2, we define the free energies ω h,0 φ 0 , (A i , B i )

g(φ0) i=1 ∈ C by ω h,0 := 1 2 -2h p∈R Res z→p ω h,1 (z) z o ω 0,1
where o ∈ Σ φ0 is an arbitrary base point of which ω h,0 is independent.

Finally, for h ∈ {0, 1}, we can define ω 0,0 and ω 1,0 . Their explicit expressions being technical and useless for our purpose, we refer the reader to [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] for them. The only important point is that they are defined in such a way that they satisfy the upcoming variational formulas of Lemma 3.1.

In the expression above and in the following, we do not write the dependence of ω h,n in the initial data except when we want to emphasize it.

Space of quadratic differentials and deformations

An important property of the objects built by topological recursion is that they have nice properties under variations of the initial data. One can actually think of ω h,n as a generating series of n th order derivatives of ω h,0 with respect to an infinite number of parameters in the space of initial data. In order to make this statement more precise, we shall now consider a finite dimensional sub-space of the space of initial data.

Space of quadratic differentials and coordinates

Let n ≥ 0 be a positive integer and let (X ν ) n ν=1 be a set of distinct points in C.

Let (r ν ) n ν=1 ∈ (N \ {0})
n be a set of degrees associated to the points (X ν ) n ν=1 . Let us denote by r ∞ ∈ N \ {0} a degree at infinity. Without loss of generality, we shall assume the existence of a pole at infinity in this article to avoid cumbersome notations. One defines by D = n ν=1 r ν (X ν ) + r ∞ (∞) the resulting divisor.

Definition 3.1 (Space of quadratic differentials Q(P 1 , D, n ∞ )). Given a divisor D = n ν=1 r ν (X ν ) + r ∞ (∞) and n ∞ ∈ {0, 1}, let Q(P 1 , D, n ∞ )
be the moduli space of quadratic differentials on P 1 such that any φ ∈ Q(P 1 , D, n ∞ ) has a pole of order at most 2r ν at the finite pole X ν ∈ P finite and a pole of order at most 2r ∞ -n ∞ at infinity.

Note in particular that the degree of the pole at infinity may be even or odd while for finite poles we assume that the degrees are always even. This requirement will be more transparent from the integrable systems perspective where we may allow at most only one odd pole to avoid degeneracy. Using a trivial reparametrization, this pole may always be chosen to be ∞, a widespread convention used in many examples like Painlevé equations.

Q(P 1 , D, n ∞ ) is a finite dimensional space equipped with a Poisson structure (see for exemple [START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF] for a recent account close to our presentation). In the present paper, we shall be interested only in the formal neighborhood of a point in this space hence we shall not discuss any global property of such spaces. On the contrary, we will now describe local coordinates around a quadratic differential φ 0 .

A first set of coordinates is given by the coefficients of the partial fraction decomposition of f φ

f φ = 2(r∞-2)-n∞ k=0 H ∞,k x k + n ν=1 2rν k=1 H ν,k (x -X ν ) k . ( 3-1) 
As a moduli space, this space can be equipped with a Poisson structure in such a way that part of these coefficients are Casimirs (see for example [START_REF] Adams | Isospectral Hamiltonian Flows in Finite and Infinite Dimensions[END_REF][START_REF] Adams | Spectral Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras[END_REF]). Fixing them allows restricting to a symplectic leaf of this Poisson manifold. We shall now present and use different coordinates that are natural from the topological recursion perspective, allowing fixing the values of these Casimirs. 

} := x -1 (X ν ) for ν ∈ 1, n and {b + ∞ , b - ∞ } := x -1 (∞) if n ∞ = 0 and {b ∞ } := x -1 (∞) if n ∞ = 1.
Let us denote by P := P finite P ∞ the set of poles on Σ φ where P finite := {b + ν , b - ν } n ν=1 and

P ∞ := {b + ∞ , b - ∞ } (resp. P ∞ := {b ∞ }) if n ∞ = 0 (resp. n ∞ = 1
). To obtain a symplectic leaf of our system, one shall fix the singular behavior of ω 0,1 around its poles, i.e. its residue and singular type defined below.

Definition 3.3 (Times). For any

T ∈ C r∞+ n ν=1 rν -n∞ , where T has components labeled T ∞,k with k ∈ 1, , r ∞ (resp. k ∈ 2, r ∞ ) if n ∞ = 0 (resp. if n ∞ = 1) and T ν,k for ν ∈ 1, n and k ∈ 1, r ν , let Q(P 1 , D, n ∞ , T) ⊂ Q(P 1 , D, n ∞ ) be the space of quadratic differentials (known as the Whitham- Krichever differentials) such that ω 0,1 [φ] has the following Laurent expansions -around b ± ν , ω 0,1 [φ] = ± rν k=1 T ν,k dx (x -X ν ) k + O (dx) ; -around b ± ∞ , ω 0,1 [φ] = ± r∞ k=1 T ∞,k (x -1 ) -k d(x -1 ) + O(d(x -1 )) = ∓ r∞ k=1 T ∞,k x k-2 dx + O(x -2 dx) if n ∞ = 0; -around b ∞ , ω 0,1 [φ] = r∞ k=2 T ∞,k x k-1 d(x -1 2 ) + O(d(x -1 2 )) = - r∞ k=2 T ∞,k 2 x k-5 2 dx + O(d(x -1 2 )) if n ∞ = 1.
For generic values of the times T, Q(P We will not use these coefficients to parametrize the space Q(P 1 , D, n ∞ , T) but rather homological coordinates given by the periods of ω 0,1 [φ] in the spirit of the original topological recursion [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF] and more recently [START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF].

Definition 3.4 (Periods). For admissible initial data φ,

(A i , B i ) g(Σ φ ) i=1
, let the period vector ∈ C g(Σ φ ) be defined by

∀ i ∈ 1, g(Σ φ ) : i := Ai ω 0,1 . (3-3)
Remark that, if the times T depend only on the quadratic differential, the periods depend on a choice of Torelli marking. This choice of Torelli marking can be interpreted as a choice of real polarization [START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF].

Hence, any φ ∈ Q(P 1 , D, n ∞ ) takes the form

φ(T, ) =   2(r∞-2)-n∞ k=r∞-3 H ∞,k (T) x k + r∞-4 k=0 H ∞,k (T, ) x k + n ν=1 2rν k=rν +1 H ν,k (T) (x -X ν ) k + rν k=1 H ν,k (T, ) (x -X ν ) k  
(3-4) where T and are local coordinates.

Variational formulas

Fixing a divisor D, the topological recursion taking as initial data a quadratic differential φ 0 ∈ Q(P 1 , D, n ∞ ) is a procedure generating functions on a neighborhood of φ 0 ∈ Q(P 1 , D, n ∞ ) with value in different spaces of differentials. Using the local coordinates given by the times and periods described above, one can study them as functions of the latter. The general theory developed for the topological recursion provides a nice way to compute the derivatives of such functions [START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

Remark that, because the coefficients of the expansion around b + ∞ and b - ∞ are not independent, the variational formulas for T ∞,k include residues both at b + ∞ and b - ∞ . The same subtlety arises for the coefficients of the expansion around b ± ν .

Lemma 3.1. [Variational formulas]

Given admissible initial data (φ 0 , (A i , B i )

g(Σ φ 0 ) i=1
), the output of the topological recursion (ω h,n ) n≥0,h≥0 satisfies -For the times associated to ∞:

∀ k ≥ 2 , ∂ω h,n (z) ∂T ∞,k = Res p→b + ∞ ω h,n+1 (p, z) x(p) k-1 k -1 -Res p→b - ∞ ω h,n+1 (p, z) x(p) k-1 k -1 (3-5) if n ∞ = 0 and ∀ k ≥ 2 , ∂ω h,n (z) ∂T ∞,k = Res p→b∞ ω h,n+1 (p, z) x(p) k-1-1 2 2k -3 (3-6)
otherwise.

-For the times associated to b ± ν :

∀ k ≥ 2 , ∂ω h,n (z) ∂T ν,k = Res p→b + ν ω h,n+1 (p, z) (x(p) -X ν ) -k+1 k -1 -Res p→b - ν ω h,n+1 (p, z) (x(p) -X ν ) -k+1 k -1 (3-7) and ∂ω h,n (z) ∂T ν,1 = p b + ν ω h,n+1 (•, z) - p b - ν ω h,n+1 (•, z). (3-8)
-For the periods:

∀ j ∈ 1, g : ∂ω h,n (z) ∂ j = 1 2πi Bj ω h,n+1 (•, z). (3-9)
Remark that one can perform variations with respect to any time by considering φ 0 as a point in Q(P 1 , D, n ∞ ) for r ν and r ∞ large enough.

From this point of view, ω h,n+m can be thought of as a generating function for the m th derivative of ω h,n with respect to the parameters T and . In particular, one can express the coefficients of the expansion of ω 0,1 around any of these poles in these terms.

Corollary 3.1. The expansion of ω 0,1 in local coordinates around its poles reads

-around b ± ν , ∀ l ≥ 2 : ω 0,1 [φ] = ± rν k=1 T ν,k dx (x -X ν ) k ± l k=2 k -1 2 ∂ω 0,0 ∂T ν,k (x -X ν ) k-2 dx + O (x -X ν ) l-1 dx -around b ± ∞ , ∀ l ≥ 2 : ω 0,1 [φ] = ∓ r∞ k=1 T ∞,k x k-2 dx ∓ l k=2 k -1 2 ∂ω 0,0 ∂T ∞,k x -k dx + O(x -l-1 dx) if n ∞ = 0; -around b ∞ , ∀ l ≥ 2 : ω 0,1 [φ]) = - r∞ k=2 T ∞,k 2 x k-5 2 dx - l k=2 2k -3 2 ∂ω 0,0 ∂T ∞,k x -k+ 1 2 dx + O x -l-1 2 dx if n ∞ = 1.
Thanks to this simple corollary, one can get some expressions of the quadratic differential emphasizing the dependence on the times and the periods.

Lemma 3.2. A quadratic differential φ ∈ Q(P 1 , D, n ∞ , T) reads f φ =   r∞ k=1 T ∞,k x k-2 2   ∞,+ + n ν=1   rν k=1 T ν,k dx (x -X ν ) k 2   Xν ,- + k∈K∞ U ∞,k (x) ∂ω 0,0 ∂T ∞,k + n ν=1 k∈Kν U ν,k (x) ∂ω 0,0 ∂T ν,k (3-10)
if n ∞ = 0 and

f φ =   r∞ k=2 T ∞,k 2 x k-5 2 2   ∞,+ + n ν=1   rν k=1 T ν,k dx (x -X ν ) k 2   Xν ,- + k∈K∞ U ∞,k (x) ∂ω 0,0 ∂T ∞,k + n ν=1 k∈Kν U ν,k (x) ∂ω 0,0 ∂T ν,k (3-11) if n ∞ = 1.
Here, [f (x)] ∞,+ (resp. [f (x)] Xν ,-) refers to the positive part of the expansion in x of a function f (x) around ∞, including the constant term, (resp. the strictly negative part of the expansion in (x -X ν ) around X ν ) and we have defined

-K ∞ = 2, r ∞ -2 and ∀ k ∈ K ∞ : U ∞,k (x) := (k -1) r∞ l=k+2 T ∞,l x l-k-2 , if n ∞ = 0 (3-12)
and

U ∞,k (x) := k - 3 2 r∞ l=k+2 T ∞,l x l-k-2 , if n ∞ = 1 (3-13) -K ν = 2, r ν + 1 and ∀ k ∈ K ν : U ν,k (x) := (k -1) rν l=k-1 T ν,l (x -X ν ) -l+k-2 (3-14)
Proof. The proof immediately follows from the partial fraction decomposition of f φ and the expression of the first holomorphic terms of the expansion of ω 0,1 around one of its poles using the variational formulas of Lemma 3.1.

Remark 3.1. Note that in the expression of Lemma 3.2, φ depends on the periods only through ω 0,0 .

Symmetries

In addition to the variational formulas, the output of the topological recursion is skew-symmetric under the hyper-elliptic involution σ, i.e.

∀ h ≥ 0 , ∀ n ≥ 1 : ω h,n (z 1 , . . . , z n ) + ω h,n (σ(z 1 ), z 2 , . . . , z n ) = δ h,0 δ n,2 dx(z 1 ) dx(z 2 ) (x(z 1 ) -x(z 2 )) 2 .
(3-15)

One also has

∀ (z 1 , z 2 ) ∈ (Σ φ ) 2 \ ∆ , ω 0,2 (z 1 , z 2 ) = ω 0,2 (σ(z 1 ), σ(z 2 )). (3-16) 
One can use these symmetry properties to obtain easily a few equalities that we shall use repetitively in the following:

∀ (z 1 , z 2 ) ∈ Σ 2 φ \ ∆ , z1 σ(z1) ω 0,2 (z 2 , •) = - z1 σ(z1) ω 0,2 (σ(z 2 ), •) (3-17)
which implies, for any ramification point a (thus satisfying σ(a) = a),

∀ (z 1 , z 2 ) ∈ Σ 2 φ \ ∆ , z1 a z2 σ(z2) ω 0,2 = - σ(z1) a z2 σ(z2) ω 0,2 . (3-18)
4 The perturbative world

Perturbative partition function

Given an admissible initial data (φ 0 , (A i , B i )), one can build generating functions collecting the quantities (ω h,n ) h≥0,n≥0 defined in Section 2.2. Since the variational formulas allow to think of ω h,n as generating functions for variations of ω h,0 it makes sense to collect the information obtained from the topological recursion only in the latter. For this reason, one defines a partition function as

Definition 4.1 (Perturbative partition function). Given an admissible initial data, one defines the perturbative partition function as a function of a formal parameter and the initial data by

Z pert ( , T, ) := exp ∞ h=0 2h-2 ω h,0 (T, ) . (4-1)
It follows from this definition that Z pert ( , T, ) exp(--2 ω 0,0 ) is a formal power series in 2 .

Perturbative wave functions

In order to quantize the classical spectral curve, we would like to define some wave functions as some particular generating series of the correlators ω h,n for n ≥ 1. We first define:

Definition 4.2 (Definition of (F h,n ) h≥0,n≥1 by integration of the correlators). For n ≥ 1 and h ≥ 0 such that 2h -2 + n ≥ 1, let us define F h,n (z 1 , . . . , z n ) = 1 2 n z1 σ(z1) . . . zn σ(zn) ω h,n
where one integrates each of the n variables along paths linking two Galois conjugate points inside a fundamental domain cut out by the chosen symplectic basis (A j , B j ) 1≤j≤g(Σ φ ) . For (h, n) = (0, 1) we define similarly

F 0,1 (z) := 1 2 z σ(z) ω 0,1 .
Finally, for (h, n) = (0, 2) one cannot define F 0,2 in the exact same way since ω 0,2 has poles on the diagonal ∆. One thus needs to regularize it by removing the polar part. Hence, we define

F 0,2 (z 1 , z 2 ) := 1 4 z1 σ(z1) z2 σ(z2) ω 0,2 - 1 2 ln (x(z 1 ) -x(z 2 ))
which also reads, in terms of theta functions,

F 0,2 (z 1 , z 2 ) = 1 4 ln Θ(v(z 1 ) -v(z 2 ) + c) Θ(v(σ(z 1 )) -v(σ(z 2 )) + c) Θ(v(z 1 ) -v(σ(z 2 )) + c) Θ(v(σ(z 1 )) -v(z 2 ) + c) - 1 2 ln (x(z 1 ) -x(z 2 ))
where v denotes the Abel-Jacobi map and c is a non-singular half-integer odd characteristic.

Remark 4.1. Note that since v(σ(z)) = -v(z), and by skew-symmetry of the theta function, F0,2(z1, z2) may alternatively be written as

F0,2(z1, z2) = 1 2 ln Θ(v(z1) -v(z2) + c) Θ(v(z1) -v(σ(z2)) + c) - 1 2 ln (x(z1) -x(z2)) (4-2)
Another useful way to rewrite F 0,2 (z 1 , z 2 ) is the following lemma.

Lemma 4.1. For any pair of distinct ramification points (a i , a j ), one has

F 0,2 (z 1 , z 2 ) = - σ(z1) ai z2 aj ω 0,2 - 1 2 log (u i -x(z 2 ))(x(z 1 ) -u j ) u i -u j (4-3)
where we recall that u i := x(a i ). In particular, this reformulation shows that F 0,2 (z, z) is well-defined.

Proof. Since (a i , a j ) are ramification points, they satisfy σ(a i ) = a i and σ(a j ) = a j . Then, we have

1 4 z1 σ(z1) z2 σ(z2) ω 0,2 = 1 4 z1 ai z2 σ(z2) ω 0,2 - σ(z1) ai z2 σ(z2) ω 0,2 ((3-18)) = - 1 2 σ(z1) ai z2 σ(z2) ω 0,2 = - 1 2 σ(z1) ai z2 aj ω 0,2 - σ(z2) aj ω 0,2 z→σ(z) = - 1 2 σ(z1) ai z2 aj [ω 0,2 (•, •) -ω 0,2 (•, σ(•))] ((3-15)) = - σ(z1) ai z2 aj ω 0,2 + 1 2 σ(z1) z=ai z2 z =aj dx(z)dx(z ) (x(z) -x(z )) 2 (4-4)
leading to the result.

One can now collect functions (F h,n ) h≥0,n≥1 into generating series.

Definition 4.3 (Definition of the perturbative wave functions). We define:

S ± pert -1 (x) := ±F 0,1 (z(x)) S ± pert 0 (x) := 1 2 F 0,2 (z(x), z(x)) ∀ k ≥ 1 , S ± pert k (x) := h≥0,n≥1 2h-2+n=k (±1) n n! F h,n (z(x), . . . , z(x))
where, for any λ ∈ P 1 , we define z(λ) ∈ Σ φ as the unique point such that x(z(λ)) = λ and ω 0,1 (z(λ)) = φ(λ) 3 . Remark that the ± sign refers to the choice of sheet when choosing a point in the pre-image of λ. Note that S ± pert 0 makes sense since Lemma 4.1 allows the evaluation of F 0,2 on the diagonal. Eventually, we define the perturbative wave functions ψ ± by:

ψ ± (x, , T, ) := exp   k≥-1 k S ± pert k (x)   Remark 4.2.
The perturbative partition function ψ should actually be a function of the integration path on Σ φ 0 between two points. Since, for a given x ∈ P 1 there are only two such paths up to homotopy in a given fundamental domain linking the two points in the fiber above x, we abusively write ψ(x) as a function of x. The ± index referring to a choice of orientation of the path, i.e. to the choice of one of the two possible integration contours.

By abuse of notations, we shall sometimes denote the perturbative wave functions as ψ±(x, ) forgetting about the dependance on the other parameters. Remark that the perturbative wave functions satisfy

ψ-(x, ) = ψ+(x, -). (4-5)
Remark 4.3. Definition 4.3 is identical to the one proposed in [START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF] and used in many papers like [START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Iwaki | Exact WKB analysis and cluster algebras[END_REF][START_REF] Iwaki | Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras[END_REF][START_REF] Marchal | Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl 2 case[END_REF].

Properties and PDE satisfied by the perturbative wave functions

The perturbative wave functions have non-trivial monodromies along elements of H 1 (Σ φ , Z) that can be computed explicitly.

Lemma 4.2. The perturbative wave functions ψ ± satisfy the following properties.

-For i ∈ 1, g , the function ψ ± (x, , T, ) has a formal monodromy along A i given by

ψ ± (x, , T, ) → e ±2πi i ψ ± (x, , T, ). (4-6)
-For i ∈ 1, g , the function ψ ± (x, , T, ) has a formal monodromy along B i given by

ψ ± (x, , T, ) → Z pert ( , T, ± e i ) Z pert ( , T, ) ψ ± (x, , T, ± e i ) (4-7)
where e i ∈ C g is the vector with the i th component equal to 1 and all others vanishing.

Proof. Reminding that the A-periods of the ω h,n are vanishing unless for (h, n) = (0, 1) where

∀ j ∈ 1, g : j = Aj ω 0,1 , (4-8) 
one immediately gets the first claim.

The second claim follows a simple computation similar to the one for Painlevé 1 written in [START_REF] Iwaki | 2-parameter τ -function for the first Painlevé equation :Topological recursion and direct monodromy problem via exact WKB analysis[END_REF].

The analytic continuation of the perturbative wave function along the cycle B j reads exp

    h≥0 n≥1 2h-2 (± ) n n! 2 n n1+n2=n n n 1 2 n1 n1 Bj . . . Bj n2 z σ(z) . . . z σ(z) ω h,n     = exp     h≥0 n≥1 2h-2 (± ) n n1+n2=n 1 2 n2 n 1 ! n 2 ! ∂ n1 ∂ n1 j n2 z σ(z) . . . z σ(z) ω h,n2     . (4-9)
Factoring out the terms with n 2 = 0 gives exp

  h≥0 n≥1 2h-2 (± ) n n! ∂ n ∂ n j ω h,0   exp     n1≥0 (± ) n1 n 1 ! ∂ n1 ∂ n1 j h≥0 n2≥1 2h-2 (± ) n2 1 2 n2 n 2 ! n2 z σ(z) . . . z σ(z) ω h,n2     (4-10) leading to the result.
The perturbative wave functions are built to be solutions of a PDE. Indeed, the main theorem of this section states that Theorem 4.1. The perturbative wave functions are solutions of the PDE

  2 ∂ 2 ∂x 2 -2 k∈K∞ U ∞,k (x) ∂ ∂T ∞,k -2 n ν=1 k∈K bν U ν,k (x) ∂ ∂T ν,k -H(x)   ψ ± (x, ) = 0 (4-11)
where

H(x) =   2 k∈K∞ U ∞,k (x) ∂ ∂T ∞,k + 2 n ν=1 k∈K bν U ν,k (x) ∂ ∂T ν,k   log Z pert ( ) --2 ω 0,0 + φ 0 (x) (dx) 2 . (4-12)
Remark 4.4. The dependence in x is completely explicit in [START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF] and [START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF]. Coefficients in (4-12) may be computed from the knowledge of Z pert given by topological recursion.

Proof. The proof follows from the combination of a few lemmas. We first prove in Section A.1 that Lemma 4.3. For any h ≥ 0 and n ≥ 1 satisfying 2h -2 + n ≥ 2, the combination

d z1 F h,n (z 1 , . . . , z n ) + n j=2 zj σ(zj ) ω 0,2 (z 1 , •) dz 1 F h,n-1 (z1,z {2,...,n}\{j} ) 2ω0,1 (z1) 
-

dz j F h,n-1 (zj ,z {2,...,n}\{j} ) 2ω0,1(zj ) + 1 2ω0,1(z1) d u1 d u2 F h-1,n+1 (u 1 , u 2 , z 2 , . . . , z n ) + stable h 1 + h 2 = h A B = {z 2 , . . . , z n } F h1,|A|+1 (u 1 , z A ) F h2,|B|+1 (u 2 , z B ) u1=u2=z1 (4-13)
is a holomorphic form in the first variable z 1 . In this expression,

stable h 1 + h 2 = h A B = {z 2 , . . . , z n } refers to the sum where 2h 1 -2 + |A| > 0 and 2h 2 -2 + |B| > 0.
In the same way,

dz 1 F 0,3 (z 1 , z 2 , z 3 )+ z 2 σ(z 2 ) ω 0,2 (z 1 , •) z 3 σ(z 3 ) ω 0,2 (z 1 , •) 4ω 0,1 (z 1 ) - z 2 σ(z 2 ) ω 0,2 (z 1 , •) z 3 σ(z 3 ) ω 0,2 (z 2 , •) 4ω 0,1 (z 2 ) - z 3 σ(z 3 ) ω 0,2 (z 1 , •) z 2 σ(z 2 ) ω 0,2 (z 3 , •) 4ω 0,1 (z 3 ) (4-14)
and

d z1 F 1,1 (z 1 ) - ω 0,2 (z 1 , σ(z 1 )) 2ω 0,1 (z 1 ) (4-15)
are holomorphic forms in the first variable z 1 .

Then, we have the following lemma Lemma 4.4. For any holomorphic differential ω on Σ φ , one has

-2 y(z 1 ) dx(z 1 ) ω(z 1 ) = p∈P Res z2→p ω(z 2 ) y(z 2 ) x(z 2 ) -x(z 1 )
.

Proof. We first remark that for any holomorphic differential ω on Σ φ , one has

p∈P Res z2→p ω(z 2 ) y(z 2 ) x(z 2 ) -x(z 1 ) = - Res z2→z1,σ(z1) ω(z 2 ) y(z 2 ) x(z 2 ) -x(z 1 )
.

Indeed, writing ω(z) = P (x(z))dx(z) y(z)
where P (x) is a rational function, one sees that there is no contribution from the boundary of a fundamental domain when moving the integration contour and that ω(z) = -ω(σ(z)). Computing the residue gives

p∈P Res z2→p ω(z 2 ) y(z 2 ) x(z 2 ) -x(z 1 ) = y(z 1 ) dx(z 1 ) (ω(σ(z 1 )) -ω(z 1 )) . (4-16)
so that we obtain the proof of Lemma 4.4.

Eventually, application of Lemma 4.4 to the holomorphic differentials of Lemma 4.3 before considering the diagonal specialization z 1 = • • • = z n = z gives, after some elementary but lengthy computations presented in Appendix A.2, the results of Theorem 4.1.

The non-perturbative world and the quantum curve

In the previous section, we have seen that the perturbative wave functions are not annihilated by the naive quantization of the classical spectral curve. This differential operator in the variable x needs to be corrected by a combination of linear operators in the times. We shall now see that these perturbative wave functions can be corrected by exponentially small corrections as → 0 to produce some non-perturbative analogs that are annihilated by a quantization of the classical spectral curve.

Definitions

Out of the perturbative wave function, one can build a non-perturbative analog that will be the main character of the present article. The latter is defined as a discrete Fourier transform of the perturbative wave function with respect to the A-periods as originally expected from [START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF]. In this section, we pick an admissible initial data (φ 0 , (A j , B j )

g(Σ φ ) j=1 ) where φ 0 ∈ Q(P 1 , D, n ∞ , T).
For simplicity, we denote by g := g(Σ φ0 ) the genus of the classical spectral curve and by = ( i ) g i=1 the associated periods. Z pert ( , T, + k).

In the same way, one can define the non-perturbative wave function by

Ψ ± (x, T, , ρ) := 1 Z(T, , ρ) k∈Z g e 2πi g j=1 kj ρj Z pert ( , T, + k) ψ ± (x, , T, + k)
As functions of , these non-perturbative objects are of very different nature compared to their perturbative counterparts whose logarithms admit a formal series expansion in . Considering the expansion of the perturbative partition function, one can observe that

Z pert ( , T, + k) Z pert ( , T, ) = exp   2πi g j=1 k j φ j + g j,l=1 πik l k j τ l,j   exp   h≥0 n≥max(1,3-2h) i∈ 1,g n 2h-2+n Aut(i) n j=1 k ij ∂ n ω h,0 ∂ i1 . . . ∂ in   (5-1)
where, denoting by l(i) the number of times l appears in the vector i,

Aut(i) := l l(i)!, φ i := ∂ω0,0 ∂ i and τ i,j := ∂ 2 ω0,0 ∂ i ∂ j .
This allows to recombine the Fourier transform under the form

Z(T, , ρ) Z pert ( , T, ) = k∈Z g e 2πi g j=1 kj (ρj +φj )+ g l,j=1 πik l kj τ l,j exp   h≥0 n≥max(1,3-2h) i∈ 1,g n 2h-2+n Aut(i) n j=1 k ij ∂ n ω h,0 ∂ i1 . . . ∂ in   .
Hence, it takes the form

Z(T, , ρ) = Z pert ( , T, ) ∞ m=0 m Θ m ( , T, , ρ) (5-2)
where the coefficients Θ m ( , T, , ρ) are obtained as finite linear combinations of derivatives of theta functions of the form

∂ n θ(v,τ ) ∂vi 1 ...∂vi n v= φ+ρ with θ(v, τ ) := k∈Z g e 2iπ g j=1 kj vj + g l,j=1
πik l kj τ l,j .

In the same way, the non-perturbative wave function takes the form

Ψ ± (x, T, , ρ) = ψ ± (x, T, ) ∞ m=0 m Ξ m (x, , T, , ρ) ∞ m=0 m Θ m ( , T, , ρ) (5-3)
where Ξ m (x, , T, , ρ) are combinations of derivatives of theta functions of the form

∂ n θ(v,τ ) ∂vi 1 ...∂vi n v= φ+ρ +µ(x) with µ j (x) := ∂S -1 (x) ∂ j .
(5-4)

It is important to remark that these non-perturbative objects are not formal power series in but formal trans-series in .

Properties and quantum curve

One of the main motivations for the definition of the non-perturbative wave functions is the simplicity of its monodromies compared to its perturbative counterpart.

Lemma 5.1. The non-perturbative wave functions satisfy the following properties.

-For j ∈ 1, g , the function Ψ ± (x, T, , ρ) has a formal monodromy along A j given by Ψ ± (x, T, , ρ) → e ±2πi j Ψ ± (x, T, , ρ).

(5-5)

-For j ∈ 1, g , the function Ψ ± (x, T, , ρ) has a formal monodromy along B j given by

Ψ ± (x, T, , ρ) → e ∓2πi ρ j Ψ ± (x, T, , ρ).
(5-6)

Proof. The proof easily follows from the monodromies of the perturbative wave functions.

The main result of this article is that, unlike its perturbative partners, the non-perturbative wave functions are solutions of a second order ODE that quantizes the classical spectral curve. The second order differential operator annihilating both non-perturbative wave functions is thus often referred to as the corresponding quantum curve.

Theorem 5.1 (Quantum curve). The non-perturbative wave functions satisfy

2 ∂ 2 ∂x 2 -2 R(x) ∂ ∂x -Q(x) -H(x) Ψ ± = 0 (5-7)
with

H(x) =   2 k∈K∞ U ∞,k (x) ∂ ∂T ∞,k + 2 n ν=1 k∈K bν U ν,k (x) ∂ ∂T ν,k   log Z(T, , ρ) --2 ω 0,0 + φ 0 (x) (dx) 2
(5-8) and

R(x) = ∂ log W (x) ∂x (5-9)
where the Wronskian

W (x) := ∂Ψ + (x) ∂x Ψ -(x) - ∂Ψ -(x) ∂x Ψ + (x) (5-10)
is a rational function of the form

W (x) = w g j=1 (x -q j ) n ν=1 (x -X ν ) rν
(5-11)

with

w := -2T ∞,r∞ exp A + ∞,0 + A - ∞,0 if n ∞ = 0 -T ∞,r∞ exp A + ∞,0 + A - ∞,0 if n ∞ = 1 (5-12)
and

Q(x) = g j=1 p j x -q j + 2 k∈K∞ U ∞,k (x) ∂(S + (x) + S -(x)) ∂T ∞,k ∞,+ + 2 n ν=1 k∈Kν U ν,k (x) ∂(S + (x) + S -(x)) ∂T ν,k Xν ,-
(5-13) with

∀ j ∈ 1, g , p j := - ∂ log Ψ + (x) ∂x x=qj = - ∂ log Ψ -(x) ∂x x=qj .
(5-14)

In addition, the pairs (q i , p i )

g i=1 satisfy ∀ i ∈ 1, g , p 2 i = H(q i ) -p i   j =i 1 q i -q j - n ν=1 r ν q i -X ν   + Q(x) - p i x -q i x=qi .
(5-15)

Before proving this theorem, let us mention that the pairs (q i , p i ) g i=1 , which depend on , form a set of Darboux coordinates on some associated symplectic space. We shall discuss this point in Section 6.

Remark 5.1. The sums involved in (5-8) and (5-13) are finite. Moreover, the dependence in x is explicit in the definition (5-13) of Q. The dependence in x is also explicit in H(x) though the coefficients involve time derivatives of the partition function. These quantities may be seen in two different ways: either they are obtained by topological recursion (that computes the partition function) or they can be seen as undetermined coefficients (independent of x) that are in one-to-one correspondence with the Hamiltonians and their expressions in terms of the Darboux coordinates (q i , p i ) g i=1 . The second aspect shall be developed below in section 6 and in the examples presented in section 8.

Proof. The details of the proof are given in Appendix B. Let us give the main steps in the remaining of this section, referring to the appendix for the technical details.

Let us first remark that, as a linear combination of perturbative wave functions, Ψ ± (x, T, , ρ) are solutions of the PDE eq. [START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF].

We shall prove that the non-perturbative wave functions are solutions of a linear second order differential equation following [START_REF] Iwaki | 2-parameter τ -function for the first Painlevé equation :Topological recursion and direct monodromy problem via exact WKB analysis[END_REF].

Let us first introduce a few useful functions built out of Ψ ± . We denote the Wronskian with respect to x by

W (x) := ∂Ψ + ∂x Ψ --Ψ + ∂Ψ - ∂x (5-16)
and the Wronskian with respect to the times by

∀ p ∈ {∞} ∪ 1, n , ∀k ∈ K p : W T p,k (x) := ∂Ψ + ∂T p,k Ψ --Ψ + ∂Ψ - ∂T p,k .
(

One can use them to define

∀ p ∈ {∞} ∪ 1, n , ∀k ∈ K p : R p,k := W T p,k (x) W (x) and Q p,k := 2 ∂Ψ+ ∂x ∂Ψ- ∂T p,k -∂Ψ- ∂x ∂Ψ+ ∂T p,k W (x) .
(5-18) They are defined in such a way that

∀ p ∈ {∞} ∪ 1, n , ∀k ∈ K p : Ψ + Ψ - ∂Ψ+ ∂T p.k ∂Ψ- ∂T p.k = 1 0 Q p,k R p,k Ψ + Ψ - ∂Ψ+ ∂x ∂Ψ- ∂x . ( 5-19) 
To simplify notations, we shall identify the set of poles P with the corresponding index set and write P := {∞} ∪ 1, n when no confusion may arise.

By linearity, one can consider arbitrary linear combinations of the functions defined above and observe that they satisfy similar equations. In particular, defining

R(x) := p∈P k∈Kp U p,k (x)R p,k (x) and Q(x) := p∈P k∈Kp U p,k (x)Q p,k (x), (5-20) 
one has

  Ψ + Ψ - p∈P k∈Kp U p,k (x) ∂Ψ+ ∂T p.k p∈P k∈Kp U p,k (x) ∂Ψ- ∂T p.k   = 1 0 Q R Ψ + Ψ - ∂Ψ+ ∂x ∂Ψ- ∂x . (5-21)
First of all, the fact that Ψ ± are linear combinations of solutions of eq. [START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF], and taking into account the contributions of the coefficients of these combinations, one observes that we have

  2 ∂ 2 ∂x 2 -2 p∈P k∈Kp U p,k (x) ∂ ∂T p,k -H(x)   Ψ ± (x) = 0 (5-22)
where H(x) is obtained by replacing the perturbative partition function by its non-perturbative partner in H(x).

By the definition of Q and R together, Ψ + and Ψ -are thus solutions to the compatible system

                 2 ∂ 2 ∂x 2 -2 p∈P k∈Kp U p,k (x) ∂ ∂T p,k -H(x)   Ψ = 0   2 p∈P k∈Kp U p,k (x) ∂ ∂T p,k -Q(x) -2 R(x) ∂ ∂x   Ψ = 0 .
(5-23)

Plugging the second equation in to the first one implies that the non-perturbative wave functions are solutions to the ODE

2 ∂ 2 ∂x 2 -2 R(x) ∂ ∂x -Q(x) -H(x) Ψ ± = 0. (5-24)
This is our quantum curve. We now need to study the functions R(x) and Q(x) that may a priori be multi-valued functions of x with singularities at the zeros of W (x), the poles ∞ and {X ν } as well as the critical values u i = x(a i ). We shall now see that these functions are rational functions of x without poles at the critical values. We first prove in Appendix B.1 that one can simplify the expression of R(x).

Lemma 5.2. The function R(x) reads

R(x) = 1 W (x) ∂W (x) ∂x .
(

One can also remark that, by definition,

Q(x) = 2 p∈P k∈Kp U p,k (x) ∂W (x) ∂T p,k - ∂W T p,k (x) ∂x W (x) .
(5-26)

Let us now study the properties of the functions R p,k and Q p,k . First of all, let us remind that Ψ ± are combinations of terms which are derivatives of theta functions evaluated at v = φ+ρ + µ(x). On the other hand, because the combination θ(v + u, τ )θ(vu, τ ) is a theta function of order 2 in v, it can be decomposed in a basis of squares of theta functions with different characteristics (see for example [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF]). Hence, the Wronskians involve only combinations of derivatives of theta functions evaluated at v = φ+ρ , their dependence in x appearing only in the coefficients.

This means that, for all pair (p, k), R p,k and Q p,k admit an expansion in of the form

R p,k (x, T, ) = ∞ m=0 m R (m) p,k (x, T, ) and Q p,k (x, T, ) = ∞ m=0 m Q (m) p,k (x, T, ) (5-27) 
where the coefficients take the form

R (m) p,k (x, T, ) = R(m) p,k (x, T, v) v= φ+ρ and Q (m) p,k (x, T, ) = Q(m) p,k (x, T, v) v= φ+ρ .
(5-28)

Thanks to Lemma 5.1, one can also check that the monodromies of the non-perturbative wave functions around elements of H 1 (Σ φ , Z) ensure that the Wronskians do not have any monodromy and thus Corollary 5.1. The Wronskians and the functions R(h) p,k and Q(h) p,k are rational functions of x. Indeed, the essential singularities cancel in the definition of the Wronskians. We can even go further and prove in Appendix B.2 the following important result. 

This implies that

Corollary 5.2. The Wronskians W (x) and W T p,K (x) are rational functions of x with poles only at p ∈ P.

Proof. From Lemma 5.2, one knows that

R(x) = ∂ x [log W (x)] .
Lemma 5.3 ensures that it does not have any pole at the ramification points. On the other hand, from the properties of Ψ ± , one knows that the RHS is a rational function of x with possible poles only at p ∈ P and the critical values. Hence, this combination has no poles at the ramification points and W (x) is a rational function of x with poles only at p ∈ P.

By definition, one has

W T p,K (x) = R p,K (x)W (x).
(5-29)

The left hand side might have poles at the ramification points and p ∈ P only. The right hand side does not have any pole at the ramification points leading to the result.

The asymptotic expansions around poles recalled in Appendix C ensure that W (x) takes the form

W (x) = w g j=1 (x -q j ) n ν=1 (x -X ν ) rν
(5-30)

where, using the notations of Appendix C, one defines

w := -2T ∞,r∞ exp A + ∞,0 + A - ∞,0 if n ∞ = 0 -T ∞,r∞ exp A + ∞,0 + A - ∞,0 if n ∞ = 1 .
(5-31)

To conclude the proof, let us study the properties of Q(x). By its definition eq. (5-26) and Lemma 5.3, it is a rational function of x with simple poles at the q i and poles at p ∈ P whose degree follows from the asymptotics given in Appendix C. It thus reads

Q(x) = g i=1 Q qi x -q i + r∞-4 k=0 Q ∞,k x k + n ν=1 rν +1 k=1 Q ν,k (x -X ν ) k .
(5-32)

One can compute the coefficients of this partial fraction expansion by expanding the differential equations satisfied by the wave functions around the different poles.

-The leading and subleading orders in the expansion of the quantum curve eq. (5-24) around x = q i , for i ∈ 1, g , read

       Q qi = p i p 2 i = H(q i ) -p i   j =i 1 qi-qj - n ν=1 rν qi-Xν   + Q(x) -pi
x-qi x=qi where

∀ j ∈ 1, g : p j := - ∂ log Ψ + (x) ∂x x=qj = - ∂ log Ψ -(x) ∂x x=qj .
(5-34)

As we shall see, the second equation means that each pair (q i , p i ) g i=1 defines a point in a -deformation of the classical spectral curve.

-Let us consider the sum of the second equation of the system eq. (5-23) for Ψ + and Ψ -. The expansion of this symmetric version around

x = ∞ reads [Q(x)] ∞,+ = 2 k∈K∞ U ∞,k (x) ∂(S + (x) + S -(x)) ∂T ∞,k ∞,+
.

(5-35)

-The expansion of the same expression around x = X ν reads

[Q(x)] Xν ,-= 2 k∈Kν U ν,k (x) ∂(S + (x) + S -(x)) ∂T ν,k
Xν ,-.

(5-36)

Lax representation

After building a quantization of the classical spectral curve, it is natural to study a linearization of the corresponding differential equation. In particular, in this section we associate a sl 2 (C) connection depending on to such a quantum curve and describe it as a point in the corresponding moduli space of irregular connections. We compute the corresponding quadratic differential which can be understood as a -deformation of the initial data φ 0 in the moduli space of meromorphic connections Q(P 1 , D, n ∞ , T). We finally study the corresponding isomonodromic system when it can be obtained as de-autonomization of an isospectral system.

sl 2 connection from quantum curve

Let us linearize the quantum curve. For this purpose, we define

Ψ± (x) := 1 W (x) P (x)Ψ ± (x) + ∂Ψ ± (x) ∂x (6-1)
where P (x) is a rational function of x with poles at x(p) for p ∈ P to be fixed. The ODE given in Theorem 5.1 implies that

∂ ∂x Ψ± Ψ ± = P (x) M (x) W (x) -P (x) Ψ± Ψ ± (6-2)
where

M (x) = ∂P (x) ∂x -∂ log W (x) ∂x P (x) -P (x) 2 + Q(x) + H(x) W (x) . ( 6-3) 
This rank 2 differential system defines a connection on P 1 which has poles only on P by imposing a simple condition on the function P (x). Lemma 6.1.

If ∀ i ∈ 1, g : P (q i ) = p i (6-4)
then M (x) is a rational function of x with poles only at x ∈ P.

Proof. To prove this lemma, one only needs to prove that the M (x) does not have any pole at x = q i for i ∈ 1, g .

Let us compute the two leading terms of

∂P ∂x - ∂ log W r x (Ψ + ,Ψ -) ∂x P -P 2 + Q+H W r x (Ψ+,Ψ-)
as x → q i . Using eq. , they read -P (q i ) + p i (6-5) and

-P (q i )   j =i 1 q i -q j - n ν=1 r ν q i -X ν   -P (q i ) 2 + Q(x) - P (q i ) x -q i x=qi + H(q i ). (6-6)
These two terms, which are the coefficients of the singular part of

∂P ∂x - ∂ log W r x (Ψ + ,Ψ -) ∂x P -P 2 + Q+H W r x (Ψ+,Ψ-) vanish if P (q i ) = p i thanks to Theorem 5.1.
Hence Ψ± Ψ ± is a basis of solutions to the Lax system

∂ ∂x Ψ± Ψ ± = L(x) Ψ± Ψ ± (6-7)
where

L(x) = P (x) M (x) W (x) -P (x) (6-8)
is a rational function of x with value in sl 2 with poles only in D if the degree of the poles of P (x) are kept small enough. It defines a connection d -L(x)dx on P 1 that can be considered as a point in the corresponding moduli space of sl 2 connections with irregular singularities along D. Fixing the value of T amounts to fixing its residues and irregular type thus leading to a point in a symplectic leaf of dimension 2g. The definition of (q i , p i )

g i=1 by ∀ i ∈ 1, g , W (q i ) = 0 P (q i ) = p i (6-9)
actually identifies them with the spectral Darboux coordinates defined by [START_REF] Adams | Spectral Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras[END_REF] on this symplectic leaf.

It is important to notice that the Lax matrix L(x) depends on only through (q i , p i ) g i=1 . The latter being Darboux coordinates, they depend on only through their time evolution as we will see in the next section.

Deformed spectral curve

Before explaining how to choose a particular gauge in order to make the explicit computation of examples easier, let us describe the spectral curve of the matrix L(x) defined by 0 = det(ydx -L(x)dx) := y 2 (dx) 2 -φ .

(6-10)

It defines a quadratic differential

φ = ∂P (x) ∂x - ∂ log W (x) ∂x P (x) + Q(x) + H(x) (dx) 2 . (6-11)
We have thus defined a flow along the ∂ direction in the corresponding moduli space of quadratic differentials. Let us present a complete expression for our -deformed quadratic differential using the expression of Q(x) of Theorem 5.1.

Theorem 6.1. The -deformed spectral curve reads

φ (dx) 2 = H(x) + g j=1 p j x -q j + 2 2 k∈K∞ U ∞,k (x) ∂(S + (x) + S -(x)) ∂T ∞,k ∞,+ + 2 2 n ν=1 k∈Kν U ν,k (x) ∂(S + (x) + S -(x)) ∂T ν,k Xν ,- + ∂P (x) ∂x - ∂ log W (x) ∂x P (x). (6-12)
Even if this expression seems to have simple poles at x = q i , they cancel due to the condition P (q i ) = p i .

Gauge choice

The characterization of P (x) by its values at (q i ) g i=1 does not fix it without ambiguity. Fixing a specific form of the rational function P corresponds to a gauge choice for the system under consideration, i.e. a choice of representative of the reduced coadjoint orbit under consideration. Let us give an example of gauge choice in this section. We follow the choice considered in [START_REF] Marchal | Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl 2 case[END_REF]. The gauge depends on whether the point above infinity is a ramification point or not (i.e. if n ∞ = 0 or n ∞ = 1).

Non-degenerate case: n

∞ = 0
If ∞ is not a critical value for the map x, one fixes a gauge by writing the system under the form

∂ ∂x Ψ± Ψ ± = L(x) Ψ± Ψ ± (6-13)
where

L(x) = k≤r∞ L ∞,k x k-2 (6-14) as x → ∞ with L ∞,r∞ = α 0 0 -α . (6-15)
As we shall see from the examples, the value of α and β can be computed from the Casimirs. More precisely, for r ∞ ≥ 2, one has α = T ∞,r∞ and β = T ∞,r∞ + 2 . This requires that P (x) takes the form

P (x) = αx g+1 + βx g + g-1 l=0 α l x l n ν=1 (x -X ν ) r bν . (6-16)
The last coefficients (α l )

g-1 l=0 are fixed by the g conditions

∀ i ∈ 1, g : P (q i ) = p i . (6-17)
We call this case non-degenerate since the leading order of the Lax matrix L(x) at infinity as full rank in this coadjoint orbit.

Degenerate case: n

∞ = 1
This degenerate case corresponds to the case when the leading order of the Lax matrix at infinity is of rank 1 instead of rank 2. As in [START_REF] Marchal | Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl 2 case[END_REF], we look for a representative of the coadjoint orbit satisfying

L ∞,r∞ = 0 1 0 0 and L ∞,r∞-1 = 0 β A 0 (6-18)
for arbitrary β. This can be obtained by imposing the form

P (x) = g-1 l=0 α l x l n ν=1 (x -X ν ) r bν (6-19) satisfying ∀ i ∈ 1, g : P (q i ) = p i . (6-20)

Isomonodromic deformations

It is often very useful to consider isomonodromic deformations of our Lax matrix L(x). In particular, it is a way to access a set of equations defining the function (p i , q i ) g i=1 . In examples of Section 8, we use Hamiltonian representations of the corresponding isomonodromic systems to get 2-parameters solutions of the six Painlevé equations. In this section, we recall one way to obtain isomonodromic deformations starting from an isospectral system following the work of Montréal school [START_REF] Harnad | Moment Maps to Loop Algebras, Classical R-Matrix and Integrable Systems[END_REF]. This section does not present any new material but should be taken as a guidebook for the computations of the example section.

Isospectral deformations

Using the classical R-matrix formalism on loop algebras, one can define a Poisson structure on the space of Lax matrices L(x) as before. Indeed, one can define a set of commuting flows generated by spectral invariants. In our case, the set of spectral invariants is generated by the following Hamiltonians:

∀ k ∈ 1, r ∞ -3 : H p,k := 1 2 Res x→∞ x -k Tr L(x) 2 dx (7-1) and ∀ ν ∈ 1, n , ∀ k ∈ 0, r ν -1 : H ν,k := 1 2 Res x→Xν (x -X ν ) k Tr L(x) 2 dx. (7-2)
The associated Hamilton's equations read

∀ p ∈ {∞} ∪ 1, n , ∀ k : ∂L(x) ∂t p,k = L t p,k (x), L(x) (7-3) where ∀ k ∈ 1, r ∞ -3 : L t ∞,k := x -k L(x) ∞,+ (7-4) 
and

∀ ν ∈ 1, n , ∀ k ∈ 0, r ν -1 : L t ν,k := (x -X ν ) k L(x) Xν ,-. (7-5)
These Hamiltonian flows are isospectral since they preserve the spectrum of L(x).

Non-autonomous system and isomonodromic deformations

Let us now consider that, in addition, L(x) depends explicitly on t p,k in such a way that

δL(x) δt p,k = ∂L t p,k ∂x (7-6)
where δL(x) δt p,k denotes the variation of L(x) with respect to its explicit dependence on t p,k only. Then, Hamilton's equations are replaced by

∂L(x) ∂t p,k = L t p,k (x), L(x) + ∂L t p,k ∂x . (7-7)
This new equation is equivalent to the commutation relation

∂ ∂x -L(x), ∂ ∂t p,k -L t p,k (x) = 0 (7-8)
It ensures that the flow along ∂ ∂t p,k is isomonodromic. For this reason, we refer to eq. (7-6) as the isomonodromic condition. From now on, we assume that it is satisfied in this section for all pairs (p, k) described above 4 .

In such a case, an isomonodromic tau function τ is defined by the condition

d ln τ = p,k H p,k dt p,k . (7-9)
One can also use the isomonodromic times t p,k as new coordinates replacing the spectral times T p,k . One can decompose our vector field ∂ ∂T ν,k in this basis by comparing the corresponding Wronskians, or more precisely, the action of the vector fields on the singular part of the logarithm of the wave functions. The change of basis is more naturally expressed by decomposing the usual isomonodromic flows in terms of our vector fields, leading to

∀ ν ∈ 1, n , ∀ l ∈ 0, r ν -1 : ∂ ∂t ν,l = rν -l+1 k=2 (k -1)T ν,k+l-1 ∂ ∂T ν,k , (7-10) ∀ l ∈ 1, r ∞ -3 : ∂ ∂t ∞,l = r∞-l-1 k=2 (k -1)T ∞,k+l+1 ∂ ∂T ∞,k if n ∞ = 0 (7-11)
and

∀ l ∈ 1, r ∞ -3 : ∂ ∂t ∞,l = r∞-l-1 k=2 2k -3 2 T ∞,k+l+1 ∂ ∂T ∞,k if n ∞ = 1 (7-12)
In addition, one can use this decomposition to express the function H(x) in terms of the variations with respect to the usual isomonodromic times. One has

k∈K∞ U ∞,k (x) ∂ ∂T ∞,k = r∞-3 l=1 x l-1 ∂ ∂t ∞,l (7-13) 
and

∀ ν ∈ 1, n : k∈Kν U ν,k (x) ∂ ∂T ν,k = rν -1 l=0 1 (x -X ν ) l+1 ∂ ∂t ν,l . (7-14)
Using these relations, one can build a tau function in terms of the non-perturbative partition function. Rather than writing a lengthy general formula, we prefer referring the reader to Section 8 for examples.

Flows of Darboux coordinates

The vector Ψ± Ψ ± is subject to a set of compatible equations with respect to the isomonodromic times (denoted by the generic letter t for clarity in the following equations)

∂ ∂t Ψ± Ψ ± = P t (x) M t (x) W t (x) -P t (x) Ψ± Ψ ± (7-15)
where

L t (x) = P t (x) M t (x) W t (x) -P t (x) . (7-16)
The compatibility of the system evaluated at x = q i imposes that, for an arbitrary isomonodromic time t, one has

∀ i ∈ 1, g :          ∂pi ∂t = ∂Pt(x) ∂x x=qi - ∂W t (x) ∂x x=q i ∂P (x) ∂x x=q i +Wt(qi) ∂φ (x) ∂x x=q i ∂W (x) ∂x x=q i ∂qi ∂t = - ∂W t (x) ∂x x=q i +2piWt(qi) ∂W (x) ∂x x=q i . (7-17)
Proof. Given any isomonodromic time t, the compatibility condition between the time derivative and the x derivative implies

∂P (x) ∂t = ∂Pt(x) ∂x + M t (x)W (x) -M (x)W t (x) ∂W (x) ∂t = ∂Wt(x) ∂x + 2P (x)W t (x) -2P t (x)W (x) . (7-18)
Let us remark that, for any rational function f (x),

∂f (q i ) ∂t = ∂f (x) ∂t x=qi + ∂f (x) ∂x x=qi ∂q i ∂t . (7-19)
The evaluation of the compatibility conditions at x = q i then reads

   ∂pi ∂t = ∂P (x) ∂x x=qi ∂qi ∂t + ∂Pt(x) ∂x x=qi -M (q i )W t (q i ) -∂W (x) ∂x x=qi ∂qi ∂t = ∂Wt(x) ∂x x=qi + 2P (q i )W t (q i ) . (7-20)
Combining these equations and the equation of the spectral curve, one obtains the result.

Remark that this result is valid even if the coefficients of the elements of the Lax matrix depend explicitly on the isomonodromic time t.

Examples

In this section, we present a few examples of application of our general formalism. In each case, we follow the same procedure. We first compute the Wronskian W (x). It always takes the form of eq. [START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF] where the leading order is given by eq. [START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF]. The value of the zeros of W (x) gives half of the spectral Darboux coordinates and can be computed using the asymptotics of Appendix C.

One can then compute the quantum curve thanks to Theorem 5.1.

We then compute the element P (x) of the Lax matrix in order to have the gauge considered in Section 6.3. After that, we can compute the -dependent quadratic differential φ ∈ Q(P 1 , D, n ∞ , T). First, we express its coefficients in terms of the times and the partition function thanks to Theorem 6.1 and the asymptotics of Appendix C. On the other hand, we express these coefficients in terms of the spectral Darboux coordinates by writing that any pair (q i , p i , ) g i=1 defines a point on the -deformed spectral curve. This allows relating the partition function to an isomonodromic tau function. Indeed, in all the cases considered, it is known that the isomonodromic condition eq. (7-6) can be fulfilled (see [START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF][START_REF] Harnad | Loop Algebra Moment Maps and Hamiltonian Models for the Painlevé Transcendants[END_REF] or [START_REF] Marchal | Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl 2 case[END_REF]).

In each case, we write an identification of times allowing to solve this condition. After this identification, we write the associated Hamilton's equations obtained through the compatibility condition eq. [START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF]. In the first cases, we show how it leads to the six Painlevé equations, showing that we have produced 2-parameters solutions for the latter. This also provides us an expression of the coordinates p i 's in terms of the variations of the q i 's.

Painlevé 1

Let us consider the case r ∞ = 4, n ∞ = 1 and n = 0. Let us first observe that the PDE eq. [START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Eynard | Counting surfaces: CRM Aisenstadt Chair Lectures[END_REF][START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF][START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF][START_REF] Harnad | Moment Maps to Loop Algebras, Classical R-Matrix and Integrable Systems[END_REF][START_REF] Harnad | Loop Algebra Moment Maps and Hamiltonian Models for the Painlevé Transcendants[END_REF] imposes that A + ∞,1 + A - ∞,1 = 0. Hence, the Wronskian reads

W (x) = -T ∞,4 (x -q) (8-1) where q = - T ∞,3 T ∞,4 -(A + ∞,2 -A - ∞,2 ). (8-2)
From eq. [START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Eynard | Counting surfaces: CRM Aisenstadt Chair Lectures[END_REF][START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF][START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF][START_REF] Harnad | Moment Maps to Loop Algebras, Classical R-Matrix and Integrable Systems[END_REF][START_REF] Harnad | Loop Algebra Moment Maps and Hamiltonian Models for the Painlevé Transcendants[END_REF], one obtains that

A + ∞,2 -A - ∞,2 = - 1 2 ∂A + ∞,1 -A - ∞,1 ∂T ∞,2 = -2 ∂ 2 log Z ∂T 2 ∞,2 , i.e. q = - T ∞,3 T ∞,4 + 2 ∂ 2 log Z ∂T 2 ∞,2
.

(8-3)

From Theorem 5.1, one can compute

Q(x) = p x -q , (8-4)
and the quantum curve reads

2 ∂ 2 ∂x 2 - 2 x -q ∂ ∂x - p x -q -T 2 ∞,4 x 3 -2T ∞,3 T ∞,4 x 2 -T 2 ∞,3 + 2T ∞,2 T ∞,4 x -H 0 Ψ ± (x) = 0 (8-5) where H 0 = T ∞,3 T ∞,2 4 + 2 T ∞,4 2 
∂ ln Z ∂T ∞,2 . (8-6)
The diagonal element P (x) of the Lax matrix is a constant so that

P (x) = p. (8-7)
The -deformed spectral curve reads

φ (dx) 2 = T 2 ∞,4 4 x 3 + T ∞,3 T ∞,4 2 x 2 + 1 4 T 2 ∞,3 + 2T ∞,2 T ∞,4 x + H 0 (8-8)
where the condition on (p, q) implies that

H 0 = p 2 - 1 4 T 2 ∞,4 q 3 - 1 2 T ∞,3 T ∞,4 q 2 - 1 4 T 2 ∞,3 + 2T ∞,2 T ∞,4 q. (8-9)
Breaking the autonomy of the Hamiltonian system with respect to t ∞,1 by setting T ∞,2 := t∞,1 2T∞,4

as our isomonodromic time, the compatibility condition eq. (7-17) gives the Hamiltonian system

2 ∂q ∂t∞,1 = -∂H0 ∂p = -2p 2 ∂p ∂t∞,1 = ∂H0 ∂q = -3 4 T 2 ∞,4 q 2 -T ∞,3 T ∞,4 q - T 2 ∞,3 4 -t ∞,1 T 2 ∞,4 2 (8-10)
which means that q is solution to

2 ∂ 2 q ∂t 2 ∞,1 = 3T 2 ∞,4 8 q 2 + T ∞,3 T ∞,4 2 q + T 2 ∞,3 8 + t ∞,1 T ∞,4 4 . (8-11)
Setting T ∞,4 = 1 2 and T ∞,3 = 0, one gets Painlevé 1 equation

2 ∂ 2 q ∂t 2 = 6q 2 + t (8-12)
for q = q 4 and t = t∞,1

4 . This also gives

p = - ∂q ∂t ∞,1 . (8-13)

Painlevé 2

Let us now consider the case n = 0, n ∞ = 0 and r ∞ = 4. The Wronskian reads

W (x) = -2T ∞,4 exp A + ∞,0 + A - ∞,0 (x -q) (8-14) where q = - T ∞,3 T ∞,4 -(A + ∞,1 + A - ∞,1 ) (8-15)
From Theorem 5.1, one can compute

Q(x) = p x - + 2 T ∞,4 ∂A + ∞,0 + A - ∞,0 ∂T ∞,2 , (8-16)
and the quantum curve reads -17) where

2 ∂ 2 ∂x 2 - 2 x -q ∂ ∂x - p x -q -T 2 ∞,4 x 4 -2T ∞,3 T ∞,4 x 3 -T 2 ∞,3 + 2T ∞,4 T ∞,2 x 2 -[2T ∞,3 T ∞,2 + 2T ∞,4 T ∞,1 ] x -H 0 -T ∞,4 q] Ψ ± (x) = 0. ( 8 
H 0 = 2 T ∞,4 ∂ ln Ẑ ∂T ∞,2 + 2T ∞,1 T ∞,3 + T 2 ∞,2 -T ∞,4 q (8-18)
with

Ẑ := exp A + ∞,0 + A - ∞,0 2 Z. (8-19)
One has

P (x) = T ∞,4 x 2 + T ∞,3 x + p -T ∞,4 q 2 -T ∞,3 q. (8-20)
So that the -deformed spectral curve reads, by Theorem 6.1,

φ (dx) 2 = T 2 ∞,4 x 4 + 2T ∞,3 T ∞,4 x 3 + T 2 ∞,3 + 2T ∞,4 T ∞,2 x 2 + 2T ∞,3 T ∞,2 + 2T ∞,4 T ∞,1 + 2 x + H 0 .
(8-21) The fact that (p, q) belongs to the -deformed spectral curve means that 

H 0 = p 2 -T 2 ∞,4 q 4 -2T ∞,3 T ∞,4 q 3 -T 2 ∞,3 + 2T ∞,4 T ∞,2 q 2 -2T ∞,3 T ∞,2 + 2T ∞,4 T ∞,1 + 2 q. ( 8 
∞,4 = 1, T ∞,3 = 0, T ∞,1 = -θ 2 ∂ 2 q ∂t 2 ∞,1 = 2q 3 + t ∞,1 q + 2 -θ. (8-24)
It also gives

p = - ∂q ∂t ∞,1
.

(8-25)

Painlevé 3

Let us now consider the case n = 1, n ∞ = 0, r ∞ = 2 and r 1 = 2. This case being more subtle because r ∞ ≤ 2, we shall describe it in greater details. The Wronskian reads

W (x) = w (x -q) (x -X 1 ) 2 = w x -X 1 + w(X 1 -q) (x -X 1 ) 2 (8-26) with w = -2T ∞,2 exp A + ∞,0 + A - ∞,0 , (X 1 -q)w = 2T 1,2 exp A + 1,0 + A - 1,0 . (8-27)
Let us work with X 1 fixed and set its value to X 1 = 0. We have also

q = 2 T ∞,1 T ∞,2 -A + ∞,1 + A - ∞,1 and w = -wq T 1,1 T 1,2 -wq A + 1,1 + A - 1,1 . (8-28)
This allows expressing

A + 1,0 + A - 1,0 = log -qw 2T1,2 A + 1,1 + A - 1,1 = -1 q - T1,1 T1,2 . (8-29)
Working with fixed value of X 1 means that the action of the vector field ∂ ∂X1 is vanishing. This can be translated into the vanishing of the vector field T 1,1 [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF] thanks to eq. (7-10). From Theorem 5.1, one has

∂ ∂T1,2 + T 1,2 ∂ ∂T1,
Q(x) = p x -q + T 1,2 2x 2 ∂A + 1,0 + A - 1,0 ∂T 1,2 + 2x T 1,2 ∂A + 1,1 + A - 1,1 ∂T 1,2 . (8-30)
On the other hand eq. (5-26) and the asymptotics from Appendix C give that

Q(x) = O(x -2 ) as x → ∞. Thus p = -2 T 1,2 ∂A + 1,1 + A - 1,1 ∂T 1,2 , (8-31) i.e. p = - T 1,2 2q 2 ∂q ∂T 1,2 -2 T 1,1 T 1,2 (8-32) 
and

Q(x) = p x -q + 1 x 2 T 1,2 2q ∂q ∂T 1,2 + T 1,2 2 
∂ log w ∂T 1,2 -2 - p x . ( 8-33) 
The quantum curve thus reads

1 x -q - 2 x ∂ ∂x - p x -q -T 2 ∞,2 - C 1 x - C 2 x 2 - 2T 1,1 T 1,2 x 3 - T 2 1,2
x 4 Ψ ± (x) = 0 where

C 1 := 2T ∞,1 T ∞,2 -p (8-35)
and

C 2 := 2 T 1,2 ∂ log w 1 2 Z ∂T 1,2 + T 2 1,1 -pq -2 - 2 q 2 T 1,1 T 1,2 . (8-36)
One can now compute P (x). As in all cases where r ∞ ≤ 2, its computation is slightly more complicated. Let us write it under the form

P (x) = ax 2 + bx + c x 2 .
(8-37)

The constraint P (q) = p implies that c = pq2 -aq 2 -bq. In terms of these coefficients, the -deformed spectral curve reads

φ (dx) 2 = T 2 ∞,2 + C 1 x + C 2 x 2 + 2T 1,1 T 1,2 x 3 + T 2 1,2 x 4 + a + p x + (p -a)q x 2 . (8-39)
On the other hand, φ (dx

) 2 = P (x) 2 + M (x)W (x) implies that φ (dx) 2 = a 2 + 2ab x + O(x -2 ) (8-40)
since both M (x) and W (x) behave as x -1 as x → ∞. Equating the two leading orders gives

a = ∞,2 b = T ∞,1 + 2 . (8-41)
Hence the -deformed spectral curve reads

φ (dx) 2 = T 2 ∞,2 + H -1 x + H -2 x 2 + 2T 1,1 T 1,2 x 3 + T 2 1,2
x 4 (8-42)

where

H -1 := 2T ∞,2 T ∞,1 + 2 and H -2 := 2 T 1,2 ∂ log w 1 2 Z ∂T 1,2 + T 2 1,1 -2 -T ∞,2 q -2 qT 1,1 2T 1,2 . 
(8-43) The fact that the spectral Darboux coordinates belong to the -deformed spectral curve implies that

H -2 = p 2 q 2 -T 2 ∞,2 q 2 -H -1 q - 2T 1,1 T 1,2 q - T 2 1,2 q 2 . (8-44)
Let us now explain how to get an isomonodromic system in this case. For this purpose, one has to impose an explicit dependence of the Casimirs on the isomonodromic time t := t 1,1 by identifying our Lax matrix with the one of [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF]. This is done by comparing the elements P (x) and W (x) of our Lax matrix with the ones of [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF] as well as the coefficients of x -3 and x -4 of their determinant. One obtains the identification

       T ∞,2 := t 2 T ∞,1 + 2 := -θ∞ 2 T 1,1 := -θ0 2 T 1,2 := t 2 . ( 8-45) 
Let us now verify that one gets a Hamiltonian system driving the time evolution of the spectral Darboux coordinates. Identifying the value of the zero of W (x) in both matrices as well as the value of P (x) at the corresponding point, one gets

q = -1 q IMS p = t 2 -θ∞ 2q + p IMS -t 2 1 q 2 (8-46)
where (q IMS , p IMS ) refers to the variables denoted by (q, p) in [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF]. Under this identification, they obtained an isomonodromic system with Hamiltonian

H IMS := 1 t 2q 2 IMS p 2 IMS + 2p IMS -tq 2 IMS + θ ∞ q IMS + t -(θ 0 + θ ∞ ) tq IMS -t 2 - 1 4 (θ 2 0 -θ 2 ∞ ) .
(8-47) After the identification, the latter reads in our notations

H IMS = 2 t H -2 - t 2 - θ 2 0 + θ 2 ∞ 4t . (8-48)
From [START_REF] Iwaki | Painlevé equations, topological type property and reconstruction by the topological recursion[END_REF], one has ∂q

IMS ∂t = ∂H IMS ∂p IMS and ∂p IMS ∂t = -∂H IMS ∂q IMS . Since dp IMS ∧ dq IMS = -dp ∧ dq, ( 8-49) 
this just amounts to a change of Darboux coordinates and one has ∂q ∂t = -∂H-2 ∂p and ∂p ∂t = ∂H-2 ∂q . This implies that, up to a simple shift, ω -1 2 Z is a tau-function. Finally, q IMS = -q -1 is solution to Painlevé 3 equation

2 ∂ 2 q IMS ∂t 2 = 2 q IMS ∂q IMS ∂t 2 - 2 t ∂q IMS ∂t + 4 t -2T 1,1 q 2 IMS -T ∞,1 + 4q 3 IMS - 4 q IMS . (8-50)

Painlevé 4

Let us now consider the case n = 1, n ∞ = 0, r 1 = 1 and r ∞ = 3. The Wronskian reads

W (x) = w (x -q) (x -X ) = w + w(X 1 -q) x -X 1 (8-51) with w = -2T ∞,3 exp A + ∞,0 + A - ∞,0 w(X 1 -q) = 2T 1,1 exp A + 1,0 + A - 1,0 (8-52) 
We have also

q = X 1 - T ∞,2 T ∞ , 3 -A + ∞,1 + A - ∞,1 . (8-53) Theorem 5.1 gives 2 ∂ 2 ∂x 2 -2 1 x -q - 1 x ∂ ∂x - p x -q -T 2 ∞,3 x 2 -2T ∞,2 T ∞,3 x -T 2 ∞,2 -2T ∞,1 T ∞3 - H -1 x - T 2 1,1 x 2 - T ∞,3 q x Ψ ± (x) = 0 (8-54)
where

H -1 = 2 ∂ ln Ẑ ∂t 1,0 + 2T ∞,1 T ∞,2 -T ∞,3 q (8-55) with Ẑ := exp A + 1,0 + A - 1,0 2 Z. (8-56)
One can compute

P (x) = T ∞,3 x 2 + T ∞,2 x + (q -X 1 ) p -T ∞,3 q 2 -T ∞,2 q (x -X 1 ) . ( 8-57) 
The -deformed spectral curve reads

φ (dx) 2 = T 2 ∞,3 x 2 + 2T ∞,2 T ∞,3 x + T 2 ∞,2 + 2 T ∞,1 + 2 T ∞,3 + H -1 x -X 1 + T 2 1,1 (x -X 1 ) 2 (8-58)
and the constraint on the spectral Darboux coordinates reads

H -1 = (q -X 1 ) p 2 -T 2 ∞,3 q 2 -2T ∞,2 T ∞,3 q -T 2 ∞,2 -2 T ∞,1 + 2 T ∞3 - T 2 1,1 (q -X 1 ) 2 . (8-59)
To recover the Hamiltonian structure more simply, let us select a time t defined by the corresponding vector field

∂ ∂t := ∂ ∂x + ∂ ∂t 1,0 (8-60) 
and set X 1 = 0 and T ∞,2 = t in order to have a solution to the isomonodromicity condition. The compatibility of the system evaluated at x = q recovers the Hamiltonian representation of the evolution equations leading to the fact that Ẑ is a corresponding isomonodromic tau function. This leads to the differential equation

∂q ∂t = ∂H-1 ∂p ∂p ∂t = -∂H-1 ∂q
q 2 ∂ 2 q ∂t 2 = 1 2 ∂q ∂t 2 -2T 1,1 + 2 t 2 + 2 T ∞,1 + 2 T ∞,3 q 2 + 8tT ∞,3 q 3 + 6T 3 ∞,3 q 4 . (8-62)
One recovers a known of Painlevé 4 by setting

T ∞,3 = 1, T ∞,2 = t, T ∞,1 + 2 = θ ∞ and T 1,1 = θ 0 .
This also gives p = 2q ∂q ∂t 1,0 . (8-63)

Painlevé 5

Let us now consider the case n = 2, n ∞ = 0, r 1 = r 2 = 1 and r ∞ = 2. For simplicity, we consider X 1 = 0 and X 2 = 1. The Wronskian reads

W (x) = w (x -q) x(x -1) = wq x + w(q -1) x -1 (8-64) with w = -2T ∞,2 exp A + ∞,0 + A - ∞,0 qw = 2T 1,1 exp A + 1,0 + A - 1,0 (q -1)w = 2T 2,1 exp A + 2,0 + A - 2,0 (8-65) 
From Theorem 5.1, one has

Q(x) = p x -q + x T 1,1 2 
∂(A + 1,0 + A - 1,0 ) ∂T 1,2 + x -1 T 2,1 2 
∂(A + 2,0 + A - 2,0 ) ∂T 2,2 = p x -q + x T 1,1 2 
∂ log[qw] ∂T 1,2 + x -1 T 2,1 2 
∂ log[(q -1)w] ∂T 2,2 . 
(8-66)

From eq. and Appendix C, one knows that

Q(x) = x T 1,1 ∂ log[w] ∂T 1,2 + x T 2,1 ∂ log[w] ∂T 2,2 + O(x -2 ) (8-67) as x → ∞. One thus have p = - T 1,1 2 
∂ log q w ∂T 1,2 - T 2,1 2 
∂ log (q-1) w ∂T 2,2 (8-68) 
and the quantum curve reads

2 ∂ 2 ∂x 2 -2 1 x -q - 1 x - 1 x -1 ∂ ∂x - p x -q -T 2 ∞,2 - C 0 x - C 1 x -1 - T 2 1,1 x 2 - T 2 2,1 (x -1) 2 Ψ ± (x) = 0 (8-69
) where the coefficients of x -1 and x -2 in the expansion around x = ∞ give

C 0 + C 1 := 2T ∞,1 T ∞,2 -p + 2 T 1,1 ∂ log[w] ∂T 1,2 + 2 T 2,1 ∂ log[w] ∂T 2,2 (8-70) 
and

C 1 = T 2 ∞,1 -T 2 1,1 -T 2 2,1 + T 2,1 ∂ log[(q -1) -1 2 w -1 2 Z] ∂T 2,2 . (8-71)
Let us write

P (x) = ax 2 + bx + c x(x -1) (8-72)
where P (q) = p imposes that c = q(q -1)p -aq 2 -bq. In terms of these coefficients, the -deformed spectral curve reads

φ (dx) 2 = T 2 ∞,2 + C 0 x + C 1 x -1 + T 2 1,1 x 2 + T 2 2,1 (x -1) 2 - (p - x + p(1 + q) + a(1 -q) x -1 . (8-74) The expansion around x = ∞ gives a = T ∞,2 and b = -T ∞,2 + T ∞,1 + 2 + 2 2T ∞,2 T 1,1 ∂ log w ∂T 1,2 + T 2,1 ∂ log w ∂T 2,2 (8-75) so that φ (dx) 2 = T 2 ∞,2 + H 0 x + H 1 x -1 + T 2 1,1 x 2 + T 2 2,1 (x -1) 2 (8-76) with    H 0 + H 1 = 2T ∞,2 T ∞,1 + 2 + 2 T 1,1 ∂ log w ∂T1,2 + T 2,1 ∂ log w ∂T2,2 H 1 = T 2 ∞,1 -T 2 1,1 -T 2 2,1 + T 2,1 ∂ log[(q-1) -1 2 w -1 2 Z] ∂T2,2 + p(1 + q) + T ∞,2 (1 -q) .
(8-77)

On the other hand, one can replace the second equation by the fact that (p, q) belongs to the spectral curve:

p 2 = T 2 ∞,2 + H 0 q + H 1 q -1 + T 2 1,1 q 2 + T 2 2,1 (q -1) 2 . (8-78) 
Let us now recover the associated isomonodromic system. For this purpose, we can identify our Lax matrix with the one of [START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF] by setting T ∞,2 := t, T 1,1 := -κ1 2 , where κ 1 is the monodromy at 0, T 2,1 := -κ2 2 , where κ 2 is the monodromy at 1 and H 0 + H 1 = a is related to the monodromy at ∞. In this identification, 2 T 1,1

∂ log w ∂T1,2 + T 2,1 ∂ log w ∂T2,2
has to vanish because we are working on a reduced phase space (see [START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF]) for details so that

H 0 + H 1 = 2T ∞,2 T ∞,1 + 2 = a.
After this identification, [START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF] proves that the isomonodromy condition is fulfilled and one has an Hamiltonian system with Hamiltonian H 0 so that u = 1-q 1+q is solution to Painlevé 5 equation

2 ∂ 2 u ∂t 2 = 2 1 2u + 1 u -1 ∂u ∂t 2 - 2 t ∂u ∂t + (αu 2 + β)(u -1) 2 t 2 u + γu t + δu(u + 1) u -1 (8-79) where α = 2T 2 2,1 , β = -2T 2 1,1 , γ = 2T ∞,2 T ∞,1 and δ = -2.

Painlevé 6

Let us consider the case n = 3, n ∞ = 0, r ∞ = r 1 = r 2 = r 3 = 1, X 1 = 0 and X 2 = 1. In this Fuchsian system, our isomonodromic time will be X 3 = t = t 3,0 . The Wronskian reads

W (x) = w x -q x(x -1)(x -t) = w - q tx + q -1 (t -1)(x -1) - q -t t(t -1)(x -t) (8-80)
where using Appendix C:

w = -2T ∞,1 exp A + ∞,0 + A - ∞,0 - q t w = 2T 1,1 exp A + 1,0 + A - 1,0 q -1 (t -1) w = 2T 2,1 exp A + 2,0 + A - 2,0 - q -t t(t -1) w = 2T 3,1 exp A + 3,0 + A - 3,0 (8-81) 
and

q = 1 + t - A + ∞,1 -A - ∞,1 2T ∞,1 -A + ∞,1 + A - ∞,1 . (8-82)
From Theorem 5.1, one has

Q(x) = p x -q + 2(x -t) ∂ ∂t log (q -t)w t(t -1) . (8-83)
On the other hand, Appendix C gives that

Q(x) = x ∂ log w ∂t + O(x -2 ), leading to p = -2(x -t) ∂ ∂t log (q - t(t -1)w . (8-84)
On the other hand, using the notations of eq. (7-10), the classical spectral curve reads

φ 0 (dx) 2 = T 2 1,1 x 2 + T 2 2,1 (x -1) 2 + T 2 3,1 (x -t) 2 + 2 x ∂ω 0,0 ∂t 1,0 + 2 x -1 ∂ω 0,0 ∂t 2,0 + 2 x -t ∂ω 0,0 ∂t . ( 8-85) 
The asymptotic expansion at infinity φ0 (dx

) 2 = T 2 ∞,1 x -2 + O(x -3
) leads to the conditions

2 ∂ω 0,0 ∂t 1,0 + 2 ∂ω 0,0 ∂t 2,0 + 2 ∂ω 0,0 ∂t = 0 (8-86) and T 2 1,1 + T 2 2,1 + T 2 3,1 + 2 ∂ω 0,0 ∂t 2,0 + t 2 ∂ω 0,0 ∂t = T 2 ∞,1 . (8-87) 
More generally, as vector fields in

Q(P 1 , -∞ -0 -1 -t, 0, T), the vector fields 2 ∂ ∂t1,0 + 2 ∂ ∂t2,0 + 2 ∂ ∂t and 2 ∂ ∂t2,0 + 2 t ∂ ∂t are vanishing. The quantum curve reads 1 x -q - 1 x - 1 x -1 - 1 x -t ∂ ∂x - p x -q - C 0 x - C 1 x -1 - C t x -t - T 2 1,1 x 2 - T 2 2,1 (x -1) 2 - T 2 3,1 (x -t) 2 Ψ ± = 0 (8-88) where      C 0 = 2 ∂ log Z ∂t1,0 C 1 = 2 ∂ log Z ∂t2,0 C t = 2 ∂ log[wZ] ∂t -p . (8-89)
Let us write

P (x) = ax 2 + bx + c x(x -1)(x -t) . (8-90)
In terms of these coefficients, the -deformed spectral curve reads

φ (dx) 2 = H 0 x + H 1 x -1 + H t x -t + T 2 1,1 x 2 + T 2 2,1 (x -1) 2 + T 2 3,1 (x -t) 2 (8-91) where      H 0 = 2 ∂ log Z ∂t1,0 + pt-q(a+p(1+t)) t H 1 = 2 ∂ log Z ∂t2,0 + a(1-q)-qp(1+t) 1-t H t = 2 ∂ log[wZ]
∂t -p + a(t-q)-qp(1+t) t(t-1) satisfy the conditions

H 0 + H 1 + H t = 0 H 1 + tH t + T 2 1,1 + T 2 2,1 + T 2 3,1 = a . (8-93)
The expansion around x = ∞ imposes that a is solution to

a 2 = T 2 ∞,1 + a. (8-94)
This means that we have a Fuchsian system with monodromies at 0, 1, t and ∞ given by θ 0 = 2T 1,1 , θ 1 = 2T 2,1 θ t = 2T 3,1 and θ ∞ = 2a and q satisfies the associated Painlevé 6 equation

2 ∂ 2 q ∂t 2 = 2 2 1 q + 1 q -1 + 1 q -t ∂q ∂t 2 -2 1 t + 1 t -1 + 1 q -t ∂t + q(q -1)(q -t) t 2 (t -1) 2 2T 2 ∞,1 + 2 2 -2T 2 1,1 t q 2 + 2T 2 2,1 t -1 (q -1) 2 -2T 3,1 - 2 2 t(t -1) (q -t) 2 .
(8-95)

Second equation of the Painlevé 2 hierarchy

Let us consider the case n = 0, r ∞ = 5 and n ∞ = 0. The Wronskian takes the form

W (x) = w(x -q 1 )(x -q 2 ) (8-96)
where

w = -2T ∞,5 exp(A + ∞,0 + A - ∞,0 ) q 1 + q 2 = -(A + ∞,1 + A - ∞,1 ) - T ∞,4 T ∞,5 q 1 q 2 = (A + ∞,2 + A - ∞,2 ) + 1 2 (A + ∞,1 + A - ∞,1 ) 2 + T ∞,4 T ∞,5 (A + ∞,1 + A - ∞,1 ) + T ∞,3 T ∞,5 (8-97) 
The quantum curve reads

2 ∂ 2 ∂x 2 -2 2 i=1 1 x -q i ∂ ∂x - 2 i=1 p i x -q i -T 2 ∞,5 x 6 -2T ∞,5 T ∞,4 x 5 -2T ∞,5 T ∞,3 + T 2 ∞,4 x 4 -(2T ∞,5 T ∞,2 + 2T ∞,4 T ∞,3 ) x 3 -2T ∞,5 T ∞,1 + 2T ∞,4 T ∞,2 + T 2 ∞,3 x 2 -C 1 x -C 0 Ψ ± = 0 where    C 1 = 2 T ∞,5 ∂ ∂T∞,2 log w 1 2 Z + 2T ∞,4 T ∞,1 + 2T ∞,3 T ∞,2 C 0 = 2 T ∞,4 ∂ ∂T∞,2 log w 1 2 Z + 2 2 T ∞,5 ∂ ∂T∞,3 log w 1 2 Z + 2 2 T ∞,5 ∂ log(q1+q2) ∂T∞,2 + T 2 ∞,2 + 2T ∞,3 T ∞,1
.

(8-98) The diagonal term of the Lax matrix reads

P (x) = T ∞,5 x 3 + T ∞,4 x 2 + αx + β (8-99)
where

α = p 1 -p 2 q 1 -q 2 -T ∞,5 (q 2 2 + q 2 1 + q 1 q 2 ) -T ∞,4 (q 1 + q 2 ), β = p 2 q 1 -p 1 q 2 q 1 -q 2 + T ∞,5 q 1 q 2 (q 1 + q 2 ) + T ∞,4 q 1 q 2 .
The -deformed spectral curve reads

φ (dx) 2 = T 2 ∞,5 x 6 + 2T ∞,5 T ∞,4 x 5 + 2T ∞,5 T ∞,3 + T 2 ∞,4 x 4 + (2T ∞,5 T ∞,2 + 2T ∞,4 T ∞,3 ) x 3 + 2T ∞,5 T ∞,1 + 2T ∞,4 T ∞,2 + T 2 ∞,3 x 2 + H 1 x + H 0 (8-100)
where

H 1 = C 1 -T ∞,5 (q 1 + q 2 ) H 0 = C 0 -T ∞,5 (q 2 1 + q 2 2 ) -T ∞,4 (q 1 + q 2 )
. On the other hand, the fact that the spectral Darboux coordinates belong to the -deformed spectral curve implies that H 0 and H 1 are subject to the constraint

H 1 q i + H 0 = p 2 i -T 2 ∞,5 q 6 i -2T ∞,5 T ∞,4 q 5 i -2T ∞,5 T + T 2 ∞,4 q 4 i -(2T ∞,5 T ∞,2 + 2T ∞,4 T ∞,3 ) q 3 i -2T ∞,5 T ∞,1 + 2T ∞,4 T ∞,2 + T 2 ∞,3 q 2 i (8-102) for i ∈ {1, 2}. This means that H 1 = p 2 1 -p 2 2 q 1 -q 2 -T 2 ∞,5 (q 1 + q 2 )(q 4 1 + q 2 1 q 2 2 + q 4 2 ) -2T ∞,5 T ∞,4 (q 4 1 + q 3 1 q 2 + q 2 1 q 2 2 + q 1 q 3 2 + q 4 2 ) -(2T ∞,5 T ∞,3 + T 2 ∞,4 )(q 1 + q 2 )(q 2 1 + q 2 2 ) -(2T ∞,5 T ∞,2 + 2T ∞,4 T ∞,3 )(q 2 1 + q 1 q 2 + q 2 2 ) -(2T ∞,5 T ∞,1 + 2T ∞,4 T ∞,2 + T 2 ∞,3 )(q 1 + q 2 ), H 0 = q 1 p 2 2 -q 2 p 2 1 q 1 -q 2 + q 1 q 2 T 2 ∞,5 (q 4 1 + q 3 1 q 2 + q 2 1 q 2 2 + q 1 q 3 2 + q 4 2 ) + 2T ∞,5 T ∞,4 (q 3 1 + q 2 1 q 2 + q 1 q 2 2 + q 3 2 ) +(T 2 ∞,4 + 2T ∞,5 T ∞,3 )(q 2 1 + q 1 q 2 + q 2 2 ) + (2T ∞,4 T ∞,3 + 2T ∞,5 T ∞,2 )(q 1 + q 2 ) + T 2 ∞,3 +2T ∞,4 T ∞,2 + 2T ∞,5 T ∞,1 .
As explained for example in Section 6.3.1 of [START_REF] Marchal | Isomonodromic deformations of a rational differential system and reconstruction with the topological recursion: the sl 2 case[END_REF], it is possible to introduce an explicit dependence in the times t ∞,1 and t ∞,2 in such a way that they give rise to isomonodromic deformations by solving eq. .

This implies that, after having made the Lax matrix L(x) explicitly dependent in these times, one obtains Hamilton's equations

∀ i ∈ {1, 2} ,          2 ∂qi ∂t∞,1 = -∂H0 ∂pi 2 ∂qi ∂t∞,2 = -∂H1 ∂qi 2 ∂pi ∂t∞,1 = ∂H0 ∂qi 2 ∂pi ∂t∞,2 = ∂H1 ∂qi . (8-103)
The second equation gives

p 1 = -(q 1 -q 2 ) ∂q1 ∂t∞,2 p 2 = -(q 1 -q 2 ) ∂q2 ∂t∞,2
.

(8-104)

The same properties imply that

R h,n (z 1 , . . . , z n ) := -d u1 d u2 F h-1,n+1 (u 1 , u 2 , z 2 , . . . , z n )+ + stable h 1 + h 2 = h A B = {z 2 , . . . , z n } F h1,|A|+1 (u 1 , A)F h2,|B|+1 (u 2 , B)        u1=u2=z1 - n j=2 zj σ(zj ) ω 0,2 (z 1 , •) d z1 F h,n-1 (z 1 , z {2,...,n}\{j} ) (A.7)
One has a simple pole as z → z 1 giving Res z→z1,σ(z1) 

K(z 1 , z)R g,n (z, . . . , z n ) = 1 2ω 0,1 (z 1 ) d u1 d u2 F h-1,n+1 (u 1 , u 2 , z 2 , . . . , z n )+ + stable h 1 + h 2 = h A B = {z 2 , . . . , z n } F h1,|A|+1 (u 1 , A)F h2,|B|+1 (u 2 , B)        u1=u2=z1 + n j=2 zj σ(zj ) ω 0,2 (z 1 , •) 2ω 0,1 (z 1 ) d z1 F h,n-1 (z
K(z 1 , z)R h,n (z, . . . , z n ) = 2 Res z→zj K(z 1 , z)R h,n (z, . . . , z n ) = - zj σ(zj ) ω 0,2 (z 1 , •) 2ω 0,1 (z j ) d zj F h,n-1 (z j , z {2,...,n}\{j} ) (A.9)
Combining all this, one gets

1 2πi z∈δD K(z 1 , z)R h,n (z, . . . , z n ) = d z1 F h,n (z 1 , . . . , z n ) + n j=2 zj σ(zj ) ω 0,2 (z 1 , •) dz 1 F h,n-1 (z1,z {2,...,n}\{j} ) 2ω0,1 (z1) 
-

dz j F h,n-1 (zj ,z {2,...,n}\{j} ) 2ω0,1(zj ) + 1 2ω0,1(z1) d u1 d u2 F h-1,n+1 (u 1 , u 2 , z 2 , . . . , z n ) + stable h 1 + h 2 = h A B = {z 2 , . . . , z n } F h1,|A|+1 (u 1 , z A ) F h2,|B|+1 (u 2 , z B ) u1=u2=z1 . (A.10)
By Riemann bilinear identity, the left hand side is an holomorphic form in z 1 , thus concluding the proof.

A.1.2 Case 2h

-2 + n = 1.
Let us now consider the case (h, n) = (0, 3). One has

1 2πi z∈δD K(z 1 , z)R 0,3 (z, z 2 , z 3 ) = a∈R finite Res z→a K(z 1 , z)R 0,3 (z, z 2 , z 3 )+ 3 i=1 Res z→zi,σ(zi) K(z 1 , z)R 0,3 (z, z 2 , z 3 ) (A.11) where R 0,3 (z 1 , z 2 , z 3 ) := 1 4 z2 σ(z2) ω 0,2 (z 1 , •) z3 σ(z3) ω 0,2 (σ(z 1 ), •) + z3 σ(z3) ω 0,2 (z 1 , •) z2 σ(z2) ω 0,2 (σ(z 1 ), •) = -1 2 z2 σ(z2) ω 0,2 (z 1 , •) z3 σ(z3) ω 0,2 (z 1 , •),
(A.12) the second equality follows from eq. [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF].

Once again, the left hand side is holomorphic while the first term on the right hand side is the recursive definition of d z1 F 0,3 (z 1 , z 2 , z 3 ).

Evaluation of the residues gives

1 2πi z∈δD K(z 1 , z)R 0,3 (z, z 2 , z 3 ) = d z1 F 0,3 (z 1 , z 2 , z 3 ) + z2 σ(z2) ω 0,2 (z 1 , •) z3 σ(z3) ω 0,2 (z 1 , •) 4ω 0,1 (z 1 ) - z2 σ(z2) ω 0,2 (z 1 , •) z3 σ(z3) ω 0,2 (z 2 , •) 4ω 0,1 (z 2 ) - z3 σ(z3) ω 0,2 (z 1 , •) z2 σ(z2) ω 0,2 (z 3 , •) 4ω 0,1 (z 3 ) . (A.13)
Finally, for (h, n) = (1, 1), one only has contributions from poles at the ramification points, z 1 and σ(z 1 ). This gives Let us apply eq. (4.4) to the holomorphic differential of eq. (4-13).

1 2πi z∈δD K(z 1 , z)R 1,1 (z) = d z1 F 1,1 (z 1 ) - ω 0,2 (z 1 , σ(z 1 )) 2ω 0 
To simplify the expression obtained, let us first note that

p∈P Res z2→p ω(z 2 ) y(z 2 ) x(z 2 ) -x(z 1 ) (A.15)
is vanishing for ω(z) = Ω(z) ω0, 1(z) where Ω(z) is a quadratic differential holomorphic at the p's. This allows getting rid of the contributions of this residue for all the terms proportional to 1 ω0,1(z1) in eq. (4-13). One thus gets

d z1 F h,n (z 1 , . . . , z n ) + n j=2 zj σ(zj ) ω 0,2 (z 1 , •) dz 1 F h,n-1 (z1,z {2,...,n}\{j} ) 2ω0,1 (z1) 
-

dz j F h,n-1 (zj ,z {2,...,n}\{j} ) 2ω0,1(zj ) + 1 2ω0,1(z1) d u1 d u2 F h-1,n+1 (u 1 , u 2 , z 2 , . . . , z n ) + stable h 1 + h 2 = h A B = {z 2 , . . . , z n } F h1,|A|+1 (u 1 , z A ) F h2,|B|+1 (u 2 , z B ) u1=u2=z1 = -dx(z1) 2y(z1) p∈P Res z→p y(z) x(z)-x(z1)   d z F h,n (z, z 2 , . . . , z n ) - n j=2 zj σ(zj ) ω 0,2 (z, •) dz j F h,n-1 (zj ,z {2,...,n}\{j} ) 2ω0,1(zj )   (A.16)
Using that, for any function f ,

lim z1→zj zj σ(zj ) ω 0,2 (z 1 , •) [f (z 1 ) -f (z j )] = d zj f (z j ), (A.17) the diagonal specialization z = z 1 = z 2 = • • • = z n gives 1 n dF h,n (z, . . . , z) + (n -1)d z1 1 2ω0,1(z1) d z1 F h,n-1 (z 1 , z, z, . . . , z) z1=z + 1 2ω0,1(z) d u1 d u2 [F h-1,n+1 (u 1 , u 2 , z, . . . , z)] u1=u2=z + 1 2ω0,1(z) stable h 1 + h 2 = h n 1 + n 2 = n -1 (n-1)! n1! n2! dF h 1 ,n 1 +1 (z,...,z) n1+1 dF h 2 ,n 2 +1 (z,...,z) n2+1 = -dx(z) 2y(z) p∈P Res z →p y(z ) x(z )-x(z) d z F h,n (z , z, . . . , z) + dzF h,n-1 (z,...,z) 4y(z) 2 p∈P Res z →p y(z ) x(z )-x(z) z σ(z) ω 0,2 (z , •). (A.18) which, multiplying by 2y(z) (n-1)! dx(z) , can be written 2y(z) d dx(z) F h,n (z,...,z) n! + d dx(z) 2 F h,n-1 (z,z,z,...,z) (n-1)! + stable h 1 + h 2 = h n 1 + n 2 = n -1 d dx(z) F h 1 ,n 1 +1 (z,...,z) (n1+1)! d dx(z) F h 2 ,n 2 +1 (z,...,z) (n2+1)! + d dx(z) F h,n-1 (z,...,z) (n-1)!   -d log y(z) dx(z) -1 2y(z) p∈P Res z →p y(z ) x(z )-x(z) z σ(z) ω 0,2 (z , •)   + d 2 dx(u1) dx(u2) F h-1,n+1 (u1,u2,z,...,z) (n-1)! - F h,n-1 (u1,u2,z,...,z) (n-3)! u1=u2=z = - p∈P Res z →p y(z ) x(z )-x(z) d z F h,n (z ,z,...,z) (n-1)! . (A.19)
To simplify this expression, let us compute

- p∈P Res z →p y(z ) x(z )-x(z) z σ(z) ω 0,2 (z , •) = Res z →z,σ(z) y(z ) x(z )-x(z) z σ(z) ω 0,2 (z , •) = 2 Res z →z y(z ) x(z )-x(z) z σ(z) ω 0,2 (z , •), (A.20)
where the first equality follows from the absence of boundary term and the second one from the invariance of the integrand under z → σ(z ).

Let us now remind that

z σ(z) ω 0,2 (z , •) = 2d z F 0,2 (z , z) + dx(z ) x(z ) -x(z) (A.21)
where d z F 0,2 (z , z) is holomorphic at z → z. Plugging this expression into eq. (A.20) gives

- p∈P Res z →p y(z ) x(z )-x(z) z σ(z) ω 0,2 (z , •) = 2 Res z →z y(z ) x(z )-x(z) 2d z F 0,2 (z , z) + dx(z ) x(z )-x(z) = 4 y(z) dx(z) d z F 0,2 (z , z)| z =z + 2 dy(z) dx(z) (A.22)
and thus

- d log y(z) dx(z) - 1 2y(z) p∈P Res z →p y(z ) x(z ) -x(z) z σ(z) ω 0,2 (z , •) = 2 dF 0,2 (z , z) dx(z ) z =z . (A.23)
Plugging this into eq. (A. [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF]), one gets

d dx(z) 2 F h,n-1 (z,z,z,...,z) (n-1)! + h 1 + h 2 = h n 1 + n 2 = n -1 d dx(z) F h 1 ,n 1 +1 (z,...,z) (n1+1)! d dx(z) F h 2 ,n 2 +1 (z,...,z) (n2+1)! + d 2 dx(u1) dx(u2) F h-1,n+1 (u1,u2,z,...,z) (n-1)! - F h,n-1 (u1,u2,z,...,z) (n-3)! u1=u2=z = - p∈P Res z →p y(z ) x(z )-x(z) d z F h,n (z ,z,...,z) (n-1)! .
(A.24) Summing over h and n such that 2h -2 + n = m ≥ 2, one gets

∂ 2 S + pert m-1 (x) ∂x 2 + m1+m2=m-1 ∂S + pert m1 (x) ∂x ∂S + pert m2 (x) ∂x = - 2h-2+n=m p∈P Res z →p y(z ) x(z ) -x(z) d z F h,n (z , z, . . . , z)
(n -1)! .

(A.25) Let us now interpret the right hand side in terms of the variational formulas. To do so, one shall compute the residues as z → p whose expressions in terms of local coordinates depend on whether x(p) = ∞ or not.

-

For p = b ± ν , a local coordinate is x(z ) -X ν . Thus, Res z →b ± ν y(z ) x(z ) -x(z) d z F h,n (z , z, . . . , z) (n -1)! = - ∞ k=0 (x(z)-X ν ) -k-1 Res z →b ± ν y(z ) d z F h,n (z , z, . . . , z) (n -1)! (x(z )-X ν ) k . (A.26) Since y(z ) = ± rν l=1 T ν,l (x(z ) -X ν ) -l + O(1) (A.27) and ∀K ≥ 2 , Res z →b ± ν d z F h,n (z , z, . . . , z)(x(z ) -X ν ) -K+1 = ±(K -1) ∂F h,n-1 (z, . . . , z) ∂T ν,K , (A.28) one has Res z →b ± ν y(z ) x(z ) -x(z) d z F h,n (z , z, . . . , z) (n -1)! = - rν +1 K=2 U ν,K (x(z)) ∂ F h,n-1 (z,...,z) (n-1)! ∂T ν,K (A.29)
where

U ν,K (x) = (K -1) rν l=K-1 T ν,l (x -X ν ) -l+K-2 (A.30) is a rational function of x. -For p = b ± ∞ when n ∞ = 0, a local coordinate is x(z ) -1 . Let us write Res z →b ± ∞ y(z ) x(z ) -x(z) d z F h,n (z , z, . . . , z) (n -1)! = ∞ k=0 x(z) k Res z →b ± ∞ y(z ) d z F h,n (z , z, . . . , z) (n -1)! x(z ) -k-1 . (A.31) Reminding that y(z) = ∓ r∞ k=1 T ∞,k x(z) k-2 + O(x(z) -2 ) (A.32)
and

∀ K ≥ 2 , Res z →b ± ∞ d z F h,n (z , z, . . . , z)x(z ) K-1 = ∓(K -1) ∂F h,n-1 (z, . . . , z) ∂T ∞,K , (A.33) one has Res z →b ± ∞ y(z ) x(z ) -x(z) d z F h,n (z , z, . . . , z) (n -1)! = - r∞-2 K=2 U ∞,K (x(z)) ∂ F h,n-1 (z,...,z) (n-1)! ∂T ∞,K (A.34)
where

U ∞,K (x) = (K -1) r∞ l=K+2 T ∞,l x l-K-2 . (A.35) -For p = b ∞ when n ∞ = 1, a local coordinate is x(z) -1 2 . Reminding that y(z) = - r∞ k=1 T b∞,k 2 x(z) k-5 2 + O(x(z) -5 2 ) (A.36) and ∀ K ≥ 2 , Res z →b∞ d z F h,n (z , z, . . . , z)x(z ) K-3 2 = (2K -3) ∂F h,n-1 (z, . . . , z) ∂T b∞,K , (A.37) one has Res z →b∞ y(z ) x(z ) -x(z) d z F h,n (z , z, . . . , z) (n -1)! = - r∞-2 K=2 U ∞,K (x(z)) ∂ F h,n-1 (z,...,z) (n-1)! ∂T b∞,K (A.38)
where

U ∞,K (x) = K - 3 2 r∞ l=K+2 T b∞,l x l-K-2 . (A.39)
Plugging this into eq. (A.25) proves for m ≥ 2:

0 = ∂ 2 S + pert m (x) ∂x 2 + m1+m2=m-1 ∂S + pert m1 (x) ∂x ∂S + pert m2 (x) ∂x - r∞-2 K=2 U ∞,K (x(z)) ∂S + pert m-1 (x) ∂T ∞,K - ν r bν +1 K=2 U bν ,K (x(z)) ∂S + pert m-1 (x) ∂T bν ,K - ∞ k=0 δ m+1,2k   r∞-2 K=2 U ∞,K (x(z)) ∂F k,0 ∂T ∞,K ν r bν +1 K=2 U bν ,K (x(z)) ∂F k,0 ∂T bν ,K   . (A.40) A.2.2 Case 2h -2 + n = 1
Let us now proceed in the same way for (h, n) = (0, 3). Applying eq. (A.20) to the holomorphic differential eq. (A.13), one gets

d z1 F 0,3 (z 1 , z 2 , z 3 ) + z2 σ(z2) ω 0,2 (z 1 , •) z3 σ(z3) ω 0,2 (z 1 , •) 4ω 0,1 (z 1 ) - z2 σ(z2) ω 0,2 (z 1 , •) z3 σ(z3) ω 0,2 (z 2 , •) 4ω 0,1 (z 2 ) - z3 σ(z3) ω 0,2 (z 1 , •) z2 σ(z2) ω 0,2 (z 3 , •) 4ω 0,1 (z 3 ) = - dx(z 1 ) 2y(z 1 ) p∈P Res z →p y(z ) x(z ) -x(z 1 ) d z F 0,3 (z , z 2 , z 3 ) - z2 σ(z2) ω 0,2 (z , •) z3 σ(z3) ω 0,2 (z 2 , •) 4ω 0,1 (z 2 ) - z3 σ(z3) ω 0,2 (z , •) z2 σ(z2) ω 0,2 (z 3 , •) 4ω 0,1 (z 3 ) . (A.41)
Let us move the integration contour to compute the last line. One has

p∈P Res z →p y(z ) x(z )-x(z1) z 2 σ(z 2 ) ω0,2(z ,•) z 3 σ(z 3 ) ω0,2(z2,•) 4ω0,1(z2) = - z 3 σ(z 3 ) ω0,2(z2,•) 4ω0,1(z2) Res z → z 1 , σ(z 1 ) z 2 , σ(z 2 ) y(z ) x(z )-x(z1) z2 σ(z2) ω 0,2 (z , •) (3-17) = - z 3 σ(z 3 ) ω0,2(z2,•) 2ω0,1(z2) Res z →z1,z2 y(z ) x(z )-x(z1) z2 σ(z2) ω 0,2 (z , •) = - y(z1) z 3 σ(z 3 ) ω0,2(z2,•) z 2 σ(z 2 ) ω0,2(z1,•) 2ω0,1(z2)dx(z1) - z 3 σ(z 3 ) ω0,2(z2,•) 2dx(z2)(x(z2)-x(z1)) .
(A.42) Thanks to this property, equation (A.41) reads

d z1 F 0,3 (z 1 , z 2 , z 3 ) + dx(z1) 4y(z1) z 2 σ(z 2 ) ω0,2(z1,•) z 3 σ(z 3 ) ω0,2(z1,•) dx(z1) 2 + z 3 σ(z 3 ) ω0,2(z2,•) dx(z2)(x(z2)-x(z1)) + z 2 σ(z 2 ) ω0,2(z3,•) dx(z3)(x(z3)-x(z1)) = -dx(z1) 2y(z1) p∈P Res z →p y(z ) x(z )-x(z1) d z F 0,3 (z , z 2 , z 3 ). (A.43) Observing that z2 σ(z2) ω 0,2 (z 1 , •) = 2d z1 F 0,2 (z 1 , z 2 ) + dx(z 1 ) x(z 1 ) -x(z 2 ) (A.44)
this simplifies to

d z1 F 0,3 (z 1 , z 2 , z 3 ) + [dz 1 F0,2(z1,z2)] [dz 1 F0,2(z1,z3)] y(z1)dx(z1) + dx(z1) 2y(z1) 1 x(z1)-x(z2) dz 1 F0,2(z1,z3) dx(z1) - dz 2 F0,2(z2,z3) dx(z2) + dx(z1) 2y(z1) 1 x(z1)-x(z3) dz 1 F0,2(z1,z2) dx(z1) - dz 3 F0,2(z3,z2) dx(z3) = -dx(z1) 2y(z1) p∈P Res z →p y(z ) x(z )-x(z1) d z F 0,3 (z , z 2 , z 3 ).
(A.45) Specializing to z 2 = z 3 = z, one obtains

d z1 F 0,3 (z 1 , z, z) + [dz 1 F0,2(z1,z)] [dz 1 F0,2(z1,z)] y(z1)dx(z1) + dx(z1) y(z1) 1 x(z1)-x(z) dF0,2(z1,z) dx(z1) - dF0,2(z ,z) dx(z ) z =z = -dx(z1) 2y(z1) p∈P Res z →p y(z ) x(z )-x(z1) d z F 0,3 (z , z, z).
(A.46) Finally, considering the limit z 1 → z and multiplying by y(z) dx(z) gives 2y(z) 6

dF 0,3 (z, z, z) dx(z) + 1 4 dF 0,2 (z, z) dx(z) 2 + d 2 F 0,2 (z 1 , z) dx(z 1 ) 2 z1=z = - 1 2 p∈P Res z →p y(z ) x(z ) -x(z) d z F 0,3 (z , z, z).
(A.47) As before, the right hand side can be written in terms of the variational formulas to read 2y(z) d 

B System of ODE for the non-perturbative wave functions

B.2 Proof of Lemma 5.3

We shall prove this fundamental result by following the footsteps of [START_REF] Iwaki | 2-parameter τ -function for the first Painlevé equation :Topological recursion and direct monodromy problem via exact WKB analysis[END_REF]. Let us first write down the compatibility of the system eq. [START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Eynard | Counting surfaces: CRM Aisenstadt Chair Lectures[END_REF][START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF][START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF][START_REF] Harnad | Moment Maps to Loop Algebras, Classical R-Matrix and Integrable Systems[END_REF][START_REF] Harnad | Loop Algebra Moment Maps and Hamiltonian Models for the Painlevé Transcendants[END_REF][START_REF] Iorgov | Isomonodromic Tau-Functions from Liouville Conformal Blocks[END_REF] Let us now write the expansion in of these equality order by order. For this purpose, let us remark that both equations can be put under the form of a trans-series as functions of meaning that the coefficients of the trans-monomials vanish. Summing over vectors k, this implies that the coefficient of m is vanishing for any m. In order to compute it, let us remarks that derivation with respect to x preserves this grading while differentiation with respect to the times decreases the degree by 1.

To leading order, this reads 0 = 2 ∂Q Thus R (0) (x) and Q (0) p,K (x) are holomorphic at the critical values. This implies that Q (0) (x) is holomorphic as well at these points. Finally, eq. (B.8) together with the fact that Q (0) (x) is holomorphic implies that R (0) p,K (x) is holomorphic as well at these points. We shall now proceed by induction on h for proving that the coefficients R C Expansions of S ± and Wronskians around X ν and ∞

In this appendix, we recall the expansions around the poles of certain useful quantities.

-Around x = X ν , for ν ∈ 1, n .

The logarithm of the wave functions read

S ± (x) = ∓ -1 r bν k=2 T ν,k k -1 1 (x -X ν ) k-1 ± -1 T ν,1 log(x -X ν ) + ∞ k=0 A ± ν,k (x -X ν ) k . (C.1)
The Wronskian in x behaves as

W (x) = 2T ν,rν (x -X ν ) rν exp A + ν,0 + A - ν,0 + O (x -X ν ) -rν +1 . (C.2)
The Wronskians in the spectral times at finite pole read

∀ ν ∈ 1, n , ∀ k ≥ 2 : W T ν ,k (x) = - 2δ ν,ν (k -1)(x -X ν ) k-1 + ∂ A + ν,0 -A - ν,0 ∂T ν ,k + O ((x -X ν )) Ψ + (x)Ψ -(x), (C.3) i.e ∀ k ≥ 2 , W T ν,k (x) = - 2 k -1 exp A + ν,0 + A - ν,0 (x -X ν ) k-1 + O (x -X ν ) -k+2 (C.4)
and

∀ ν = ν , ∀ k ≥ 2 : W T ν ,k (x) = ∂ A + ν,0 -A - ν,0 ∂T ν ,k exp A + ν,0 + A - ν,0 + O ((x -X ν )) . (C.5)
The Wronskians in the spectral times at ∞ read

∀ k ≥ 2 : W T ∞,k (x) = ∂ A + ν,0 -A - ν,0 ∂T ∞,k exp A + ν,0 + A - ν,0 + O ((x -X ν )) . (C.6) -Around x = ∞ if n ∞ = 0.
The logarithms of the wave functions read

S ± (x) = ∓ -1 r∞ k=2 T ∞,k k -1 x k-1 ∓ -1 T ∞,1 log(x) - log x 2 + ∞ k=0 A ± ∞,k x -k . (C.7)
The Wronskian in x behaves as

W (x) = -2T ∞,r∞ exp A + ∞,0 + A - ∞,0 x r∞-3 + O x r∞-4 . (C.8)
The Wronskians in the spectral times at finite poles read

∀ ν ∈ 1, n , ∀ k ≥ 2 : W T ν,k (x) = O x -1 . (C.9)
The Wronskians in the spectral times at ∞ read

∀ k ≥ 2 , W T ∞,k (x) = - 2 k -1 exp A + ∞,0 + A - ∞,0 x k-2 . (C.10) -Around x = ∞ if n ∞ = 1. S ± (x) = ∓ -1 r∞ k=2 T ∞,k 2k -3 x 2k-3 2 ∓ -1 T ∞,1 log(x) - log x 4 + ∞ k=1 A ± ∞,k x -k 2 .
(C.11)

The Wronskian in x behaves as

W (x) = -T ∞,r∞ exp A + ∞,0 + A - ∞,0 x r∞-3 + O x r∞-3-1 2 .
(C.12)

The Wronskians in the spectral times at finite poles read

∀ ν ∈ 1, n , ∀ k ≥ 2 : W T ν,k (x) = O x -1 2 . (C.13)
The Wronskians in the spectral times at ∞ read

∀ k ≥ 2 : W T ∞,k (x) = - 2 2k -3 exp A + ∞,0 + A - ∞,0 x k-2 . (C.14)
Note that one may obtain the next orders in the expansions of the Wronskians from those of S ± with the formula: 

W (x) = ∂S + (x

Definition 3 . 2 . 1 2

 321 Given φ ∈ Q(P 1 , D, n ∞ ) the associated one form ω 0,1 := φ is meromorphic on Σ φ with poles along the pre-image of the points in the divisor D. Let us define the pre-images of the poles by {b + ν , b - ν

Definition 5 . 1 .

 51 Let the non-perturbative partition function be the Fourier transform Z(T, , ρ) :=

Lemma 5 . 3 .

 53 The rational functions R p,k and Q p,k have no pole at the ramification points.

- 22 ) 23 )

 2223 Using the change of coordinates 2T ∞,2 = t ∞,1 , the evolution equations of the spectral Darboux coordinates One recovers a classical representation of Painlevé 2 by setting T

A. 2 1 A. 2 . 1

 2121 Conclusion of the proof of Theorem 4.Case 2h -2 + n ≥ 2.

F0, 3 2 K=2UA. 2 . 3 A. 2 . 4

 322324 Applying the same procedure for (h, n) = (1, 1) gives 2y(z)dF 1,1 (z) dx(z) + d 2 F 0,2 (z 1 , z 2 ) dx(z 1 )dx(z 2 ) z1=z2=z = r∞-∞,K (x(z)) ∂F 1,0 ∂T b∞,K + n ν=1 rν +1 K=2 U ν,K (x(z)) ∂F 1,0 ∂T bν ,K .(A.49) Using the fact thatd 2 F 0,2 (z 1 , z 2 ) dx(z 1 )dx(z 2 ) z1=z2=z + d 2 F 0,2 (z 1 , z) dx(z 1 ) 2 z1=z = d 2 F0,2(z,z) 2 dx(z) 2 , (A.50) the sum of eq. (A.49) and eq. (A.Cases 2h -2 + n ≤ 0 For 2h -2 + n = -1, one has, by definition of the spectral curve, 2h -2 + n = 0, thanks to eq. (A.23) and the expression of the residues at poles in terms of variational formulas, one can write 2y(z) dF 0,2 (z , z) dx(z ) Conclusion of the proof Summing the contributions coming from eq. (A.52), eq. (A.54), eq. (A.51) and eq. (A.40) for m ≥ 2 with the appropriate factors, one gets the ODE satisfied by the non-perturbative wave function as stated in Theorem 4.1.

+

  have a pole at a critical value u i such that they behave as ui) d p,k + O((x -u i ) -d p,k +1 ) R(0) p,k (x, T, v) = r O((x -u i ) -d p,k +1 ) (B.9)for some positive degrees (d p,k , d p,k ) and write in the same way   Q(0) (x, T, v) = q (0) (x-ui) d + O((x -u i ) -d+1 ), R(0) (x, T, v) = r (0) (x-ui) d + O((x -u i ) -d +1 ). (B.10)The leading order in x → u i of eq. (B.7) reads-2d p,k q (0) p,k (x -u i ) d p,k +1 = ∂φ ∂T p,k ∂r (0) ∂v v= φ+ρ 1 (x -u i ) d (B.11)meaning that d p,k is independent of (p, k) and d p,k = d -1 for any pair (p, k). From the definition of Q, it behaves asQ(0) (x, T, v) =   p∈P k∈Kp U p,k (u i )q u i ) d -1 + O((x -u i ) -d +2 ). (B.12)The leading order of eq. (B.8) reads(-2d p,k + 1) u i ) d p,k +1 = ∂φ ∂T p,k ∂q (0) ∂v v= φ+ρ 1 (x -u i ) d (B.13)which implies that d p,k = d -1 = d -2 for any pair (p, k) which contradicts the definition of R.

∂

  are holomorphic at the critical values. For this purpose, one can write the h'th order of the compatibility conditions Q(h) (x, T, v) ∂vv= φ -∂H (h) ∂T p,K = lower order terms (B.15)where the right hand sides are lower order terms in the expansion which are holomorphic at the critical values by induction. Using the same argument as for the leading order, one can conclude that any R are holomorphic at these points.

  1 , D, n ∞ , T) is a symplectic manifold of real dimension equal to twice the genus of Σ φ g(Σ φ ) = r ∞ +

					n
					r ν -3.	(3-2)
					ν=1
	One can understand this by remarking that fixing the value of T fixes the values of the coefficients
	{H ∞,k }	2r∞-4-n∞ k=r∞-3	and {H ν,k }	2rν k=rν +1 for ν ∈ 1, n unambiguously. The latter are Casimirs of our
	system. The remaining g(Σ φ ) coefficients {H ∞,k }	r∞-4 k=0 and {H ν,k }	rν k=1 for ν ∈ 1, n are Hamiltonians
	of the residual integrable system.

B.1 Proof of Lemma 5.2

  Since Ψ + and Ψ -are both solutions to eq.[START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF][START_REF] Eynard | Counting surfaces: CRM Aisenstadt Chair Lectures[END_REF][START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF][START_REF] Harnad | R-matrix construction of electromagnetic models for the Painlevé transcendents[END_REF][START_REF] Harnad | Moment Maps to Loop Algebras, Classical R-Matrix and Integrable Systems[END_REF][START_REF] Harnad | Loop Algebra Moment Maps and Hamiltonian Models for the Painlevé Transcendants[END_REF],

	Let us compute					
	∂W (x) ∂x	=	∂ 2 Ψ + ∂x 2 Ψ --Ψ +	∂ 2 Ψ -∂x 2	.	(B.1)
	∂ 2 Ψ ± ∂x 2 =	p∈P k∈Kp	U p,k (x)	∂Ψ ± ∂T p,k	+ -1 H(x)Ψ ± .	(B.2)
	plugging this back into the expression above gives
	∂W (x) ∂x	=	p∈P k∈Kp

U p,k (x)W T p,k (x) (B.3)

and the lemma follows.

  . For any (p, k) ∈ P × K p , writing down the equality of

	∂ 2 ∂x 2	∂Ψ ∂T p,k = ∂ ∂T p,k	∂ 2 Ψ ∂x 2	and matching the coefficients of Ψ et ∂Ψ ∂x , one gets
			0 = 2	∂Q p,k ∂x	-	∂R ∂T p,k	+ R p,k	∂R ∂x	+ R	∂R p,k ∂x	+	∂ 2 R p,k ∂x 2	(B.4)
	and												
		0 = 2 ( Q + H)	∂R p,k ∂x	+ R p,k	∂Q ∂x	-R	∂Q p,k ∂x	+ R p,k	∂H ∂x	-	∂ ∂T p,k	( Q + H) +	∂ 2 Q p,k ∂x 2 .	(B.5)

Let us stress that, as an argument of the function, x refers to a point in P 1 and not the map x : Σ φ 0 → P 1 . We hope that the reader will not be confused by this notation.

To our knowledge, a general procedure to prove the isomonodromic condition eq. (7-6) from some general isospectral deformations formalism is not known

∂ 2 ∂x 2 -2

A PDE for the perturbative wave functions

This section is devoted to the proof of Theorem 4.1.

A.1 Proof of Lemma 4.3

In this section, we prove Lemma 4.3. For this purpose, we generalize the procedure of [START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF] used also in [START_REF] Iwaki | 2-parameter τ -function for the first Painlevé equation :Topological recursion and direct monodromy problem via exact WKB analysis[END_REF]. This is simply obtained by writing the integration of the RHS of the topological recursion formula along the boundary of a fundamental domain D obtained by cutting along the A and B cycles considered.

In this case, it reads, after integrating the variables z 2 , . . . , z n along paths from z i to σ(z i ) as (since the poles of the integrand are either ramification points or coinciding points)

where, for 2h

where d u refers to the exterior derivative with respect to the variable u (which has nothing to do with a local coordinate),

In order to derive this expression, one has used that for (h, n) = (0, 2)

The first term of the right hand side is the recursive definition of d z1 F h,n (z 1 , . . . , z n ).

The other terms get contributions only from the poles of ω 0,2 . First of all, thanks to eq. (3-15) and eq. [START_REF] Belliard | Integrable differential systems of topological type and reconstruction by the topological recursion[END_REF][START_REF] Bertola | Symplectic geometry of the moduli space of projective structures in homological coordinates[END_REF][START_REF] Borot | Lecture notes on topological recursion and geometry[END_REF][START_REF] Borot | Geometry of spectral curves and all order dispersive integrable system[END_REF][START_REF] Borot | All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials[END_REF][START_REF] Bouchard | Reconstructing WKB from topological recursion[END_REF][START_REF] Bridgeland | Quadratic differentials as stability conditions[END_REF][START_REF] Cafasso | Tau functions as Widom constants[END_REF][START_REF] Dijkgraaf | The Volume Conjecture, Perturbative Knot Invariants, and Recursion Relations for Topological Strings[END_REF][START_REF] Dumitrescu | Quantum Curves for Hitchin Fibrations and the Eynard-Orantin Theory[END_REF][START_REF] Dunin-Barkowski | Identification of the Givental formula with the spectral curve topological recursion procedure[END_REF][START_REF] Dunin-Barkowski | Quantum spectral curve for the Gromov-Witten theory of the complex projective line[END_REF][START_REF] Eynard | The Geometry of integrable systems. Tau functions and homology of Spectral curves. Perturbative definition[END_REF][START_REF] Eynard | A holomorphic and background independent partition function for matrix models and topological strings[END_REF][START_REF] Eynard | Invariants of algebraic curves and topological expansion[END_REF], one can observe that