
HAL Id: hal-02423682
https://hal.science/hal-02423682v1

Preprint submitted on 24 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated iterative regularization via dual diagonal
descent

Luca Calatroni, Guillaume Garrigos, Lorenzo Rosasco, Silvia Villa

To cite this version:
Luca Calatroni, Guillaume Garrigos, Lorenzo Rosasco, Silvia Villa. Accelerated iterative regulariza-
tion via dual diagonal descent. 2019. �hal-02423682�

https://hal.science/hal-02423682v1
https://hal.archives-ouvertes.fr


Accelerated iterative regularization
via dual diagonal descent

Luca Calatroni1, Guillaume Garrigos2, Lorenzo Rosasco3, and Silvia Villa4

1Université Côte d’Azur, CNRS, Inria, I3S, France
calatroni@i3s.unice.fr

2 LPSM, Université de Paris, Sorbonne Université, CNRS, Paris, France
garrigos@lpsm.paris

3MaLGa, DIBRIS, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
lorenzo.rosasco@unige.it

4MaLGa, DIMA, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
silvia.villa@unige.it

Abstract

We propose and analyze an accelerated iterative dual diagonal descent algorithm for the
solution of linear inverse problems with general regularization and data-fit functions. In partic-
ular, we develop an inertial approach of which we analyze both convergence and stability. Using
tools from inexact proximal calculus, we prove early stopping results with optimal convergence
rates for additive data-fit terms as well as more general cases, such as the Kullback-Leibler
divergence, for which different type of proximal point approximations hold.
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methods, stability and convergence analysis.
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1 Introduction

We are interested in solving the linear inverse problem:

find x̄ ∈ X s.t. Ax̄ = ȳ, (1.1)

where A : X → Y is a bounded linear operator between two Hilbert spaces X and Y, and ȳ ∈ Y
can be seen as a given measurement of some unknown x̄ ∈ X we want to recover. In general, the
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inverse problem (1.1) is ill-posed as its solution (if it exists) may lack some fundamental properties
like uniqueness or stability. A standard approach is assuming the desired x̄ to be well-approximated
by [38, 25]:

find x† ∈ argmin

{
R(x) s.t. x ∈ argmin

x′∈X
`(Ax′; ȳ)

}
, (P0(ȳ))

called the primal problem in the following. Here, R is a regularization function enforcing some
a-priori knowledge on the desired solution x̄, while ` : Y2 → R ∪ {+∞} is a data-fit function. In
practice, the data is subject to noise due to, e.g., possible transmission and/or acquisition problems.
As a consequence, we only have access to an inexact version ŷ of ȳ. Using ŷ in (P0(ȳ)) does no
longer provide a suitable solution and a standard approach is Tikhonov regularization:

find x̂λ ∈ argmin
x∈X

{
pλ(x) := R(x) +

1

λ
`(Ax; ŷ)

}
. (Pλ(ŷ))

Intuitively, the (so called) regularization parameter λ > 0 balances the trust in the data ŷ with
the regularization effect enforced by R. Finding a good approximate solution based on noisy data
requires two steps. First, problem ((Pλ(ŷ))) is solved for various choices of λ by means of a suit-
able optimization algorithm. Second, the computed solutions are compared using some validation
criterion (e.g. discrepancy principles [38], SURE [52, 36], cross-validation [53]) and an optimal
parameter λ∗ is computed along with the corresponding solution x̂λ∗ . The above procedure is in
general very costly computationally and so called iterative regularization methods, that we study
in this paper, can provide accurate and more efficient alternatives [38, 20, 41].

Iterative regularization Iterative regularization approaches find an approximation of x† by run-
ning an iterative algorithm and ‘stopping’ it when close to x†, [18, 29, 30, 26]. The number of
iterations plays the role of the regularization parameter, controlling at the same time accuracy and
computations. Roughly speaking, an iterative regularization method can be described as follows:

1. Given any data y ∈ Y, the algorithm generates a sequence (xk(y))k∈N using R, ` and A.

2. Given the true data ȳ, the sequence (xk(ȳ))k∈N solves the hierarchical optimization problem
(P0(ȳ)), i.e. converges as k →∞ to the solution x† of (P0(ȳ)).

3. For a given noise level δ > 0 and noisy data ŷ such that ‖ȳ − ŷ‖ ď δ, there is a stopping time
k(δ) ∈ N such that

‖x̂k(δ)(ŷ)− x†‖ = O(δα), for some α > 0. (1.2)

The quantity O(δα) is often called the rate of the considered regularization method, and the expo-
nent α quantifies its efficiency.

Previous results For quadratic data-fit terms ` and square-norm regularization terms R, both
Tikhonov and iterative regularization (such as the Landweber algorithm) have been shown to be
optimal, in the sense that their reconstruction error (1.2) has optimal rate O(δ

1
2 ) [38]. Optimal

results with possibly fewer iterations are also known to be possible considering accelerated ap-
proaches [38, 48]. For quadratic data-fit, and general strongly convex regularizers an iterative
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regularization procedure combined with a Morozov-type discrepancy principle was also shown
to be optimal in [30], and accelerated approaches based on a dual accelerated gradient descent
was shown to be optimal with less iterations in [45]. Iterative regularization methods have been
studied also for convex regularizers in [29] where estimates in terms of Bregman distance were
proved (see, e.g., [30, 18] for Tikhonov-type approaches), but no explicit rates in the form (1.2)
were shown. More general iterative algorithms defined in Banach spaces have been studied in
[42, 43, 28] for linear and non-linear inverse problems and in [26] for L1 and Total Variation (TV)
regularization. For results on iterative regularization for data-fit terms other than squared norm,
we mention [24] for results in the framework of Bregman distances and [39] where a dual di-
agonal descent (3D) algorithm is considered. To the best of our knowledge, accelerated iterative
regularization approaches have not been studied in this general setting.

Contribution and organization of the paper In this paper, we study a novel accelerated iter-
ative regularization algorithm for strongly convex regularization terms and general data-fits and
prove its optimality. As for the quadratic case [48, 45], we show that acceleration can lead to
optimal results in much fewer iterations. Our approach, dubbed (I3D) , extends the (3D) iterative
algorithm studied in [39] introducing an inertial term yielding acceleration. From an optimization
perspective, the rationale behind these results is that inertial dynamics are able to exploit informa-
tion in previous iterates to converge faster to an optimal solution. However, as pointed out in [37],
differently from basic schemes, inertial methods suffer from errors accumulation that need to be
controlled along the iterations and balanced with the improvements observed in the convergence
speed.
The paper is organized as follows. In Section 2 we introduce the main notations and assumptions.
In Section 3 we introduce and analyze a diagonal inertial dynamic in continuous time. In Section
4, we derive (I3D) as a discretization of the continuous dynamic, and we study its convergence and
stability properties. In Section 6 the results are illustrated for a number of specific data-fit terms
including Kullback-Leibler divergence data-fit.

2 Main assumptions and background on diagonal methods

We begin fixing the notation. LetH be a Hilbert space with scalar product 〈·, ·〉 and associated norm
‖ · ‖. Given y ∈ H, and % ∈ R+ and B(y, %) is the open ball of center y and radius %. we denote by
Γ0(H) the set of proper, convex and lower semi-continuous functions from H to ] −∞,+∞]. We
say that f ∈ Γ0(H) is σ-strongly convex if f − σ‖ · ‖2/2 ∈ Γ0(H), with σ ∈ ]0,+∞[. We recall that
the subdifferential of f ∈ Γ0(H) is the multi-valued operator ∂f : H → 2H defined by setting

(∀x ∈ H) ∂f(x) :=
{
u ∈ H : f(x′)− f(x)− 〈u, x′ − x〉 ě 0 for all x′ ∈ H

}
. (2.1)

Note that if f is Gateaux differentiable at x ∈ H, then ∂f(x) = {∇f(x)}, see, e.g. , [21, Proposition
17.31 i)]. We also recall that for all x ∈ H and τ > 0 the proximity operator proxτf : H → H of
f ∈ Γ0(H) with parameter τ is defined by:

proxτf (x) = (I + ∂f)−1(x) = argmin
x′∈H

{
f(x′) +

1

2τ
‖x′ − x‖2

}
.
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Given f ∈ Γ0(H), we will denote by f∗ : H → [−∞,+∞] the Fenchel conjugate of f

(∀u ∈ H) f∗(u) := sup
x∈H
{〈u, x〉H − f(x)} .

The Fenchel conjugate of f belongs to Γ0(H), and if f is σ-strongly convex then f∗ is differentiable
at any point, with a σ−1-Lipschitz continuous gradient, see, e.g. [21, Theorem 18.15]. Further-
more, the following property holds, see [21, Theorem 16.23]:

(∀(x, u) ∈ H2) u ∈ ∂f(x)⇔ x ∈ ∂f∗(u).

Finally, given two real sequences (ak)kě1 and (bk)kě1, we will write ak = O(bk) whenever there
exists a positive constant M > 0 such that ak ď Mbk for all k ě 1. We will use the more precise
notation ak = Θ(bk) if both conditions ak = O(bk) and bk = O(ak) hold. Note also that we will
use the same notation ‖ · ‖ and 〈·, ·〉 for the norm and the scalar product in every Hilbert space we
consider.

2.1 Main assumptions

We make the following assumptions on the data-fit ` and the regularizer R:

(L1) For all y ∈ Y, `y := `(·, y) ∈ Γ0(Y) and it is coercive.

(L2) For all (y1, y2) ∈ Y2, `(y1, y2) = 0 ⇐⇒ y1 = y2.

(L3) there exists q ∈ [1,+∞[, % ∈]0,+∞], γ ∈]0,+∞[ such that

∀y ∈ B(ȳ, %),
γ

q
‖y − ȳ‖q ď `(y, ȳ).

(R1) R is σ-strongly convex, with σ ∈ ]0,+∞[,

(R2) ∂R(x†) ∩ ImA∗ 6= ∅.

If assumption (L3) is satisfied, we say that `ȳ is locally q-conditioned at ȳ. If (L3) is satisfied with
ρ = +∞, then we say that `ȳ is q-conditioned at ȳ. These assumptions cover a wide range of inverse
problems, as discussed next.

Definition 2.1 A data-fit is additive if there exists N ∈ Γ0(Y) such that

(∀(y1, y2) ∈ Y2) `(y1, y2) = N (y1 − y2).

Example 2.2 (Data-fit functions) For Y = Rd, the additive data-fit functions defined by the func-
tions N below trivially satisfy (L1)-(L2). In addition, `ȳ satisfies (L3) if and only if N is locally
conditioned at 0, and this is the case, as we show below:

• N (y) = 1
2‖y‖

2 is 2-conditioned at 0, with γ = 1.

4



• N (y) = 1
q‖y‖

q
q, for q ě 1, is q-conditioned at 0 with γ = dr, where r := min(1

q −
1
2 , 0). Note

that this includes the case of the `1-norm.

• the weighted sum [40] N (y) = α‖y‖1 + 1
2‖y‖

2
2, for α > 0, is 1-conditioned at 0, with γ = α.

• the Huber data-fit function [32] N (y) =
d∑
i=1

hν(yi), where hν : R→ R+ is the Huber smooth-

ing function, defined for ν > 0 as

(∀t ∈ R) hν(t) :=

{
1
2ν t

2 if |t| ď ν

|t| − ν
2 otherwise.

The Huber data-fit is locally 2-conditioned at 0. It is enough to choose % ∈ ]0,+∞[ with
γ = min{1/ν, 2%− ν/%2}.

• the exact penalization N (y) = 0 if y = 0, N (y) = +∞ otherwise, is 1-conditioned with γ = 1.

We also mention a non-additive data-fit function used in several applications:

• the Kullback-Leibler divergence, defined as:

`(y2, y1) = KL(y1, y2) :=

d∑
i=1

kl(yi1, y
i
2), (2.2)

where

(∀(t1, t2) ∈ R2) kl(t1, t2) :=


t1 log

t1
t2
− t1 + t2 if (t1, t2) ∈ ]0,+∞[2 ,

+∞ otherwise.

The Kullback-Leibler divergence is locally 2-conditioned at ȳ for every % ∈]0,+∞[, with γ =
2
%c2

+ 2
%2c

ln c
%+c , with c = d‖ȳ‖∞ (see Lemma A.2).

Example 2.3 (Regularizers) A regularizer widely used in signal/image processing as a sparsifying
prior is the `1-norm of the coefficients with respect to an orthonormal basis, or a more general
dictionary. Another popular choice in imaging is the total variation semi-norm [49], due to its
ability to preserve edges, together with its generalizations [27, 34]. For some specific tasks in
computer vision and machine learning, there is a need for structured sparsity. This kind of prior
can be enforced with the use of group sparsity inducing norms [56, 17]. While not being strongly
convex, these regularizers can be included in our framework by adding a strongly convex term
σ
2 ‖ · ‖

2 where σ is small positive parameter, in the flavor of the elastic net regularization [58].

2.2 Iterative methods based on continuous and discrete dynamics

It is useful to review some approaches to solve (1.1), the hierarchical problem (P0(ȳ)) and the
Tikhonov-regularized problem (Pλ(ŷ)). In particular, we focus on approaches based on duality
and/or combined with diagonal dynamics.
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Mirror descent approaches A class of methods to solve (1.1) consider the problem

find x† ∈ argmin
x∈X

{R(x) + δȳ(Ax)} ,

where the constraint (1.1) is encoded by the indicator function δȳ. Using Fenchel-Rockafeller dual-
ity, we derive the corresponding dual problem:

find u† s.t. u† ∈ argmin
u∈Y

{d0(u) := R∗(−A∗u) + 〈ȳ, u〉} . (D0)

Since R∗ is smooth (see (ii) in Lemma A.1), a gradient method can be used to solve (D0), see [45].
This coincides, up to a change of variables, with mirror descent approaches [22] and linearized
Bregman iterations [30, 18], where R plays the role of the mirror function. How to extend this
approach to solve (P0(ȳ)) is not clear.

Primal diagonal dynamics A classical approach to solve hierarchical problems like (P0(ȳ)) is
the diagonal principle, based on the fact that when ŷ = ȳ and λ → 0, problem (Pλ(ŷ)) converges
towards (P0(ȳ)) in an appropriate sense [4, Theorem 2.6]. In this view, diagonal approaches have
been considered as non-autonomous dynamics solving (Pλ(ŷ)) with a parameter λ monotonically
decreasing to zero. The simplest example of a continuous diagonal dynamic is the diagonal steepest
descent differential inclusion with initial t0 > 0 defined by

x(t0) = x0, λ(t)↘ 0, ẋ(t) + ∂pλ(t)(x(t)) 3 0, (PDλ)

where pλ(t)(x(t)) is defined in (Pλ(ŷ)). This dynamic is studied in [10, 12, 6] where convergence
of x(t) to x† was guaranteed provided that λ(t) → 0 fast enough, namely λ ∈ L1/(q−1)([t0,+∞)),
where q ∈ [1,+∞) is the exponent in (L3), see [6, Corollary 3.3, Remark 4.4]. Discrete counterparts
of (PDλ) have also been studied [19, 11, 35]. They can be seen as a variant of the Forward-
Backward algorithm applied to solve problem (Pλ(ŷ)), where the penalization parameter tends to
zero along the iterations. A main drawback of this type of algorithms is that they are expansive
for non-smooth data-fit terms, since they require to compute the proximal operator of `ȳ ◦ A. A
possible way to overcome this issue is applying Fenchel-Rockafellar duality to (Pλ(ŷ)). The main
advantage of considering the dual problem (Dλ) is that the linear operator appears there only in
composition with the smooth function R∗. Then it is possible to apply an explicit gradient step to
R∗ ◦ (−A∗), while the non-smooth data-fit term can be cheaply treated via its proximal operator.

Dual diagonal dynamics The dual problem of (Pλ(ŷ)) is

find uλ ∈ argmin
u∈Y

{
dλ(u) := R∗(−A∗u) +

1

λ
`∗(λu; ŷ)

}
. (Dλ)

Solutions of (Dλ) are related to those of (Pλ(ŷ)) via the formula xλ = ∇R∗(−A∗uλ), which holds
thanks to the strong convexity of R. A natural question is whether the diagonal principle can
be applied on to the dual problem (Dλ) as well. The corresponding dual diagonal continuous
dynamics read

u(t0) = u0, λ(t)↘ 0,

{
x(t) = ∇R∗(−A∗u(t)),

u̇(t) + ∂dλ(t)(u(t)) 3 0.
, (DDλ)
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where, similarly as before, provided that λ ∈ L1/(q−1)([t0,+∞)), the trajectory x(t) is guaranteed
to converge to x†. The discrete counterpart of (DDλ) is called Dual Diagonal Descent algorithm
(3D) , and its convergence and stability properties are studied in [39]. For ŷ ∈ Y such that
‖ŷ − ȳ‖ ď δ and additive data-fit functions, the authors showed that stopping the algorithm at
kδ = Θ(k−2/3) guarantees that (1.2) holds with α = 1/3. However, that this rate is not optimal
[38]. As we show in the following, in this paper our approach recover the optimal rate, while
providing the benefits of accelerated approaches, namely an earlier stopping time.

3 Continuous inertial dual diagonal dynamic

First-order inertial algorithms are popular in optimization due to their faster convergence on
smooth and non-smooth convex problems, see e.g. [47, 23]. In several papers continuous in-
ertial dynamics have been studied considering appropriate Lyapunov functions [54, 44, 3]. As
already noted, their regularization properties are also known for quadratic data-fit terms [48, 45].

Next, we propose an inertial approach for general data-fit terms, introducing a variant of the
dynamic in (DDλ). For a given α > 0 and initial t0 > 0, let

(u(t0), u̇(t0)) = (u0, u̇0), λ(t)↘ 0,

{
x(t) = ∇R∗(−A∗u(t)),

ü(t) +
α

t
u̇(t) + ∂dλ(t)(u(t)) 3 0.

(IDDλ)

The asymptotic behavior of the trajectories of this inertial differential inclusion will be analyzed
next, while its discrete counterpart will be studied in the rest of the paper. We first add one remark.

Remark 3.1 The idea of coupling inertia with Tikhonov regularization is not new. In [8] an inertial
variant of the primal dynamic (PDλ) is proposed for R = ‖ · ‖2/2. The corresponding inertial
primal diagonal approach is:

(x(t0), ẋ(t0)) = (x0, ẋ0), λ(t)↘ 0, ẍ(t) +
α

t
ẋ(t) + λ(t)∂pλ(t)(x(t)) 3 0. (IPDλ)

Under a suitable decay assumption on λ(·) the authors guarantee fast convergence and regulariza-
tion [8, Section 6]. Compared to (IPDλ), in our dual formulation (IDDλ) we take advantage
of a different scaling between the data-fit and the regularizer. Indeed, in (IDDλ) the data-fit
is multiplied by λ(t)−1 → +∞, while in (IPDλ) the regularizer is multiplied by λ(t) → 0. For
first-order systems this difference is essentially cosmetic, the two approaches being equivalent, for
an appropriate change of variables [12]. However, for second-order systems these two scalings
describe different dynamics [13, Section 4]. This difference can be understood looking at the limits
(in the Γ-convergence sense) of the corresponding parametrized functions, indeed,

if λ↘ 0, pλ → p0 := R+ δargmin `y◦A and λpλ → δdomR + `y ◦A.

3.1 Convergence of the continuous inertial dual diagonal dynamic

Next, we study the convergence properties of the trajectories of (IDDλ), assuming their existence
to simplify the analysis. We remark that if dλ is assumed to be gradient-Lipschitz continuous, global
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existence and uniqueness results of a classical C2([t0,+∞),R+) solution to (IDDλ) hold from the
Cauchy-Lipschitz theorem. However, this assumption requires the data-fidelity function `ȳ to be
strongly convex (see [21, Theorem 18.15]), which is in general not the case for most of the data-fit
terms, see Example 2.2. We refer to [31, 3] for further details. In the following Theorem, we
show that the inertial term (IDDλ) ensures that the dual function values dλ(t)(u(t)) tend to inf d0

at a O(t−2) rate as expected for inertial methods. Further, switching from the dual to the primal
problem by means of x(t) = ∇R∗(−A∗u(t)), we prove the convergence of x(·) to x†. To prove these
results, assumptions on the decay of λ(·) are needed, as it is usual for dynamics such as those in
(PDλ) and (IPDλ). For instance, in [12, 6], it is shown that the trajectories of (PDλ) converge
under the condition λ ∈ L

1
q−1 ([t0,+∞)) [6]. Similarly, we consider the following assumption:

(Λ) λ : [0,+∞[ → ]0,+∞[ is a non-increasing differentiable function such that limt→∞ λ(t) =
0. Moreover, if q defined in assumption (L3) is strictly greater than 1, the quantity Λc =∫ +∞
t0

tλ
1
q−1 (t) dt is finite.

Remark 3.2 A sufficient condition ensuring the validity of (Λ) is that λ(·) ∈ L
1

2(q−1) ([t0,+∞)), see
Lemma A.4 in the Appendix.

We are now ready to state the main convergence result for continuous dynamics. Note that
Lemma A.1(iii) ensures that the set of solutions of problem (D0) is nonempty. To prove fast
convergence results of the dual function values, we follow the approach considered in [7, 54, 3]
and define a suitable Lyapunov-type function.

Theorem 3.3 Let the assumptions (L1)-(L3), (R1)-(R2), (Λ) hold true. Let u† ∈ argmin d0 and
assume that λ(t0)‖u†‖ ď γ%q−1/q. Let α ě 3 and let the pair (x(·), u(·)) be a solution to (IDDλ) in
the following sense:

• u ∈ C1([t0,+∞[,Y), and x = ∇R∗ ◦ (−A∗) ◦ u,

• for every T > t0, u̇ and dλ(·) ◦ u are absolutely continuous on [t0, T ],

• for a.e. t ∈ [t0,+∞[, −ü(t)− α
t u̇(t) ∈ ∂dλ(t)(u(t)).

Then, there exists an explicit C ∈ ]0,+∞[ such that

∀t > t0 dλ(t)(u(t))− inf d0 ď
C

t2
and ‖x(t)− x†‖ ď

√
2C√
σt
.

Proof. Define the following energy:

(∀t ě t0) E(t) := t2
(
dλ(t)(u(t))− inf d0

)
+

1

2
‖(α− 1)(u(t)− u†) + tu̇(t)‖2.

From now on we will use the following shorthand notation:

R∗A := R∗ ◦ (−A∗), `∗ȳ(·) := `(·, ȳ)∗ (3.1)

8



so that the composite dual function dλ can be written as dλ(u) = R∗A(u) + λ−1`∗ȳ(λu), for every
u ∈ Y. Since ∂dλ(t)(u(t)) = ∇R∗A(u(t)) + ∂`∗ȳ(λ(t)u(t)) [21, Proposition 16.6 and Corollary 16.53],
the notion of solution introduced entails that there exists some η : [t0,+∞)→ Y such that

for a.e. t > t0, ü(t) +
α

t
u̇(t) +∇R∗A(u(t)) + η(t) = 0 and η(t) ∈ ∂`∗ȳ(λ(t)u(t)).

We divide the proof in two steps.

Step 1. Fast convergence rates The function E is differentiable a.e. on [t0,+∞[ since it is
absolutely continuous. We thus compute its derivative and obtain:

Ė(t) = 2t
(
dλ(t)(u(t))− inf d0

)
+
t2λ̇(t)

λ2(t)

(
〈η(t), λ(t)u(t)〉 − `∗ȳ(λ(t)u(t))

)
+ t2〈u̇(t), ü(t) +

α

t
u̇(t) +∇R∗A(u(t)) + η(t)〉+ t(α− 1)〈u(t)− u†, α

t
u̇(t) + ü(t)〉.

The second term in the expression above is non-positive because λ is differentiable and decreasing
and, moreover, by convexity of `ȳ(·) together with Lemma A.1(ii), there holds

`∗ȳ(λ(t)u(t))− 〈η(t), λ(t)u(t)〉 ď `∗ȳ(0) = 0.

Furthermore, the third term is equal to zero a.e. since u(·) is a solution of (IDDλ) by assumption.
We thus deduce that for a.e. t > t0

Ė(t) ď 2t
(
dλ(t)(u(t))− inf d0

)
+ t(α− 1)〈u† − u(t),−ü(t)− α

t
u̇(t)〉. (3.2)

Using that −ü(t)− α
t u̇(t) ∈ ∂dλ(t)(u(t)) and from the convexity of dλ(t)(·) we have:

for a.e. t > t0 〈u† − u(t),−ü(t)− α

t
u̇(t)〉 ď dλ(t)(u

†)− dλ(t)(u(t)).

We now add and subtract inf d0 = d0(u†) and define rλ(t)(u
†) := dλ(t)(u

†)− inf d0. We get:

〈u† − u(t),−ü(t)− α

t
u̇(t)〉 ď rλ(t)(u

†) + inf d0 − dλ(t)(u(t)).

Applying this inequality to (3.2), since α ě 3 and dλ(t)(u(t))− inf d0 ě 0 (see Proposition A.1.(iv)),
we get:

Ė(t) ď t(3− α)
(
dλ(t)(u(t))− inf d0

)
+ t(α− 1)rλ(t)(u

†) ď t(α− 1)rλ(t)(u
†). (3.3)

To bound the right hand side, we now apply Lemma A.1(vi) and deduce that, since λ(t) ď λ(t0):

Ė(t) ď c(α− 1)tλ(t)
1
q−1 ,

where the constant c is defined as:

c :=

{
0 if q = 1,

(1− (1/q))γ−1/(q−1)‖u†‖q/(q−1) if q > 1,
(3.4)

and it is finite in both cases. Since the above inequality holds for a.e. t > t0, assumption (Λ) yields
that for a.e. t > t0:

E(t) = E(t0) +

∫ t

t0

Ė(t) ď E(t0) + c(α− 1)Λc.

Defining C := E(t0) + c(α− 1)Λc, we derive

dλ(t)(u(t))− inf d0 ď
C

t2
. (3.5)
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Step 2. Convergence rate for the primal iterates From (3.5) in combination to Lemma A.1(v),
we get

σ

2
‖x(t)− x†‖2 ď d0(u(t))− inf d0 = (d0(u(t))− dλ(t)(u(t))) + (dλ(t)(u(t))− inf d0)

ď (d0(u(t))− dλ(t)(u(t))) +
C

t2
.

The monotonicity property of Lemma A.1(iv) implies that the first term on the right hand side
above is non-positive, whence we get

‖x(t)− x†‖ ď

√
2C√
σt
.

4 Inertial Dual Diagonal Descent (I3D) Algorithm

In this section, we study the convergence properties of the discrete analogue of (IDDλ), deriving
an accelerated version of the (3D) algorithm in [39].

4.1 From the continuous dynamic to the discrete algorithm

We follow a standard approach of computiong the time-discretization of the continuous dynamical
system [1, 15, 54, 7]. Recalling the notation in (3.1), we note that (IDDλ) can be equivalently
written as {

x(t) = ∇R∗(−A∗u(t)),

ü(t) + α
t u̇(t) + ∂`∗ȳ(λ(t)u(t)) +∇R∗A(u(t)) 3 0.

(4.1)

We discretize (4.1) explicitly with respect to the smooth component ∇R∗A and semi-implicitly with
respect to the non-smooth one ∂`∗ȳ. In other words, we discretize implicitly the trajectories, while
leaving explicit the dependence on the discretized values λk. For k ě 0, a fixed time step-size h > 0
and for some time discretization points tk = kh, we set uk := u(tk), λk := λ(tk) and derive the
finite difference scheme:{

xk = ∇R∗(−A∗uk),
1
h2 (uk+1 − 2uk + uk−1) + α

kh2 (uk − uk−1) + ∂`∗ȳ(λkuk+1) +∇R∗A(wk) 3 0,

where wk is a linear combination of uk and uk−1, made clear in the following. After straightforward
calculations, we rewrite the system above as{

xk = ∇R∗(−A∗uk),
uk+1 + h2∂`∗ȳ(λkuk+1) 3 uk +

(
1− α

k

)
(uk − uk−1)− h2∇R∗A(wk).

Hence, by setting αk = 1− α/k, τ := h2 and wk := uk + αk(uk − uk−1), we get
wk = uk + αk(uk − uk−1),

uk+1 =
(
I + τ

λk
∂`∗ȳ(λk·)

)−1
(wk − τ∇R∗A(wk)) ,

xk+1 = ∇R∗(−A∗uk+1).

10



Note that the proximal operator of the map `∗ȳ(λk·) with parameter τ/λk appears, in combination
with an explicit gradient step for R∗A. We can thus introduce the Inertial Dual Diagonal Descent
(I3D) algorithm

u0 = u1 ∈ Y, compute for k ě 1


wk = uk + αk(uk − uk−1),

uk+1 = prox τ
λk
`∗ȳ(λk·) (wk − τ∇R∗A(wk)) ,

xk+1 = ∇R∗(−A∗uk+1).

(I3D)

This algorithm depends on three parameters: the stepsize τ > 0, the relaxation parameters (λk)k
and the friction parameters (αk)k. The stepsize will be chosen depending on the value of the
Lipschitz constant of ∇R∗A. For the relaxation parameters, we will consider a discrete analogue of
the assumption (Λ) formulated in the continuous setting. For the friction parameters αk, we will
allow more general values not necessarily corresponding to αk = 1− α/k as above. We gather the
requirements on the parameters in the following assumptions:

(P1) τ ∈
(

0, σ2

‖A‖2

]
, where σ > 0 is defined in assumption (R1).

(P2) αk is non-negative and for every k ě 1, tk := 1 +
∑+∞

i=k

∏i
j=k αj is finite, with tk = Θ(k).

(P3) (λk) is a strictly positive non-increasing sequence such that limk→∞ λk = 0. Moreover, by
defining

Λ :=

{∑
kě1 tk+1λ

1/(q−1)
k if q > 1,

0 if q = 1,
(4.2)

we have that Λ < +∞.

(P4) For some u† ∈ argmin d0, we have λ0‖u†‖ ď γ%q−1/q.

Remark 4.1 (On assumption (P3)) As commented in Remark 3.2, one can check that a sufficient

condition for (P3) to hold is that λ ∈ `
1

2(q−1) (N). In particular, if we consider a sequence verifying
λk = O

(
k−θ

)
for some θ > 0, it is easy to verify that (P3) holds as long as θ > 2(q − 1). For q = 1,

(for instance if `(y1, y2) = ‖y1−y2‖1), no summability condition is required. Roughly speaking, the

assumption λ ∈ `
1

2(q−1) (N) means that λ ∈ `∞(N), which is already implied by limk→∞ λk = 0.

Remark 4.2 (On assumption (P4)) For many choices of data-fits, % = +∞ (see Example 2.2), in
which case the assumption is automatically satisfied. Also, note that in assumption (P3), we require
λk to tend to zero. This means that λK‖u†‖ ď γ%q−1/q for some K ∈ N. In this case, up to a time
rescaling k ← k +K our estimates hold true.

Following [5], we require the sequence of friction parameters (αk) to satisfy (P2), a particular
summability property guaranteeing a technical condition crucial in the following. We summarize
such a requirement and the resulting condition in the following lemma.

Lemma 4.3 ( [5, Lemma 2.1] ) Assume that (αk) is non-negative and satisfies

+∞∑
i=k

i∏
j=k

αj < +∞, for every k ě 1. (4.3)

11



Then, the sequence defined by

tk := 1 +
+∞∑
i=k

i∏
j=k

αj (4.4)

is well-defined, and satisfies for every k ě 1 the following properties:

1 + αktk+1 = tk, t2k+1 − t2k ď tk+1. (4.5)

Remark 4.4 (Classical choices of αk and tk) Definitions (4.3) and (4.4) above accommodate
standard choices of sequences (αk) and (tk). For example, in his seminal work Nesterov [46]
considered

αk =
tk − 1

tk+1
and tk+1 =

√
1 + 4t2k + 1

2
, t1 = 1, (4.6)

which can be shown to verify the two conditions (4.3) and (4.4), as well as k/2 ď tk ď k. For a
given α > 1, the two asymptotically equivalent choices

αk = 1− α

k
, tk+1 =

k

α− 1
, and αk =

k − 1

k + α− 1
, tk+1 =

k + α− 1

α− 1

have been recently considered in [33, 2, 9] and can be shown to satisfy (P2). For α = 3, these
sequences are asymptotically equivalent to Nesterov sequences (4.6).

Remark 4.5 (Splitting of the loss) In [39] the decomposition `ȳ = φȳ � ψȳ was considered,
where � is the infimal convolution and ψȳ is the possible strongly convex component of `ȳ. In
this case, the dual function `∗ȳ(·) can be expressed as `∗ȳ = ψ∗ȳ + φ∗ȳ, where φ∗ȳ is in general non-
smooth, while φ∗ȳ has Lipschitz gradient and can therefore be incorporated with the smooth term
R∗A in the dual function dλ. For several data discrepancies, however, ψȳ = δ{0} (see [39, Section
4.3]). To simplify the presentation, we do not consider this decomposition.

4.2 Fast convergence of the algorithm

We now prove the discrete analogue of Theorem 3.3 for (I3D). We follow the approach considered
in [14, 54, 7, 5].

Theorem 4.6 (Fast convergence) Let the assumptions (L1)-(L3), (R1)-(R2), (P1)-(P4) hold true.
Let (xk) and (uk) be the sequences generated by algorithm (I3D). Then, there exists C ∈ ]0,+∞[
such that

dλk(uk)− inf d0 ď
C

t2k
and ‖xk − x†‖ ď

√
2C√
σtk

. (4.7)

Proof. Let u† ∈ argmin d0 be the minimizer of d0 defined in assumption (P4), and define, for every
k ě 1, the discrete Lyapunov energy function:

E(k) := t2k

(
dλk(uk)− inf d0

)
+

1

2τ
‖zk − u†‖2, (4.8)

where zk is defined as:
zk := uk−1 + tk(uk − uk−1). (4.9)
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Our goal is to get an estimate on the decay of E along time. More precisely, we will show that for
every k ě 1

E(k + 1)− E(k) ď tk+1

(
dλk(u†)− inf d0

)
, (4.10)

which can be seen as a discrete analogue of (3.3), and from which the desired accelerated conver-
gence rates will follow in a straightforward manner.

For simplicity, let us denote by `k the function defined by setting

(∀u ∈ Y) `k(u) = λ−1
k `∗ȳ(λku).

To prove (4.10), we define for every k ě 1 the operator Gk : Y → Y as

Gk(z) :=
1

τ

(
z − proxτ`k(z − τ∇R∗A(z))

)
and notice that the proximal step of (I3D) can be written in terms of Gk as uk+1 = wk − τGk(wk).
The descent lemma yields (see, e.g., [5, 33])

dλk(w − τGk(w)) ď dλk(u) + 〈Gk(w), w − u〉 − τ

2
‖Gk(w)‖2, for all w, u ∈ Y, (4.11)

Evaluating (4.11) for u = uk and w = wk, we get

dλk(uk+1) ď dλk(uk) + 〈Gk(wk), wk − uk〉 −
τ

2
‖Gk(wk)‖2. (4.12)

Evaluating (4.11) for u = u† and w = wk we derive

dλk(uk+1) ď dλk(u†) + 〈Gk(wk), wk − u†〉 −
τ

2
‖Gk(wk)‖2. (4.13)

We now multiply (4.12) by tk+1 − 1 and we add it to (4.13), and we obtain

tk+1dλk(uk+1) ď (tk+1 − 1)dλk(uk) + dλk(u†)

+ 〈Gk(wk), (tk+1 − 1)(wk − uk) + (wk − u†)〉 −
τ

2
tk+1‖Gk(wk)‖2. (4.14)

As an immediate consequence of Lemma 4.3, we observe the following property:

(tk+1 − 1)(wk − uk) + wk = uk + tk+1(wk − uk)
= uk + tk+1αk(uk − uk−1)

= uk−1 + (1 + tk+1αk)(uk − uk−1)

= uk−1 + tk(uk − uk−1) = zk.

Thanks to (4.9), the fact that zk − τtk+1Gk(wk) = zk+1 and the previous equality, we can reorder
the terms in (4.14) and rewrite it as

tk+1(dλk(uk+1)− dλk(u†)) ď (tk+1 − 1)(dλk(uk)− dλk(u†))

+
1

2τtk+1

(
‖zk − u†‖2 − ‖zk+1 − u†‖2

)
.
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We now multiply everything by tk+1, re-arrange and get

t2k+1(dλk(uk+1)− dλk(u†)) +
1

2τ
‖zk+1 − u†‖2

ď (t2k+1 − tk+1)(dλk(uk)− dλk(u†)) +
1

2τ
‖zk − u†‖2.

Equivalently:

t2k+1

(
dλk(uk+1)− dλk(u†)

)
+

1

2τ
‖zk+1 − u†‖2

ď t2k

(
dλk(uk)− dλk(u†)

)
+ (t2k+1 − tk+1 − t2k)

(
dλk(uk)− dλk(u†)

)
+

1

2τ
‖zk − u†‖2.

To get the desired terms, we first use on the left-hand side the monotonicity property of the function
dλk(·) as a function of k (see Lemma A.1(iv)) and then add and subtract in the parentheses the term
inf d0, thus getting:

t2k+1

(
dλk+1

(uk+1)− inf d0

)
+

1

2τ
‖zk+1 − u†‖2

ď t2k

(
dλk(uk)− inf d0

)
+ (t2k+1 − tk+1 − t2k)

(
dλk(uk)− inf d0

)
+ tk+1

(
dλk(u†)− inf d0

)
+

1

2τ
‖zk − u†‖2.

After rearranging and using the definition of E in (4.8), we deduce:

E(k + 1) + (t2k + tk+1 − t2k+1)
(
dλk(uk)− inf d0

)
ď E(k) + tk+1

(
dλk(u†)− inf d0

)
.

Thanks to (4.5) and Lemma A.1(iv), we can neglect the second term in the left-hand side of the
above inequality, finally getting the desired (4.10). Iterating (4.10) recursively gives

E(k) ď E(1) +

k−1∑
j=1

tj+1

(
dλj (u

†)− inf d0

)
. (4.15)

To bound the sum appearing on the right hand side, we need to analyze the residuals rj := dλj (u
†)−

inf d0. Similarly as for the estimation obtained in the continuous case, we can use for this purpose
the property in Lemma A.1(vi) and get that for some fixed constant c independent on j (defined
analogously as in (3.4)), we have

rj ď cλ
1
q−1

j , for every j ě 1.

By assumption (P3), with Λ as in (4.2), we thus conclude that

k−1∑
j=1

tj+1rj ď c
k−1∑
j=1

tj+1λ
1
q−1

j ď cΛ < +∞

This allows us to deduce from (4.15) the convergence rate on the dual values in (4.7), by taking
C = E(1) + cΛ. Finally, the convergence rate on the primal iterates in (4.7) follows from Lemma
A.1(v).
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Remark 4.7 (Nesterov scheme as a special case) Let f be any differentiable function in Γ0(X )
with a Lipschitz gradient. Take R = f∗, A = −I, ȳ = 0, and `(y1, y2) = δ0(y2 − y1), so that
assumptions (L1)-(L3) and (R1)-(R2) are verified. In that case, d0 = f , and (I3D) reads

u0 = u1 ∈ Y, compute for k ě 1


wk = uk + αk(uk − uk−1),

uk+1 = wk − τ∇f(wk),

xk+1 = ∇f(uk+1),

which in the dual exactly performs Nesterov’s method [47]. From our rates and Lemma A.1(iv),
we deduce that f(uk)− inf f = O(k−2). And, according to Nemirovski and Yudin optimality result
[47, Theorem 2.1.7], these rates are optimal over the class of Lipschitz smooth convex functions.

Remark 4.8 (Different growth for tk) In assumption (P2) we ask the sequence (tk) to satisfy tk =
Θ(k), but this is actually not used in the proof of Theorem 4.6. What is crucial is that tk < +∞, so
that Lemma 4.3 can be used. Indeed, one might ask whether it is possible to require tk = Θ(kβ),
with β > 1 to improve the rates in (3.5). It is a simple exercise to verify that this is not possible,
since (4.5) implies tk ď t1k, hence β ď 1 so that the best rates are achieved for β = 1.

5 Stability properties in the presence of errors

We now study the iterative regularization properties of (I3D) in the presence of noisy data, given
by

û0 = û1 ∈ Y, compute for k ě 1


ŵk = ûk + αk(ûk − ûk−1),

ûk+1 = prox τ
λk
`∗ŷ(λk·) (ŵk − τ∇R∗A(ŵk)) ,

x̂k+1 = ∇R∗(−A∗ûk+1).

A first question is how much the dual and primal iterates ûk and x̂k are affected by noise in terms of
both convergence and stability. We discuss these issues showing that the noise can be interpreted
as an error in the calculation of the proximal step of the algorithm. Before starting, we motivate
our analysis with the following example.

Example 5.1 Assume Y = R and ŷ = ȳ + δ, for some ȳ, δ > 0. The algorithm makes use of the
datum only in the evaluation of the proximal operator prox τ

λ
`∗ŷ(λ·). One way to measure the impact

of the noise is to find an upper bound for |prox τ
λ
`∗ȳ(λ·)(w) − prox τ

λ
`∗ŷ(λ·)(w)|, for w ∈ Y (see [39,

Lemma 10]. As two particular cases consider:

• `y = 1
2 | · −y|

2. We have:

sup
ȳ∈Y

sup
w∈Y
|prox τ

λ
`∗ȳ(λ·)(w)− prox τ

λ
`∗ŷ(λ·)(w)| = τδ

1 + τλ
.

• `y = kl(y; ·). We have:

sup
ȳ∈Y

sup
w∈Y
|prox τ

λ
`∗ȳ(λ·)(w)− prox τ

λ
`∗ŷ(λ·)(w)| =

√
τδ

λ
.
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In the former example, the error assumed in the evaluation of ȳ is propagated along the iterations
with order δ. However, a different behavior is observed for the latter example. The square-root
dependence on δ makes the estimate worse in a small noise regime, when δ � 1. Further, the diag-
onal convergence to zero of the sequence (λk), assumed in (P3), makes the overall error growing
fast along the iterations.

Example 5.1 shows that not all losses behave the same. Our analysis needs to be flexible enough
to take these differences into account, and avoid sub-optimal results via a worst-case analysis. This
is the purpose of this section, where we will see that additive losses (in the sense of Definition 2.1)
behave essentially like 1

2 | · −y|
2, while Kullback-Leibler belongs to a class of less stable losses.

5.1 ε-subdifferentials and inexact proximal calculus

In this section, we define perturbations in a precise way. We first recall standard definitions regard-
ing the approximate subdifferential and proximal-type minimization problems.

Definition 5.2 (ε-subdifferential [57]) Let H be a Hilbert space, f ∈ Γ0(H) and ε ě 0. The
ε-subdifferential of f at x ∈ dom f is the set

∂εf(x) =
{
u ∈ H : f(x′) ě f(x) + 〈u, x′ − x〉 − ε, for all x′ ∈ H

}
.

Such a notion generalizes that of the subdifferential recalled in (2.1). In particular, if ε ě 0, then
∂f(x) ⊂ ∂εf(x) for any x ∈ H, and we have

0 ∈ ∂εf(x) ⇐⇒ x ∈ argminε f = {x′ ∈ H : f(x′) ď inf f + ε}.

The following are useful characterizations of the proximal operator of f ∈ Γ0(H) with parameter
η > 0,

p = proxηf (x) ⇔ x− p
η
∈ ∂f(p) ⇔ p = argmin

z

{
f(z) +

1

2η
‖z − x‖2

}
. (5.1)

Next, we introduce notions of approximation of proximal points that can be seen as relaxed condi-
tions of the characterizations in (5.1) (for details see [50, 16]).

Definition 5.3 (Approximation of proximal points) Let f ∈ Γ0(H), x ∈ H, η > 0 and p :=
proxηf (x). We say that p̂ ∈ H is:

• a type 1 approximation of p with precision ε1, and we write p̂ ≈ε11 p, if:

∃e ∈ H, ∃(ε1, ε2, ε3) ∈ [0,+∞[2, ‖e‖ ď ε3, ε
2
2 + ε2

3 ď ε2
1,
x+ e− p̂

η
∈ ∂ ε22

2η

f(p̂).

• a type 2 approximation of p with precision ε2, and we write p̂ ≈ε22 p, if

∃ε2 ∈ [0,+∞[,
x− p̂
η
∈ ∂ ε22

2η

f(p̂).

• a type 3 approximation of p with precision ε3, and we write p̂ ≈ε33 p, if

∃e ∈ H,∃ε3 ∈ [0,+∞], ‖e‖ ď ε3,
x+ e− p̂

η
∈ ∂f(p̂).
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Type 3 approximation simply describes an additive error in the argument of the proximal map, i.e.
p̂ = proxηf (x + e). We show in Section 6.1 that this type of error arises naturally when additive-
type data-fit functions are used. Type 2 approximation considers an error in the subdifferential
operator. The definition of type 1 approximation can be seen as a combination of type 2 and 3
approximations, and the following Lemma provides an easy characterization.

Lemma 5.4 ([51, 50]) Let f ∈ Γ0(H), x ∈ H, η > 0. Then:

p̂ ≈ε11 proxηf (x) ⇔ p̂ ∈ argminε1

{
f(·) +

1

2η
‖ · −x‖2

}
.

In summary, those three type of errors correspond to relaxations of the characterizations in (5.1).
We are ready to study the stability properties of the (I3D) algorithm.

5.2 Stability estimates in the presence of errors

Using the notions introduced in the previous section, we can quantify the error due to replacing ȳ
by ŷ. In particular, recalling Definition 5.3, we assume that at each iteration the proximal step with
ŷ is an i-type approximation of the proximal step with ȳ, where i ∈ {1, 2, 3}.

(Ei) For every k ě 1, ∃εi,k ∈ [0,+∞[, s.t. ∀w ∈ Y,

prox τ
λk
`∗ŷ(λ·)(w) ≈εi,ki prox τ

λk
`∗ȳ(λ·)(w).

In Section 6 we show that this is natural for classical data-fit terms. We are ready to prove our
second main result for (I3D) about error estimates under assumption (Ei) with i = 1. Stability
results for type 2, 3 approximations are deduced noting that for these choices the error terms with
ε3,k and ε2,k vanish, respectively, for every k.

Theorem 5.5 (Error estimates for type 1 errors) Assume that (L1)-(L3), (R1)-(R2), (P1)-(P4)
hold true. Let (x̂k), (ûk) be the sequences generated by (I3D) with noisy datum ŷ, and that (Ei)
holds with i = 1. Then, we have the stability estimate:

(∀k ě 1) t2k
στ

2
‖x̂k − x†‖2 ď C +

k−1∑
j=1

t2j+1ε
2
2,j +

5

2

( k−1∑
j=1

tj+1ε3,j

)2
, (5.2)

where the constant C is defined as

C :=

2τt21

(
d1(û0)− inf d0

)
+ ‖û0 − u†‖2 if q = 1,

2τt21

(
d1(û0)− inf d0

)
+ ‖û0 − u†‖2 + 2τΛ(1− 1

q )γ−1/(q−1)‖u†‖q/(q−1) if q > 1.

Proof. Following the proof of Theorem 4.6, we define the discrete energy function

Ê(k) := t2k

(
dλk(ûk)− inf d0

)
+

1

2τ
‖ẑk − u†‖2, (5.3)
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for k ě 1, where u† ∈ argmin d0 (so that inf d0 = d0(u†)) and ẑk is defined as:

ẑk := ûk−1 + tk(ûk − ûk−1).

Since ûk+1 ≈
ε1,k
1 proxτλ−1

k `∗ŷ(λk ·)(ŵk − τ∇RA(ŵk)), using Definition 5.3, we have

ξk :=
ŵk + ek − ûk+1

τ
, ξk −∇RA(ŵk) ∈ ∂ ε2

2,k
2τ

`∗ŷ(λkûk+1),

where ek ∈ H, ε2
2,k + ε2

3,k ď ε2
1,k and ‖ek‖ ď ε3,k. Without loss of generality, we can assume that

ε2
2,k+ε2

3,k = ε2
1,k. Thus, by the descent lemma in [55, Lemma 4.1] applied to dλk = RA+λ−1

k `∗ŷ(λk ·),
we derive

dλk(ûk+1) ď dλk(u) + 〈ûk+1 − u, ξk〉+
L

2
‖ûk+1 − ŵk‖2 +

ε2
2,k

2τ
, ∀u ∈ Y,

where L = ‖A‖2/σ2. Using the fact that τL ď 1, rearranging and neglecting non-positive quanti-
ties, we obtain that for all u ∈ Y:

dλk(ûk+1) ď dλk(u)− 1

τ
‖ûk+1 − ŵk‖2 + 〈ûk+1 − ŵk,

ek
τ
〉+ 〈ŵk − u, ξk〉

+
1

2τ
‖ûk+1 − ŵk‖2 +

ε2
2,k

2τ

= dλk(u) + 〈ŵk − u, ξk〉 −
τ

2
‖ ûk+1 − ŵk

τ
‖2 + τ〈 ûk+1 − ŵk

τ
,
ek
τ
〉+

ε2
2,k

2τ

= dλk(u) + 〈ŵk − u, ξk〉 −
τ

2
‖ξk‖2 +

1

2τ

(
‖ek‖2 + ε2

2,k

)
ď dλk(u) + 〈ŵk − u, ξk〉 −

τ

2
‖ξk‖2 +

ε2
1,k

2τ
, (5.4)

which can be seen as a noisy version of (4.11). We divide the rest of the proof in three steps. Since
the former ones are analogous to the calculations done in the error-free case, we will skip some of
the details.

Step 1 We show that for every k ě 1, there holds:

Ê(k + 1)− Ê(k) ď tk+1

(
dλk(u†)− inf d0

)
+

tk+1

τ
〈ek, ẑk − u†〉+

t2k+1

2τ
ε2

2,k (5.5)

To prove this, we write the descent inequality (5.4) first for u = ûk

dλk(ûk+1) ď dλk(ûk) + 〈ŵk − ûk, ξk〉 −
τ

2
‖ξk‖2 +

ε2
1,k

2τ
, (5.6)

and then for u = u†

dλk(ûk+1) ď dλk(u†) + 〈ŵk − u†, ξk〉 −
τ

2
‖ξk‖2 +

ε2
1,k

2τ
. (5.7)
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We now multiply (5.6) by tk+1 − 1 and add it to (5.7), thus getting:

tk+1dλk(ûk+1) ď (tk+1 − 1)dλk(ûk) + dλk(u†)

+ 〈ξk, (tk+1 − 1)(ŵk − ûk) + ŵk − u†〉 −
tk+1τ

2
‖ξk‖2 +

tk+1

2τ
ε2

1,k

We apply the property (tk+1 − 1)(ŵk − ûk) + ŵk = ẑk (see (4.9)) and write (5.2) as

tk+1(dλk(ûk+1)− dλk(u†))

ď (tk+1 − 1)(dλk(ûk)− dλk(u†)) +
1

2τtk+1

(
‖ẑk − u†‖2 − ‖ẑk − u† − τtk+1ξk‖2

)
+
tk+1

2τ
ε2

1,k.

From the identity −τtk+1ξk = ẑk+1 − ẑk − tk+1ek, we deduce:

tk+1(dλk(ûk+1)− dλk(u†)) +
1

2τtk+1
‖ẑk+1 − u†‖2

ď (tk+1 − 1)(dλk(ûk)− dλk(u†)) +
1

2τtk+1
‖ẑk − u†‖2 +

1

τ
〈ẑk+1 − u†, ek〉+

tk+1

2τ

(
ε2

1,k − ‖ek‖2
)
.

= (tk+1 − 1)(dλk(ûk)− dλk(u†)) +
1

2τtk+1
‖ẑk − u†‖2 +

1

τ
〈ẑk+1 − u†, ek〉+

tk+1

2τ
ε2

2,k.

We now multiply everything by tk+1, re-arrange and get

t2k+1

(
dλk(ûk+1)− dλk(u†)

)
+

1

2τ
‖ẑk+1 − u†‖2

ď t2k

(
dλk(ûk)− dλk(u†)

)
+ (t2k+1 − tk+1 − t2k)

(
dλk(ûk)− dλk(u†)

)
+

1

2τ
‖ẑk − u†‖2

+
tk+1

τ
〈ek, ẑk+1 − u†〉+

t2k+1

2τ
ε2

2,k.

Using now that dλk(ûk) ě inf d0 (see Lemma A.1(iv)), adding and subtracting in the parentheses
the term inf d0 and after recalling the definition of E in (5.3), we get:

Ê(k + 1) + (t2k + tk+1 − t2k+1)
(
dλk(uk)− inf d0

)
ď Ê(k) + tk+1

(
dλk(u†)− inf d0

)
+

tk+1

τ
〈ek, ẑk − u†〉+

t2k+1

2τ
ε2

2,k,

whence we deduce condition (5.5) since t2k + tk+1 − t2k+1 ě 0 and dλk(u†)− inf d0 ě 0 (see (4.5)).
Iterating recursively (5.5), Cauchy-Schwartz inequality yields

Ê(k) ď Ê(1) +
k−1∑
j=1

tj+1

(
dλj (u

†)− inf d0

)
+
k−1∑
j=1

tj+1

τ
ε3,j‖ẑj+1 − u†‖+

k−1∑
j=1

t2j+1

2τ
ε2

2,j , (5.8)

which will be used to deduce the following stability estimate. Next, we study separately the sums
appearing on the right-hand side of (5.8).

Step 2 For the first term in (5.8), following the proof of Theorem 4.6, we get

k−1∑
j=1

tj+1

(
dλj (u

†)− inf d0

)
ď c

k−1∑
j=1

tj+1λ
1
q−1

λj
ď cΛ < +∞.

where c is defined in (3.4), and Λ is finite thanks to assumption (P3).
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Step 3 To bound the second sum in (5.8), we observe that by definition Ê(k) ě 1
2τ ‖ẑk − u

†‖2.
Then, we set C = 2τ(Ê(1) + cΛ) and we derive

‖ẑk − u†‖2 ď C +
k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j‖ẑj+1 − u†‖.

Lemma A.5 applied to ak = ‖ẑk − u†‖, bk = 2tk+1ε3,k, ck−1 = C +
∑k−1

j=1 t
2
j+1ε

2
2,j implies

k−1∑
j=1

tj+1ε3,j‖ẑj+1 − u†‖ ď

( k−1∑
j=1

tj+1ε3,j

)(√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j

)
.

Combining altogether in (5.8), we deduce

Ê(k) ď
C

2τ
+

k−1∑
j=1

t2j+1

2τ
ε2

2,j +
1

τ

( k−1∑
j=1

tj+1ε3,j

)(√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j

)
. (5.9)

Young’s inequality applied to the product in the right hand side of (5.9) yields

1

τ

( k−1∑
j=1

tj+1ε3,j

)√√√√C +
k−1∑
j=1

t2j+1ε
2
2,j + 2

k−1∑
j=1

tj+1ε3,j


=

1

τ

( k−1∑
j=1

tj+1ε3,j

)√√√√C +

k−1∑
j=1

t2j+1ε
2
2,j

+
2

τ

( k−1∑
j=1

tj+1ε3,j

)2

ď
5

2τ

k−1∑
j=1

tj+1ε3,j

2

+
C

2τ
+

1

2τ

k−1∑
j=1

t2j+1ε
2
3,j

From (5.9) we thus obtain

Ê(k) ď
C

τ
+

1

τ

k−1∑
j=1

t2j+1ε
2
2,j +

5

2τ

( k−1∑
j=1

tj+1ε3,j

)2
. (5.10)

To conclude, we use Lemma A.1(v) and deduce

Ê(k) ě t2k(dλk(ûk)− inf d0) ě t2k(d0(ûk)− inf d0) ě
t2kσ

2
‖x̂k − x†‖2,

that combined with (5.10) gives the desired stability estimate (5.2).

5.3 Early stopping

We provide early stopping results guaranteeing the iterative regularization properties of (I3D).
Different convergence rates are obtained depending on type of approximation considered (see
Definition 5.3). The results follow from Theorem 5.5 considering assumption (Ei) for i ∈ {1, 2, 3}.
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Theorem 5.6 (Early stopping for type 1 errors) Assume that (L1)-(L3), (R1)-(R2), (P1)-(P4) hold
true, and suppose that λk = Θ(k−θ) with θ > 2(q − 1). Let (x̂k) be the sequence generated by (I3D)
with noisy datum ŷ, and assume that (Ei) holds with i = 1, ε2,k = O(δλ−r2k ), ε3,k = O(δλ−r3k ) for
some δ > 0 and r2, r3 ě 0. Set:

α := max

{
2

3 + 2r2θ
,

1

2 + r3θ

}
.

Then, any early stopping rule with k(δ) = Θ(δ−α) verifies:

‖x̂k(δ) − x†‖ = O (δα) , for δ ↘ 0.

Proof. We apply estimate (5.2) from Theorem 5.5. After substituting the expression for ε2,k and
ε3,k, we get:

t2k‖x̂k − x†‖2 = O
(

1 +
k−1∑
j=1

t2j+1ε
2
2,j +

( k−1∑
j=1

tj+1ε3,j

)2)
= O(1 + δ2k3+2r2θ + δ2k4+2r3θ).

In correspondence with the stopping time k(δ), and using the fact that tk(δ) = Θ(k(δ)), we deduce
from above:

‖x̂k(δ) − x†‖2 = O
(
δ2α + δ2−α(1+2r2θ) + δ2−2α(1+r3θ)

)
= O

(
δmin{2α;2−α(1+2r2θ),2−2α(1+r3θ)}

)
.

Let us now define β := min{1
2 + r2θ; 1 + r3θ}. We easily see that

min{2− α(1 + 2r2θ); 2− 2α(1 + r3θ)} = 2− 2αβ,

so that min{2α, 2−α(1+2r2θ), 2−2α(1+r3θ)} = min{2α, 2−2αβ}, which is maximal for α = 1
1+β .

The analogous results for errors of type 2 and 3 are straightforward.

Theorem 5.7 (Early stopping for type 2 errors) Assume that the assumptions (L1)-(L3), (R1)-
(R2), (P1)-(P4) hold true, and suppose that λk = Θ(k−θ) with θ > 2(q − 1). Let (x̂k) be the sequence
generated by (I3D) with noisy datum ŷ, and assume that (Ei) holds with i = 2, ε2,k = O(δλ−r2k ) for

some δ > 0 and r2 ě 0. Then, any early stopping rule with k(δ) = Θ(δ−
2

3+2θr ) verifies:

‖x̂k(δ) − x†‖ = O
(
δ

2
3+2θr

)
, for δ ↘ 0.

Proof. For type 2 approximation (5.2) ε3,k ≡ 0, and we get

t2k‖x̂k − x†‖2 = O
(

1 +

k−1∑
j=1

t2j+1ε
2
2,j

)
= O

(
1 +

k−1∑
j=1

δ2j2+2rθ
)

= O(1 + δ2k3+2rθ).

In correspondence with any stopping time k(δ) = Θ(δ−α), we thus have:

‖x̂k(δ) − x†‖2 = O
(
k(δ)−2 + δ2k(δ)1+2rθ

)
= O

(
δ2α + δ2−α(1+2rθ)

)
.

The term on the right-hand side is minimized when α = 2
3+2θr .
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Theorem 5.8 (Early stopping for type 3 errors) Assume that the assumptions (L1)-(L3), (R1)-
(R2), (P1)-(P4) hold true, and suppose that λk = Θ(k−θ) with θ > 2(q − 1). Let (x̂k) be the sequence
generated by (I3D) with noisy datum ŷ, and assume that (Ei) holds with i = 3 with ε3,k = O(δλ−r3k )

for some δ > 0 and r3 ě 0. Then, any early stopping rule with k(δ) = Θ(δ−
1

2+θr ) verifies:

‖x̂k(δ) − x†‖ = O
(
δ

1
2+θr

)
, for δ ↘ 0.

Proof. Assuming type 3 errors means that in the estimate (5.2) ε2,k ≡ 0, so that:

t2k‖x̂k − x†‖2 = O(1) +O
( k−1∑
j=1

tj+1ε3,j

)2
= O(1) +O

( k−1∑
j=1

δj1+rθ
)2

= O(1 + δ2k4+2rθ).

In correspondence with the stopping time k(δ) = Θ(δ−α), we thus deduce:

‖x̂k(δ) − x†‖2 = O
(
k(δ)−2 + δ2k(δ)2+2rθ

)
= O

(
δ2α + δ2−2α(1+rθ)

)
.

The term on the right-hand side is minimal whenever α = 1
2+θr .

6 Applications to specific data-fit terms

We next apply the results from Section 5.3 to relevant data-fit terms. The following definition is
useful.

Definition 6.1 (δ-perturbation) For given ȳ, ŷ ∈ Y and δ ∈ R++, we say that ŷ is a δ-perturbation
of ȳ according to ` if:

`ŷ(ȳ) = `(ȳ, ŷ) ď δq,

where q ∈ [1,+∞) is the conditioning exponent appearing in (L3).

We show that a δ-perturbation in the data corresponds to a proximal mapping of `∗ŷ approximating
the corresponding proximal mapping of `∗ȳ in the sense of Definition 5.3 and with some precision
ε(δ) depending on the noise level δ.

6.1 Additive data-fit terms

For additive data-fit functions (see Example 2.2), a δ-perturbation corresponds to a type 3 approx-
imation of the proximal mapping.

Proposition 6.2 (Additive data-fit terms lead to type 3 errors) Let N ∈ Γ0(Y) and assume that
`y2(y1) = N (y2 − y1), for every (y1, y2) ∈ Y2. For given (δ, τ, λ) ∈ (0,+∞)3, let ŷ ∈ B(ȳ, %) be a
δ-perturbation of ȳ in the sense of Definition 6.1. Then:

(∀z ∈ Y) p̂ = prox τ
λ
`∗ŷ(λ·)(z) ≈ε3 p̄ = prox τ

λ
`∗ȳ(λ·)(z).

with precision ε = τδ(q/γ)1/q and where q ě 1 and γ > 0 are the conditioning parameters appearing
in assumption (L3).
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Proof. We need to find e ∈ Y and ε ě 0 such that ‖e‖ ď ε and:

z + e− p̂
τ

∈ 1

λ
∂`∗ȳ(λ·)(p̂). (6.1)

Due to the special form of the data-fit we start noting that for any u ∈ Y we have

`∗ȳ(u) = N ∗(u) + 〈ȳ, u〉,

and the same holds for `∗ŷ. Then

∂`∗ŷ(λ·)(p̂) = λ∂`∗ŷ(λp̂) = λ∂
(
N ∗ + 〈ŷ, ·〉

)
(λp̂) = λ∂N ∗(λp̂) + λŷ.

By definition of p̂ we have (z − p̂)/τ ∈ (1/λ)∂`∗ŷ(λ·)(p̂) = ∂N ∗(λp̂) + ŷ, which, by simple algebraic
manipulations, entails the required condition (6.1), since:

z − p̂
τ
∈ ∂N ∗(λp̂) + ȳ + (ŷ − ȳ) ⇐⇒ z − p̂+ τ(ȳ − ŷ)

τ
∈ ∂N ∗(λp̂) + ȳ =

1

λ
∂`∗ȳ(λ·)(p̂).

By setting e = τ(ȳ − ŷ), we can find the required ε combining the local q-conditioning of the
function `ȳ on B(ȳ, %) assumed in (L3) with the δ-perturbation assumption:

‖e‖ = τ‖ȳ − ŷ‖ ď τ

(
q

γ
`(ŷ, ȳ)

)1/q

ď τ

(
q

γ

)1/q

δ =: ε,

where γ > 0 and q ě 1 are the conditioning parameters. We can thus conclude that p̂ is a ε-
approximation of p̄ with precision ε, as required.

Thanks to Proposition 6.2, we can derive early-stopping result by applying Theorem 5.8 to
additive data-fit terms with the above choice of ε.

Corollary 6.3 (Early stopping for additive data-fit terms) Let N ∈ Γ0(Y) and set `y2(y1) =
N (y2 − y1), for every (y1, y2) ∈ Y2 Assume that the assumptions (L1)-(L3), (R1)-(R2), (P1)-(P4)
hold, and that λk = Θ(k−θ) with θ > 2(q − 1). Let (x̂k) be the sequence generated by (I3D) with
ŷ ∈ B(ȳ, %), such that ŷ is a δ-perturbation of ȳ. Then, any early stopping rule with k(δ) = Θ(δ−1/2)
verifies:

‖x̂k(δ) − x†‖ = O(δ
1
2 ), for δ ↘ 0. (6.2)

Remark 6.4 (Optimality of the rates) The convergence rate in (6.2) is optimal for regularization
methods for additive data-fit terms [38]. Among inertial algorithms, optimal convergence rates
for different regularizers but only quadratic data-fit terms have been proved in [48, 45]. For more
general additive data-fits (e.g. the `1-norm, see Example 2.2), in [24] the authors prove a rate
O(δ1/2) on the Bregman distance, which is different from (6.2). To our knowledge, our result is
the first showing optimal convergence rates for iterative regularization methods for general data-fit
term improving the estimates in [39] that showed a rate O(δ1/3).

Remark 6.5 (Different growth for tk) As noted in Remark 4.8, if we replace tk = Θ(tk) by tk =
Θ(kβ), then β ď 1, and β = 1 gives the fastest convergence rate for true datumum ȳ. Corollary 6.3
implies that also for noisy data ŷ, any stopping rule with k(δ) = Θ(δ−1/(1+β)) verifies ‖x̂k(δ)−x†‖ =

O(δ
β
β+1 ) for δ ↘ 0, where again the best rate is achieved for β = 1.
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6.2 KL divergence

We consider the Kullback-Leibler (KL) divergence as an example of non-additive data-fit term. KL
divergence is often used to model data corrupted by Poisson noise. We show that the KL diver-
gence δ-perturbations lead to type 2 approximations. We recall that the KL divergence is locally
2-conditionned (see Example 2.2).

Proposition 6.6 Assume that, `y2(y1) = KL(y2; y1) for every (y1, y2) ∈ Y2. For (δ, τ, λ) ∈ (0,+∞)3,
let ŷ ∈ B(ȳ, %) be a δ-perturbation of ȳ. Then

(∀z ∈ Y) p̂ = prox τ
λ
`∗ŷ(λ·)(z) ≈ε2 p̄ = prox τ

λ
`∗ȳ(λ·)(z).

with ε =
√

2τδ/λ.

Proof. It is enough to prove that for all z ∈ Y

λ(z − p̂)
τ

∈ ∂λε2
2τ

KL∗ȳ(λ·)(p̂) = λ∂λε2
2τ

KL∗ȳ(λp̂), ⇐⇒ z − p̂
τ
∈ ∂λε2

2τ

KL∗ȳ(λp̂).

We set x = (z − p̂)/τ ∈ Y and consider the function g : Y → Rd ∪ {+∞} defined by

g(w) =
KLȳ
λ

(w), for all w ∈ Y. (6.3)

By standard property of convex conjugates we have that for any u ∈ Y

g∗(u) =

(
KLȳ
λ

)∗
(u) =

1

λ
KL∗ȳ(λu). (6.4)

We now claim that x ∈ ∂λε2
2τ

g∗(p̂). To show that, we apply the Young-Fenchel inequality of Lemma

A.6 to g with x∗ = p̂. Our objective is thus to show that:

g(x) + g∗(p̂) ď 〈x, p̂〉+
λε2

2τ
,

which, by definitions (6.3) and (6.4) and upon multiplication by λ, coincides with:

KLȳ(x) + KL∗ȳ(λp̂) ď 〈x, λp̂〉+
λ2ε2

2τ
. (6.5)

Using expressions (??) and (A.1) for KL and its convex conjugate, we express the sum on the left
hand side of (6.5) as:

KLȳ(x) + KL∗ȳ(λp̂) =

d∑
i=1

(
ȳi log

ȳi
xi
− ȳi + xi − ȳi log(1− λp̂i)

)
. (6.6)

Furthermore, by definition of p̂, we have that component-wise there holds:

λ

τ
(zi − p̂i) ∈ λ∂kl∗ŷi(λp̂i) ⇐⇒ xi ∈ ∂kl∗ŷi(λp̂i),
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which, since kl∗ŷi is differentiable (see formula (A.1)), entails that for every i = 1, . . . , d the element
xi can be written as xi = ŷi/1− λp̂i. Substitute this expression in the formula (6.6) to derive

KLȳ(x) + KL∗ȳ(λp̂) =
d∑
i=1

ȳi log ȳi − ȳi log ŷi − ȳi + ŷi︸ ︷︷ ︸
kl(ȳi;ŷi)

+(((((((
ȳi log(1− λp̂i) +

(
ŷi/(1− λp̂i)

)︸ ︷︷ ︸
xi

λp̂i −(((((((
ȳi log(1− λp̂i)

= KLȳ(ŷ) + 〈x, λp̂〉
ď δ2 + 〈x, λp̂〉,

where the last inequality follows from the perturbation assumption KLȳ(ŷ) ď δ2. We thus get (6.5)
by choosing ε =

√
2τδ/λ, which concludes the proof. From Proposition 6.6 and Theorem 5.7, we

derive stopping rules for the KL divergence.

Corollary 6.7 (Early stopping for Kullback-Leibler divergence) Let `y2(y1) = KL(y2; y1) for ev-
ery (y1, y2) ∈ Y2. Assume that the assumptions (L1)-(L3), (R1)-(R2), (P1)-(P4) hold true, and suppose
that λk = Θ(k−θ) with θ > 2. Let (x̂k) be the sequence generated by (I3D) given ŷ, such that ŷ is a
δ-perturbation of ȳ in the sense of Definition 6.1. Then, any early stopping rule with k(δ) = Θ(δ−

2
3+2θ )

verifies
‖x̂k(δ) − x†‖ = O(δ

2
3+2θ ), for δ ↘ 0. (6.7)

Remark 6.8 It is hard to assess the quality of the rate in (6.7) since the the notion of optimality in
[38] only applies to additive noise. In the context of Bregman divergences, a similar analysis has
been pursued in [24, Section 4.2, estimate (4.3)]. The estimate in [24] leads to a rate of order δ1/4

for suitable choices of the regularization parameter. In comparison, our estimate (6.7) is sharper
and more explicit. As for additive data-fit terms, the use of inertia improves the rates in [39].

Remark 6.9 (The Kullback-Leibler divergence does not lead to type 3 errors) The convergence
rates for additive data-fit terms proved in Corollary 6.3 are better than the rate for the KL diver-
gence, due to the fact that for the KL divergence we proved that δ-perturbations correspond to type
2 errors, instead of type 3 errors. Indeed, Lemma A.3 in the Appendix shows that the error in the
evaluation of proximal points for the KL divergence can not be cast in a type 3 approximation.

7 Conclusions and outlook

In this paper we proposed an inertial dual diagonal method to solve inverse problems for a wide
class of data-fit and regularization terms, possibly corrupted by noise. On the one hand we es-
tablished convergence results both for continuous and discrete dynamics. On the other hand we
derived stability results and corresponding stopping rules, characterizing the regularization prop-
erties of the proposed method. A number of open questions are left for future study. It would
be interesting to consider wider class of problems for example allowing for regularization terms
that are convex but not strongly convex, and possibly non convex data fidelity terms. From an
algorithmic point of view, it would be interesting to consider alternative approaches, for exam-
ple considering stochastic methods. Finally, it would be interesting to investigate the numerical
properties of the proposed method for practical problems.
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A Auxiliary results

We gather some relevant results.

A.1 Properties of the dual diagonal function

We first consider RA, `∗y defined in (3.1) and on the diagonal dual function dλ and its limit d0

defined in (Dλ) and (D0), respectively. For similar results see also [39].

Lemma A.1 Under the assumptions (L1)-(L3) and (R1)-(R2), we have:

(i) RA is differentiable and ∇R∗A is Lipschitz continuous, with Lipschitz constant equal to σ−1‖A‖2.

(ii) ∀y ∈ Y, `∗y(0) = 0 and ∂`∗y(0) = {y}.

(iii) There holds: argmin d0 6= ∅.

(iv) ∀u ∈ Y, the function λ ∈ [0,+∞) 7→ dλ(u) is nondecreasing.

(v) ∀t > 0,∀u ∈ Y, if x := ∇R∗(−A∗u), then σ
2 ‖x− x

†‖2 ď d0(u)− inf d0.

(vi) ∀u† ∈ argmin d0, if λ‖u†‖ ď
γ
q %

q−1, then

dλ(u†)− inf d0 ď

{
0 if q = 1,

(1− 1
q )γ−1/(q−1)‖u†‖q/(q−1)λ1/(q−1) if q > 1.

Proof. (i): follows from the strong convexity of R, see, e.g., [21, Theorem 18.15].
(ii): it is a simple consequence of the properties of the Fenchel transform as it can be found, e.g.,
in [21, Proposition 13.10(i) & Corollary 16.30].
(iii) and (v): follow from [39, Lemma 5] by simply taking f = R and g = δ{ȳ}, while property (iv)
has been proved in [39, Proposition 2(i)].
(vi): it is enough to verify that `ȳ(·) is q-well conditioned in the sense of [39, Definition 1], while
assumption (L3) holds only locally. To check this, we introduce the function ψ : R→ R defined for
the % > 0 appearing in (L3) by:

ψt 7→

{
γ
q |t|

q if |t| ď %,
γ
q %

q−1|t| if |t| > %.

From (L3), we easily deduce that `ȳ(y) ě ψ(‖y− ȳ‖) for all y ∈ Y (see [57, Corollary 3.4.2]). Note
that ψ is not convex for q > 1, so in this case we consider instead the function

m : R→ R, t 7→


γ
q |t|

q if |t| ď q1/(1−q)%,
γ
q %

q−1|t| − γ

q
q
q−1

%q(1− 1
q ) if |t| > q1/(1−q)%,

and define m := ψ for q = 1. It is an easy exercise to verify that m is indeed a convex function on
R, and that m(w) ď ψ(w) for all w ∈ R. Now, we can make use of [39, Lemma 2], which tells us
that dλ(u) − inf d0 ď λ−1m∗(‖u‖λ). The desired result now follows from the computation of the
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Fenchel transform of m. If q = 1, we have that m(t) = γ|t|, so classic Fenchel calculus entails that
m∗ is δ[−γ,γ], the indicator function of [−γ, γ]. If q > 1, easy computations show that m∗ reads

m∗ : R→ R, s 7→

{
(1− 1

q )γ−1/(q−1)|s|
q
q−1 if |s| ď γ

q %
q−1,

+∞ if |s| > γ
q %

q−1.

By now applying [39, Lemma 2] we conclude.

A.2 Useful tools for KL computations

In this section, we report some computations and properties concerning the KL divergence defined
in (2.2). For any (u, y) ∈ (Rd)2 we define KL(y, u) as in (2.2). Consider now the functions KL
and kl with respect to the first argument only, and define KLy(u) := KL(y;u) and, similarly, its i-th
component klyi(ui) for a fixed y ∈ Rd. The component-wise expression for KL∗y(w) =

∑d
i=1 kl∗yi(wi)

can be then simply found by Fenchel calculus. It reads:

kl∗yi(wi) =

{
−yi log(1− wi) if 1− wi > 0

+∞ otherwise.
(A.1)

Proximal maps For every i = 1, . . . , d, straightforward calculations show that

prox τ
λ

klyi
(ui) =

1

2

(
ui −

τ

λ
+

√(
ui −

τ

λ

)2
+ 4

τ

λ
yi

)
.

Furthermore, by applying Moreau’s identity we have:

prox τ
λ

kl∗yi (λ·)
(wi) =

1

2λ

(
(1 + λwi)−

√
(1− λwi)2 + 4λτyi

)
. (A.2)

The following lemma implies the q-conditioning of the Kullback-Leibler divergence.

Lemma A.2 (2-conditioning of the KL data-fit term) Let ȳ ∈ Rd and % ∈ (0,+∞). Then,

(∀y ∈ B(ȳ, %)) KL(ȳ, y) ě

(
1

%c2
+

1

%2c
ln

c

%+ c

)
‖y − ȳ‖2, where c = d‖ȳ‖∞.

Proof. Let y ∈ B(ȳ, %). By [39, Lemma 10.2], we have that

KL(ȳ, y) ě cm(‖y − ȳ‖), where m(t) = c−1|t| − ln
(
1 + c−1|t|

)
. (A.3)

To get the desired result, we need to find a quadratic lower bound for m over [−%, %]. For simplicity,
let us consider the change of variable s = c−1|t| ∈ [0, c−1%]. Since the statement is trivially valid for
y = ȳ, we can assume that s > 0 and write

s− ln(1 + s) = s2φ(s), where φ(s) :=
s− ln(1 + s)

s2
.

To conclude, we only need to verify that φ is decreasing on ]0,+∞[. Indeed, this would imply
that m(t) ě c−2t2φ(c−1%), which together with (A.3) would complete the proof. To see that φ is
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decreasing, we compute explicitly its derivative on ]0,+∞[ and see that φ′(s) ď 0 if and only if
ψ(s) := s(s + 2) − 2(1 + s) ln(1 + s) ě 0. Combining this with the fact that ψ(0) = 0, and that
ψ′(s) = 2(s− ln(1 + s)) is positive ]0,+∞[ we conclude the proof.

In the following we deal with proximal points of the dual of the KL divergence, corresponding to
noise-free and noisy data ȳ and ŷ, respectively. As shown in Proposition 6.6 a type 2 approximation
in the sense of Definition 5.3 holds. The following proposition is a one-dimensional counterexample
showing that a type 3 approximation – for which better convergence rates can be obtained – does
not hold.

Proposition A.3 Let w ∈ R and ȳ, ŷ ∈]0,+∞[. If proxkl∗ŷ
(w) ≈ε3 proxkl∗ȳ

(w) holds in the sense of
Definition 5.3 for some ε > 0, then

ε ě
2|ŷ − ȳ|

(1− w) +
√

(1− w)2 + 4ŷ
.

In particular, ε→ +∞ when w → +∞.

Proof. Let ε ě 0 such that the type 3 approximation property holds. By Definition 5.3, there exists
e ∈ R such that |e| ď ε and proxkl∗ŷ

(w) = proxkl∗ȳ
(w + e). Using the formula (A.2), we see that this

is equivalent to

1

2

[
(1 + w)−

√
(1− w)2 + 4ŷ

]
=

1

2

[
(1 + w + e)−

√
(1− w − e)2 + 4ȳ

]
.

and we complete the proof by noting that the above equality is equivalent to

e
1

2

[
(1− w) +

√
(1− w)2 + 4ŷ

]
= ȳ − ŷ.

A.3 Miscellaneous

We here recall some technical lemmas which are used in several sections of the manuscript. The fol-
lowing Lemma is useful to characterize the speed of decay of the diagonal term λ(·) in assumption
(Λ), see also Remark 3.2.

Lemma A.4 Let λ : R+ → R+ a decreasing function such that
∫
R+
|λ(t)|1/2 dt < +∞. Then, the

function t 7→ tλ(t) is integrable on R+.

Proof. We first show that the function t 7→ t
√
λ(t) tends to zero as t→ +∞. We have that for every

T > 0: ∫ +∞

T/2

√
λ(t) dt ě

∫ T

T/2

√
λ(t) dt ě

T

2

√
λ(T ),

where the last inequality follows from the decreasing property of λ in the interval [T/2, T ]. By
taking limits, we get the required property:

limsup
T→+∞

T

2

√
λ(T ) ď lim

T→+∞

∫ +∞

T/2

√
λ(t) dt = 0.
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Now, from the observation

lim
t→+∞

tλ(t)√
λ(t)

= lim
t→+∞

t
√
λ(t) = 0,

we deduce that there exists some T > 0 such that tλ(t) ď
√
λ(t) for all t ě T . By thus taking

T > T , we have:∫ T

0
tλ(t) dt =

∫ T

0
tλ(t) dt+

∫ T

T
tλ(t) dt ď

∫ T

0
tλ(t) dt+

∫ T

T

√
λ(t) dt,

which by taking the supremum over all T > T̄ on both sides entails:∫
R+

tλ(t) dt ď

∫ T

0
tλ(t) dt+

∫ +∞

T

√
λ(t) dt < +∞.

Next, we state and prove a variant of [7, Lemma 5.14] which we have used in the proof of
Theorem 5.2 to get the final stability estimate (5.2).

Lemma A.5 Let (ak)k∈N, (bk)k∈N and (ck)k∈N be positive sequences, and assume that ck is increasing.
If

(∀k ∈ N) a2
k ď ck +

k−1∑
j=1

bjaj+1,

then max
j=1,...,k

aj ď
√
ck +

k−1∑
j=1

bj , for every k ∈ N.

Proof. Take k ∈ N, and let Ak := max
m=1,...,k

am. Then, for all 1 ď m ď k:

a2
m ď cm +

m−1∑
j=1

bjaj+1 ď ck +Ak

k−1∑
j=1

bj ,

because ck is increasing and bj is positive. Therefore A2
k ď ck + Ak

k−1∑
j=1

bj . Define Sk =
k−1∑
j=1

bj . By

computing and bounding the solutions of the previous inequality we conclude that

Ak ď
Sk +

√
Sk + 4ck
2

ď Sk +
√
ck.

We recall a useful characterisation of the elements in the ε-subdifferential of a function in Γ0(H).
This property is used to prove Proposition 6.6, see also [57].

Lemma A.6 (Theorem 2.4.2, [57]) Let H be an Hilbert space, let f ∈ Γ0(H), let (x, u) ∈ H2, and
let ε > 0. Then, the following statements are equivalent:

i) u ∈ ∂εf(x);

ii) The following ε-Young-Fenchel inequality holds:

f(x) + f∗(u) ď 〈u, x〉+ ε;

iii) x ∈ ∂εf∗(u).
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