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Finite convergence of proximal-gradient inertial algorithms
combining dry friction with Hessian-driven damping

Samir ADLY∗ and Hedy ATTOUCH†

ABSTRACT. In a Hilbert space H, we introduce a new class of proximal-gradient algorithms with
finite convergence properties. These algorithms naturally occur as discrete temporal versions of an inertial
differential inclusion which is damped under the joint action of three dampings: a viscous damping, a
geometric damping driven by the Hessian and a dry friction damping. The function f : H → R to
be minimized is supposed to be differentiable (not necessarily convex), and enters the algorithm via its
gradient. The dry friction damping function φ : H → R+ is convex with a sharp minimum at the origin,
(typically φ(x) = r‖x‖ with r > 0). It enters the algorithm via its proximal mapping, which acts as a
soft threshold operator on the velocities. The geometrical damping driven by the Hessian intervenes in the
dynamics in the form ∇2f(x(t))ẋ(t). By treating this term as the time derivative of ∇f(x(t)), this gives,
in discretized form, first-order algorithms. The Hessian driven damping allows to control and to attenuate
the oscillations which occur naturally with the inertial effect. The convergence results tolerate the presence
of errors, under the sole assumption of their asymptotic convergence to zero. Then, replacing the potential
function f by its Moreau envelope, we extend the results to the case of a nonsmooth convex function
f . In this case, the algorithm involves the proximal operators of f and φ separately. Several variants of
this algorithm are considered, including the case of the Nesterov accelerated gradient method. We then
consider the extension in the case of additive composite optimization, thus leading to splitting methods.
Numerical experiments are given for Lasso-type problems. The performance profiles, as a comparison
tool, highlight the effectiveness of two variants of the Nesterov accelerated method with dry friction and
Hessian-driven viscous damping.

Mathematics Subject Classifications: 37N40, 34A60, 34G25, 49K24, 70F40.

Key words and phrases: proximal-gradient algorithms; inertial methods; differential inclusion; dry friction;
Hessian-driven damping; finite convergence; Lasso problem.

1 Introduction and preliminary results

Throughout the paperH is a real Hilbert space, with the scalar product 〈·, ·〉 and the associated norm ‖ · ‖,
and f : H → R is a C1 function whose gradient is Lipschitz continuous. When we consider the continuous
dynamics on which the algorithms are based, and where the Hessian intervenes, more regularity is needed
for f which is then assumed to be a C2 function. Several extensions of these hypotheses will be discussed
later in the paper.
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1.1 Presentation of the algorithm

We will analyze the finite convergence (within a finite number of steps) of several algorithms that can be
obtained by temporal discretization of the second-order differential inclusion

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0, t ∈ [t0,+∞[ (1.1)

where γ and β are positive damping parameters. (IGDH) stands shortly for Inertial Gradient system with
Dry friction and Hessian-driven damping. The dry friction damping function φ : H → R+ is convex
with a sharp minimum at the origin, typically φ(x) = r‖x‖ with r > 0. The geometrical damping driven
by the Hessian intervenes in the dynamics in the form ∇2f(x(t))ẋ(t). By treating this term as the time
derivative of ∇f(x(t)), this gives, in discretized form, first-order algorithms. Our main results concern
the finite convergence of the Inertial Proximal-gradient Algorithm with Hessian-Damping and Dry friction
(IPAHDD)  zk = 1

h(1+hγ)(xk − xk−1)−
β

1+hγ (∇f(xk)−∇f(xk−1))− h
1+hγ∇f(xk)

xk+1 = xk + hprox h
1+hγ

φ (zk) ,

which comes naturally from the temporal discretization of (IGDH). In the above formula, proxφ denotes
the proximal mapping associated with the convex function φ. Recall that, for any x ∈ H, for any λ > 0

proxλφ(x) := argminξ∈H

{
λφ(ξ) +

1

2
‖x− ξ‖2

}
.

We will show that, if the viscous damping parameter γ is taken large enough, then for any sequence (xk)
generated by the algorithm (IPAHDD), the following summability property is satisfied

+∞∑
k=1

‖xk+1 − xk‖ < +∞.

This property expresses that the trajectory has a finite length, and therefore lim
k→∞

xk := x∞ exists for the

strong topology ofH. The limit point x∞ satisfies

−∇f(x∞) ∈ ∂φ(0).

It is is an “approximate” critical point of f . This amounts to solving the optimization problem minH f
with the Ekeland variational principle, instead of the Fermat rule. Since our goal is to minimize the
function f , we will have to choose a function φ whose subdifferential set ∂φ(0) is “relatively small”.
When φ(x) = r‖x‖, this corresponds to taking r a small positive number. Moreover, we will show that,
under the condition

−∇f(x∞) ∈ int(∂φ(0)),

there is finite convergence (i.e. within a finite number of steps) of the iterates generated by the algorithm
(IPAHDD). In short, dry friction acts as a closed-loop stopping rule. The Hessian driven damping allows
to control and to attenuate the oscillation effects which occur naturally with the inertial systems, and which
are not desirable from the optimization point of view. In many ways, (IPAHDD) can be compared to the
restart method.

1.2 Some historical facts

Let’s explain the role and the importance of each of the three damping terms that enter the continous
dynamic (IGDH).
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1.2.1 Viscous friction

B. Polyak initiated the use of inertial dynamics to accelerate the gradient method in optimization. In [32],
based on the inertial system with a fixed viscous damping coefficient γ > 0

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,

he introduced the Heavy Ball with Friction method. For a strongly convex function f , and γ judiciously
chosen, (HBF) provides convergence at exponential rate of f(x(t)) to minH f . For general convex func-
tions, the asymptotic convergence rate of (HBF) is O(1t ) (in the worst case). This is however not better
than the steepest descent. A decisive step to improve (HBF) was taken by Su-Boyd-Candès [36] with the
introduction of an Asymptotic Vanishing Damping coefficient γ(t) = α

t , that is

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

As a specific feature, the viscous damping coefficient αt vanishes (tends to zero) as time t goes to infinity,
hence the terminology. For general convex functions it provides a continuous version of the accelerated
gradient method of Nesterov. For α ≥ 3, each trajectory x(·) of (AVD)α satisfies the asymptotic con-
vergence rate of the values f(x(t)) − infH f = O

(
1/t2

)
. The convergence properties of the dynamic

(AVD)α have been the subject of many recent studies, see [6, 8, 9, 10, 12, 13, 15, 18, 19, 31, 36]. The case
α = 3, which corresponds to Nesterov’s historical algorithm, is critical. In the case α = 3, the question
of the convergence of the trajectories remains an open problem (except in one dimension where conver-
gence holds [13]). For α > 3, it has been shown by Attouch-Chbani-Peypouquet-Redont [12] that each
trajectory converges weakly to a minimizer. The corresponding algorithmic result has been obtained by
Chambolle-Dossal [25]. For α > 3, it is shown in [15] and [31] that the asymptotic convergence rate of the
values is actually o(1/t2). The subcritical case α ≤ 3 has been examined by Apidopoulos-Aujol-Dossal
[6] and Attouch-Chbani-Riahi [13], with the convergence rate of the objective values O

(
t−

2α
3

)
. These

rates are optimal, that is, they can be reached, or approached arbitrarily close.

1.2.2 Dry friction

The first results concerning the finite convergence property under the action of dry friction have been
obtained by Adly-Attouch-Cabot [3] for the continuous dynamics

ẍ(t) + ∂φ(ẋ(t)) +∇f(x(t)) 3 0, t ∈ [t0,+∞[. (1.2)

Assuming that the potential friction function φ has a sharp minimum at the origin (dry friction), they
showed that, generically with respect to the initial data, the solution trajectories converge in finite time to
equilibria. Similar results for the corresponding proximal-based algorithms have been obtained by Baji-
Cabot [20] and Adly-Attouch [2].
Let’s make precise the tools that will be useful for the mathematical analysis of the set-valued term
∂φ(ẋ(t)) in (1.2) which models dry friction. The friction potential function φ is supposed to satisfy the
Dry Friction property (denoted by (DF))

(DF)


φ : H → R is convex continuous;
min
ξ∈Rn

φ(ξ) = φ(0) = 0;

0 ∈ int(∂φ(0)).

The particular case φ = r‖·‖, with r > 0, models dry friction (also called Coulomb friction) in mechanics.
The key assumption 0 ∈ int(∂φ(0)) expresses that φ has a sharp minimum at the origin. This is specified
in the following elementary lemma, see [1, Lemma 4.1 page 83], where, in item (iv), φ∗ is the Fenchel
conjugate of φ.
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Lemma 1.1 Let φ : H → R be a convex continuous function such that minξ∈Rn φ(ξ) = φ(0) = 0. Then,
the following formulations of the dry friction are equivalent:

(i) 0 ∈ int(∂φ(0));

(ii) there exists some r > 0 such that B(0, r) ⊂ ∂φ(0);

(iii) there exists some r > 0 such that, for all ξ ∈ H, φ(ξ) ≥ r‖ξ‖.

(iv) there exists some r > 0 such that, ‖f‖ ≤ r =⇒ ∂φ∗(f) 3 0.

The positive parameter r will play a crucial role in our analysis. To enlighten its role, we will say that the
friction potential function φ satisfies the property (DF)r if φ satisfies the Dry Friction property (DF) with
B(0, r) ⊂ ∂φ(0). The property (iv) above expresses that, when the force f exerted on the system is less
than a threshold r > 0, then the system stabilizes, i.e. the velocity v = 0 ∈ ∂φ∗(f). This contrasts with
the viscous damping that can asymptotically produce many small oscillations.

The following lemma will play a key role in showing the finite convergence property. It gives the
soft thresholding property satisfied by the proximal operator associated with a function φ having a sharp
minimum at the origin. It is an immediate consequence of Lemma 1.1 (iv).

Lemma 1.2 Let φ : H → R be a convex continuous function which satisfies the property (DF)r, i.e. ∂φ(0) ⊃
B(0, r). Then, the following implication holds: for λ > 0, and x ∈ H

‖x‖ ≤ λr =⇒ proxλφ(x) = 0.

1.2.3 Hessian-driven damping

The inertial system

(DIN)γ,β ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was introduced in [5]. In line with (HBF), it contains a fixed positive friction coefficient γ. The introduction
of the Hessian-driven damping makes it possible to neutralize the transversal oscillations likely to occur
with (HBF), as observed in [5] in the case of the Rosenbrook function. The need to take a geometric
damping adapted to f had already been observed by Alvarez [4] who considered the inertial system

ẍ(t) + Γẋ(t) +∇f(x(t)) = 0,

where Γ : H → H is a linear positive anisotropic operator. But still this damping operator is fixed. For a
general convex function, the Hessian-driven damping in (DIN)γ,β performs a similar operation in a closed-
loop adaptive way. The terminology (DIN) stands shortly for Dynamical Inertial Newton. It refers to the
natural link between this dynamic and the continuous Newton method. Recent studies have been devoted
to the study of the inertial dynamic

ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

which combines asymptotic vanishing damping with Hessian-driven damping. The corresponding algo-
rithms involve a correcting term in the Nesterov accelerated gradient method which reduces the oscillatory
aspects, see Attouch-Peypouquet-Redont [16], Attouch-Chbani-Fadili-Riahi [17], Shi-Du-Jordan-Su [34].
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1.3 Contents

The paper is organized as follows. In section 2, we state our main results, which concern the conver-
gence properties of the inertial algorithm (IPAHDD). We then specialize our results in the case of the soft
thresholding of velocities. In section 2.6 we examine a variant of (IPAHDD) which is based on another
discretization of the viscous damping term. In section 3, we examine the effect of the introduction of
perturbations, errors in the algorithm (IPAHDD). In section 4, we proceed with a similar analysis in the
case of the Nesterov acceleration method. In section 5, based on the variational properties of Moreau’s
envelope, we extend these results to the case where f : H → R∪{+∞} is a convex lower semicontinuous
and proper function such that inf f > −∞. Thus, we will obtain similar results for an algorithm in which
the two nonsmooth functions f and φ enter the algorithm via their proximal mappings in a splitting form.
In section 6, we extend our analysis to the case of additive composite optimization problems, and obtain
splitting methods with finite convergence properties. Section 7 is devoted to numerical experiments, and
comparing on the Lasso problem the performance of the different algorithms considered previously. We
complete the paper with some perspectives.

2 Inertial proximal-based algorithms with dry friction and Hessian-driven
damping

In this section, we assume that f is a C1 function whose gradient is L-Lipschitz continuous. Unless
otherwise indicated, no convexity assumption is made on the function f . We will consider a splitting
algorithm with the finite convergence property, in which the function to be minimized f intervenes via its
gradient, and the potential friction function φ via its proximal mapping. We denote by γ, β, r the three
positive damping parameters. They can be respectively interpreted as

(Damping parameters)


γ is a viscous damping parameter ;

β is attached to the Hessian-driven damping;

r is a dry friction parameter, that is, φ(x) ≥ r‖x‖ and φ(0) = 0.

2.1 Proximal-Gradient algorithms with Hessian damping and dry friction

Given a constant time step h > 0, we consider the following temporal discretization of (IGDH)

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ

(
1

h
(xk+1 − xk)

)
+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xk) 3 0. (2.1)

It is implicit with respect to the nonsmooth function φ, and explicit with respect to the smooth function f .
It is in line with the classical proximal-gradient methods that deal with additively structured minimization
problems smooth + nonsmooth. But here, this structure involves the friction terms, hence significant
differences! As a key ingredient, we used that ∇2f(x(t))ẋ(t) = d

dt∇f(x(t)), which follows from the
classical derivation chain rule. So, the correcting term ∇f(xk) − ∇f(xk−1) is directly related to the
temporal discretization of the Hessian-driven damping term. It plays a central role to reduce the oscillatory
effects which are attached to the inertial systems.
Solving (2.1) with respect to xk+1 gives the following first-order algorithm where dry friction enters via
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the potential function φ, and the function to be minimized f enters via its gradient.

(IPAHDD): Inertial Proximal-gradient Algorithm with Hessian-Damping and Dry friction

Initialize: x0 ∈ H, x1 ∈ H

xk+1 = xk + hprox h
1+hγ

φ

(
1

h(1+hγ)(xk − xk−1)−
β

1+hγ (∇f(xk)−∇f(xk−1))− h
1+hγ∇f(xk)

)

We call it (IPAHDD), which stands for Inertial Proximal-gradient Algorithm with Hessian Damping and
Dry friction. Consequently, given xk−1 and xk, (IPAHDD) uniquely determines xk+1. When φ = 0, that
is, without dry friction, we obtain the Inertial Gradient Algorithm with Hessian damping

(IGAHD) xk+1 = xk +
1

1 + hγ
(xk − xk−1)−

hβ

1 + hγ
(∇f(xk)−∇f(xk−1))−

h2

1 + hγ
∇f(xk).

(IGAHD) is based on the heavy ball with friction method. In the case of the accelerated gradient method of
Nesterov, inertial algorithms involving a similar correcting term were studied recently by Attouch-Chbani-
Fadili-Riahi [17] and Shi-Du-Jordan-Su [34]. We can now state the main results of the paper. In order not
to make the statements too long, we expose separately the qualitative and the quantitative convergence
results.

2.2 Convergence: finite length property

Theorem 2.1 Let f : H → R be a C1 function whose gradient is L-Lipschitz continuous, and such that
infH f > −∞. Assume that the potential friction function φ satisfies (DF)r. Suppose that the parameters
h, γ, β in the algorithm (IPAHDD) satisfy the relation

γ ≥ L
(
h

2
+ β

)
.

Then, for any sequence (xk) defined by the algorithm (IPAHDD)), we have:

(i)
∑
k

‖xk+1−xk‖ < +∞, and hence limxk := x∞ exists for the strong topology ofH. Moreover,

∞∑
k=1

‖xk+1 − xk‖ ≤
1

r

(
E1 +

βL

2h
‖x1 − x0‖2

)
∞∑
k=1

‖xk+1 − 2xk + xk−1‖2 ≤ 2h2
(
E1 +

βL

2h
‖x1 − x0‖2

)
,

where E1 := 1
2‖

1
h(x1 − x0)‖2 + f(x1)− infH f .

(ii) The limit x∞ of the sequence (xk) satisfies: 0 ∈ ∂φ(0) +∇f(x∞).

Proof. We will use an energetic argument based on the nonincreasing property of the sequence (Ek)
of nonnegative global energy functions

Ek :=
1

2
‖1

h
(xk − xk−1)‖2 + f(xk)− inf

H
f.
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Let’s formulate (2.1) in terms of the discrete velocity vectors 1
h(xk−xk−1). After multiplication by h, we

obtain the equivalent formulation

1

h
(xk+1 − xk)−

1

h
(xk − xk−1) + γh

1

h
(xk+1 − xk) + h∂φ

(
1

h
(xk+1 − xk)

)
+β (∇f(xk)−∇f(xk−1)) + h∇f(xk) 3 0. (2.2)

(i) Let’s first establish energy estimates. Without ambiguity, we write simply ∂φ to designate any
element belonging to this set. Taking the scalar product of (2.2) with 1

h(xk+1 − xk), we obtain〈
1

h
(xk+1 − xk)−

1

h
(xk − xk−1),

1

h
(xk+1 − xk)

〉
+ γh‖1

h
(xk+1 − xk)‖2 + 〈∇f(xk), xk+1 − xk〉

+h

〈
∂φ

(
1

h
(xk+1 − xk)

)
,

1

h
(xk+1 − xk)

〉
+ β

〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
= 0.(2.3)

Set Xk := 1
h(xk − xk−1). The following elementary relation reflects the strong convexity of 1

2‖ · ‖
2

〈Xk+1 −Xk, Xk+1〉 =
1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 +

1

2
‖Xk+1 −Xk‖2. (2.4)

According to the convexity of φ and φ(0) = 0, we have

〈∂φ (Xk+1) , Xk+1〉 ≥ φ (Xk+1) . (2.5)

Taking into account (2.4) and (2.5), we deduce from (2.3) the following inequality

1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 +

1

2
‖Xk+1 −Xk‖2 + γh‖Xk+1‖2 + hφ(Xk+1)

+β

〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
+ 〈∇f(xk), xk+1 − xk〉 ≤ 0. (2.6)

Let’s now use the assumptions on the potential functions φ and f . According to the assumption (DF)r on
φ and Lemma 1.1, for all k ≥ 1

φ (Xk+1) ≥ r‖Xk+1‖. (2.7)

Since∇f is L-Lipschitz continuous, the classical gradient descent lemma gives, for all k ≥ 1

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2. (2.8)

According to the Cauchy-Schwarz inequality, and using again that∇f is L-Lipschitz continuous,∣∣∣ 〈∇f(xk)−∇f(xk−1),
1

h
(xk+1 − xk)

〉 ∣∣∣ ≤ hL‖Xk‖‖Xk+1‖ ≤
hL

2
(‖Xk‖2 + ‖Xk+1‖2). (2.9)

Combining inequalities (2.7)-(2.8)-(2.9) with (2.6), we obtain, for all k ≥ 1

1

2
‖1

h
(xk+1 − xk)‖2 −

1

2
‖1

h
(xk − xk−1)‖2 +

1

2h2
‖xk+1 − 2xk + xk−1‖2 +

γ

h
‖xk+1 − xk‖2

+r‖xk+1 − xk‖+ f(xk+1)− f(xk)−
L

2
‖xk+1 − xk‖2 ≤

βL

2h
(‖xk − xk−1‖2 + ‖xk+1 − xk‖2).

In terms of Ek := 1
2‖

1
h(xk − xk−1)‖2 + f(xk)− infH f , this is equivalent to

Ek+1 − Ek +

(
γ

h
− L

2
− βL

2h

)
‖xk+1 − xk‖2 +

1

2h2
‖xk+1 − 2xk + xk−1‖2

+r‖xk+1 − xk‖ ≤
βL

2h
‖xk − xk−1‖2.
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According to the assumption γ ≥ L
(
h
2 + β

)
, we have γ

h −
L
2 −

βL
2h ≥

βL
2h . Therefore,

Ek+1−Ek+
1

2h2
‖xk+1−2xk+xk−1‖2+r‖xk+1−xk‖+

βL

2h
‖xk+1−xk‖2 ≤

βL

2h
‖xk−xk−1‖2. (2.10)

Set Ẽk := Ek + βL
2h ‖xk − xk−1‖

2. We have

Ẽk+1 − Ẽk +
1

2h2
‖xk+1 − 2xk + xk−1‖2 + r‖xk+1 − xk‖ ≤ 0. (2.11)

Adding the above inequalities, and according to Ek ≥ 0, and r > 0, we deduce from (2.11) that

∞∑
k=1

‖xk+1 − xk‖ ≤
1

r

(
E1 +

βL

2h
‖x1 − x0‖2

)
< +∞. (2.12)

Therefore, the sequence (xk) has a finite length, which implies that the strong limit of the sequence (xk)
exists. Set x∞ := limxk. Moreover, according to (2.11), we also get

∞∑
k=1

‖xk+1 − 2xk + xk−1‖2 ≤ 2h2
(
E1 +

βL

2h
‖x1 − x0‖2

)
< +∞. (2.13)

Estimation (2.13) gives more accurate information than (2.12) when the step size h is small.

(ii) From
∑

k ‖xk+1 − xk‖ < +∞, we get limk ‖xk+1 − xk‖ = 0. This in turn implies

lim
k

1

h2
(xk+1 − 2xk + xk−1) = lim

k

1

h2
((xk+1 − xk)− (xk − xk−1)) = 0.

Moreover, since∇f is Lipschitz continuous and (xk) converges strongly to x∞, we have

lim
k
∇f(xk) = ∇f(x∞) and ∇f(xk)−∇f(xk−1)→ 0.

To pass to the limit on (2.1), rewrite it as follows:

− 1

h2
(xk+1−2xk+xk−1)−

γ

h
(xk+1−xk)−

β

h
(∇f(xk)−∇f(xk−1))−∇f(xk) ∈ ∂φ

(
1

h
(xk+1 − xk)

)
.

According to the above convergence results and the closedness of the graph of ∂φ, we deduce that

−∇f(x∞) ∈ ∂φ (0) ,

which gives item (ii).

2.3 Convergence rate: linear and finite convergence results

We have shown that the limit of the iterates x∞ satisfies −∇f(x∞) ∈ ∂φ (0). We will show that, when it
happens that x∞ satisfies the stronger property

−∇f(x∞) ∈ int(∂φ(0)), (2.14)

we then obtain linear convergence and finite convergence results. Note that condition (2.14) involves
the limit of the iterates x∞, which is a priori unknown. But practically, this condition is almost always
satisfied, making it a valuable numerical result.
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Theorem 2.2 (linear convergence, finite convergence) Let f : H → R be a C1 function whose gradient
is L-Lipschitz continuous, and such that infH f > −∞. Assume that the potential friction function φ
satisfies (DF)r. Suppose that the parameters h, γ, β in the algorithm (IPAHDD) satisfy the relation

γ ≥ L
(
h

2
+ β

)
.

Let (xk) be a sequence generated by the algorithm (IPAHDD), and let x∞ be its strong limit (as given by
Theorem 2.1).

(i) Suppose that
−∇f(x∞) ∈ int(∂φ(0)).

Then, there is geometric convergence of the velocities to zero. Set q :=
1√

1 + 2h(γ−βL)
1+βhL

which satisfies

0 < q < 1: there exists k0 ≥ 0 such that for all k ≥ k0

‖xk+1 − xk‖ ≤ qk‖x1 − x0‖.

There is geometric convergence of the sequence (xk): for all k ≥ k0

‖xk − x∞‖ ≤
qk

1− q
‖x1 − x0‖.

(ii) Suppose that
‖∇f(x∞)‖ < r where B(0, r) ⊂ ∂φ(0).

Then the sequence (xk) is finitely convergent. The iteration stops at xk when k ≥ k0 and

qk−1 ≤ r − ‖∇f(x∞)‖(
1
h2

+ βL
h + L q

1−q

)
‖x1 − x0‖

,

which is satisfied for k large enough, because of q < 1.

Proof.
(i) The assumption −∇f(x∞) ∈ int(∂φ(0)) implies the existence of ε > 0 such that

−∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).

On the other hand, since lim
k
∇f(xk) = ∇f(x∞), there exists k0 ∈ N such that for all k ≥ k0

∇f(xk) ∈ ∇f(x∞) + B(0, ε).

Hence,
−∇f(xk) + B(0, ε) ⊂ −∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).

Equivalently, for every k ≥ k0 and for every u ∈ B(0, 1), we have:

−∇f(xk) + ε u ∈ ∂φ(0).

Let’s write the corresponding subdifferential inequality at the origin (recall that φ(0) = 0)). For every
k ≥ k0, we have

∀u ∈ B(0, 1), φ(
1

h
(xk+1 − xk)) ≥ 〈−∇f(xk) + ε u,

1

h
(xk+1 − xk)〉.
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Taking the supremum over u ∈ B(0, 1), we obtain that, for every k ≥ k0,

φ(
1

h
(xk+1 − xk)) + 〈∇f(xk),

1

h
(xk+1 − xk)〉 ≥ ε ‖

1

h
(xk+1 − xk)‖. (2.15)

Let’s return to inequality (2.6). According to (2.9), we have

1

2
‖1

h
(xk+1 − xk)‖2 −

1

2
‖1

h
(xk − xk−1)‖2 +

(
γ

h
− βL

2h

)
‖xk+1 − xk‖2

+hφ(
1

h
(xk+1 − xk)) + 〈∇f(xk), xk+1 − xk〉 ≤

βL

2h
‖xk − xk−1‖2.

According to γ ≥ L
(
h
2 + β

)
, we have γ > βL. Hence γ

h −
βL
2h = βL

2h + 1
h(γ − βL) > βL

2h , which gives

1

2
‖1

h
(xk+1 − xk)‖2 −

1

2
‖1

h
(xk − xk−1)‖2 +

βL

2h
‖xk+1 − xk‖2 +

1

h
(γ − βL) ‖xk+1 − xk‖2

+hφ(
1

h
(xk+1 − xk)) + 〈∇f(xk), xk+1 − xk〉 ≤

βL

2h
‖xk − xk−1‖2.

Combining the inequality above with (2.15), we obtain, for every k ≥ k0

1

2
(1 + βhL)‖1

h
(xk+1 − xk)‖2 −

1

2
(1 + βhL)‖1

h
(xk − xk−1)‖2

+
1

h
(γ − βL) ‖xk+1 − xk‖2 + ε ‖xk+1 − xk‖ ≤ 0. (2.16)

Neglecting the nonnegative term ε ‖xk+1 − xk‖ ≥ 0 in the above inequality, we obtain

1

2
(1 + βhL)‖1

h
(xk+1 − xk)‖2 −

1

2
(1 + βhL)‖1

h
(xk − xk−1)‖2 +

1

h
(γ − βL) ‖xk+1 − xk‖2 ≤ 0.

Equivalently (
1 + βhL+ 2h(γ − βL)

)
‖xk+1 − xk‖2 ≤

(
1 + βhL

)
‖xk − xk−1‖2.

which gives the geometric convergence of velocities towards zero: for k ≥ k0

‖xk+1 − xk‖ ≤ qk‖x1 − x0‖ (2.17)

with q :=
1√

1 + 2h(γ−βL)
1+βhL

. Set C := ‖x1 − x0‖. For p ≥ 0 we have

‖xk − xk+p‖ ≤ Cqk(1 + q + ...+ qp−1) ≤ C qk

1− q
.

By making p go to infinity in the inequality above, and using that (xk) converges to x∞, we obtain

‖xk − x∞‖ ≤ C
qk

1− q
.

This formula expresses the geometric convergence of the sequence (xk) to its limit x∞. This is a remark-
able property because there can be a continuum of possible limits of the sequence.
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(ii) Let us show that the finite convergence property holds under the assumption ‖∇f(x∞)‖ < r
where B(0, r) ⊂ ∂φ(0). Write the algorithm (IPAHDD) as follows:

1

h
(xk+1 − xk) + γ(xk+1 − xk) + h∂φ

(
1

h
(xk+1 − xk)

)
3 1

h
(xk − xk−1)− h∇f(xk)

−β (∇f(xk)−∇f(xk−1)) . (2.18)

Equivalently,

(1 + γh)

(
1

h
(xk+1 − xk)

)
+ h∂φ

(
1

h
(xk+1 − xk)

)
3 ξk,

where ξk := 1
h(xk − xk−1)− h∇f(xk)− β (∇f(xk)−∇f(xk−1)). Set λ := h

1+γh . We have

1

h
(xk+1 − xk) = proxλφ

(
1

1 + γh
ξk

)
. (2.19)

To show the finite convergence property, we need to show that xk+1−xk = 0 for k large enough. Accord-
ing to (2.19) and Lemma 1.2, it suffices to prove that

1

λ
‖ 1

1 + γh
ξk‖ ≤ r, (2.20)

which, by definition of λ gives 1
h‖ξk‖ ≤ r. By the triangle inequality and the L-Lipschitz continuity of

∇f we have

1

h
‖ξk‖ = ‖ 1

h2
(xk − xk−1)−∇f(xk)−

β

h
(∇f(xk)−∇f(xk−1)) ‖

≤ 1

h2
‖xk − xk−1‖+ ‖∇f(x∞‖+ L‖xk − x∞‖+

βL

h
‖xk − xk−1‖. (2.21)

When k → +∞, the right-hand side of the inequality (2.21) tends to ‖∇f(x∞)‖. So, condition (2.20)
will be satisfied for k large enough if ‖∇f(x∞)‖ < r. Let us suppose this condition satisfied, and further
analyze (2.21). We will have xk+1 − xk = 0 as soon as(

1

h2
+
βL

h

)
‖xk − xk−1‖+ L‖xk − x∞‖ ≤ r − ‖∇f(x∞)‖.

According to the geometric convergence rate obtained in (i), this will be satisfied when k ≥ k0 and(
1

h2
+
βL

h
+ L

q

1− q

)
qk−1‖x1 − x0‖ ≤ r − ‖∇f(x∞)‖.

This gives

qk−1 ≤ r − ‖∇f(x∞)‖(
1
h2

+ βL
h + L q

1−q

)
‖x1 − x0‖

,

which completes the proof.

Remark 2.1 Let’s give another proof of the finite convergence property. On the one hand, it only assumes
that −∇f(x∞) ∈ int(∂φ(0)), but it is valid only when H is a finite dimensional space. It is similar
to the argument developed by Baji-Cabot in [20]. Argue by contradiction, and suppose that there is an
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infinite number of indices k ∈ N such that ‖xk+1−xk‖ 6= 0. SetN := {k ∈ N : ‖xk+1 − xk‖ 6= 0}, and
consider the sequence (ωk)k defined by

ωk :=
xk+1 − xk
‖xk+1 − xk‖

for k ∈ N .

The sequence (ωk) belongs to the unit sphere of H, and since H is assumed to have a finite dimension,
we can extract a convergent sequence (still denoted (ωk)) that converges to a point ω which belongs to the
unit sphere (in an infinite dimensional space, we would only have weak convergence towards a point of the
unit ball). According to the monotonicity property of ∂φ and the definition of the algorithm (IPAHDD),
we have, for k ∈ N〈

ak −
γ

h
(xk+1 − xk)−

β

h
(∇f(xk)−∇f(xk−1))−∇f(xk)− ∂φ(0), ωk

〉
≥ 0, (2.22)

with ak = − 1
h2

(xk+1 − 2xk + xk−1).
According to convergence properties shown above, by passing to the limit in (2.22), we obtain

〈∇f(x∞) + ∂φ(0), ω〉 ≤ 0.

Since −∇f(x∞) ∈ int(∂φ(0)), there exists some ρ > 0 such that:

B(0, ρ) ⊂ ∇f(x∞) + ∂φ(0).

Therefore, we would have 〈ρu, ω〉 ≤ 0 for all u ∈ B(0, 1). Taking u = ω (since ‖ω‖ = 1), gives
ρ‖ω‖2 ≤ 0, and hence ω = 0, a clear contraction with ω belonging to the unit sphere.

Remark 2.2 The case φ = 0 gives the heavy ball with friction method initiated by Polyak [32], [33].
This case is excluded from our analysis because of the dry friction hypothesis (DF)r on φ. We can
advantageously compare our method with the heavy-ball method, for which the results of convergence
require restrictive assumptions on the parameters and the function f , see [28] for a recent account on
the heavy ball method. Note that, compared to the restart method, we get a geometric convergence for a
general function f , which might be nonconvex.

2.4 Soft thresholding on the velocities

As a model situation for dry friction, take φ : H → R given by φ(x) = r‖x‖, with r > 0 . We have

∂φ(x) =

 r x
‖x‖ if x 6= 0;

B(0, r) if x = 0.
(2.23)

By definition of the proximal operator, we obtain, for all λ > 0,

proxλφ(x) =
(

1− λr

max{λr, ‖x‖}

)
x =


0 if ‖x‖ ≤ λr;

(‖x‖ − λr) x
‖x‖ if ‖x‖ ≥ λr.

(2.24)

a) When H = R, we get the classical soft thresholding operator proxλφ = Tλr, which is used in the
FISTA method for sparse optimization:

Tλr(x) = sign(x)(|x| − λr)+ =


x− λr if x ≥ λr;
0 if − λr ≤ x ≤ λr;
x+ λr if x ≤ −λr.

(2.25)
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b) In the multidimensional case H = Rn, take φ : Rn → R given by φ(x) = r‖x‖1 = r
∑n

i=1 |xi|.
The proximal mapping of φ can be computed componentwise by applying the one-dimensional soft thresh-
olding operator Tλr to each component. This is transparent from the variational formulation of the proxi-
mal operator: proxλφ(x) is the solution of the minimization problem

min
ξ∈Rn

{
1

2
‖ξ − x‖2 + λr‖ξ‖1

}
= min

ξ1∈R,...,ξn∈R

{∑
i

(
1

2
|ξi − xi|2 + λr|ξi|

)}
which can be decomposed with respect to each component. Hence(

proxλr‖·‖1(x)
)
i

= Tλr(xi) = sign(xi)(|xi| − λr)+ for i = 1, 2, ...n. (2.26)

The algorithm (IGAHDD) is a splitting algorithm which reads componentwise as follows: setting xk =
(xk,i)i=1,2,...n, we have for i = 1, 2, ...n

(IPAHDD) with soft thresholding on the velocities

Initialize: x0 ∈ H, x1 ∈ H

for i = 1, 2, ...n

xk+1,i = xk,i + hT hr
1+hγ

(
1

h(1+hγ)(xk,i − xk−1,i)−
β

1+hγ ( ∂f∂xi (xk)−
∂f
∂xi

(xk−1))− h
1+hγ

∂f
∂xi

(xk)
)

T hr
1+hγ

acts as a soft thresholding operator on the velocities. A direct application of Theorem 2.1 and
Theorem 2.2 gives the following result:

Corollary 2.1 Let f : Rn → R be a C1 function whose gradient is L-Lipschitz continuous, and such that
infH f > −∞. Assume that the potential friction function φ is given by φ(x) = r‖x‖1. Suppose that the
parameters h, γ, β in the algorithm (IPAHDD) satisfy the relation

γ ≥ L
(
h

2
+ β

)
.

Let (xk) be a sequence generated by the algorithm (IPAHDD) with soft thresholding on the velocities.

(i) Then, the sequence (xk) has a finite length and converges to x∞ that verifies ‖∇f(x∞)‖ ≤ r.

(ii) Suppose that ‖∇f(x∞)‖ < r. Then, there is geometric convergence, and the sequence (xk) is
finitely convergent.

Clearly, taking r small is the interesting situation for optimization.

2.5 An example

TakeH = R, φ(x) = r|x|, and f(x) = 1
2x

2. With h = 1, the algorithm (IPAHDD) reads as follows

(xk+1 − xk)− (xk − xk−1) + γ(xk+1 − xk) + β(xk − xk−1) + ∂φ (xk+1 − xk) + xk 3 0. (2.27)

Equivalently, (xk+1 − xk) + 1
1+γ∂φ (xk+1 − xk) 3 − 1

1+γ (xk−1 + β(xk − xk−1)) , which gives

xk+1 − xk = T r
1+γ

(
− 1

1 + γ
xk−1 −

β

1 + γ
(xk − xk−1)

)
. (2.28)
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According to (2.25), with λ = 1
1+γ , we obtain

xk+1 − xk =


− 1

1+γ (xk−1 + r)− β
1+γ (xk − xk−1) if xk−1 + β(xk − xk−1) ≤ −r;

0 if |xk−1 + β(xk − xk−1)| ≤ r;

− 1
1+γ (xk−1 − r)− β

1+γ (xk − xk−1) if xk−1 + β(xk − xk−1) ≥ r.

Take r = 1, γ = 3, β = 1. We have L = 1, and the condition γ ≥ L
(
h
2 + β

)
of Theorem 2.2 is satisfied.

So, as long as xk ≥ 1, according to the above formula, we have

xk+1 − xk = − 1

1 + γ
(xk−1 − r)−

β

1 + γ
(xk − xk−1) = −1

4
(xk − 1).

The sequence (xk − 1) satisfies the geometric recurrence relation xk+1 − 1 = 3
4(xk − 1), which gives

xk = 1 +

(
3

4

)k−1
(x1 − 1).

By taking x1 ≥ 1, the condition xk ≥ 1 is satisfied. So, in this particular situation we have linear conver-
gence but not finite convergence. This is in accordance with the fact that x∞ = 1 and that ∇f(x∞) = 1,
which is not in the interior of the convex set ∂φ(0) = [−1,+1]. Note that taking β = h = 1, as we did
above, makes the study of the algorithm (2.27) quite simple, since, it this case, it reduces to the first-order
algorithm

(1 + γ)(xk+1 − xk) + ∂φ (xk+1 − xk) + xk 3 0. (2.29)

2.6 A variant

Consider the following discretization of the differential inclusion (IGDH)

1

h2
(xk+1−2xk+xk−1)+

γ

h
(xk−xk−1)+∂φ

(
1

h
(xk+1 − xk)

)
+
β

h
(∇f(xk)−∇f(xk−1))+∇f(xk) 3 0,

(2.30)
where the temporal discretization of the viscous damping term is taken equal to γ

h(xk − xk−1) instead of
γ
h(xk+1 − xk). Solving (2.30) with respect to xk+1 gives the following algorithm:

(IPAHDD-Var):

Initialize : x0 ∈ H, x1 ∈ H

xk+1 = xk + hproxhφ

((
1−hγ
h

)
(xk − xk−1)− β (∇f(xk)−∇f(xk−1))− h∇f(xk)

)
.

We obtain the following convergence results that are parallel to Theorem 2.1 and Theorem 2.2.

Theorem 2.3 Let f : H → R be a C1 function whose gradient is L-Lipschitz continuous, and such that
infH f > −∞. Assume that the potential friction function φ satisfies (DF)r. Suppose that the parameters
h, γ in the algorithm (IPAHDD-Var) satisfy the relation

γ ≥ L
(
β +

1

2
h

)
+

1

2
γ2h.
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Then, for any sequence (xk) defined by the algorithm (IPAHDD-Var) , we have:

(i)
∑
k

‖xk+1 − xk‖ < +∞, and limk xk := x∞ exists for the strong topology ofH. Moreover,

∞∑
k=1

‖xk+1 − xk‖ ≤
E1

r

where E1 := 1
2

(
1 + βhL

)
‖ 1h(x1 − x0)‖2 + f(x1)− infH f.

(ii) The limit x∞ of the sequence (xk) satisfies: 0 ∈ ∂φ(0) +∇f(x∞).

Proof. (i) Without ambiguity, we write ∂φ to designate any element belonging to this set. Set Xk :=
1
h(xk − xk−1). Taking the dot product of (2.30) with 1

h(xk+1 − xk), we obtain

〈Xk+1 −Xk, Xk+1〉+ γh 〈Xk+1, Xk〉+ h 〈∂φ (Xk+1) , Xk+1〉
+β 〈∇f(xk)−∇f(xk−1), Xk+1〉+ 〈∇f(xk), xk+1 − xk〉 = 0. (2.31)

The following elementary relation is related to the strong convexity of ‖ · ‖2

〈Xk+1 −Xk, Xk+1〉 =
1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 +

1

2
‖Xk+1 −Xk‖2. (2.32)

On the other hand

〈Xk+1, Xk〉 = ‖Xk+1‖2 − 〈Xk+1 −Xk, Xk+1〉 ≥ ‖Xk+1‖2 − ‖Xk+1‖‖Xk+1 −Xk‖. (2.33)

By convexity of φ, and φ(0) = 0

〈∂φ (Xk+1) , Xk+1〉 ≥ φ (Xk+1) . (2.34)

Taking into account (2.32), (2.33) and (2.34), we deduce from (2.31) the following inequality

1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 +

1

2
‖Xk+1 −Xk‖2 + γh‖Xk+1‖2 − γh‖Xk+1‖‖Xk+1 −Xk‖+ hφ(Xk+1)

+β

〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
+ 〈∇f(xk), xk+1 − xk〉 ≤ 0. (2.35)

Let’s now use the assumptions on the potential functions φ and f . According to the assumption (DF)r on
φ and Lemma 1.1, for all k ≥ 1

φ (Xk+1) ≥ r‖Xk+1‖. (2.36)

Since∇f is L-Lipschitz continuous, the classical gradient descent lemma gives, for all k ≥ 1

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2. (2.37)

According to the Cauchy-Schwarz inequality, and using again that∇f is L-Lipschitz continuous,

|
〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
| ≤ hL‖Xk‖‖Xk+1‖ ≤

hL

2
(‖Xk‖2 + ‖Xk+1‖2). (2.38)

Combining inequalities (2.36)-(2.37)-(2.38) with (2.35), we obtain, for all k ≥ 1

1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 +

(1

2
‖Xk+1 −Xk‖2 − γh‖Xk+1‖‖Xk+1 −Xk‖

)
+ γh‖Xk+1‖2

+r‖xk+1 − xk‖+ f(xk+1)− f(xk)−
Lh2

2
‖Xk+1‖2 ≤

βhL

2
(‖Xk‖2 + ‖Xk+1‖2). (2.39)
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According to the elementary inequality

1

2
‖Xk+1 −Xk‖2 − γh‖Xk+1‖‖Xk+1 −Xk‖ ≥ −

1

2
γ2h2‖Xk+1‖2

we obtain

1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 −

1

2
γ2h2‖Xk+1‖2 + γh‖Xk+1‖2 + r‖xk+1 − xk‖

+f(xk+1)− f(xk)−
Lh2

2
‖Xk+1‖2 ≤

βhL

2
(‖Xk‖2 + ‖Xk+1‖2). (2.40)

Equivalently

1

2

(
1+2γh−γ2h2−Lh2−βhL

)
‖Xk+1‖2−

1

2

(
1+βhL

)
‖Xk‖2+r‖xk+1−xk‖+f(xk+1)−f(xk) ≤ 0.

(2.41)
Let’s assume that 1 + 2γh− γ2h2 − Lh2 − βhL ≥ 1 + βhL. After simplification, this gives

γ ≥ L
(
β +

1

2
h

)
+

1

2
γ2h,

which is our assumption. Under this condition, we get

1

2

(
1 + βhL

)
‖Xk+1‖2 −

1

2

(
1 + βhL

)
‖Xk‖2 + r‖xk+1 − xk‖+ f(xk+1)− f(xk) ≤ 0. (2.42)

Thus, in terms of

Ek :=
1

2

(
1 + βhL

)
‖1

h
(xk − xk−1)‖2 + (f(xk)− inf f),

we have obtained
Ek+1 − Ek + r‖xk+1 − xk‖ ≤ 0. (2.43)

Using the nonnegativity of Ek, and r > 0, we deduce from (2.43) that
∑∞

k=1 ‖xk+1−xk‖ ≤ 1
rE1 < +∞.

Therefore, the strong limit of the sequence (xk) exists. Set x∞ := limxk, which ends item (i).

(ii) From
∑

k ‖xk+1 − xk‖ < +∞, we get immediately limk ‖xk+1 − xk‖ = 0. This in turn implies

lim
k

1

h2
(xk+1 − 2xk + xk−1) = lim

k

1

h2
((xk+1 − xk)− (xk − xk−1)) = 0.

Moreover, since∇f is continuous and (xk) converges strongly to x∞, we have limk∇f(xk) = ∇f(x∞).
To pass to the limit on (2.30), rewrite it as follows:

− 1

h2
(xk+1−2xk+xk−1)−

γ

h
(xk−xk−1)−

β

h
(∇f(xk)−∇f(xk−1))−∇f(xk) ∈ ∂φ

(
1

h
(xk+1 − xk)

)
.

According to the above convergence results and the closedness of the graph of ∂φ in H ×H, we deduce
that

−∇f(x∞) ∈ ∂φ (0) .

which ends the proof.

Remark 2.3 Let us analyze the condition on the parameters

γ ≥ L
(
β + 1

2h
)

+ 1
2γ

2h
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under which the convergence properties of Theorem 2.3 are satisfied. First, it is a slightly stronger condi-
tion that in Theorem 2.1 where we assume that γ ≥ L

(
β + 1

2h
)
. Second, it is satisfied when γ is taken

large enough and h is taken small enough. For example take

γ ≥ 2βL+
√
L and h ≤ 1

γ
.

Theorem 2.4 (geometric and finite convergence) Under the assumptions of Theorem 2.3, suppose that

γ > L

(
β +

1

2
h

)
+

1

2
γ2h.

Let (xk) be a sequence generated by (IPAHDD-variant), and let x∞ be its limit.

(i) Suppose that
−∇f(x∞) ∈ int(∂φ(0)).

Then, there is geometric convergence of the velocities to zero.

(ii) Suppose that
‖∇f(x∞)‖ < r where B(0, r) ⊂ ∂φ(0).

Then the sequence (xk) is finitely convergent.

Proof. Under the assumption −∇f(x∞) ∈ int(∂φ(0)), a similar argument as in Theorem 2.2 gives
the existence of ε > 0, and k0 ∈ N such that for every k ≥ k0,

φ(
1

h
(xk+1 − xk)) + 〈∇f(xk),

1

h
(xk+1 − xk)〉 ≥ ε ‖

1

h
(xk+1 − xk)‖.

Based on the above inequality, similar arguments as in the proof of theorem 2.3 give

1

2

(
1 + βhL

)
‖Xk+1‖2 −

1

2

(
1 + βhL

)
‖Xk‖2 + h

(
γ − L

(
β +

1

2
h

)
− 1

2
γ2h

)
‖Xk+1‖2 +

ε ‖xk+1 − xk‖ ≤ 0.

By hypothesis, γ −L
(
β + 1

2h
)
− 1

2γ
2h > 0. From this, we easily derive the geometric convergence. The

proof of the linear convergence is very similar to the proof of Theorem 2.2.

3 Errors, perturbations

Let’s introduce perturbations, errors in the algorithm (IPAHDD). According to the dynamic approach, we
start from the perturbed version of (IGDH)

ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(ẋ(t)) +∇f(x(t)) 3 e(t), (3.1)

where the second member e(·) takes into account perturbations, errors. A similar temporal discretization
as in section 2 gives

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ

(
1

h
(xk+1 − xk)

)
+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xk) 3 ek. (3.2)
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Solving (3.2) with respect to xk+1 gives the following algorithm

(IPAHDD-pert)

Initialize: x0 ∈ H, x1 ∈ H

yk = 1
h(1+hγ)(xk − xk−1)−

β
1+hγ (∇f(xk)−∇f(xk−1))− h

1+hγ∇f(xk) + h
1+hγ ek

xk+1 = xk + hprox h
1+hγ

φ (yk)

The following convergence results parallel Theorem 2.1 and Theorem 2.2.

Theorem 3.1 Let’s make the assumptions of Theorem 2.1, and suppose that the sequence (ek) of pertur-
bations, errors satisfies: limk ‖ek‖ = 0. Then, for any sequence (xk) defined by the algorithm (IPAHDD-
pert), we have:

(i)
∑

k ‖xk+1 − xk‖ < +∞, and therefore limxk := x∞ exists for the strong topology ofH.
Suppose that ‖ek‖ ≤ r

2 . Then

∞∑
k=1

‖xk+1 − xk‖ ≤
2

r

(
E1 +

βL

2h
‖x1 − x0‖2

)
.

(ii) The limit x∞ of the sequence (xk) satisfies: 0 ∈ ∂φ(0) +∇f(x∞).

(iii) Suppose that −∇f(x∞) ∈ int(∂φ(0)). Then, there is geometric convergence of the velocities to
zero. Set q = 1√

1+2hγ
. There exists k0 ≥ 0 such that for all k ≥ k0

‖xk − x∞‖ ≤
qk

1− q
‖x1 − x0‖.

(iv) Suppose that ‖∇f(x∞)‖ < r where B(0, r) ⊂ ∂φ(0). Then (xk) is finitely convergent.

Proof. The beginning of the proof is similar to that of Theorem 2.1, and uses the sequence (Ek) of
energy functions

Ek :=
1

2
‖1

h
(xk − xk−1)‖2 + f(xk)− inf

H
f.

Taking the scalar product of (3.2) with 1
h(xk+1 − xk), we obtain〈

1

h
(xk+1 − xk)−

1

h
(xk − xk−1),

1

h
(xk+1 − xk)

〉
+ γh‖1

h
(xk+1 − xk)‖2

+h

〈
∂φ

(
1

h
(xk+1 − xk)

)
,

1

h
(xk+1 − xk)

〉
+ β

〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
+ 〈∇f(xk), xk+1 − xk〉 = 〈ek, xk+1 − xk〉 . (3.3)

Set Xk := 1
h(xk − xk−1). Using convex subdifferential inequalities, we obtain

1

2
‖Xk+1‖2 −

1

2
‖Xk‖2 + γh‖Xk+1‖2 + hφ(Xk+1) + 〈∇f(xk), xk+1 − xk〉

+β

〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
≤ 〈ek, xk+1 − xk〉 . (3.4)
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According to the assumption (DF)r on φ and Lemma 1.1, for all k ≥ 1

φ (Xk+1) ≥ r‖Xk+1‖. (3.5)

Since∇f is L-Lipschitz continuous, the classical gradient descent gives, for all k ≥ 1

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2. (3.6)

According to the Cauchy-Schwarz inequality, and using again that∇f is L-Lipschitz continuous,∣∣∣ 〈∇f(xk)−∇f(xk−1),
1

h
(xk+1 − xk)

〉 ∣∣∣ ≤ hL‖Xk‖‖Xk+1‖ ≤
hL

2
(‖Xk‖2 + ‖Xk+1‖2). (3.7)

Combining inequalities (3.5)-(3.6)-(3.7) with (3.4), and using Cauchy-Schwarz inequality, we obtain

1

2
‖1

h
(xk+1 − xk)‖2 −

1

2
‖1

h
(xk − xk−1)‖2 +

γ

h
‖xk+1 − xk‖2 + r‖xk+1 − xk‖

+f(xk+1)− f(xk)−
L

2
‖xk+1 − xk‖2 ≤

βL

2h
(‖xk − xk−1‖2 + ‖xk+1 − xk‖2) + ‖ek‖‖xk+1 − xk‖.

In terms of Ek := 1
2‖

1
h(xk − xk−1)‖2 + (f(xk)− inf f), this is equivalent to

Ek+1 − Ek +

(
γ

h
− L

2
− βL

2h

)
‖xk+1 − xk‖2 + (r − ‖ek‖)‖xk+1 − xk‖ ≤

βL

2h
‖xk − xk−1‖2. (3.8)

According to the assumption γ ≥ L
(
h
2 + β

)
, we have γ

h −
L
2 −

βL
2h ≥

βL
2h . Therefore,

Ek+1 − Ek + (r − ‖ek‖)‖xk+1 − xk‖+
βL

2h
‖xk+1 − xk‖2 ≤

βL

2h
‖xk − xk−1‖2. (3.9)

Set Ẽk := Ek + βL
2h ‖xk − xk−1‖

2. We have

Ẽk+1 − Ẽk + (r − ‖ek‖)‖xk+1 − xk‖ ≤ 0. (3.10)

Adding the above inequalities, and according to Ek ≥ 0, and ek → 0, we deduce from (2.11) that

∞∑
k=1

‖xk+1 − xk‖ < +∞.

So, the sequence (xk) has a finite length, which implies that the strong limit of the sequence (xk) exists. Set
x∞ := limxk. Therefore, limk ‖xk+1− xk‖ = 0, limk

1
h2

(xk+1− 2xk + xk−1) = 0, and limk∇f(xk) =
∇f(x∞). To pass to the limit on (3.2), rewrite it as follows: Ak ∈ ∂φ

(
1
h(xk+1 − xk)

)
with Ak = − 1

h2
(xk+1 − 2xk + xk−1)−

γ

h
(xk+1 − xk)−

β

h
(∇f(xk)−∇f(xk−1))−∇f(xk) + ek.

According to the above convergence results and the closedness of the graph of ∂φ, we deduce that

−∇f(x∞) ∈ ∂φ (0) ,

which gives item (i) and (ii).
The proof of (iii) and (iv) follows the lines of the proof of Theorem 2.2. Estimation (2.16) becomes

1

2
(1 + βhL)‖1

h
(xk+1 − xk)‖2 −

1

2
(1 + βhL)‖1

h
(xk − xk−1)‖2 +

1

h
(γ − βL) ‖xk+1 − xk‖2

+ε ‖xk+1 − xk‖ ≤ ‖ek‖‖xk+1 − xk‖. (3.11)
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Since ‖ek‖ → 0, we obtain that for k sufficiently large

1

2
(1 + βhL)‖1

h
(xk+1 − xk)‖2 −

1

2
(1 + βhL)‖1

h
(xk − xk−1)‖2

+
1

h
(γ − βL) ‖xk+1 − xk‖2 +

ε

2
‖xk+1 − xk‖ ≤ 0

According to γ − βL > 0, we easily deduce the geometric convergence of the sequence (xk).
To prove the finite convergence, we return to the definition of the algorithm (IPAHDD-pert):

1

h
(xk+1 − xk) = proxλφ(ξk),

where λ = h
1+hγ , and ξk is given by

ξk :=
1

h(1 + hγ)
(xk − xk−1)−

β

1 + hγ
(∇f(xk)−∇f(xk−1))−

h

1 + hγ
∇f(xk) +

h

1 + hγ
ek.

According to Lemma 1.2, the finite convergence will result from the proof of the following inequality

1

λ
‖ξk‖ ≤ r. (3.12)

Since 1
λ‖ξk‖ → ‖∇f(x∞)‖, (3.12) will be satisfied for k large enough if ‖∇f(x∞)‖ < r.

4 Combining Nesterov acceleration method with dry friction

We will construct algorithms obtained by the temporal discretization of the differential inclusion

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0,

and which have an analogous structure to the Nesterov accelerated gradient method. Indeed, when dis-
cretizing (IGDH), there is some flexibility in the choice of the point yk where the gradient is computed.
Taking yk = xk, we get the algorithm (IPAHDD) studied in the previous sections. Taking yk = xk+1, we
obtain a proximal algorithm that will be studied in the next section. Precisely, we consider the following
temporal discretization of (IGDH)

1

h2
(xk+1−2xk+xk−1)+

γ

h
(xk+1−xk)+∂φ

(
1

h
(xk+1 − xk)

)
+
β

h
(∇f(xk)−∇f(xk−1))+∇f(yk) 3 0,

(4.1)
where yk will be chosen consistently with the accelerated gradient method of Nesterov. To solve (4.1) with
respect to 1

h(xk+1 − xk), let’s write it equivalently as

1

h
(xk+1 − xk)−

1

h
(xk − xk−1) + hγ

1

h
(xk+1 − xk) + h∂φ

(
1

h
(xk+1 − xk)

)
+β (∇f(xk)−∇f(xk−1)) + h∇f(yk) 3 0. (4.2)

Equivalently

(1+hγ)
1

h
(xk+1−xk)+h∂φ

(
1

h
(xk+1 − xk)

)
3 1

h
(xk−xk−1)−β (∇f(xk)−∇f(xk−1))−h∇f(yk),
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which gives

1

h
(xk+1 − xk) +

h

1 + hγ
∂φ

(
1

h
(xk+1 − xk)

)
3 1

h(1 + hγ)
(xk − xk−1)

− β

1 + hγ
(∇f(xk)−∇f(xk−1))−

h

1 + hγ
∇f(yk).

Therefore
xk+1 = xk + hprox h

1+hγ
φ (zk) , (4.3)

with zk =
1

h(1 + hγ)
(xk − xk−1)−

β

1 + hγ
(∇f(xk)−∇f(xk−1))−

h

1 + hγ
∇f(yk).

When φ = 0, and β = 0, the proximal operator is the identity, and we obtain

xk+1 = xk +
1

1 + hγ
(xk − xk−1)−

h2

1 + hγ
∇f(yk).

To recover the accelerated gradient method of Nesterov, we must take yk = xk + 1
1+hγ (xk − xk−1). In

doing so, we obtain the following algorithm:

(IPAHDD-N):

Initialize: x0 ∈ H, x1 ∈ H

yk = xk + 1
1+hγ (xk − xk−1)

xk+1 = xk + hprox h
1+hγ

φ

(
1
h(yk − xk)− β

1+hγ (∇f(xk)−∇f(xk−1))− h
1+hγ∇f(yk)

)
.

Theorem 4.1 Let f : H → R be a C1 function whose gradient is L-Lipschitz continuous, and such that
infH f > −∞. Assume that the potential friction function φ satisfies (DF)r. Suppose that the parameters
h, γ, β in the algorithm (IPAHDD-N) satisfy the relation

γ ≥ 3L

2
(h+ β) and Lh2 ≤ 1.

Then, for any sequence (xk) defined by the algorithm (IPAHDD-N), we have:

(i)
∑

k ‖xk+1 − xk‖ < +∞, and hence limk xk := x∞ exists for the strong topology of H. More-
over,

∞∑
k=1

‖xk+1 − xk‖ ≤
1

r
E1

where E1 = 1
2h2

(1 + hγ − Lh2

2 )‖x1 − x0‖2 + f(x1)− infH f .

(ii) The limit x∞ of the sequence (xk) satisfies: 0 ∈ ∂φ(0) +∇f(x∞).

Proof. (i) Taking the dot product of (4.2) with 1
h(xk+1 − xk), we obtain〈

1

h
(xk+1 − xk)−

1

h
(xk − xk−1),

1

h
(xk+1 − xk)

〉
+ γh‖1

h
(xk+1 − xk)‖2

+ 〈∇f(yk), xk+1 − xk〉+ h

〈
∂φ

(
1

h
(xk+1 − xk)

)
,

1

h
(xk+1 − xk)

〉
+β

〈
∇f(xk)−∇f(xk−1),

1

h
(xk+1 − xk)

〉
= 0. (4.4)
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Set Xk := 1
h(xk − xk−1). According to the assumption (DF)r on φ and Lemma 1.1, for all k ≥ 1

〈∂φ (Xk+1) , Xk+1〉 ≥ φ (Xk+1) ≥ r‖Xk+1‖.

According to the Cauchy-Schwarz inequality, and using that∇f is L-Lipschitz continuous,∣∣∣ 〈∇f(xk)−∇f(xk−1),
1

h
(xk+1 − xk)

〉 ∣∣∣ ≤ hL‖Xk‖‖Xk+1‖ ≤
hL

2
(‖Xk‖2 + ‖Xk+1‖2).

Combining (4.4) with the two above inequalities, we obtain

〈Xk+1 −Xk, Xk+1〉+ γh‖Xk+1‖2 + hr‖Xk+1‖

+ 〈∇f(yk), xk+1 − xk〉 ≤
βhL

2
(‖Xk‖2 + ‖Xk+1‖2). (4.5)

Using successively the gradient descent lemma for f , the L-Lipschitz continuity of ∇f , and the equality
yk = xk + 1

1+hγ (xk − xk−1) (by definition of (IPAHDD-N)), we get

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

≤ f(xk) + 〈∇f(yk), xk+1 − xk〉+ L‖yk − xk‖‖xk+1 − xk‖+
L

2
‖xk+1 − xk‖2

≤ f(xk) + 〈∇f(yk), xk+1 − xk〉+
L

1 + hγ
‖xk − xk−1‖‖xk+1 − xk‖+

L

2
‖xk+1 − xk‖2.(4.6)

Combining the above inequality with (4.5), we obtain

〈Xk+1 −Xk, Xk+1〉+ γh‖Xk+1‖2 + hr‖Xk+1‖+ f(xk+1)− f(xk)

− Lh2

1 + hγ
‖Xk‖‖Xk+1‖ −

Lh2

2
‖Xk+1‖2 ≤

βhL

2
(‖Xk‖2 + ‖Xk+1‖2).

Therefore,

(1 + hγ − Lh2

2
− βhL

2
)‖Xk+1‖2 − (1 +

Lh2

1 + hγ
)‖Xk‖‖Xk+1‖ −

βhL

2
‖Xk‖2

+hr‖Xk+1‖+ f(xk+1)− f(xk) ≤ 0. (4.7)

According to the assumptions γ ≥ 3L
2 (h + β), and Lh2 ≤ 1, we get 1 + hγ − Lh2

2 −
βhL
2 ≥ 0. From

(4.7) we infer

1

2
(1 + hγ − Lh2

2
− βhL

2
)(‖Xk+1‖2 − ‖Xk‖2) +

1

2
(1 + hγ − Lh2

2
− βhL

2
)‖Xk+1‖2

+
1

2
(1 + hγ − Lh2

2
− 3βhL

2
)‖Xk‖2 − (1 +

Lh2

1 + hγ
)‖Xk‖‖Xk+1‖+ hr‖Xk+1‖+ f(xk+1)− f(xk) ≤ 0.

Therefore,

1

2
(1 + hγ − Lh2

2
− βhL

2
)(‖Xk+1‖2 − ‖Xk‖2) +

1

2
(1 + hγ − Lh2

2
− 3βhL

2
)‖Xk+1‖2

+
1

2
(1 + hγ − Lh2

2
− 3βhL

2
)‖Xk‖2 − (1 +

Lh2

1 + hγ
)‖Xk‖‖Xk+1‖+ hr‖Xk+1‖+ f(xk+1)− f(xk) ≤ 0.
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Elementary algebra (sign of a polynomial of the second degree) gives that the inequality

1

2
(1+hγ−Lh

2

2
− 3βhL

2
)‖Xk+1‖2−(1+

Lh2

1 + hγ
)‖Xk‖‖Xk+1‖+

1

2
(1+hγ−Lh

2

2
− 3βhL

2
)‖Xk‖2 ≥ 0

is satisfied under the condition

∆ =

(
1 +

Lh2

1 + hγ

)2

−
(

1 + hγ − Lh2

2
− 3βhL

2

)2

≤ 0.

This is equivalent to
γ

L
≥ h

1 + hγ
+
h

2
+

3β

2
.

Since 1
2 + 1

1+hγ ≤
3
2 , we end up with the condition γ

L ≥
3
2(h + β), which is satisfied by assumption. To

summarize the results, in terms of

Ek :=
1

2
(1 + hγ − Lh2

2
)‖1

h
(xk − xk−1)‖2 + (f(xk)− inf

H
f),

we have obtained
Ek+1 − Ek + r‖xk+1 − xk‖ ≤ 0. (4.8)

According to the nonnegativity of Ek, and r > 0, we deduce from (4.8) that

∞∑
k=1

‖xk+1 − xk‖ ≤
1

r
E1 < +∞.

Therefore, the sequence (xk) has a finite length, which implies that the strong limit of the sequence (xk)
exists. Set x∞ := limxk, which ends item (i).

(ii) From
∑

k ‖xk+1 − xk‖ < +∞, we get immediately limk ‖xk+1 − xk‖ = 0. This in turn implies

lim
k

1

h2
(xk+1 − 2xk + xk−1) = lim

k

1

h2
((xk+1 − xk)− (xk − xk−1)) = 0.

Moreover, since∇f is continuous and (xk) converges strongly to x∞, we have

lim
k
∇f(xk) = ∇f(x∞).

According the L-Lipschitz continuity of∇f , and yk − xk = 1
1+hγ (xk − xk−1), we have

‖∇f(yk)−∇f(xk)‖ ≤ L‖yk − xk‖ ≤
L

1 + hγ
‖xk − xk−1‖.

Therefore,
lim
k
∇f(yk) = ∇f(x∞).

To pass to the limit in (4.1), rewrite it as follows:

− 1

h2
(xk+1 − 2xk + xk−1)−

γ

h
(xk+1 − xk)−∇f(yk) ∈ ∂φ

(
1

h
(xk+1 − xk)

)
. (4.9)

According to the above convergence results and the closedness of the graph of ∂φ in H ×H, we deduce
that:

−∇f(x∞) ∈ ∂φ (0) ,

which gives item (ii). Item (iii) is obtained by a similar argument as in Theorem 2.2.
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4.1 A variant

Let’s go back to (4.3), which is recalled below

xk+1 = xk + hprox h
1+hγ

φ (zk) ,

with zk = 1
h(1+hγ)(xk − xk−1) − β

1+hγ (∇f(xk)−∇f(xk−1)) − h
1+hγ∇f(yk), and make a different

choice of the extrapolated point yk. Taking yk − xk = 1
h(1+hγ)(xk − xk−1) gives the algorithm

(IPAHDD-N-Var):

Initialize: x0 ∈ H, x1 ∈ H

yk = xk + 1
h(1+hγ)(xk − xk−1)

xk+1 = xk + hprox h
1+hγ

φ

(
yk − xk − β

1+hγ (∇f(xk)−∇f(xk−1))− h
1+hγ∇f(yk)

)
.

When φ = 0 and β = 0, we obtain

xk+1 = xk +
1

1 + hγ
(xk − xk−1)−

h2

1 + hγ
∇f

(
xk +

1

h(1 + hγ)
(xk − xk−1

)
.

This corresponds to a variant of the Nesterov accelerated gradient method, with two different extrapolation
coefficients αk,1 = 1

1+hγ and αk,2 = 1
h(1+hγ) . This type of situation has been studied by Liang-Fadili-

Peyré in [30]. Note that (IPAHDD-N) and its variant (IPAHDD-N-Var) rely on the discretization of (IGDH)

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ

(
1

h
(xk+1 − xk)

)
+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xy) 3 0, (4.10)

where yk is chosen differently. In both cases, there exists a positive constant C such that

‖yk − xk‖ ≤ C‖xk − xk−1‖.

These are the main constitutive ingredients of the proof of Theorem 4.1. Therefore, similar convergence
properties are valid for (IPAHDD-N-Var).

5 (IPAHDD) for nonsmooth functions

We assume that f : H → R ∪ {+∞} is a convex lower semicontinuous and proper function such that
inf f > −∞. The preceding sections deal with a differentiable function f , without convexity assumption
on f . Now, when considering nonsmooth functions, we assume the convexity of f . This allows us to use
the regularity properties of the Moreau envelope in the convex case. Indeed, to reduce to the previous
situation, where f : H → R is a C1 function whose gradient is Lipschitz continuous, the idea is to replace
f by its Moreau envelope. Recall some classical facts. For any λ > 0, the Moreau envelope of f of index
λ is the function fλ : H → R defined by: for all x ∈ H,

fλ(x) = min
ξ∈H

{
f(ξ) +

1

2λ
‖x− ξ‖2

}
.
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The function fλ is convex, of class C1,1, and such that infH fλ = infH f , argminH fλ = argminH f . One
can consult [7, section 17.2.1], [21], [24] for an in-depth study of the properties of the Moreau envelope in
a Hilbert framework. Since the infimal value and the set of minimizers are preserved by taking the Moreau
envelope, the idea is to replace f by fλ in the previous algorithm, and take advantage of the fact that fλ is
continuously differentiable. The algorithm (IPAHDD) becomes

xk+1 = xk + hprox h
1+hγ

φ (yk)

with
yk =

1

h(1 + hγ)
(xk − xk−1)−

β

1 + hγ
(∇fλ(xk)−∇fλ(xk−1))−

h

1 + hγ
∇fλ(xk).

According to∇fλ(x) = 1
λ

(
x− proxλf (x)

)
, we obtain

(IPAHDD-nonsmooth)

Initialize: x0 ∈ H, x1 ∈ H

yk = 1
1+hγ

(
λ−βh
λh (xk − xk−1) + β

λ

(
proxλf (xk)− proxλf (xk−1)

)
− h

λ

(
xk − proxλf (xk

))
xk+1 = xk + hprox h

1+hγ
φ (yk)

Note that the two nonsmooth functions f and φ enter the algorithm via their proximal mappings. In
addition, these proximal steps are computed independently, which makes (IPAHDD-nonsmooth) a splitting
algorithm. Based on the properties of the Moreau envelope, a direct adaptation of Theorem 2.1 gives the
following convergence results for the algorithm (IPAHDD-nonsmooth).

Theorem 5.1 Let f : H → R ∪ {+∞} be a convex lower semicontinuous and proper function such that
inf f > −∞. Assume that the potential friction function φ satisfies (DF)r. Suppose that the parameters
h, γ, β, λ in the algorithm (IPAHDD-nonsmooth) satisfy the relation

γ ≥ 1

λ

(
h

2
+ β

)
.

Then, for any sequence (xk) defined by the algorithm (IPAHDD-nonsmooth), we have:

(i)
∑
k

‖xk+1 − xk‖ < +∞. Hence limxk := x∞ exists for the strong topology ofH. Moreover,

∞∑
k=1

‖xk+1 − xk‖ ≤
1

r

(
E1 +

βL

2h
‖x1 − x0‖2

)
∞∑
k=1

‖xk+1 − 2xk + xk−1‖2 ≤ 2h2
(
E1 +

βL

2h
‖x1 − x0‖2

)
,

where E1 := 1
2‖

1
h(x1 − x0)‖2 + f(x1)− infH f .

(ii) The limit x∞ of the sequence (xk) satisfies: 0 ∈ ∂φ(0) +∇fλ(x∞).

Suppose moreover that
−∇fλ(x∞) ∈ int(∂φ(0)).
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Then there is geometric convergence of the velocities to zero. Set q :=
1√

1 + 2h(γλ−β)
λ+βh

which satisfies

0 < q < 1: there exists k0 ≥ 0 such that for all k ≥ k0

‖xk+1 − xk‖ ≤ qk‖x1 − x0‖ and ‖xk − x∞‖ ≤
qk

1− q
‖x1 − x0‖.

(iii) Suppose that
‖∇f(x∞)‖ < r where B(0, r) ⊂ ∂φ(0).

Then the sequence (xk) is finitely convergent. The iteration stops at xk when k ≥ k0 and

qk−1 ≤ r − ‖∇f(x∞)‖(
1
h2

+ β
hλ + q

λ(1−q)

)
‖x1 − x0‖

,

which is satisfied for k large enough, because of q < 1.

Proof. The proof is immediate: replace f by fλ in Theorem 2.1 and Theorem 2.2 , and use that ∇fλ
is 1

λ -Lipschitz continuous. Taking L = 1
λ , the condition γ ≥ L

(
h
2 + β

)
becomes γ ≥ 1

λ

(
h
2 + β

)
.

Remark 5.1 In the above approach, the parameter λ is fixed. Indeed, it could be possible to make it vary,
but as a key property, it has to be bounded away from zero (because of the assumption λ ≥ 1

γ

(
h
2 + β

)
).

Thus our approach differs from the classical approximation method which consists approaching f by fλ
as λ goes to zero. In [17] a similar device has been used.

Remark 5.2 When using Moreau envelopes, besides the sequence (xk), another sequence occurs natu-
rally, namely (pk) with pk = proxλf xk. Since proxλf is a nonexpansive mapping, we have∑

k

‖pk+1 − pk‖ ≤
∑
k

‖xk+1 − xk‖ < +∞.

Therefore, the sequence (pk) has a finite length, it converges strongly to p∞ = proxλf x∞. Using the
relation∇fλ(x∞) ∈ ∂f(p∞), we obtain the approximate optimality property:

∂f(p∞) + ∂φ(0) 3 0.

6 Splitting algorithms for the Lasso-type problems

In many situations, the minimization problem has an additive composite structure minH(f + g), with f
smooth and g nonsmooth. Accelerated proximal-gradient algorithms are effective splitting methods to
treat these problems. We will show how to adapt the (IPAHDD) algorithm to such composite setting, in
the case of the Lasso-type problems.
TakeH = Rn equipped with the usual Euclidean structure. Suppose that the function f : H → R∪{+∞}
to be minimized has the additive structure

f(x) =
1

2
‖Ax− b‖22 + g(x), (6.1)

where A ∈ Rm×n (with m ≤ n), b ∈ Rm and g ∈ Γ0(Rn) (set of closed proper and convex functions).
Minimizing such function f occurs in a variety of fields ranging from inverse problems in signal/image
processing, to machine learning and statistics. Typical examples of function g include the `1 norm (Lasso),
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the `1−`2 norm (group Lasso), the total variation, or the nuclear norm (the `1 norm of the singular values of
x ∈ RN×N identified with a vector in Rn with n = N2). In all these such situations, g is nonsmooth which
also makes f nonsmooth. A direct application of the algorithm (IPAHDD-nonsmooth) would require
calculating (at least approximately) the proximal operator of f . It’s not easy in general. To work around
this difficulty, we use a change of metric. This technique was initiated by Lemaréchal and Sagasatizábal
in [29] to introduce efficient preconditioners into the proximal point algorithm for minimizing convex
functions, for recent developments see [2], [17], [26, Section 4.6]. For a symmetric and positive definite
matrix M ∈ Rn×n, we denote by 〈·, ·〉M = 〈M ·, ·〉 the scalar product on Rn induced by M and by ‖ · ‖M
the associated norm. For a given f ∈ Γ0(Rn), the Moreau’s envelope fMλ of index λ > 0 associated with
the metric induced by M is defined by: for x ∈ Rn

fMλ (x) = min
y∈Rn

{
f(y) +

1

2λ
‖x− y‖2M

}
. (6.2)

Let us denote by proxMλf (x) the unique minimizer in (6.2), which is the proximal point of x, of index λ,
for the metric induced by M . The first-order optimality condition for this strongly convex minimization
problem gives

proxMλf (x) = (M + λ∂f)−1(Mx). (6.3)

When M = In (the identity matrix), we find the classical definitions. It is easy to prove that

‖ proxMλf (x1)− proxMλf (x2)‖ ≤
µmax(M)

µmin(M)
‖x1 − x2‖,

where µmax(M) and µmin(M) are respectively the largest and the smallest eigenvalue of M . The Moreau
envelope fMλ is of class C1,1 and its gradient for the Euclidean structure is given by

∇fMλ (x) =
1

λ
M
(
x− proxMλf (x)

)
. (6.4)

As a classical result, ∇fMλ is 1
λ -Lipschitz continuous for the norm ‖ · ‖M . From this, by using classical

linear algebra, we easily deduce that

‖∇fMλ (x1)−∇fMλ (x2)‖ ≤
1

λ

√
µmax(M)

µmin(M)
‖x1 − x2‖, ∀x1, x2 ∈ Rn. (6.5)

On the other hand, one can check easily that

argmin(fMλ ) = argmin(f).

With the particular choice of f in (6.1), we set M = In − λATA. If λ ∈ [0, 1
‖A‖22

[, then M is positive
definite. In this case,

proxMλf (x) = proxλg

(
x− λAT (Ax− b)

)
. (6.6)

Note that formula (6.6) for the composite optimization problem (6.1) was given in [26, Section 4.6 page
190]. Using (6.4) and (6.6), we get

∇fMλ (x) =
1

λ
M
(
x− proxλg

(
x− λAT (Ax− b)

))
. (6.7)
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Replacing f with fMλ in (IPGDF), we obtain the following splitting algorithm applicable to (6.1):

(IPAHDD) for the Lasso problem

Initialize: x0 ∈ Rn, x1 ∈ Rn, M = In − λATA, 0 < λ‖A‖22 < 1

zk = 1
λM

(
xk − proxλg

(
xk − λAT (Axk − b)

))
yk = 1

h(1+hγ)(xk − xk−1)−
β

1+hγ (zk − zk−1)− h
1+hγ zk.

xk+1 = xk + hprox h
1+hγ

φ (yk)

For the LASSO problem, g(x) = ‖x‖1, formula (2.26) can be used to compute proxλg.

Theorem 6.1 Assume that the potential friction function φ satisfies (DF)r. Suppose that the parameters
h, γ, β, λ in the algorithm (IPAHDD) for the Lasso problem satisfy the relation

γ ≥ 1

λ

√
µmax(M)

µmin(M)

(
h

2
+ β

)
.

Then, for any sequence (xk) defined by the algorithm (IPAHDD)) for the Lasso problem, we have∑
k

‖xk+1 − xk‖ < +∞, and therefore limxk := x∞ exists for the strong topology ofH. Moreover,

∞∑
k=1

‖xk+1 − xk‖ ≤
1

r

(
E1 +

βL

2h
‖x1 − x0‖2

)

where E1 := 1
2‖

1
h(x1−x0)‖2 +(f(x1)− infH f). The limit x∞ satisfies ‖AT (Ax∞−b)+∂g(x∞)‖ ≤ r.

7 Some numerical experiments

In this section, we perform some numerical tests to compare the four algorithms IPAHDD, IPAHDD-Var,
IPAHDD-N, and IPAHDD-N-Var defined in the last sections. We use the performance profiles developed
by Dolan-Moré [27] as a tool for comparing the solvers. The performance profiles give for each t ∈ R, the
proportion ρs(t) of test problems on which each solver s under comparison has a performance within the
factor t of the best possible ratio. For more details, we refer to [27].
To compare these algorithms, we choose the number of iterations and the cputime found by each solver as
a performance measure. The function φ : Rn → R is given by x 7→ φ(x) = r‖x‖2 with r = 0.1, while
the functions f : Rn → R are quadratic of the form f(x) = 1

2‖Ax − b‖
2, A ∈ Rm×n (with m ≤ n)

and b ∈ Rm are chosen randomly. The matrices A in our set of tests come from the SuiteSparse Matrix
Collection1. We have chosen a set P of 42 different problems with matrices A ∈ Rm×n size ranging
from m = 24 to m = 1309 and from n = 1309 to n = 1706. The numerical experiments are carried
out in an iMac with Mac OS 10.14 and a processor 3.2 GHz Intel Xeon W with 64Go memory. All the
codes are written and executed in Matlab R2018b. We use the same initial points and the same stopping
criterion i.e. either the number of iterations exceeds 105 or ‖∇f(xk)‖ ≤ r. We observe that both solvers
are robust and solved all problems. The algorithm IPAHDD-N-Var is the most efficient. The algorithms
IPAHDD and IPAHDD-Var solve 80% of the problems in the interval [0, 1.5], while IPAHDD-N is robust
after t ≥ 4.5.
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Figure 1: Performance profiles with tp,s the number of iterations (left) and cputime (right).
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Figure 2: Performance profiles for IPAHDD with tp,s the number of iterations (left) and cputime (right) with and without the
Hessian-driven viscous damping.
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Figure 3: Performance profiles for IPAHDD for the LASSO problem with tp,s the number of iterations (left) and cputime
(right) with and without the Hessian-driven viscous damping.
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We conclude that, using the same initial points and under the same stopping criteria, IPAHDD-N-Var
is the winner, followed by IPAHDD and IPAHDD-Var. In order to measure the effect of the introduction
of the Hessian-driven viscous damping β, we also tested the four algorithms with β = 0 and β = 0.3.
We observe that for all four methods, the introduction of the Hessian-driven viscous damping β > 0
has favorable effects not only for the convergence of the algorithm but also for the acceleration of the
convergence. We only reported the performance profiles on the solver IPAHDD with β = 0 and β =
0.3 (see Figure 2), the results for the other solvers are very similar. We also compared the algorithm
IPAHDD for the LASSO problem with g(x) = ‖x‖1 where formula (2.26) is used to compute proxλg.
Figure 3 shows the effect of the introduction of the Hessian-driven viscous damping. Consistent with the
theoretical part, we observe that the introduction of both the dry friction coefficient r > 0 and the Hessian-
driven viscous damping coefficient β > 0 introduces some stability, robustness and acceleration of the
convergence in the numerical algorithms studied in this paper.

8 Perspectives

Let’s list some of the many directions of research for the future:

1. The algorithm (IPAHDD) works with a general smooth function f , without any convexity assump-
tion on f . We have been able to extend our study to the case of a nonsmooth convex function, by using
the properties of the Moreau envelope in the convex case. For a general nonconvex nonsmooth function,
a natural idea would be to use the Lasry-Lions regularization for which similar regularity properties are
valid. The price to pay would be to perform a two-step proximal procedure.

2. Another remarkable property of the algorithm (IPAHDD) is its robustness and its tolerance to
perturbations and errors. This naturally suggests developing corresponding stochastic gradient methods,
combining dry friction with Hessian damping.

3. Many applications in optimization involve a composite additive structure. We have developed our
method in the case of Lasso-type problems. It would be interesting to further develop the method in order
to capture a larger class of composite problems.

4. Our analysis of (IPAHDD) crucially depends on the fact that the viscous damping coefficient γ is
fixed, or more generally that it is bounded from below by a positive constant. It would be interesting to
consider the case where it tends to zero like α

t , α ≥ 3. This would allow dry friction to be considered
together with Nesterov’s fast gradient method.

A Auxiliary results

A.1 Finite time convergence of the continuous dynamic

Let’s analyze the asymptotic behavior as t → +∞, and the finite convergence property, of the solution
trajectories of the second-order differential inclusion

(IGDH) ẍ(t) + γẋ(t) + ∂φ(ẋ(t)) + β∇2f(x(t))ẋ(t) +∇f(x(t)) 3 0, t ∈ [t0,+∞[

which is at the origin of the algorithms studied in the paper. We take for granted the existence and unique-
ness, for given initial data x(t0) = x0, ẋ(t0) = x1, of the solution trajectory of the corresponding Cauchy
problem.

1https://sparse.tamu.edu
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Theorem A.1 Let f : H → R be a C2 function whose gradient is L-Lipschitz continuous, and let φ :
H → R be a convex continuous function that satisfies (DF)r and which is bounded on the bounded sets.
Suppose that

γ > βL.

Then, for any solution trajectory x(·) of (IGDH) we have:

(i) ‖ẋ‖ ∈ L1([t0,+∞[,R), and therefore the strong limit x∞ := limt→+∞ x(t) exists.

(ii) The limit point x∞ is an equilibrium point of (IGDH), i.e. −∇f(x∞) ∈ ∂φ(0).

(iii) If −∇f(x∞) 6∈ boundary(∂φ(0)), then there exists t1 ≥ 0 such that x(t) = x∞ for every t ≥ t1.

Proof. (i) Take the scalar product of (IGDH) with ẋ(t). We obtain

〈ẍ(t), ẋ(t)〉+ γ‖ẋ(t)‖2 + 〈∂φ(ẋ(t)), ẋ(t)〉+ β
〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
+ 〈∇f(x(t)), ẋ(t)〉 = 0, (A.1)

which gives

1

2

d

dt
‖ẋ(t)‖2 + γ‖ẋ(t)‖2 + 〈∂φ(ẋ(t)), ẋ(t)〉+ β

〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
+
d

dt
(f(x(t)− infHf) = 0.

According to the L-Lipschitz continuity of∇f , and the Cauchy-Schwarz inequality, we have

|
〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
| ≤ L‖ẋ(t)‖2.

According to the assumption (DF)r on φ and Lemma 1.1,

〈∂φ(ẋ(t)), ẋ(t)〉 ≥ φ (ẋ(t)) ≥ r‖ẋ(t)‖.

Collecting the above results, we obtain

d

dt

(
1

2
‖ẋ(t)‖2 + f(x(t))− infHf

)
+ (γ − βL)‖ẋ(t)‖2 + r‖ẋ(t)‖ ≤ 0. (A.2)

According to the hypothesis γ > βL, we deduce that the global energy

E(t) =
1

2
‖ẋ(t)‖2 + f(x(t)− infHf

is non increasing. Morever, by integrating (A.2) we obtain∫ ∞
t0

‖ẋ(t)‖2dt < +∞ and
∫ ∞
t0

‖ẋ(t)‖dt < +∞. (A.3)

This last property expresses that the trajectory has a finite length, and hence limt→+∞ x(t) := x∞ exists.

(ii) Since E(·) is non increasing, we have that the velocity ẋ(t) remains bounded. Since φ is bounded
on the bounded sets, so is ∂φ. Therefore, from equation (IGDH) we deduce that the acceleration ẍ(t)
remains bounded. This combined with

∫∞
t0
‖ẋ(t)‖dt < +∞ implies that the velocity ẋ(t) converges

strongly to zero, as t → +∞. Let us now pass to the limit on (IGDH). Set u(t) = ẋ(t). Let us write
(IGDH) equivalently as

u̇(t) + (γI + ∂φ)(u(t)) = h(t)

with h(t) := −β∇2f(x(t))ẋ(t) − ∇f(x(t)). The operator A = γI + ∂φ is strongly monotone because
γ > 0. According to the above results, we have that h(t) converges strongly to −∇f(x∞). We now
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apply the Theorem 3.9 of Brezis [24], which tells us that the strong limit of u(t), that’s zero, satisfies
A(0) 3 −∇f(x∞). Equivalently

∂φ(0) 3 −∇f(x∞).

(iii) The assumption −∇f(x∞) ∈ int(∂φ(0)) implies the existence of ε > 0 such that

−∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).

On the other hand, since limt→+∞∇f(x(t)) = ∇f(x∞), there exists t1 ≥ t0 such that for all t ≥ t1

∇f(x(t)) ∈ ∇f(x∞) + B(0, ε).

Hence,
−∇f(x(t)) + B(0, ε) ⊂ −∇f(x∞) + B(0, 2 ε) ⊂ ∂φ(0).

Equivalently, for every t ≥ t1 and for every u ∈ B(0, 1), we have:

−∇f(x(t))) + ε u ∈ ∂φ(0).

Let’s write the corresponding subdifferential inequality at the origin (recall that φ(0) = 0)). For every
t ≥ t1

∀u ∈ B(0, 1), φ(ẋ(t)) ≥ 〈−∇f(x(t)) + ε u, ẋ(t)〉.

Taking the supremum over u ∈ B(0, 1), we obtain that, for every t ≥ t1,

φ(ẋ(t)) + 〈∇f(x(t)), ẋ(t)〉 ≥ ε ‖ẋ(t)‖. (A.4)

Let’s return to (A.1). According to the above results, we obtain

d

dt

1

2
‖ẋ(t)‖2 + (γ − βL)‖ẋ(t)‖2 + ε‖ẋ(t)‖ ≤ 0. (A.5)

a) Neglecting the nonnegative term ε‖ẋ(t)‖ we obtain

d

dt

1

2
‖ẋ(t)‖2 + (γ − βL)‖ẋ(t)‖2 ≤ 0, (A.6)

whose integration gives
‖ẋ(t)‖ ≤ ‖ẋ(t0)‖e−(γ−βL)t.

b) Neglecting the nonnegative term (γ − βL)‖ẋ(t)‖2 we obtain

d

dt
‖ẋ(t)‖2 + 2ε‖ẋ(t)‖ ≤ 0, (A.7)

Set v(t) = ‖ẋ(t)‖2. We have v̇(t) + 2ε
√
v(t) ≤ 0. As long as v(t) > 0 we will have d

dt

√
v(t) ≤ −ε.

This forces v(t) to be equal to zero after some finite time.

Remark A.1 There are significant differences bewteen the continuous and the discrete case. The most
important is that in the continuous case, when f is assumed to be convex, there is no more restrictive
assumption on the parameters, since

〈
∇2f(x(t))ẋ(t), ẋ(t)

〉
≥ 0.



Finitely convergent inertial algorithms under dry friction and Hessian-driven damping 33

References

[1] S. Adly, A variational approach to nonsmooth dynamics: applications in unilateral mechanics and
electronics, Springer Briefs in Mathematics, 2017.

[2] S. Adly, H. Attouch, Finite convergence of proximal-gradient inertial algorithms with dry friction
damping, (2019) https://hal.archives-ouvertes.fr/hal-02388038.

[3] S. Adly, H. Attouch, A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction,
Nonsmooth Mechanics and Analysis, Adv. Mech. Math., 12 (2006), Springer, New York, pp. 289–
304.

[4] F. Alvarez, On the minimizing property of a second-order dissipative system in Hilbert spaces, SIAM
J. Control Optim., 38 (4) (2000), pp. 1102–1119.
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