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Quantum Noise in Balanced Di¤erential Measurements in Optics: Implication to the Wave Modes of Quantum Vacuum

Experimental tests for assessing the physical reality of the hypothetical wave modes of quantum vacuum with zero-point energy are of fundamental importance for quantum …eld theories and cosmology. Physical e¤ects like the Casimir e¤ect have alternate description in terms of retarded interaction between charged matter, due to quantum ‡uctuations of material dipoles. However, there are simple quantum optical con…gurations where the hypothetical quantum vacuum modes seem to assume an essential real role in the observable quantum noise of optical signals. I present the logical and theoretical basis of a decisive test that relies on the comparisons of balanced homodyne detection with a novel di¤erential scheme of balanced wave-front division detection, when the two real optical beams at the detectors are derived from one coherent beam as input. Both ideal and practical con…gurations of my experimental test are discussed. Results from the experiments on balanced detection, beam localization of optical beams, and atomic Bose-Einstein condensates are used to reach de…nite conclusions against the reality of the wave modes of quantum vacuum. It is shown that the entire quantum noise follows consistently from the state reduction of quantum superpositions of particle-number states at the point of detection, where the quantum measurement is completed. This is consistent with the demonstrated applications of squeezed light in interferometry and quantum metrology. This result achieves consistency between quantum noise in quantum optics and observational cosmology based on general relativity, by avoiding the wave modes of quantum vacuum with divergent zero-point energy density. Generalization from the limited sphere of quantum optics to general quantum …eld theories promises the complete solution to the problem of a divergent cosmological constant.

Quantum Optics as a mature theory is much younger than quantum mechanics and quantum …eld theories. The new foundations were …rmly established in 1963, with papers from R. Glauber [START_REF] Glauber | Photon correlations[END_REF] and E. C. G. Sudarshan [START_REF] Sudarshan | Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams[END_REF]. There are di¤erent approaches to the calculations, which have di¤erent foundational basis. One important issue is the notion of 'Quantum Vacuum'. In the quantum optical picture that quantizes electromagnetic wave modes, the vacuum mode is a wave mode at frequency with the zero-point energy h =2. In this picture, photons are just excitations of the wave mode with di¤erent amplitudes, with the wave-energy quantized in units of h . That is, the wave modes with …nite zero-point energy (ZPE) are present even if there is no detectable light. The use of real wave mode subject to quantization rules in calculations raises the question of the physical reality and observability of the hypothetical quantum vacuum modes with a nonzero ZPE. The notion is seriously troublesome because each mode has the ZPE of h =2 and there is an in…nity of such modes in space and time, implying a divergent energy density that is in con ‡ict with general relativistic (observational) cosmology. The problem of the divergent ZPE density, commonly called the problem of a divergent cosmological constant, has remained unresolved for a long time [START_REF] Weinberg | The cosmological constant problem[END_REF][START_REF] Rugh | The quantum vacuum and the cosmological constant problem[END_REF].

In contrast, there is a logically robust picture that rejects real waves underlying the quanta, pioneered and argued for by S. N. Bose, of photons as particles of light obeying Bosonic rules of collective behaviour [START_REF] Bose | Planck's law and the light-quantum hypothesis[END_REF]. Hailed by Einstein as a fundamentally new way of treating the statistical behaviour of quanta, this has no divergence problems (as Bose himself had exclaimed [START_REF] Unnikrishnan | Bose-Einstein condensates as universal quantum matter[END_REF]). The Fock number state approach formalizes this line of thought and integrates it to the underlying notion of a '…eld' [START_REF] Fock | Kon…gurationsraum und zweite Quantelung[END_REF]. The quantum state can be then described by labelling the number of photons in a particular state, as jni and forming arbitrary superpositions. The vacuum state is just the formal no-photon state j0i. The theory of quantum optics treats the vacuum state as fundamental because it serves as the basis from which n-photon Fock states are 'created'as a y n j0i. The superposition of such number states then provides all states of light. Modern quantum optics uses a hybrid view, based on quantum …eld theories, where the notion of the underlying …eld and particles as excitations is retained. This is reinforced by the usage of coherent states as a universal basis, pioneered by E. C. G. Sudarshan [START_REF] Sudarshan | Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams[END_REF]. However, while mathematically complete, this hybrid view carries the same conceptual inconsistency of the divergences.

In the rigorous 'Dirac view'of quantum mechanics, the ‡uctuations in physical quantities happens at the (repeated) measurements and there is no ‡uctuations in quantum state itself either in time or in space until a measurement in made. In contrast, the description with the quantum vacuum modes explicitly links the quantum noise with the space-time ‡uctuations of the amplitude and phase of the modes. Thus, the coherent state in the Dirac-Fock picture is the superposition of all number states at all instants, until the measurement at a detector. In the 'mode-view', in contrast, the …eld ‡uctuates in its amplitude and phase, the statistical ensemble average of which gives the familiar 'stick-and-ball'representation of the quantum coherent state and its uncertainty noise. The latter view is obviously not fully consistent with the principles of quantum mechanics, since it implies de…nite amplitude and phase at each instant, ‡uctuating. But it is extensively in use due to its convenience.

There is another conceptual issue in the description of the quantum vacuum as a physical state with average ZPE h =2, carrying ‡uctuations in amplitude and phase distributed as a Gaussian about zero. The probability for a ‡uctuation in amplitude that far exceeds the average ZPE and even h is …nite; this is in con ‡ict with requirement that no photon shall be detected in the vacuum state. Though I will not discuss this further, the di¤erence between the 'wave modes'view and the 'quanta-state'view becomes crucial in the discussion of quantum noise, its interpretation, and the exact expressions in speci…c physical situations.

The Casimir force, Lamb shift, and the spontaneous emission from excited atoms are phenomena cited in support of the physical reality of quantum vacuum modes. However, the Casimir force, the prime example, can be derived as the interaction of the quantum ‡uctuating dipoles (atoms) in the material making the two surfaces, as the retarded van der Waals force, or as the integrated Casimir-Polder force between a material boundary and an atom [START_REF] Schwinger | Casimir e¤ect in dielectrics[END_REF][START_REF] Milton | The Casimir E¤ect: Physical Manifestations of Zero-Point Energy[END_REF][START_REF] Milonni | The Quantum Vacuum: An Introduction to Quantum Electrodynamics[END_REF]. Since all real boundaries are equal to the factual presence of matter with quantum zero-point motion, and not mere static mathematical conditions, the necessity of the vacuum modes in the Casimir force cannot be insisted because that would be double-counting; either picture is mathematically consistent when invoked alone. In other words, when wave modes and their di¤erential radiation pressure are invoked to calculate the Casimir e¤ect, one has to assume passive mathematical boundaries without any atomic and electromagnetic structure subject to quantum mechanical zero-point ‡uctuations. However, since matter and its zero point ‡uctuations are the only reality that is directly observed and veri…ed, the mode picture can be seen only as a calculational tool, without physical reality to the wave modes. This argument is logically robust and it solves the problem of the divergent ZPE, since the matter density in the universe is …nite and its ZPE is negligible. Therefore, there is strong reason and motivation to explore laboratory physical situations to …nd a direct demarcating experiment that tests the physical reality or otherwise of quantum vacuum modes. The rest of the paper is devoted to the identi…cation of such experiments, results, and their interpretation. The simple physical situation involving a 'beam splitter' (BS) in interferometers and quantum optical experiments is often discussed as a reliable indication of the necessity of the real quantum vacuum mode. The two-port balanced homodyne detection (BHD) of light [START_REF] Yuen | Noise in homodyne and heterodyne detection[END_REF] exploits the fundamental peculiarity of the beam splitter that there is relative phase of exp(i ) = 1 between the two output beams of the passive device (…gure 1). BHD involves a strong phase coherent local oscillator (LO) beam of amplitude + at one port (say 'a' port) of a 50:50 beam splitter and the weak signal beam s + s at the other. The terms and s represent the ‡uctuations in the …elds. The beams emerge superposed from the two output ports and the intensity is measured in each port independently by photo-detectors. The di¤erence in the outputs of the detectors is obtained after a di¤erencing circuit, and this is the homodyne signal, which consists of only the interference terms ( + ) (s + s) between the …elds in the two input ports due to the crucial relative phase factor of at the BS [START_REF] Schumaker | Noise in homodyne detection[END_REF][START_REF] Loudon | Quantum noise in homodyne detection[END_REF][START_REF] Loudon | Quantum Theory of Light[END_REF][START_REF] Garrison | Quantum Optics[END_REF]. If we consider the situation when only the LO light is entering one port, with no light at the other, one would have expected a zero homodyne signal because the cross interference term would be identically zero. Yet, the actual homodyne output is non-zero Gaussian noise centered on mean zero. This is the reason to postulate that a physically real ‡uctuating quantum vacuum mode (s = 0; s 6 = 0) enters the open empty port of the beam splitter and mixes (interferes) with the LO to give the observed noise in the homodyne output. This interpretation was …rst stressed by C. M. Caves in the context of the quantum noise in the interferometric gravitational wave (GW) detectors based on Michelson interferometers with the balanced beam splitter [START_REF] Caves | Quantum-mechanical radiation-pressure ‡uctuations in an interferometer[END_REF][START_REF] Caves | Quantum-mechanical noise in an interferometer[END_REF][START_REF] Caves | New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states[END_REF]. The radiation pressure noise is proportional to di¤erence in the mode intensities in the two arms, c y c d y d , which can be written in terms of the interference terms of the input operators a 1 and a 2 as a y b + b y a . This is also the di¤erence signal measured in the homodyne scheme. Then, the vacuum mode through the open port of the beam splitter enters the description even if there is no input light in it. At present, this is the standard interpretation for the irreducible quantum noise in the balanced homodyne output. More over, the demonstrated use of squeezed light in GW detectors is based on this physical picture [START_REF] Aasi | Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light[END_REF][START_REF] Barsotti | Squeezed vacuum states of light for gravitational wave detectors[END_REF]. Thus, quantum optics involving a beam splitter seems to provide a ubiquitous situation and transparent proof for the physical reality of the quantum vacuum mode. However, the divergent ZPE in general relativistic cosmology remains as a genuine and troublesome physical problem.

How does one reconcile the two contradictory physical pictures, each with seemingly convincing support? To obtain a reliable answer experimentally, I devised a novel signal di¤erencing con…guration that avoids the phase factor of the beam splitter, which can then be compared with the homodyne scheme. My results are completely consistent with Fock-state quantum mechanics without the real wave modes of quantum vacuum. Then, quantum noise is explained as entirely due to the reduction of the quantum state where the quantum measurement is completed right at the detector, with no physical role for the di¤erencing operation after the intensity detectors. While resolving the con ‡ict with general relativistic cosmology, my results are in consistency with demonstrated quantum physical applications like squeezed light metrology.

II. BALANCED DIFFERENTIAL MEASUREMENTS

The simple physical situation involving a 50:50 'symmetric'beam splitter in interferometers and quantum optical experiments is conventionally interpreted as a reliable indication of the necessity of the real quantum vacuum mode. See …gure 2A. One mode of real radiation a is split into two (c; d) in amplitude by the BS and the mode intensities in the two beams after BS are c y c and d y d. There is no real optical bean in port 'b'. When detected with di¤erencing photo-detector, the quantity measured directly is

N (t) = N c N d = c y c d y d;
which can be formally written in terms of the interference terms of the input mode operators a and b as a y b + b y a . The explicit calculations are described later. This relation between the input and output beams can be traced to the fundamental feature of the BS that there is a relative phase of between the two output beams of the BS. Due to this factor, only the cross interference terms survive without cancellation in the balanced subtraction N (t) = c y c d y d . This is the signal measured in the balanced homodyne scheme. But there is no real beam in the port 'b'! However, when such an experiment is done, one does not measure 'zero' at the detector output. The average di¤erential signal h N (t)i = 0 and there is irreducible quantum noise and variance in N (t). This is the quantum noise, consistent with the (non)commutation relations a; a y = b; b y = 1. Thus, one is forced to postulate that the invisible quantum vacuum mode enters through the open port 'b'of the beam splitter, even if there is no input light in it. Only then the quantity a y b + b y a can be non-zero. At present, this is the standard interpretation for the irreducible quantum noise in the balanced homodyne output.

How reliable is this quantum optical evidence? Can one …nd an equally simple measurement scheme in quantum optics that invalidates this interpretation and disproves the physical reality of the invisible quantum vacuum mode? This is indeed possible with a simple di¤erential detection scheme where one splits the wavefront, instead of the amplitude, of the coherent beam before the detection with the di¤erential detector. I call this the balanced wavefront-division detection (BWDD). The detected quantity in BWDD is also the di¤erence in the intensity in the two detectors N (t) = a y a a 0y a where a 0 is the symmetric replica of the mode a, being split from the same wavefront with the same mode features (…gure 2B). Both parts of the wavefront have quantum noise, carried by the same quantum vacuum mode associated with the a beam. However, since the crucial phase factor is absent in the wavefront-split di¤erential scheme, the subtraction is total, with no surviving interference term. Thus, the same quantum optical calculations that attributed the quantum noise entirely to the uncanceled interference terms in BHD predict near-zero noise at the di¤erential output of BWDD. This di¤erence between the two schemes is the vital idea of the experiment. Yet, from the quantum mechanical analysis of a coherent beam as an instantaneous superposition of all particle (photon) number states, instead of as a …eld mode with noise ‡uctuations, the di¤erence signal and its noise variance should not be zero; rather, the noise in N should be p N c + N d in both BHD and BWDD, because of the completion of the quantum measurement right at the detectors. It is this di¤erence in the predicted residual noise in the di¤erential signal that helps reject the reality of the hypothetical quantum vacuum modes.

III. DIFFERENTIAL SIGNALS AND THEIR NOISE A. Direct Detection of a Coherent Beam

First, let us consider the quantum noise in a single mode of coherent radiation, detected with a photodetector. The detected intensity is related to the normal ordered number operator a y a. In terms of the coherent amplitude this is just . The variance needs the square of the number operator, N 2 = a y aa y a, which is not a normal ordered operator product. However, a y aa y a = a y a y a + 1 a = j j 4 + j j 2 . Since a y a 1 in the experiments we consider, all quantum mechanical calculations are accurately done using the complex coherent amplitude. The optical amplitude is = a + a 1 + i a 2 , where the quantum ‡uctuations in the two quadratures are designated as a 1 and a 2 [START_REF] Schumaker | Noise in homodyne detection[END_REF][START_REF] Loudon | Quantum noise in homodyne detection[END_REF]. For a coherent beam, the uncertainty principle dictates j a 1 a 2 j = 1=4. The phase of the beam is …xed such that a is real. We assume that there is no other excess amplitude noise of the optical beam (like technical ‡uctuations of the laser intensity). The detector output is

i(t) / N (t) = a y a ' = a 2 + 2a a 1 + a 2 1 + a 2 2 (1)
The quantum noise is re ‡ected in the last three terms, of which only the …rst is signi…cant in magnitude. Then,

N (t) ' a 2 + 2a a 1 ! N p N
The variance is

V (N ) = D N N 2 E ' 4a 2 a 2 1 ( 2 
)
We see that the entire quantum noise is consistently described by the ‡uctuations a 1 and a 2 in the 'quantum vacuum mode'. When evaluated, V (N ) ' N , because a 1 = a 2 = 1=2 for a coherent mode, from the uncertainty relation a 1 a 2 = 1=4.

The alternate and conceptually very di¤erent interpretation of quantum noise based on a particle picture of standard quantum mechanics is also consistent. There, the coherent state of photons is a superposition of all number states jni with Poissonian weights.

j (t)i = exp( j j 2 =2) n=1 X n=0 n p n! jni
The detector detects the average N = 2 and its ‡uctuations (standard deviation) are p N . Thus V (N (t)) = N . The quantum measurement is completed at the square-law detector. In fact, it is identical in structure to a coherent state of atoms (for which there is no underlying real wave or vacuum mode with a zero-point energy). There is no real wave mode and its ‡uctuations in this picture. Then one can get ‡uctuations in the photon number on detection, with Poissonian probability, with the collapse of the state that happens (only) at the detection event.

For this particular case of the direct detection of the optical beam, either view is consistent. Our goal is to demarcate and decide between the two di¤erent views, by a decisive experiment.

B. Balanced Homodyne Detection

We refer to the …gure 2A. The …eld amplitudes corresponding to the modes are complex quantities. Since only relative phases are observable, one of the modes can be taken as real quantity. The quantum noise in each mode is however in two quadratures. So, a ! a + a 1 + i a 2 . All experiments under discussion have only one real optical beam. For the BS experiment, there are two input ports and two possible independent modes (di¤erent 'k'vectors etc.). But, since there is no real optical beam in the second port, only the hypothetical and invisible quantum vacuum modes with ‡uctuations enter the …nal expressions,

b ! b 1 + i b 2 .
The general beam splitter has the transmission T = jtj 2 , to port 'd'from port 'a', and hence re ‡ection R = jrj 2 = 1 T from port 'a' to port 'c' (or from port b to port d). Fixing explicitly one relative phase of between ports 'b'and 'd', we have real r and t. The phase of 'a' beam is chosen such that a is real. Since we are concerned with experiments on quantum vacuum, b will eventually be zero or very small. Thus, the terms second order in small quantities (b 2 ; a 

N c = c y c = ra y + tb y (ra + tb) ' jr (a + a) + t (b + b)j 2 (3) (r (a + a) + t (b + b)) (r (a + a) + t (b + b)) = R a 2 + a 2 + 2a a + T b 2 + b 2 + 2b b + rt(ab + a b + b a + a b ) + rt(ba + b a + a b + b a ) ' Ra 2 + 2Ra a + p T R (ab + ab + a b + a b) (4) 
= Ra 2 + 2Ra a + 2 p T R (ab 1 + a b 1 ) (5) 
For the other output port 'd', inserting the relative phase factor from port b to d,

N d = d y d ' [t (a + a) r (b + b)] 2 (6) 
' T a 2 + 2T a a 2 p T R (ab 1 + a b 1 ) (7) 
The symmetric (50:50) BS has equal transmission and re ‡ection coe¢ cients (tt = T = 1=2 = R = rr ). Then,

N c = 1 2 a 2 + a a + ab 1 + a b 1 (8) 
N d = 1 2 a 2 + a a ab 1 a b 2 (9) 
Balanced homodyne detects the di¤erence signal N (t) = N c N d and its noise directly. The total quantum noise is 2 (a b 1 + a 1 b 1 + a 2 b 2 ), where the last two terms are negligible. The di¤erence signal is identical to the (cross) interference term between the two beams in the ports a and b,

N (t) = 2ab 1 + 2a b 1 (10) h N i = 2ab 1 (11) 
It is remarkable that we get the interference term in the di¤erence signal despite a 'phasedestroying' square law detection at each detector. Similar 'magic' was seen in the classic case of the Hanburry Brown-Twiss intensity interferometry that prompted the new theory of correlations and quantum coherence in optics. Most importantly, the signal has no self interference terms between the mode amplitude a and its quantum vacuum ‡uctuations a. Only the cross interference term a b 1 is present. It should be noted that if the BS did not introduce the phase, all signs in N d = d y d (eq. 6) would have been positive and the di¤erence signal in equation 10 would have been identically zero in the subtraction, without any averaging.

When there is only one coherent beam at the port 'a', with only 'vacuum' at the port 'b', h N i = 0. The balanced homodyne signal has the variance

V ( N (t)) = D N N 2 E = 4a 2 b 2 1 +4 a 2 1 b 2 1 +4 a 2 2 b 2 2 +8 h a 1 b 1 a 2 b 2 i ' 4a 2 b 2 1 (12)
All other terms average to zero. The last of the four terms can give a nonzero average if there are correlations in the two quadratures of each mode. However, only the …rst term is signi…cant in magnitude. It is of order N , whereas the other terms are of order 1, totally negligible. Thus, V ( N ) ' 4a 2 b 2 1 . Therefore, the quantum noise in balanced homodyne detection is attributed entirely to the quantum noise in the 'b' mode, with the amplitude of the 'a'mode beam acting as a noise-free linear ampli…er, with gain N .

It is instructive to look at the variance of the signal at each detector. We have

V (c) = D N c N c 2 E = a 2 a 2 1 + a 2 b 2 1 + a 2 1 b 2 1 + a 2 2 b 2 2 + 2 a 1 b 1 a 2 b 2 ' a 2 a 2 1 + a 2 b 2 1 (13) V (d) = D N d N d 2 E = a 2 a 2 1 + a 2 b 2 1 + a 2 1 b 2 1 + a 2 2 b 2 2 + 2 a 1 b 1 a 2 b 2 ' a 2 a 2 1 + a 2 b 2 1 ( 14 
)
Clearly the expression for the sum of the variances of the two signals,

V (c) + V (d) ' 2 (a 2 a 2 1 + a 2 b 2 1
) is not equal to the variance of the homodyne di¤erence signal (eq. 12), V ( N (t) ' 4a 2 b 2 1 . The theoretical quantum noise in the output of each detector is contributed equally by the quantum ‡uctuations a and b of the quantum vacuum modes 'a'and 'b', whereas the theoretical quantum noise in the direct di¤erence signal is entirely contributed by the ‡uctuations in the 'b'mode, b.

V (c) + V (d) ' 2 a 2 a 2 1 + a 2 b 2 1 6 = V ( N (t) ' 4a 2 b 2 1 ( 15 
)
This is an important and fundamental result. For equal uncertainties in both quadratures, the numerical magnitudes 2 (a 2 a 2 1 + a 2 b 2 1 ) and 4a 2 b 2 1 are obviously indistinguishably equal. However, the result becomes crucial, with quantitatively di¤erent total noise, in experiments with squeezed light or in those situations where there are quantum correlations. For example, with b 1 squeezed by a factor exp( s),

V (c) + V (d) ' 2 a 2 a 2 1 + e 2s a 2 b 2 1 ( 16 
)
whereas the variance in the homodyne signal is very di¤erent,

V ( N ) ' 4e 2s a 2 b 2 1 (17) 
Hence, jV ( N )j 6 = jV (C) + V (C)j. We see right here some fundamental inconsistency and con ‡ict in the notion of real quantum vacuum modes with the idea of measurement in quantum mechanics, but I will defer a detailed discussion on that and focus on the new wavefront division experiment.

C. Balanced Wavefront-Divison Detection

We write the essential steps in the calculation for the balanced wavefront-division di¤erential detection (BWDD) schemes of …gure 3. The mode a with its vacuum noise is split into two sections, which we designate as u and d . They are the same mode with all quantum numbers matching. But we can try to distinguish the parts of the wavefront with a spatial label, up (u) and down (d) of the wavefront. The fact that there is only one beam and one mode now, from which two beams are generated by diving the wavefront, and there is no phase to introduce a negative sign in any term, re ‡ects in the di¤erential output. The detectors generate the intensity signals,

u = 1 p 2 (a + a 1 + i a 2 ) d = 1 p 2 (a + a 1 + i a 2 ) (18) 
y u u ' u u = 1 2 a 2 + 2a a 1 + a 2 1 + a 2 2 (19) 
y d d ' d d = 1 2 a 2 + 2a a 1 + a 2 1 + a 2 2 ( 20 
)
The output of the di¤erential detector is identically zero, without any averaging.

N (t) = y u u y d d = 0 (21) 
We have no freedom in this calculation if we follow the same logic as what was used in the homodyne calculation. There, the split occurs in the time domain whereas here it occurs in the spatial domain; that is the only di¤erence. There are only self interference terms of the mode amplitude with its own quantum ‡uctuations here, but there is no cross interference term with the ‡uctuations of another mode. The variance of the output signal N (t) is obviously zero, since N (t) itself is zero.

V ( N (t)) = D N N 2 E = 0 (22) 
If the balance is not ideal, but in the ratio P : Q with P ' Q, then the expression modi…es to

N (t) = (P Q)a y a a y a (23) V ( N (t)) = 4(P Q) 2 a 2 a 2 1 N (24) 
Therefore, the experiment can decisively determine whether a real quantum vacuum mode is the source of the quantum noise or whether it is the collapse of the instantaneous quantum superposition of the particle number states. If the di¤erence signal and its variance is near zero, then it supports the view that the quantum vacuum mode with the ZPE is the carrier of the quantum noise. On the other hand, the collapse of the particle number superposition at the detectors predicts that the variance is the sum of the variances at the individual

detectors, V ( N (t)) = V (c) + V (d) = N c + N d ,
because the quantum measurement is completed (only) at the square law photodetectors. Therefore, noise variance that scales as the intensity (average photon number) in BWDD would be reliable evidence against the real wave modes of quantum vacuum. One might think and hope that one could introduce new rules for the wave modes to save the interpretation of the zero-point wave as the source of the quantum noise. One possibility is to postulate that the ‡uctuations are cancelled in the subtraction only when the amplitude is split, but not when the wavefront is split. This would be the case if di¤erent spatial portions of the same wavefront have di¤erent ‡uctuations, even after integrating over the response time of the detectors. But, this arbitrary postulate does not solve the problem. We repeat the calculation with the new postulate. The intensity signals with di¤erent and independent quantum noise a and a 0 in the two haves of the wavefront are,

y 1 1 ' 1 1 = 1 2 a 2 + 2a a 1 + a 2 1 + a 2 2 ( 25 
)
y 2 2 ' 2 2 = 1 2 a 2 + 2a a 0 1 + a 02 1 + a 02 2 (26) 
After the subtraction,

N (t) = 1 1 2 2 ' a( a 1 a 0 1 ) < 2a a 1 (27) 
V ( N ) = a 2 ( a 1 a 0 1 ) 2 ' a 2 a 2 1 + a 02 1 2a 2 h a 1 a 0 1 i = 2a 2 a 2 1 2a 2 h a 1 a 0 1 i < 4a 2 a 2 1 (28) 
Therefore, V BW D = V BH =2 for independent quantum ‡uctuations in the two parts of the wavefront. So, this patch repair does not match the variance that we got for the homodyne scheme in magnitude, V BW D ( N (t)) < V BH ( N (t)) ' 4a 2 b 2 1 . When the ‡uctuations are fully anticorrelated ( a 1 = a 0 1 ), then h a 1 a 0 1 i = a 2 1 , but one cannot get this condition for every partition of the wavefront. If this were the case, then the total intensity would be

1 1 + 2 2 = a 2 + a ( a 1 + a 0 1 ) = a 2
, with no variance! The wavefront-division detection can provide a strong proof against the wave modes of quantum vacuum.

D. Insigni…cance of Steering Mirrors

It is convenient (and often necessary) to use one or more steering mirrors in the experiments to get the beam to the detector location etc. While it is intuitively obvious that a mirror with high re ‡ectivity does not a¤ect the concept or the quantitative expressions of the experiment, it is perhaps appropriate to prove this explicitly. (This clarifying calculation, obvious to most, is included after seeing persistent confusion among some colleagues that a single steering mirror interpreted as a beam splitter with very low transmission is essential and crucial in the wavefront division experiment to compare it with the homodyne experiment). A steering mirror of re ‡ectivity R can be interpreted as a R : T beam splitter, with T R ' 1. We note from equation 4 that the use of the mirror alters the quantum noise contribution in that beam slightly,

N c N c = 2Ra a + 2 p RT a b (29) V (N c (t)) ' 4R 2 a 2 a 2 + 4RT a 2 b 2 (30) 
The di¤erential signal and its variance in the wavefront-division experiment with a steering mirror (…g. 3B), assuming 50:50 wavefront division before the mirror, is calculated next. The already divided amplitude (a + a) = p 2 becomes r (a + a) = p 2 after the R : T mirror. This is superposed with t b when we assume that the vacuum mode leaks in due to the small transmissivity T . I include also the phase for re ‡ection at the mirror. The intensity at the detector is

N c = e i r p 2 (a + a) + t b e i r p 2 (a + a) + t b ' R 2 a 2 + 2a a 1 2rt p 2 a b 1 (31) 
The phase factor at re ‡ection drops out. The other half of the wavefront goes straight to the detector 'd'. So,

N d ' 1 2 a 2 + 2a a 1 N (t) = N d N c = 1 2 (1 R) a 2 + 2a a 1 + p 2RT a b 1 h N (t)i = 1 2 (1 R)a 2 (32) V ( N ) = (1 R) 2 a 2 a 2 1 + 2RT a 2 b 2 ' 2T a 2 b 2 = (T =2) V ( N BHD ) (33) 
As stated before, with T < 1%, the variance in the di¤erential signal is negligible compared to the variance in the balanced homodyne signal, suppressed by the factor T =2. The phase at the steering mirror is irrelevant, unlike the crucial phase of in the homodyne BS. Similar remarks apply if a prism (total internal re ‡ection) is used for steering the beam.

IV. THE REAL SOURCE OF THE QUANTUM NOISE

Now I show that the real source of the quantum noise is the quantum state reduction of the particle superposition of the real optical beam at the detector that completes the quantum measurement, in all cases in quantum optics, without exception. The coherent state in the example of direct beam detection is

j (t)i = exp( j j 2 =2) n=1 X n=0 n p n! jni (34)
Before reaching the detector, the quantum state is a superposition of all number states, with its only time evolution re ‡ected in an overall phase. Till the state j i interacts with the square law detector, subject to an interaction Hamiltonian, the state is stable and under pure unitary evolution. The quantum measurement is completed at the square-law detector, and only at that point. This gives a value for the number of photons with probability p(n) dictated by the Poissonian weight of the state with n number of photons. It is clear that whether we make the measurement on the beam by direct detection, or on any part of the beam by splitting it in amplitude or wavefront, the state is the same, multiplied by an overall numerical factor. The relative probabilities remain the same. For an ensemble of identical quantum measurements with the detector, a sequence of such results are obtained; then we get the average N = 2 and its statistical ‡uctuations, with standard deviation p N . Thus V (N (t)) = N .

For balanced homodyne detection as well as for balanced wavefront division detection, each detector completes the quantum measurement independently and the rest of the operations are irrelevant for the quantum state. Each detector measures the average N =2 with the standard deviation p N =2. Therefore, the di¤erence signal is centred on zero, with standard deviation p N . This is the prediction for any balanced dual detector measurement from the theory that rejects the physical wave mode of quantum vacuum. Then the noise is attributed to the quantum measurement that reduces a quantum superposition of number states to a particular number state in each measurement event. It does not make any di¤erence in the expressions for the quantum noise whether one performs the individual measurements and then takes the di¤erence, or whether the di¤erential signal is directly measured. This interpretation and prediction are universally applicable in all cases, from direct detection to general unbalanced detection of light. Since the prediction for the variance of the balanced di¤erential signal is very di¤erent in the quantum state view and in the vacuum-waves view ( N vs 0), one can decisively determine the correct physical picture directly from the experiment and rule on physical reality of the wave modes of quantum vacuum.

V. EXPERIMENTAL RESULTS

A. Balanced Homodyne Measurements

Balanced homodyne measurement (…g. 2A) is the primary tool for the characterization of quantum noise in squeezed light. There are already several experimental results that are consistent with the calculations described in the section on BHD. Therefore, BHD measurements that measure the di¤erence signal and its variance are consistent with the hypothesis that a real wave mode of quantum vacuum entering the open port of the BS is the source of the entire quantum noise [START_REF] Smithey | Measurement of number-phase uncertainty relations of optical …elds[END_REF][START_REF] Leonhardt | Measuring the Quantum State of Light[END_REF]. The quantum noise variances in the individual detectors are, however, contributed by the vacuum modes entering both the input ports. The di¤erencing operation after the intensiy detectors cancels one contribution while doubling the other. Other caveats are brie ‡y mentioned in section IIB.

B. Balanced Wavefront-Division Measurements

Now we examine the hypothesis of the quantum vacuum modes against the balanced wavefront-division measurements. The experimental scheme is as indicated in …gure 3. Direct experiments can be with two matched photodetectors, at relatively high intensity of about a mW (>0.5 mA photocurrent or 10 16 photons/s) or by photon counting detectors and subsequent di¤erencing schemes (hardware or software) at much attenuated intensity of less than 10 12 W. The calculation of the di¤erential signal based on splitting the wavefront of the wave modes predicts near-zero ( N ) noise variance. In sharp contrast, the variance V ( N ) = N c + N d = N is predicted by the de…nite completion of the quantum measurement and the reduction of the state at the individual intensity detectors, without the wave modes of quantum vacuum. In the di¤erential detection experiments, both in the BHD scheme and in the BWDD scheme, there is no role of physical signi…cance for the di¤erencing operation after the intensity detectors.

The dark current of commercial balanced detectors is in the range 1 5 pA/ p Hz, below 10 MHz. For example, a NewFocus-1807 model balanced detector has a noise equivalent The quantum shot noise exceeds the detector dark noise only when the optical power is about 0.05 mW (>10 14 photons/s), corresponding to photocurrent ‡uctuations of a few pA/ p Hz. The optical quantum noise measured at 110 kHz in a wavefront division di¤erential detection experiment using the NewFocus-2007 detector, in the scheme shown in …gure 3A, is plotted in the …gure 4 (the noise spectrum is ‡at within 2 dBm/Hz in the range 100 kHz-130 kHz). The detector shot noise, without any light input, is measured to be below -126 dBm/Hz (<0.25 fW/Hz). With 0.02-0.8 mW of light in each half of the wavefront from a He-Ne laser, the light beams are balanced to get a di¤erential voltage output less than 10 mV, corresponding to a di¤erential power below 1 W. The di¤erential scheme cancels the relatively large (1% rms) laser intensity noise by a factor of nearly 10 5 . The residual noise is monitored in the 100 kHz-150 kHz bandwidth with a spectrum analyzer. The near-zero electrical (voltage) output of the di¤erential circuit is connected to the spectrum analyzer and voltmeter, to directly measure the spectral density and rms value of the residual noise variance of the di¤erential signal, V (

N (t)) = D N N 2 E / D i i 2 E
. The noise variance in BWDD scheme scales linearly with the optical power in each half of the wavefront, in spite of the subtraction of equal portions of the same wavefront, without the phase factor that is characteristic of the homodyne di¤erential measurement. Data from the balanced homodyne measurement is also shown for comparison, in the range 0.25-1 mW. Variances in both cases are similar and scale as the average optical power. The subtraction scheme does not cancel the quantum noise in the BWDD scheme, directly contradicting the standard calculation in section IIIC. This indicates that the quantum noise in each half of the optical wavefront is independent, as predicted for the quantum state reduction at the detector, ruling out the physical reality of the ‡uctuating wave modes of the quantum vacuum.

There is another class of measurements that are e¤ectively identical to balanced wavefront-division di¤erential measurements. To understand this, consider the measurement of beam parameters of the optical beam from a single coherent laser beam of any intensity. This can be done by sub-saturation imaging with a CCD camera. We note at once that the task of determining the 'centre' of the beam, or 'centroiding', involves just taking the di¤erence signal between 'two halves'on any chosen diameter and averaging (…gure 5). The sum of pixels on each half is equivalent to one detector. Since the image of the beam is two-dimensional, the division can be done in many ways. This di¤erence signal has quantum noise, exactly like the quantum noise observable in the experiment indicated in …g. [START_REF] Weinberg | The cosmological constant problem[END_REF].

Another example is the determination of centroid of the light through a slit, as in an optical lever that measures angular changes. Still another is the localization of the telescope image of stars. While the total width of the image is determined by di¤raction limit of the imaging system, the centroid error is ultimately de…ned by the quantum noise.

Centroiding is the operation of …nding out the pixel location that equally divides the total number of photons in the detector ( N (t) or i(t)) into two bins. If one repeats this, the pixel location ‡uctuates (given su¢ cient spatial resolution) even if only quantum noise is present. For our task of determining the quantum noise, the exact location of the centroid is not critical. We consider the situation in which the balance of average number of photons is better than 1%. Our target is the variations in N (t) and adjusting N (t) to exactly zero is not required. A cooled EMCCD camera (detector) has high quantum e¢ ciency and nearly single photon sensitivity. The optical beam can be expanded so that a large part of the wavefront (>98%) illuminates the sensor. The di¤erence in the total counts from pixels on the two sides of the …ducial pixel is

N (t) = n=2 X 0 N i n X n=2 N i (35)
where each N i is y ' that we calculated earlier. In all experiments dealing with wavefront division, it is necessary to make sure that the spatial (angular) ‡uctuation of the whole beam is small enough to be negligible. Since the whole beam with its quantum ‡uctuations is described by the amplitude = a + a 1 + i a 2 , each N i is proportional to (with factors for the pixel area, ampli…cation factor and a Gaussian beam factor etc.) Therefore, N (t) ' 0 and its variance is also zero, according to the equations 23 and 24. However, centroiding experiments that measure the beam pro…les of weak laser beams show the ‡uctuations in N (t) with variance

V ( N ) ' N (36) 
The physical problem of locating the centroid of the optical image of an illuminated slit, as in autocollimating optical levers to measure angular changes, is similar. The angular shift is measured by tracking the centroid of the image of the slit, which in turn is the balanced di¤erencing operation on the light intensities of the two 'halves'of the image. So, a BWDD scheme is operational in such devices. Optical levers operated at their quantum sensitivity limit [START_REF] Jones | Some developments and applications of the optical lever[END_REF] already indicate that the observed noise ‡oor is in con ‡ict with the hypothesis that the quantum vacuum mode is the source of quantum noise. Take the case of the instrument with an experimentally determined sensitivity limit of < 10 10 radians/ p Hz, with total light detected at the photodiode of about 1 W , or about 10 13 photons/s [START_REF] Jones | Some developments and applications of the optical lever[END_REF]. The di¤raction limited image of the slit had an angular width of 2 10 4 radians. With p V ( N ) = p N ' 3 10 6 , the quantum limited sensitivity of such an optical lever is then > 2 10 4 =3 10 6 ' 7 10 11 radians/ p Hz. In contrast, the prediction for the quantum noise in the di¤erence signal, assuming that its source is the ‡uctuating quantum vacuum wave mode, is V ( N ) ' 0 . Since other noise sources are controlled better in the device, the experimental results of shot-noise limited sensitivity of the optical lever reject the hypothesis of real wave modes of the quantum vacuum. Instead, they support the picture of local quantum state reduction of the superposition of number states at each pixel, at the instant of square-law (intensity) detection.

It is instructive to compare results on the quantum noise in optics with the quantum noise in the direct detection of atoms in a coherent beam of atomic Bose-Einstein condensate (BEC) of metastable Helium atoms (which allows such direct detection and counting of the atoms on a delay line detector due to the nature of spontaneous ionization of the He* atoms on contact) [START_REF] Schellekens | Hanbury Brown Twiss E¤ect for Ultracold Quantum Gases[END_REF]. There is quantum zero-point energy in the dynamics of the atomic BEC, …nite and proportional to the number of atoms. Atomic BEC is in a coherent state, but it has no associated real wave modes of quantum vacuum in space. All zero-point energy of the atomic BEC is associated with the atoms and it is truly zero when there are no atom in the beam. However, the quantum noise in the di¤erence in the number of atoms on either side of a 'centroid'has the variance, V ( N ) ' N . Clearly, this quantum noise is not related to any wave modes of quantum vacuum.

VI. BALANCED HOMODYNE SCHEME AND MICHELSON INTERFEROME-TRY

The common passive optical element of signi…cance in a balanced homodyne measurement and Michelson interferometry is the symmetric (50:50) BS. The detection is entirely di¤erent though. In homodyne, there are two detectors that complete the quantum measurements and a di¤erencing circuit (hard or soft) produces the …nal di¤erence signal. In Michelson interferometry, the input light is divided into two paths by the BS and two end mirrors re ‡ect the beams back to the BS, preserving the average phase after the double-pass through BS. This is equivalent to a di¤erencing operation on the beam amplitudes. This is then detected with a single square law detector that completes the quantum measurement (…gure 6). Compared to the homodyne detection, there are signi…cant di¤erences in details of the quantum noise that are important in the application of squeezed light in sub-shot noise metrology.

The di¤erence signal in the homodyne scheme with a single beam at port 'c' is the interference term N (t) = c y c d y d = ab y + a y b ' 2a b 1 with variance 4a 2 b 2 1 . The radiation pressure noise in a Michelson interferometer has the same feature since the light pressure on each mirror is proportional to the number of photons re ‡ecting o¤ the mirror and the interferometer optical noise comes from the ‡uctuating di¤erential motion of the two mirrors; the common mode displacement does not lead to an optical intensity modulation at the detector. However, this view is simplistic. Consider a Michelson interferometer with one of the mirrors anchored, with its free motion arrested. The interferometer is still sensitive to the gravitational wave strain, albeit with a reduction in sensitivity by a factor of two. However, now the radiation pressure noise is related to N (t) = c y c c y c = a a 1 + a b 1 with variance

V ( N ) = a 2 a 2 1 + b 2 1 + 2 a 1 b 1 ' a 2 a 2 1 + b 2 1 = 1 2 V ( N ) (37) 
It is not natural or logical to claim that just by holding one of the mirrors the radiation pressure noise became equal contribution of vacuum noise in both modes a and b, whereas with mirrors left free, the entire quantum noise was solely from the vacuum noise of b entering the open port. In both cases, there is no constraint on the operation point, which can continue to be the dark fringe. This becomes important in the context of squeezed light injection in the open port for reducing radiation pressure noise at low frequencies. With both mirrors free, the wave-mode picture allows the possibility of arbitrary reduction of radiation pressure noise by injecting light squeezed by the factor exp( s),

V ( N ) ' 4e 2s a 2 b 2 (38) 
whereas the theory allows only limited noise reduction when one of the mirrors in held rigid,

V ( N ) ' a 2 a 2 + e 2s a 2 b 2 (39) 
Currently, the advances in quantum noise reduction in gravitational wave detectors based on Michelson interferometers are based on the notion that the quantum noise in the Michelson signal is similar to the quantum noise in the homodyne signal, which is the cross interference term between the coherent amplitude (or LO) and the quantum noise in the vacuum mode entering the open port, 2a b. The quantum noise is in two quadratures, b 1 'in phase' with the LO amplitude and b 2 that is orthogonal. While the cross term in the homodyne signal is a b 1 , it is a b 2 in the Michelson interferometer signal, operated near the dark fringe. This is because the intensity ‡uctuations near the dark fringe (no light output at port 'b') are due to the ‡uctuating phase di¤erence, rather than amplitude ‡uctuations, of the light in the two arms. Therefore, one argues that replacing the rogue quantum vacuum mode with the squeezed vacuum, with smaller b 2 , at the cost of increased b 1 , reduces the noise in the relevant quadrature [START_REF] Caves | Quantum-mechanical noise in an interferometer[END_REF]. This expectation turns out to be correct, but the detailed physical reason does not involve the wave modes of the quantum vacuum and their ‡uctuations; the comparison of the BWDD scheme with the balanced homodyne scheme already rules out the reality of the wave modes of quantum vacuum. The correct interpretation, in which the quantum state reduction of the superposition of the photon number states happens at the intensity detector where the quantum measurement is completed, will be discussed in a subsequent paper. While the use of the wave modes is very convenient in calculations, just like in the calculation of the Casimir e¤ect etc., the physical reality of such modes is in con ‡ict with both laboratory experiments and cosmology. Hence a consistent and complete description in terms of photon statistics during quantum state reduction at measurement, without referring to the ‡uctuating wave modes, is necessary and possible.

VII. SUMMARY

I have examined two kinds of balanced di¤erential optical measurement involving the di¤erence of intensities recorded by two photodetectors. The …rst is the balanced amplitudedivision homodyne detection (BHD) that uses a symmetric BS and the second is the balanced wavefront-division detection (BWDD) in which the BS is absent. The two beams in each scheme are detected with separate detectors and the di¤erence signal and its quantum ‡uctuations are compared to determine the physical reality and the contribution of the hypothetical quantum vacuum mode to the factually observed quantum noise. The relevant theoretical expressions were derived from …rst principles, for each experiment. It was shown that the predictions for the variance of the di¤erence signals are very di¤erent in the BHD scheme and the BWDD scheme. In BHD, the interference from ‡uctuations in the quantum vacuum mode from one input port of the BS entirely cancels in the subtraction, while the ‡uctuations of the vacuum mode through the second port survive as the cross interference term with the carrier and manifest as the quantum noise of the homodyne signal. This conventional picture and the associated theory seem consistent with the results of the homodyne experiments.

However, the BWDD scheme provides a decisive counter-point because the interference of the ‡uctuations disappears totally in the subtraction without a beam splitter and there is no cross interference term. Therefore, if the measured quantum noise in the BWDD is very di¤erent from the prediction of vanishing residual noise, then the experiment decisively rules out the reality of the quantum vacuum mode and its role in the observed quantum noise. An experiment in which a balanced pair of photodetectors were used to measure the di¤erential intensity and its variance from splitting the wavefront showed that the quantum noise variance scales linearly with optical power, instead of cancelling in the subtraction. Several experimental schemes that are equivalent to the BWDD scheme are examined to con…rm this result. This decisively rejects the physical reality of the wave modes of quantum vacuum. Instead, the reduction of the superposition of particle number states to a speci…c but random number state in each quantum measurement is the sole consistent description and the preferred interpretational choice of the quantum noise. This is also consistent with observational cosmology and its general relativistic description, since there is no divergent ZPE density in this picture. I have derived the quantum noise in this alternate picture in all cases of optical detection. It correctly predicts equal quantum noise in both detection schemes, BHD and BWDD.

These results are corroborated by the recent reformulation of general dynamics and quantum mechanics in terms of a universal wave equation for the 'waves of action', rather than for the hypothetical matter-energy waves [START_REF] Unnikrishnan | Reconstructing quantum mechanics without foundational problems[END_REF]. This modi…cation of dynamics that promotes Hamilton's equation to an action-wave equation reproduces quantum interference, correlations and uncertainty noise, without the divergent ZPE because the action waves carry 'action' and not energy or momentum. The uncertainty principle is recast as S ~. Schrödinger equation and its wavefunction pertain to statistical averages over an ensemble of dynamical histories and not single quantum history, contrary to the prevailing understanding of quantum mechanics. The physical basis of the use of squeezed light in quantum metrology in the light of these results remains to be discussed, especially in the context of the Michelson interferometer. More results and discussion on squeezed light quantum metrology without quantum vacuum modes will be presented in a subsequent paper.
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 1 FIG.1:The scheme for the balanced homodyne detection. The di¤erential signal after the di¤erencing circuit and its ‡uctuations are directly measured.

FIG. 2 :

 2 FIG. 2: The two di¤erential detection schemes to test the physical reality of the quantum vacuum modes. The dashed arrows indicate the hypothetical vacuum modes. Left: Balanced homodyne detection (BHD) with one real optical input at port 'a'. The di¤erential photodetector gives either the di¤erential current i(t) or the di¤erential photon counts N (t). Right: Balanced wavefrontdivision detection (BWDD). The beam is expanded and then the wavefront is split equally into two parts and sent to the di¤erential detector.

  2 ; b 2 a b; b b) are negligible. The beam splitter combines the two input modes to give two output modes c and d. The photon counts in port 'c'(re ‡ection of b and transmission of a) is
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 3 FIG.3: Two con…gurations of balanced wavefront-division detection. This does not involve a 50:50 BS and associated relative phase of . B) Scheme with one or more beam steering elements, like a prism or a mirror.

FIG. 4 :

 4 FIG.4:The noise variance measured in the balanced wavefront-division measurement, plotted as a function of the (balanced) optical power in each detector. Noise variance scales with the optical power (dotted line), similar to the noise in the homodyne measurement, indicating that the wave mode of quantum vacuum is not the source of the quantum noise.
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 5 FIG. 5: Direct wavefront-division di¤erential measurement of an optical beam to study quantum noise.
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 6 FIG. 6: The quantum measurement in the Michelson interferometer.
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