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Abstract

A mixed data frame (MDF) is a table collecting categorical, numerical and count
observations. The use of MDF is widespread in statistics and the applications are
numerous from abundance data in ecology to recommender systems. In many cases,
an MDF exhibits simultaneously main effects, such as row, column or group effects
and interactions, for which a low-rank model has often been suggested. Although
the literature on low-rank approximations is very substantial, with few exceptions,
existing methods do not allow to incorporate main effects and interactions while
providing statistical guarantees. The present work fills this gap.

∗This work has been funded by the DataScience Inititiative (Ecole Polytechnique) and the Russian
Academic Excellence Project ’5-100’
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We propose an estimation method which allows to recover simultaneously the main
effects and the interactions. We show that our method is near optimal under condi-
tions which are met in our targeted applications. We also propose an optimization
algorithm which provably converges to an optimal solution. Numerical experiments
reveal that our method, mimi, performs well when the main effects are sparse and
the interaction matrix has low-rank. We also show that mimi compares favorably to
existing methods, in particular when the main effects are significantly large compared
to the interactions, and when the proportion of missing entries is large. The method
is available as an R package on the Comprehensive R Archive Network.

Keywords: Low-rank matrix completion, missing values, heterogeneous data
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1 Introduction

Mixed data frames (MDF) (see Pagès (2015); Udell et al. (2016)) are tables collecting

categorical, numerical and count data. In most applications, each row is an example or

a subject and each column is a feature or an attribute. A distinctive characteristic of

MDF is that column entries may be of different types and most often many entries are

missing. MDF appear in numerous applications including patient records in health care

(survival values at different time points, quantitative and categorical clinical features like

blood pressure, gender, disease stage, see, e.g., Murdoch and Detsky (2013)), survey data

(Heeringa et al., 2010, Chapters 5 and 6), abundance tables in ecology (Legendre et al.,

1997), and recommendation systems (Agarwal et al., 2011).

1.1 Main effects and interactions

In all these applications, data analysis is often made in the light of additional information,

such as sites and species traits in ecology, or users and items characteristics in recommen-

dation systems. This caused the introduction of the two central concepts of interest in this

article: main effects and interactions. This terminology is classically used to distinguish

between effects of covariates on the observations which are independent of the other covari-

ates (main effects), and effects of covariates on the observations which depend on the value

of one or more other covariates (interactions). For example, in health care, a treatment

might extend survival for all patients – this is a main effect – or extend survival for young

patients but shorten it for older patients – this is an interaction.

Many statistical models have been developed to analyze such types of data. Abundance

tables counting species across environments are for instance classically analyzed using the

log-linear model (Agresti, 2013, Chapter 4). This model decomposes the logarithms of the
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expected abundances into the sum of species (rows) and environment (columns) effects,

plus a low-rank interaction term. Other examples include multilevel models (Gelman and

Hill, 2007) to analyze hierarchically structured data where examples (patients, students,

etc.) are nested within groups (hospitals, schools, etc.).

1.2 Generalized low-rank models

At the same time, low-rank models, which embed rows and columns into low-dimensional

spaces, have been widely used for exploratory analysis of MDF (Kiers, 1991; Pagès, 2015;

Udell et al., 2016). Despite the abundance of results in low-rank matrix estimation (see

Kumar and Schneider (2017) for a literature survey), to the best of our knowledge, most

of the existing methods for MDF analysis do not provide a statistically sound way to

account for main effects in the data. In most applications, estimation of main effects in

MDF has been done heuristically as a preprocessing step (Hastie et al., 2015; Udell et al.,

2016; Landgraf and Lee, 2015). Fithian and Mazumder (2018) incorporate row and column

covariates in their model, but mainly focus on optimization procedures and did not provide

statistical guarantees concerning the main effects. Mao et al. (2018) propose a procedure

to estimate jointly main effects and a low-rank structure – which can be interpreted as

interactions –, but the procedure is based on a least squares loss, and is therefore not

suitable to mixed data types.

On the other hand, several approaches to model non-Gaussian, and particularly discrete

data are available in the matrix completion literature, but they do not consider main effects.

Davenport et al. (2012) introduced one-bit matrix completion, where the observations are

binary such as yes/no answers, and provide nearly optimal upper and lower bounds on the

mean square error of estimation. One-bit matrix completion was also studied in Cai and

Zhou (2013). In Klopp et al. (2015), the authors introduce multinomial matrix completion,
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where the observations are allowed to take more than two values, such as ratings in recom-

mendation systems, and propose a minimax optimal estimator. Unbounded non-Gaussian

observations have also been studied before. For instance, Cao and Xie (2016) extended the

approach of Davenport et al. (2012) to Poisson matrix completion, and Gunasekar et al.

(2014) and Lafond (2015) both studied exponential family matrix completion.

1.3 Contributions

In the present paper we propose a new framework for incomplete and mixed data which

allows to account for main effects and interactions. Before introducing a general model

for MDF with sparse main effects and low-rank interactions, we start in Section 2 with a

concrete example from survey data analysis. Then, we propose in Section 3 an estimation

procedure based on the minimization of a doubly penalized negative quasi log-likelihood.

We also propose a block coordinate gradient descent algorithm to compute our estimator,

and prove its convergence result. In Section 4.1 we discuss the statistical guarantees of

our procedure and provide upper bounds on the estimation errors of the sparse and low-

rank components. To assess the tightness of our convergence rates, in Section 4.2, we derive

lower bounds and show that, in a number of situations, our upper bounds are near optimal.

In Section 4.3, we specialize our results to three examples of interest in applications.

To support our theoretical claims, numerical results are presented in Section 5. In Sec-

tion 5.1, we provide the results of our experiments that show that our method ”mimi” (main

effects and interactions in mixed and incomplete data frames) performs well when the main

effects are sparse and the interactions are low-rank. In case of model mis-specification, mimi

gives similar results to a two-step procedure where main effects and interactions are esti-

mated separately. Then, in Section 5.2, we compare mimi to existing methods for mixed

data imputation. Our experiments reveal that mimi compares favorably to competitors, in
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particular, when the main effects are significantly large compared to the interactions, and

when the proportion of missing entries is large. Finally, in Section 5.3, we illustrate the

method with the analysis of a census data set. The method is implemented in the R (R

Core Team, 2017) package available on the Comprehensive R Archive Network; the proofs

and additional experiments are postponed to the supplementary material.

Notation We denote the Frobenius norm on Rm1×m2 by ‖ · ‖F , the operator norm by

‖ · ‖, the nuclear norm by ‖A‖∗ and the sup norm ‖ · ‖∞. ‖ · ‖2 is the usual Euclidean norm,

‖ · ‖0 the number of non zero coefficients, and ‖ · ‖∞ the infinity norm. For n ∈ N, denote

JnK = {1, . . . , n}. We denote the support of α ∈ RN by supp(α) = {k ∈ JNK, αk 6= 0}. For

I ⊆ J1Km1, we denote 1I , defined by 1I(i) = 1 if i ∈ I and 0 otherwise, the indicator of set

Ih.

2 General model and examples

2.1 American Community Survey

Before introducing our general model, we start by giving a concrete example. The Ameri-

can Community Survey1 (ACS) provides detailed information about the American people

on a yearly basis. Surveyed households are asked to answer 150 questions about their em-

ployment, income, housing, etc. As shown in Table 1, this results in a highly heterogeneous

and incomplete data collection.

Here, the Family Employment Status (FES) variable categorizes the surveyed popula-

tion in groups, depending on whether the household contains a couple or a single person,

and whether the householders are employed. In an exploratory data analysis perspective,

1https://www.census.gov/programs-surveys/acs/about.html
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ID Nb. people Electricity bill ($) Food Stamps Family Employment Status Allocation

1 2 160 No Married couple, neither employed Yes

2 1 390 No NA No

3 4 NA No Married couple, husband employed No

4 2 260 No Married couple, neither employed No

5 2 100 No Married couple, husband employed No

6 2 130 No NA No

Table 1: American Community Survey: Excerpt of the 2016 public use microsample data.

a question of interest is: does the household category influence the value of the other vari-

ables? For example income, food stamps allocation, etc. Furthermore, as we do not expect

the group effects to be sufficient to explain the observations, can we also model residuals,

or interactions?

Denote Y = (Yij) the data frame containing the households in rows and the questions

in columns. If the j-th column is continuous (electricity bill for instance), one might model

the group effects and interactions as follows:

E[Yij] = α0
c(i)j + L0

ij,

where c(i) indicates the group to which individual i belongs, and α0
c(i)j and L0

ij are fixed

group effects and interactions respectively. This corresponds to the so-called multilevel

regression framework (Gelman and Hill, 2007). If the j-th column is binary (food stamps

allocation for instance), one might model

P(Yij = “Yes”) =
eX

0
ij

1 + eX
0
ij

, X0
ij = α0

c(i)j + L0
ij,

corresponding to a logistic regression framework.

The goal is then, from the mixed and incomplete data frame Y , to estimate simultane-

ously the vector of group effects α0 and the matrix of interactions L0. We propose a method
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assuming the vector of main effects α0 is sparse and the matrix of interactions L0 has low-

rank. The sparsity assumption means that groups affect a small number of variables. On

the other hand, the low-rank assumption means the population can be represented by a

few archetypical individuals and summary features (Udell et al., 2016, Section 5.4), which

interact in a multiplicative manner. In fact, if L0 is of rank r, then it can be decomposed

as the sum of r rank-1 matrices as follows:

L0 =
r∑

k=1

ukv
>
k ,

where uk (resp. vk) is a vector of Rm1 (resp. Rm2). Thus, using the above example, we

obtain

E[Yij] = α0
c(i)j +

r∑
k=1

uikvjk,

where the last term
∑r

k=1 uikvjk can be interpreted as the sum of multiplicative interaction

terms between latent individual types and features.

2.2 General model

We now introduce a new framework generalizing the above example to other types of data

and main effects. Consider an MDF Y = (Yij) of size m1×m2. The entries in each column

j ∈ Jm2K belong to an observation space, denoted Yj. For example, for numerical data, the

observation space is Yj = R, and for count data, Yj = N is the set of natural integers. For

binary data, the observation space is Yj = {0, 1}. In the entire paper, we assume that the

random variables (Yij) are independent and that for each (i, j) ∈ Jm1K × Jm2K, Yij ∈ Yj

and E [|Yij|] < ∞. Furthermore, we will assume that Yij is sub-exponential with scale γ

and variance σ2: for all (i, j) ∈ Jm1K× Jm2K and |z| < γ, E
[
ez(Yij−E[Yij ])

]
≤ eσ

2z2/2.
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In our estimation procedure, we will use a data-fitting term based on heterogeneous

exponential family quasi-likelihoods. Let (Y,Y , µ) be a measurable space, h : Y → R+,

and g : R → R be functions. Denote by Exp(h,g) = {f (h,g)
x : x ∈ R} the canonical

exponential family. Here, h is the base function, g is the link function, and f
(h,g)
x is the

density with respect to the base measure µ given by

f (h,g)
x (y) = h(y) exp (yx− g(x)) , (1)

for y ∈ Y. For simplicity, we assume
∫
h(y) exp(yx)µ(dy) <∞ for all x ∈ R.

The exponential family is a flexible framework for different data types. For example,

for numerical data, we set g(x) = x2σ2/2 and h(y) = (2πσ2)−1/2 exp(−y2/σ2). In this case,

Exp(h,g) is the family of Gaussian distributions with mean σ2x and variance σ2. For count

data, we set g(x) = exp(ax) and h(y) = 1/y!, where a ∈ R. In this case, Exp(h,g) is the fam-

ily of Poisson distributions with intensity exp(ax). For binary data, g(x) = log(1 + exp(x))

and h(y) = 1. Here, Exp(h,g) is the family of Bernoulli distributions with success probabil-

ity 1/(1 + exp(−x)).

In our estimation procedure, we choose a collection {(gj, hj), j ∈ Jm2K} of link functions

and base functions corresponding to the observation spaces {(Yj,Yj, µj) , j ∈ Jm2K}. For

each (i, j) ∈ Jm1K × Jm2K, we denote by X0
ij the value of the parameter minimizing the

divergence between the distribution of Yij and the exponential family Exp(hj ,gj), j ∈ Jm2K:

X0
ij = argminx∈R {−E [Yij]x+ gj(x)} . (2)

To model main effects and interactions we assume the matrix of parameters X0 = (X0
ij) ∈
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Rm1×m2 can be decomposed as the sum of sparse main effects and low-rank interactions:

X0 =
N∑
k=1

α0
kU

k + L0. (3)

Here, U = (U1, . . . , UN) is a fixed dictionary of m1×m2 matrices, α0 is a sparse vector with

unknown support I = {k ∈ JNK;α0
k 6= 0} and L0 is an m1×m2 matrix with low-rank. The

decomposition introduced in (3) is a general model combining regression on a dictionary

and low-rank design.

2.3 Low-rank plus sparse matrix decomposition

Such decompositions have been studied before in the literature. In particular, a large body

of work has tackled the problem of reconstructing a sparse and a low-rank terms exactly

from the observation of their sum. Chandrasekaran et al. (2011) derived identifiability

conditions under which exact reconstruction is possible when the sparse component is entry-

wise sparse; the same model was also studied in Hsu et al. (2011). Candès et al. (2011)

proved a similar results for entry-wise sparsity, when the location of the non-zero entries

are chosen uniformly at random. Xu et al. (2010) extended the model to study column-wise

sparsity. Mardani et al. (2013) studied an even broader framework with general sparsity

pattern and determined conditions under which exact recovery is possible.

In the present paper, we consider the problem of estimating a (general) sparse component

and a low-rank term from noisy and incomplete observation of their sum, when the noise

is heterogeneous and in the exponential family. Because of this noisy setting, we can

not recover the two components exactly. Thus, we do not require strong identifiability

conditions as those derived in (Chandrasekaran et al., 2011; Hsu et al., 2011; Candès et al.,

2011; Xu et al., 2010; Mardani et al., 2013). However, since decomposition (3) may not be

unique, we restrict our model to the following class of possible decompositions, to which
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our estimator will be the closest. From all possible decompositions (α,L), consider (α1, L1)

such that

(α1, L1) ∈ argminX0=
∑
αkUk+L{‖α‖0 + rankL}. (4)

Let s1 = ‖α1‖0 + rankL1. Finally let

(α0, L0) ∈ argminX0=
∑
αkU

k+L
‖α‖0+rankL=s1

‖α‖0 . (5)

The decomposition satisfying (4) and (5) may also not be unique. Assume that there exists

a pair (α?, L?) 6= (α0, L0) satisfying (4) and (5). Then,

∥∥L? − L0
∥∥
F

=

∥∥∥∥∥∑
k

α?kU
k −

∑
k

α0
kU

k

∥∥∥∥∥
F

≤ 2a
∥∥α0
∥∥

0
max
k
‖Uk‖2 = R,

with a an upper bound on ‖α0‖∞. This implies that for all such possible decompositions

(α?, L?) we have that L? and
∑

k α
?
kU

k are in the small balls of radius R and centered at L0

and
∑

k α
0
kU

k respectively. Our statistical guarantees in Section 4 show that our estimators

of L0 and
∑

k α
0
kU

k are in balls of radius at least R, and also centered at L0 and
∑

k α
0
kU

k.

Moreover, we also show that this error bound is minimax optimal in several situations.

To summarize, in our model the decomposition may not be unique, but all the possible

decompositions are in a neighborhood of radius smaller than the optimal convergence rate.

2.4 Examples

We now provide three examples of dictionaries which can be used to model classical main

effects.

Example 1. Group effects We assume the m1 individuals are divided into H groups.

For h ∈ JHK denote by Ih ⊂ Jm1K the h-th group containing nh individuals. The
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size of the dictionary is N = Hm2 and its elements are, for all (h, q) ∈ JHK × Jm2K,

Uh,q = (1Ih(i)1{q}(j))(i,j)∈Jm1K×Jm2K. This example corresponds to the model discussed in

Section 2.1; we develop it further in Section 5 with simulations and a survey data analysis.

Example 2. Row and column effects (see e.g. (Agresti, 2013, Chapter 4)) Another

classical model is the log-linear model for count data analysis. Here, Y is a matrix of counts.

Assuming a Poisson model, the parameter matrix X0, which satisfies E [Yij] = exp(X0
ij) for

all (i, j) ∈ Jm1K× Jm2K, is assumed to be decomposed as follows:

X0
ij = (α0

r)i + (α0
c)j + L0

ij, (6)

where α0
r ∈ Rm1 , α0

c ∈ Rm2 and L0 ∈ Rm1×m2 is low-rank. This model is often used to

analyze abundance tables of species across environments (see, e.g., ter Braak et al. (2017)).

In this case the low-rank structure of L0 reflects the presence of groups of similar species

and environments. Model (6) can be re-written in our framework as

X0 =
N∑
k=1

α0
kUk + L0,

with α0 = (α0
r , α

0
c), N = m1 + m2 and where for i ∈ Jm1K and j ∈ Jm2K we have Ui =

(1{i}(k))(k,l)∈Jm1K×Jm2K and Um1+j = (1{j}(l))(k,l)∈Jm1K×Jm2K.

Example 3. Corruptions Our framework also embeds the well-known robust matrix

completion problem (Hsu et al., 2011; Candès et al., 2011; Klopp et al., 2017) which is

of interest, for instance, in recommendation systems.In this application, malicious users

coexist with normal users, and introduce spurious perturbations.Thus, in robust matrix

completion, we observe noisy and incomplete realizations of a low-rank matrix L0 of

fixed rank and containing zeros at the locations of malicious users, perturbed by cor-

ruptions. The sparse component corresponding to corruptions is denoted
∑

(i,j)∈I α
0
kUi,j,
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where the Ui,j, (i, j) ∈ Jm1K × Jm2K, are the matrices of the canonical basis of Rm1×m2

Ui,j = (1{i}(k)1{j}(l))(k,l)∈Jm1K×Jm1K and I is the set of indices of corrupted entries. Thus,

the non-zero components of α0 correspond to the locations where the malicious users in-

troduced the corruptions.For this example, the particular case of quadratic link functions

gj(x) = x2/2 was studied in Klopp et al. (2017). We generalize these results in two direc-

tions: we consider mixed data types and general main effects.

2.5 Missing values

Finally, we consider a setting with missing observations. Let Ω = (Ωij) be an observation

mask with Ωij = 1 if Yij is observed and Ωij = 0 otherwise. We assume that Ω and

Y are independent, i.e. a Missing Completely At Random (MCAR) scenario (Little and

Rubin, 2002): (Ωij) are independent Bernoulli random variables with probabilities πij,

(i, j) ∈ Jm1K× Jm2K. Furthermore for all (i, j) ∈ Jm1K× Jm2K, we assume there exists p > 0

allowed to vary with m1 and m2, such that

πij ≥ p. (7)

For j ∈ Jm2K, denote by π.j =
∑m1

i=1 πij, j ∈ Jm2K the probability of observing an element

in the j-th column. Similarly, for i ∈ Jm1K, denote by πi. =
∑m2

j=1 πij the probability of

observing an element in the i-th row. We define the following upper bound:

max
i,j

(πi., π.j) ≤ β. (8)
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3 Estimation procedure

Consider the data-fitting term defined by the heterogeneous exponential family negative

quasi log-likelihood

L(X;Y,Ω) =

m1∑
i=1

m2∑
j=1

Ωij {−YijXij + gj(Xij)} , (9)

and define the function

f(α,L) = L(fU(α) + L;Y,Ω), (10)

where for α ∈ RN , fU(α) =
∑N

k=1 αkUk. We assume ‖α0‖∞ ≤ a and ‖L0‖∞ ≤ a where a > 0

is a known upper bound. We use the nuclear norm ‖ ·‖∗ (the sum of singular values) and `1

norm ‖·‖1 penalties as convex relaxations of the rank and sparsity constraints respectively:

(α̂, L̂) ∈ argmin(α,L) F (α,L) (11)

s. t. ‖α‖∞ ≤ a, ‖L‖∞ ≤ a, (12)

F (α,L) = f(α,L) + λ1‖L‖∗ + λ2‖α‖1, (13)

with λ1 > 0 and λ2 > 0. In the sequel, for all (α̂, L̂) in the set of solutions, we denote by

X̂ = fU(α̂) + L̂.

3.1 Block coordinate gradient descent (BCGD)

To solve (11) we develop a block coordinate gradient descent algorithm where the two

components α and L are updated alternatively in an iterative procedure. At every iteration,

we compute a (strictly convex) quadratic approximation of the data fitting term and apply

block coordinate gradient descent to generate a search direction. This BCGD algorithm

is a special instance of the coordinate gradient descent method for non-smooth separable

minimization developed in Tseng and Yun (2009).
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Note that the upper bound on ‖α‖∞ and ‖L‖∞ is required to derive the statistical

guarantees and, for simplicity, we did not implement it in practice. That is, we solve the

following relaxed problem:

(α̂, L̂) ∈ argmin(α,L) F (α,L). (14)

Quadratic approximation. For any (α,L) ∈ RN × Rm1×m2 and for any direction

(dα, dL) ∈ RN × Rm1×m2 , consider the following local approximation of the data fitting

term

f(α + dα, L+ dL) = f(α,L) +A(fU(α) + L, dα, dL) + o(‖dα‖2
2 + ‖dL‖2

F ) , (15)

where we have set

A(X, dα, dL) = −2

m1∑
i=1

m2∑
j=1

wij[Xij]Zij[Xij](fU(dα)ij + dLij)

+

m1∑
i=1

m2∑
j=1

wij[Xij](fU(dα)ij + dLij)
2 + ν‖dα‖2

2 + ν‖dL‖2
F . (16)

In (16), ν > 0 is a positive constant and for x ∈ R and (i, j) ∈ Jm1K× Jm2K,

wij[x] = Ωijg
′′
j (x)/2 , Zij[x] = (Yij − g′j(x))/g′′j (x) . (17)

Note that the approximation (16) is simply a Taylor expansion of L around X, with an ad-

ditional quadratic term ν‖dα‖2
2+ν‖dL‖2

F ensuring its strong convexity. Denote by (α[t], L[t])

the fit of the parameter at iteration t and set X [t] = fU(α[t]) + L[t]. We update α and L

alternatively as follows.

α-Update. We first solve

d[t]
α ∈ argmind∈RN

{
A(X [t], d, 0) + λ2‖α[t] + d‖1

}
. (18)
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Problem (18) may be rewritten as a weighted Lasso problem:

argminα∈Rd

m1∑
i=1

m2∑
j=1

wij[X
[t]
ij ](Z

[t]
ij − [fU(α)]ij)

2 + ν‖α[t] − α‖2
2 + λ2‖α‖1 ,

where for i, j ∈ Jm1K × Jm2K we have set Z
[t]
ij := Zij[X

[t]
ij ] + fU(α[t]). Efficient numerical

solutions to this problem are available (see, e.g., Friedman et al. (2010)). To update α[t],

we select a step size with an Armijo line search. The procedure goes as follows. We choose

τinit > 0 and we let τ
[t]
α be the largest element of {τinitβ

j}∞j=0 satisfying

f(α[t] + τ [t]
α d

[t], L[t]) + λ2‖α[t] + τ [t]
α d

[t]‖1 ≤ f(α[t], L[t]) + λ2‖α[t]‖1 + τ [t]
α ζΓ[t]

α ,

where 0 < β < 1, 0 < ζ < 1, 0 ≤ θ < 1, and

Γ[t]
α := −2

m1∑
i=1

m2∑
j=1

wij[X
[t]
ij ]Zij[X

[t]
ij ][fU(d[t])]ij + θ

m1∑
i=1

m2∑
j=1

wij[X
[t]
ij ]
[
fU(d[t])

]2
ij

+ ν‖d[t]‖2
2

+ λ2

{
‖α[t] + d[t]‖1 − ‖α[t]‖1

}
.

We set α[t+1] = α[t] + γ[t]d
[t]
α and X [t+1/2] = fU(α[t+1]) + L[t].

L-Update. We first solve

d
[t]
L := argmind∈Rm1×m2

{
A(X [t+1/2], 0, d) + λ1‖L[t] + d‖∗

}
, (19)

which is equivalent to

argminL∈Rm1×m2

m1∑
i=1

m2∑
j=1

(ν + wij[X
[t+1/2]
ij ])(Z

[t+1/2]
ij − Lij)2 + λ1‖L‖∗, (20)

where for i, j ∈ Jm1K× Jm2K we have set

Z
[t+1/2]
ij =

wij[X
[t+1/2]
ij ](Zij[X

[t+1/2]] + L
[t]
ij ) + νL

[t]
ij

ν + wij[X
[t+1/2]
ij ]

.
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The minimisation problem (20) may be seen as a weighted version of softImpute (Hastie

et al., 2015). Srebro and Jaakkola (2003) proposed to solve (20) using an EM algorithm

where the weights in (0, 1] are viewed as frequencies of observations in a missing value

framework (see also Mazumder et al. (2010)). We use this procedure, which involves soft-

thresholding of the singular values of L, by adapting the softImpute package (Hastie et al.,

2015). To update L[t], we choose the step size using again the Armijo line search. We set

τinit > 0 and let τ
[t]
L be the largest element of {τinitβ

j}∞j=0 satisfying

f(α[t+1], L[t] + τ
[t]
L d

[t]
L ) + λ1‖L[t] + γ[t]d

[t]
L ‖∗ ≤ f(α[t+1], L[t]) + λ1‖L[t]‖∗ + τ

[t]
L ζΓ

[t]
L ,

Γ
[t]
L := −2

m1∑
i=1

m2∑
j=1

wij[X
[t+1/2]
ij ]Zij[X

[t+1/2]
ij ]d

[t]
L ij + θ

m1∑
i=1

m2∑
j=1

wij[X
[t+1/2]
ij ]d

[t]
L ij

2

+ λ1

{
‖L(t) + d

[t]
L ‖∗ − ‖d

[t]
L ‖∗

}
.

We finally set L[t+1] = L[t] + τ
[t]
L d

[t]
L .

3.2 Convergence of the BCGD algorithm

The algorithm described in Section 3.1 is a particular case of the coordinate gradient

descent method for nonsmooth minimisation introduced in Tseng and Yun (2009). In the

aforementioned paper, the authors studied the convergence of the iterate sequence to a

stationary point of the objective function. Here, we apply their general result (Tseng and

Yun, 2009, Theorem 1) to our problem to obtain global convergence guarantees. Consider

the following assumption on the dictionary U .

H1. For all k ∈ JNK and (i, j) ∈ Jm1K × Jm2K, Uk
ij ∈ [−1, 1] and there exists % > 0 such

that for all (i, j) ∈ Jm1K× Jm2K,
∑N

k=1 |Uk
ij| ≤ %.
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Assumption H1 is satisfied in the three models introduced in Examples 1, 2 and 3: for

group effects and corruptions with % = 1 and for row and column effects with % = 2. In

particular, it guarantees that X0 = fU(α0)+L0 satisfies ‖X0‖∞ ≤ (1+%)a. Plugging this in

the definition of X0 in (2), this assumption also implies that E [Yij] ∈ g′j([−(1+%)a, (1+%)a])

for all (i, j) ∈ Jm1K×Jm2K. Note that H1 can be relaxed by ‖Uk‖∞ ≤ ρ, with ρ an arbitrary

constant. Consider also the following assumption on the link functions.

H2. For all j ∈ Jm2K the functions gj are twice continuously differentiable. Moreover, there

exist 0 < σ−, σ+ < +∞ such that for all |x| ≤ (1 + %)a and j ∈ Jm2K, σ2
− ≤ g′′j (x) ≤ σ2

+.

Assumptions H1–2 imply that the data-fitting term has Lipschitz gradient. Further-

more, the quadratic approximation defined in (16) is strictly convex at every iteration. We

obtain the following convergence result.

Theorem 1. Assume H1–2 and let {(α[k], L[k])} be the iterate sequence generated by the

BCGD algorithm. Then the following results hold.

(a) {(α[k], L[k])} has at least one accumulation point. Furthermore, all the accumulation

points of {(α[k], L[k])} are global optima of F .

(b) {F (α[k], L[k])} → F (α̂, L̂).

Proof. See Appendix B.
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4 Statistical guarantees

We now state our main statistical results. Denote by 〈·, ·〉 the usual trace scalar product

in Rm1×m2 . For a ≥ 0 and a sparsity pattern I ⊂ JNK, define the following sets

E1(a, I) =
{
α ∈ RN , ‖α‖∞ ≤ a, supp(α) ⊂ I

}
,

E2(a, I) =

{
L ∈ Rm1×m2 , ‖L‖∞ ≤ a,max

k∈I
|〈L,Uk〉| = 0

}
,

X (a, I) = {X = fU(α) + L; (α,L) ∈ E1(a, I)× E2(a, I)} .

(21)

H3. There exist a > 0 and I ⊂ JNK such that (α0, L0) ∈ E1(a, I)× E2(a, I).

Assumption H3 can be relaxed to allow upper bounds to depend on the entries of α0

and L0, but we stick to H3 for simplicity.

4.1 Upper bounds

We now derive upper bounds for the Frobenius and `2 norms of the estimation errors L0−L̂

and α0 − α̂ respectively. In Theorem 2 we give a general result under conditions on the

regularization parameters λ1 and λ2, which depend on the random matrix ∇L(X0;Y,Ω).

Then, Lemma 1 and 2 allow us to compute values of λ1 and λ2 that satisfy the assumptions

of Theorem 2 with high probability. Finally we combine these results in Theorem 3.

We denote ∨ and ∧ the max and min operators respectively, M = m1∨m2, m = m1∧m2

and d = m1 + m2. We also define r = rank (L0), s = ‖α0‖0 and u = maxk ‖Uk‖1. Let

(Eij)(i,j)∈Jm1K×Jm2K be the canonical basis of Rm1×m2 and {εij} an i.i.d. Rademacher sequence

independent of Y and Ω. Define

ΣR =

m1∑
i=1

m2∑
j=1

ΩijεijEij and ∇L(X;Y,Ω) =

m1∑
i=1

m2∑
j=1

Ωij

{
−Yij + g′j (Xij)

}
Eij. (22)
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ΣR is a random matrix associated with the missingness pattern and ∇L(X;Y,Ω) is the

gradient of L with respect to X. Define also

Θ1 =
λ2

σ2
−

+ a2uE [‖ΣR‖∞] +
p

‖α0‖1

(
a

p

)2

log(d),

Θ2 = λ2
1 + (1 + %)aE

[
‖ΣR‖2

]
,

Θ3 =
λ2

λ1

+ 2Θ1.

Theorem 2. Assume H1-3 and let

λ1 ≥ 2‖∇L(X0;Y,Ω)‖ and λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
)
.

Then, with probability at least 1− 8d−1,

‖fU(α0)− fU(α̂)‖2
F ≤

as

p
C1Θ1 and ‖L0 − L̂‖2

F ≤
r

p2
C2Θ2 +

as

p
C3Θ3, (23)

where C1, C2 and C3 are numerical constants independent of m1, m2 and p.

Proof. See Appendix C.

We now give deterministic upper bounds on E [‖ΣR‖] and E [‖ΣR‖∞] in Lemma 1, and

probabilistic upper bounds on ‖∇L(X0;Y,Ω)‖ and ‖∇L(X0;Y,Ω)‖∞ in Lemma 2. We will

use them to select values of λ1 and λ2 which satisfy the assumptions of Theorem 2 and

compute the corresponding upper bounds.

Lemma 1. There exists an absolute constant C∗ such that the two following inequalities

hold

E [‖ΣR‖∞] ≤ 1 and E [‖ΣR‖] ≤ C∗
{√

β +
√

logm
}
.

Proof. See Appendix H
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Lemma 2. Assume H1-3. Then, there exists an absolute constant c∗ such that the following

two inequalities hold with probability at least 1− d−1:

‖∇L(X0;Y,Ω)‖∞ ≤ 6 max

{
σ+

√
log d,

log d

γ

}
,

‖∇L(X0;Y,Ω)‖ ≤ c∗max

{
σ+

√
β log d,

log d

γ
log

(
1

σ−

√
m1m2

β

)}
,

(24)

where d = m1 +m2 , σ+ and γ are defined in H 2, and β in (8).

Proof. See Appendix I.

We now combine Theorem 2, Lemma 1 and 2 with a union bound argument to derive

upper bounds on ‖fU(α0) − fU(α̂)‖2
F and ‖L0 − L̂‖2

F . We assume that M = (m1 ∨m2) is

large enough, that is

M ≥ max

{
4σ2

+

γ6
log2

( √
m

pγσ−

)
, 2 exp

(
σ2

+/γ
2 ∨ σ2

+γ(1 + %a)
)}

.

Define

Φ1 = a2 +
log(d)

uσ2
−γ

+
a2 log(d)

pu‖α0‖1

,

Φ2 =
σ2

+

σ4
−

log(d) + (1 + %)a (1 ∨ (logm/β)) ,

Φ3 =
12p
√

log(d)

γ(1 + %)aσ+

√
β

+
1

σ2
−

(
log d

γ

)
+
p

u

log(d)

uσ2
−γ

+
a2 log(d)

pu‖α0‖1

,

and recall that s = ‖α0‖0, r = rank(L0), β ≥ maxi,j (
∑m2

l=1 πil,
∑m1

k=1 πkj) and that the

entries Yij are sub-exponential with scale parameter γ.

Theorem 3. Assume H1-3 and let

λ1 = 2c∗σ+

√
β log d, λ2 ≥

24u log(d)

γ
,
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where c∗ is the absolute constant defined in Lemma 2. Then, with probability at least

1− 10d−1,

‖fU(α0)− fU(α̂)‖2
F ≤ C

sau

p
Φ1, and ‖L0 − L̂‖2

F ≤ C

(
rβ

p2
Φ2 +

sau

p
Φ3

)
, (25)

with C an absolute constant.

Denoting by . the inequality up to constant and logarithmic factors we get:

‖fU(α0)− fU(α̂)‖2
F .

su

p
, and ‖L0 − L̂‖2

F .
rβ

p2
+
su

p
,

In the case of almost uniform sampling, i.e., for all (i, j) ∈ Jm1K × Jm2K and two positive

constants c1 and c2, c1p ≤ πij ≤ c2p we obtain that β ≤ c2Mp and the following simplified

bound:

‖L0 − L̂‖2
F .

rM

p
+
su

p
. (26)

The rate given in (26) is the sum of the usual convergence rate of low-rank matrix comple-

tion rM/p and of the usual sparse vector convergence rate s (Bühlmann and van de Geer,

2011; Tsybakov, 2008) multiplied by u/p. This additional factor accounts for missing ob-

servations (p−1) and interplay between main effects and interactions (u). Furthermore, the

estimation risk of fU(α0) is also the usual sparse vector convergence rate, with an additional

up−1 factor accounting for interactions and missing values.

Note that whenever the dictionary U is linearly independent, Theorem 3 also provides

an upper bound on the estimation error of α0. Let G ∈ RN×N be the Gram matrix of the

dictionary U defined by Gkl = 〈Uk, Ul〉 for all (k, l) ∈ JNK× JNK.

H4. For κ > 0 and all α ∈ RN , α>Gα ≥ κ2‖α‖2
2.

Recall that in the group effects model, we denote by Ih the set of rows which belong

to group h. H4 is satisfied for the group effects model with κ2 = minh |Ih|, the row and
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column effects model with κ2 = min(m1,m2) and the corruptions model with κ2 = 1. If

H4 is satisfied then, Theorem 3 implies that (up to constant and logarithmic factors):

‖α0 − α̂‖2
2 .

su

pκ2
.

4.2 Lower bounds

To characterize the tightness of the convergence rates given in Theorem 3, we now provide

lower bounds on the estimation errors. We need three additional assumptions.

H5. The sampling of entries is uniform, i.e. for all (i, j) ∈ Jm1K× Jm2K, πij = p.

H6. There exists I ⊂ JNK, a > 0 and X ∈ XI,a such that for all (i, j) ∈ Jm1K × Jm2K,

Yij ∼ Exp(hj ,gj)(Xij).

Denote τ = maxk
∑

l 6=k |〈Uk, Ul〉|. Without loss of generality we assume m1 = m1∨m2 =

M . For all X ∈ Rm1×m2 we denote PX the product distribution of (Y,Ω) satisfying H5 and

6. Consider two integers s ≤ (m1 ∧m2)/2 and r ≤ (m1 ∧m2)/2. We define the following

set

F(r, s) =
⋃
|I|≤s

{(α,L) ∈ E1(a, I)× E2(a, I); rank (L) ≤ r} . (27)

Theorem 4. Assume H1-5 and p ≥ r
m1∧m2

. Then, there exists a constant δ > 0 such that

inf
L̂,α̂

sup
(L0,α0)∈F(r,s)

PX0

(
‖L0 − L̂‖2

F + ‖fU(α0)− fU(α̂)‖2
F > Ψ1

rM

p
+ Ψ2

sκ2

p

)
≥ δ, (28)

Ψ1 = C min
(
σ−2

+ ,min(a, σ+)2
)
,

Ψ2 = C

(
1

σ2
+ (maxk ‖Uk‖2

F + 2τ)
∧ (a ∧ σ+)2

)
.

(29)

Proof. See Appendix D.
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Model Group effects Row & col effects Corruptions

u maxh |Ih| M 1

‖∆L‖2F + ‖fU (α0)− fU (α̂)‖2F rM/p+ smaxh |Ih|/p rM/p+ sM/p rM/p+ s/p

Table 2: Order of magnitude of the upper bound for Examples 1, 2 and 3 (up to logarithmic

factors).

Model Group effects Row & col effects Corruptions

u maxh |Ih| M 1

maxk ‖Uk‖2F maxh |Ih| M 1

κ2 minh |Ih| m 1

‖∆L‖2F +‖fU (α0)− fU (α̂)‖2F rM/p+ (sminh |Ih|)/(pmaxh |Ih|) rM/p+ sm/(pM) rM/p+ s/p

Table 3: Order of magnitude of the lower bound for Examples 1, 2 and 3.

4.3 Examples

We now specialize our theoretical results to Examples 1, 2 and 3 presented in Section 2.2.

We compute the values of u, τ and maxk ‖Uk‖2
F for the group effects, row and column

effects and corruption models, and obtain the rates of Theorem 3 and Theorem 4 for these

particular cases. Recall that in the group effects model, we denote by Ih the set of rows

which belong to group h. The orders of magnitude are summarized in Table 2 for the

upper bound and in Table 3 for the lower bound. Comparing Table 2 and Table 3 we see

that the convergence rates obtained in Theorem 3 are minimax optimal across the three

examples whenever s < r. Furthermore, in the corruptions model our rates are optimal

(up to constant and logarithmic factors) for any values of r, s and M , and equal to the

minimax rates derived in Klopp et al. (2017). In the case of group effects, the rates are
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optimal when r > smaxh |Ih|/M or when maxh |Ih| is of the order of a constant. When

s > rM/maxh |Ih|, we have an additional factor of the order (maxh |Ih|)2/minh |Ih| in the

upper bound. Note that the bounds have the same dependence in the sparsity pattern s.

In the row and column model, when r < s, we have an additional factor of the order s/r

in the upper bound.

5 Numerical results

5.1 Estimation of main effects and interactions

We start by evaluating our method (referred to as “mimi”: main effects and interactions

in mixed and incomplete data) in terms of estimation of main effects and interactions. In

this experiment, we focus on the group effects model presented in Section 2.1, with H = 5

groups of equal size. We select at random s non-zero coefficients in α0, and construct a

matrix L0 of rank k. Then, X0 =
∑H

h=1

∑m2

j=1 α
0
hjU

h,j + L0, with Uh,j, 1 ≤ h ≤ H and

1 ≤ j ≤ m2 defined in Example 1. Finally, every entry of the matrix is observed with

probability p.

In this first experiment, we consider only numeric variables to compare mimi to the

following two-step method. In this alternative method, the main effects α0 are estimated

by the means of the variables taken by group; this corresponds to the preprocessing step

performed in Udell et al. (2016) and Landgraf and Lee (2015) for instance. Then, L0

is estimated using softImpute (Hastie et al., 2015); we refer to this method as “group

mean + softImpute”. The regularization parameters of both methods are selected with

cross-validation.

The results are displayed in Figure 1 where we plot the estimation errors ‖α̂−α0‖2
2 and
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in Figure 2 ‖L̂− L0‖2
F for different levels of sparsity and different ranks.

On Figure 1 we observe that for a fixed rank, mimi has a smaller error (‖α̂−α0‖2
2) than

the two-step procedure for small sparsity levels, and that the difference between the two

methods cancels as the sparsity level increases. Furthermore, as the rank also increases

(from top to bottom and from left to right), the difference between mimi and the two-step

procedure also decreases. Finally, for large ranks and sparsity levels simultaneously, mimi

has a large estimation error ‖α̂−α0‖2
2 compared to the two-step procedure which does not

assume sparsity. This case can be seen as a model mis-specification setting.

On Figure 2 we observe that mimi has overall smaller errors (‖L̂−L0‖2
F ) than the two-

step procedure. The difference between the two methods cancels as the rank increases. We

also observe that the level of sparsity has little impact on the results. However, for large

ranks and sparsity levels simultaneously, mimi has a larger estimation error ‖L̂−L0‖2
F than

the two-step procedure.

Secondly, we fix the level of sparsity to s = 5 and the rank to k = 5, and perform

the same experiment for increasing problem sizes (150× 30, 1500× 300 and 1500× 3000).

The results are given in Figure 3. We observe that the excess risk ‖L̂ − L0‖2
F the two

methods are similar. In terms of estimation of α0, the estimation error of mimi is constant

as the problem size increases but the sparsity level of α0 is kept constant, as predicted by

Theorem 3. On the contrary, we observe that estimating α0 in a preprocessing step yields

large errors in high dimensions.

5.2 Imputation of mixed data

To evaluate mimi in a mixed data setting, we compare it in terms of imputation of missing

values to five state-of-the-art methods:
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Figure 1: Estimation error ‖α̂ − α0‖2
2 of mimi (red squares) and of groups means +

softImpute (blue points) for increasing problem sparsity levels and ranks. The sparsity

s = 2, 5, 10, 20 is indicated in the abscissa and the rank k = 2, 5, 10, 20 corresponds to

different plots: top left k = 2, top right k = 5, bottom left k = 10, bottom right k = 20.

The dimensions are fixed to m1 = 300 and m2 = 30 and the proportion of missing entries

to p = 0.2.
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Figure 2: Estimation error ‖L̂ − L0‖2
F of mimi (red squares) and of groups means +

softImpute (blue points) for increasing problem sparsity levels and ranks. The rank k =

2, 5, 10, 20 is indicated in the abscissa and the sparsity s = 2, 5, 10, 20 corresponds to

different plots: top left s = 2, top right s = 5, bottom left s = 10, bottom right s = 20.

The dimensions are fixed to m1 = 300 and m2 = 30 and the proportion of missing entries

to p = 0.2.
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Figure 3: Estimation error of mimi (red triangles) and of groups means + softImpute (blue

points) for increasing problem sizes (m1m2, in log scale).

• softImpute (Hastie et al., 2015), a method based on soft-thresholding of singular

values to impute numeric data implemented in the R package softImpute.

• Generalized Low-Rank Model (GLRM, Udell et al. (2016)), a matrix factorization

framework for mixed data implemented in R in the h2o package.

• Factorial Analysis of Mixed Data (FAMD, Pagès (2015)), a principal component

method for mixed data implemented in the R package missMDA (Josse and Husson,

2016).

• Multilevel Factorial Analysis of Mixed Data (MLFAMD, Husson et al. (2018)), an

extension of FAMD to impute multilevel data, i.e. when individual are nested within

groups. The method is also implemented in missMDA.

• Multivariate Imputation by Chained Equations (mice, van Buuren and Groothuis-

Oudshoorn (2011)), an implementation of multiple imputation using Fully Condi-

tional Specification. In the package mice, different models can be set for each column

to account for mixed data.
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Note that we also add a comparison to imputation by the column means, in order to have

a baseline reference. We fix a dictionary U of indicator matrices corresponding to group

effects (see Example 1), and generate a parameter matrix satisfying the decomposition

(3). Then, columns are sampled from different data types, namely Gaussian and Bernoulli.

For varying proportions of missing entries and values of the ratio ρ = ‖fU(α0)‖F/‖L0‖F ,

we evaluate the six methods in terms of imputation error of the two different data types.

The parameters of all the methods (number of components for GLRM and FAMD and

regularization parameters for softImpute and mimi) are selected using cross-validation. In

addition, we use an optional ridge regularization in the h2o implementation of the GLRM

method, which penalizes the `2 norm of the left and right principal components (U and V ),

and improved the imputation in practice. The details are available in the associated code

provided as supplementary material.

% missing 20 40 60

ρ 0.2 1 5 0.2 1 5 0.2 1 5

mean 24.5(0.7) 23.3(0.7) 22.9(0.4) 24.4(1.15) 33.2(1.1) 31.0(1.0) 42.1(1.2) 40.7(1.2) 39.9(0.6)

mimi 18.6(0.4) 18.3(0.3) 17.7(0.3) 18.8(0.3) 27.0(0.5) 24.8(0.6) 36.0(1.0) 33.7(0.8) 30.6(0.4)

GLRM 21.5(0.7) 22.0(0.8) 19.9(0.5) 21.5(0.7) 31.7(1.2) 31.0(0.9) 44.5(10.8) 49.4(16.2) 50.7(3.2)

softImpute 18.5(0.3) 18.5(0.2) 17.9(0.3) 18.6(0.3) 26.8(0.6) 24.9(0.5) 34.9(1.0) 34.9(0.8) 32.2(0.5)

FAMD 18.5(0.4) 18.9(0.4) 18.1(0.4) 18.7(0.3) 28.3(0.6) 25.6(0.7) 36.0(1.5) 40.6(0.8) 32.7(0.5)

MLFAMD 18.5(0.4) 19.2(0.4) 18.3(0.4) 18.5(0.5) 27.7(0.6) 26.3(0.5) 34.9(1.3) 40.7(1.0) 33.5(0.6)

mice 22.3(0.8) 22.6(0.6) 22.1(0.6) 22.7(0.6) 32.9(0.6) 30.1(0.9) 48.1(2.4) 48.1(0.9) 44.7(1.4)

Table 4: Imputation error (MSE) of mimi, GLRM, softImpute and FAMD for differ-

ent percentages of missing entries (20%, 40%, 60%) and different values of the ratio

‖fU(α0)‖F/‖L0‖F (0.2, 1, 5). The values are averaged across 100 replications and the

standard deviation is given between parenthesis. In this simulation m1 = 150, m2 = 30,

s = 3 and r = 2.
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The results, presented in Table 4, reveal that mimi, softImpute, FAMD and MLFAMD

yield imputation errors of comparable order. In this simulation setting, our method mimi

improves on these existing methods when the ratio ρ = ‖fU(α0)‖F/‖L0‖F is large, i.e.

when the scale of the main effects is large compared to the interactions. The size of

this improvement also increases with the amount of missing values. The imputation error

by data type (quantitative and qualitative) are given in Appendix A, along with average

experimental computational times of all the compared methods.

5.3 American Community Survey

We next apply our method on the American Community Survey data presented in Sec-

tion 2.1. We use the 2016 survey 2 and restrict ourselves to the population of Alabama

(24,614 household units). We focus on twenty variables (11 quantitative and 9 binary), and

use mimi to estimate the effect of the Family Employment Status categories on these 20

variables. In other words, we place ourselves in the framework of Section 2.1 and Exam-

ple 1. We model the quantitative attributes using Gaussian distributions, and the binary

attributes with Bernoulli distributions. Using the same notations as in Section 2.1, c(i)

denotes the group (the FES) to which household i belongs. Thus, if the j-th column is

continuous (income), our model implies:

E[Yij] = α0
c(i)j + L0

ij.

If the j-th column is binary (food stamps allocation for instance), we model

P(Yij = 1) =
eX

0
ij

1 + eX
0
ij

, X0
ij = α0

c(i)j + L0
ij.

2available at https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?

refresh=t
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In Table 5, we display the value of the parameter αc(i)j for all possible groups c(i) and some

variables j corresponding to the number of people in household, food stamps and alloca-

tions attributions. The value of αc(i)j is related to the expected value E[Yij]: everything else

being fixed, E[Yij] is an increasing function of αc(i)j. Thus, in terms of interpretation, the

”group effect” αc(i)j indicates (everything else being equal) whether belonging to category

c(i) yields larger or smaller values for E[Yij] compared to other categories.

We observe that household categories corresponding to married couples and single

women have positive group effects on the variable ”Number of people”, meaning that

these categories of households tend to have more children. We also observe that house-

hold categories containing employed people tend to receive less food stamps than other

categories.

FES Nb of people Food stamps (0: no, 1: yes) Allocations (0: no, 1: yes)

Couple - both in LF 0.38 -1.8 -0.68

Couple - male in LF 0.32 -1.4 -0.39

Couple - female in LF 0 -0.9 0

Couple - neither in LF 0 -1.6 -0.12

Male - in LF 0 0 0

Male - not in LF 0 0 0

Female - in LF 0.28 -0.19 0

Female - not in LF 0.13 0 0

Table 5: Effect of family type and employment status estimated with mimi.

The estimated low-rank component L̂ has rank 5, indicating that 5 dimensions, in

addition to the family type and employment status covariate, are needed to explain the

observed data points.
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6 Conclusion

This article introduces a general framework to analyze high-dimensonal, mixed and incom-

plete data frames with main effects and interactions. Upper bounds on the estimation error

of main effects and interactions are derived. These bounds match with the lower-bounds

under weak additional assumptions. Our theoretical results are supported by a numerical

experiments on synthetic and survey data, showing that the introduced method performs

best when the proportion of missing values is large and the main effects and interactions

are of comparable size.

Our work opens several directions of future research. A natural extension would be to

consider the inference problem, i.e., to derive confidence intervals for the main effects coeffi-

cients. Another useful direction would be to consider exponential family distributions with

multi-dimensional parameters, for example multinomial, distributions, to incorporate cat-

egorical variables with more than two categories. One could also learn the scale parameter

(which we currently assume fixed) adaptively.
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SUPPLEMENTARY MATERIAL

A Imputation error by data type and timing results

In this section we provide more details on the simulations of Section 5.2. Table 6 presents

the imputation errors of the compared methods for quantitative variables only, and Table 7

for binary variables. For the quantitative variables, mimi and MLFAMD, which both

model main group effects, perform best. As already noticed in Section 5.2, mimi has

smaller imputation errors than other methods when the size of the main effects compared

to the interactions, and the proportion of missing entries, are both large. For the binary

variables, suprisingly, softImpute outperforms consistently the other methods, although it

is not designed for mixed data. Finally, Table 8 shows the average computational times

of the different compared methods. We observe that the computational times of mimi,

GLRM, FAMD and MLFAMD are of comparable order. The aforementioned methods are

an order of magnitude slower than softImpute and mice.

B Proof of Theorem 1

To prove global convergence of the BCGD algorithm, we use a result from (Tseng and Yun,

2009, Theorem 1) summarized below in Theorem 5, combined with the compacity of the

level sets of the objective F , proved using Lemma 3 and Lemma 4.

Theorem 5. Let {(α[k], L[k])} be the current iterates, {(d[k]
α , d

[k]
L )} the descent directions

and {(Γ[k]
α ,Γ

[k]
L )} the functionals generated by the BCGD algorithm. Then the following

results hold.
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% missing 20 40 60

ρ 0.2 1 5 0.2 1 5 0.2 1 5

mean 20.7(1.3) 19.8(0.7) 19.6(0.6) 28.0(2.6) 28.2(1.3) 26.9(1.1) 35.5(1.6) 34.2(1.3) 34.1(0.5)

mimi 13.0(0.4) 12.3(0.4) 11.4(0.3) 19.8(1.1) 19.0(0.7) 16.1(0.5) 27.1(1.0) 24.3(1.1) 20.2(0.4)

GLRM 16.1(1.0) 16.9(0.7) 13.8(0.4) 24.0(5.3) 24.5(1.5) 23.4(1.1) 36.5(12.3) 41.9(18.0) 44.1(3.7)

softImpute 14.0(0.5) 14.0(0.4) 13.3(0.4) 20.3(1.2) 20.9(0.7) 18.5(0.8) 27.3(1.2) 27.4(1.0) 24.4(0.5)

FAMD 12.7(0.5) 12.9(0.6) 12.1(0.3) 19.2(1.3) 20.2(0.6) 17.3(0.6) 26.9(1.8) 31.2(1.0) 22.7(0.4)

MLFAMD 12.6(0.6) 13.7(0.6) 12.2(0.4) 18.8(1.0) 19.7(0.6) 17.6(0.7) 25.4(1.5) 26.2(1.2) 23.5(0.6)

mice 17.3(0.8) 17.2(1.0) 16.9(0.6) 25.1(1.2) 26.0(0.7) 23.1(1.0) 40.7(2.8) 40.1(0.9) 36.8(1.8)

Table 6: Quantitative variables: Imputation error (MSE) of mimi, GLRM, softImpute and

FAMD for different percentages of missing entries (20%, 40%, 60%) and different values of

the ratio ‖fU(α0)‖F/‖L0‖F (0.2, 1, 5). The values are averaged across 100 replications and

the standard deviation is given between parenthesis.

% missing 20 40 60

ρ 0.2 1 5 0.2 1 5 0.2 1 5

mean 13.0(0.3) 12.4(0.3) 11.8(0.4) 18.33(0.4) 17.4(0.3) 16.9(0.3) 22.6(0.5) 22.0(0.6) 20.8(0.6)

mimi 13.5(0.3) 13.5(0.3) 13.5(0.3) 18.9(0.5) 19.1(0.3) 18.9(0.6) 23.7(0.6) 23.4(0.5) 23.1(0.4)

GLRM 14.2(0.4) 14.1(0.6) 14.2(0.5) 20.0(0.4) 20.2(0.4) 20.4(0.3) 24.9(0.5) 25.1(0.6) 24.9(0.3)

softImpute 12.2(0.1) 12.0(0.3) 12.0(0.6) 17.0(0.3) 16.7(0.2) 16.6(0.4) 21.6(0.4) 21.6(0.3) 21.0(0.5)

FAMD 13.6(0.4) 13.8(0.4) 13.5(0.3) 19.2(0.5) 19.8(0.3) 18.8(0.6) 24.0(0.5) 25.0(0.4) 23.6(0.4)

MLFAMD 13.6(0.5) 13.5(0.4) 13.6(0.4) 19.4(0.5) 19.5(0.4) 19.6(0.5) 24.0(0.5) 24.1(0.4) 23.9(0.4)

mice 14.6(0.3) 14.5(0.4) 14.4(0.4) 20.5(0.4) 20.3(0.2) 20.5(0.4) 25.7(0.4) 25.7(0.6) 25.3(0.2)

Table 7: Binary variables: Imputation error (MSE) of mimi, GLRM, softImpute and FAMD

for different percentages of missing entries (20%, 40%, 60%) and different values of the

ratio ‖fU(α0)‖F/‖L0‖F (0.2, 1, 5). The values are averaged across 100 replications and the

standard deviation is given between parenthesis.

(a) {F (α[k], L[k])} is nonincreasing and for all k, (Γ
[k]
α ,Γ

[k]
L ) satisfies

−Γ[k]
α ≥ (1− θ)ν‖d[k]

α ‖2
2 and − Γ

[k]
L ≥ (1− θ)ν‖d[k]

L ‖
2
F .
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method mean mimi GLRM softImpute FAMD MLFAMD mice

time (s) 1.7e-4 6.6 5.5 0.1 2.6 3.5 0.2

Table 8: Computation time of the seven compared methods (averaged across 100 simula-

tions).

(b) Every cluster point of {(α[k], L[k])} is a stationary point of F .

Assumptions H1 and 2, combined with the separability of the `1 and nuclear norm

penalties, guarantee that the conditions of (Tseng and Yun, 2009, Theorem 1) are satisfied.

We now show that the data-fitting term L(fU(α) + L;Y,Ω) is lower-bounded.

Lemma 3. There exists a constant c > −∞ such that, for all X ∈ Rm1×m2, L(X;Y,Ω) ≥ c.

Proof. Recall that L(X;Y,Ω) =
∑m1

i=1

∑m2

j=1 Ω{−YijXij + gj(Xij)}. Thus, we only need to

prove that for all (i, j) ∈ Jm1K×Jm2K, the function x 7→ −Yijx+gj(x) is lower bounded by a

constant cij > −∞. Assume that this is not the case; by the convexity of x 7→ −Yijx+gj(x)

we have that either −Yijx+ gj(x) →
x→+∞

−∞ or −Yijx+ gj(x) →
x→−∞

−∞. Assume without

loss of generality that −Yijx+ gj(x) →
x→+∞

−∞. Then, there exists x0 ∈ R such that for all

x ≥ x0, −Yijx+ gj(x) < log
∫
y∈Yj
y≥Yij

hj(y)µj(dy). Thus, for all x ≥ max(x0, 0), we have that

∫
y∈Yj

hj(y)eyx−gj(x)µj(dy) =

∫
y∈Yj
y<Yij

hj(y)eyx−gj(x)µj(dy) +

∫
y∈Yj
y≥Yij

hj(y)eyx−gj(x)µj(dy)

>

∫
y∈Yj
y<Yij

hj(y)eyx−gj(x)µj(dy) + 1 > 1,

contradicting normality of the density hj(y)eyx−gj(x). Thus, there exists cij > −∞, such

that for all x ∈ R, −Yijx + gj(x) ≥ cij. Finally we obtain that L(X;Y,Ω) ≥ c =∑m1

i=1

∑m2

j=1 cij.
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Finally, we use Lemma 3 to show the compactness of the level sets of the objective

function F , defined for C ∈ R by

LC = {(α,L) ∈ RN × Rm1×m2 ;F (α,L) ≤ C}.

Lemma 4. The level sets of the objective function F are compact.

Proof. For all (α,L) ∈ RN × Rm1×m2 , F (α,L) ≥ c + λ1‖L‖∗ + λ2‖α‖1, where c is the

constant defined in Lemma 3. Thus, for all C ∈ R, the level set LC is included in the

compact set {
(α,L) ∈ RN × Rm1×m2 ; ‖L‖∗ ≤

C − c
2λ1

and ‖α‖1 ≤
C − c
2λ2

}
.

Furthermore, by the continuity of F , the level set LC is also a closed set. Thus we obtain

that for all C ∈ R, the level set LC is compact.

We can now combine Theorem 5, Lemma 3 and Lemma 4 to prove Theorem 1. Let

(α[0], L[0]) be an initialization point. Theorem 5 (a) implies that the sequence (α[k], L[k])

generated by the BCGD algorithm lies in the level set of F

LF (α[0],L[0]) =
{

(α,L) ∈ RN × Rm1×m2 ;F (α,L) ≤ F (α[0], L[0])
}
.

Furthermore, LF (α[0],L[0]) is compact by Lemma 4, showing that the sequence (α[k], L[k]) has

at least one accumulation point. Combined with Theorem 5 (b) and the convexity of F ,

this shows Theorem 1 (a).

Theorem 5 (a) and Lemma 3 combined imply that the sequence {F (α[k], L[k])} converges

to a limit F ∗. Furthermore, Theorem 1 (a) and the continuity of F imply that there

exists a sub-sequence {F (α[k], L[k])}k∈K such that {F (α[k], L[k])}k∈K → F (α̂, L̂). Thus,

F ∗ = F (α̂, L̂), which proves Theorem 1 (b).
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C Proof of Theorem 2

Let Π = (πij)(i,j)∈Jm1K×Jm2K be the distribution of the mask Ω. For B ∈ Rm1×m2 we de-

note BΩ the projection of B on the set of observed entries. We define ‖B‖2
Ω = ‖BΩ‖2

F ,

and ‖B‖2
Π = E [‖B‖2

Ω], where the expectation is taken with respect to Π. The proof of

Theorem 2 will follow the subsequent two steps. We first derive an upper bound on the

Frobenius error restricted to the observed entries ‖∆X‖2
Ω, then show that the expected

Frobenius error ‖∆X‖2
Π is upper bounded by ‖∆X‖2

Ω with high probability, and up to a

residual term defined later on.

Let us derive the upper bound on ‖∆X‖2
Ω. By definition of L̂ and α̂: L(X̂;Y,Ω) −

L(X0;Y,Ω) ≤ λ1

(
‖L0‖∗ − ‖L̂‖∗

)
+ λ2 (‖α0‖1 − ‖α̂‖1) . Recall that, for α ∈ RN , we use

the notation fU(α) =
∑N

k=1 αkU
k. Adding 〈∇L(X0;Y,Ω),∆X〉 on both sides of the last

inequality, we get

L(X̂;Y,Ω)− L(X0;Y,Ω) + 〈∇L(X0;Y,Ω),∆X〉 ≤

λ1

(
‖L0‖∗ − ‖L̂‖∗

)
− 〈∇L(X0;Y,Ω),∆L〉

+ λ2

(
‖α0‖1 − ‖α̂‖1

)
− 〈∇L(X0;Y,Ω), fU(∆α)〉. (30)

Assumption H2 implies that for any pair of matrices X1 and X2 in Rm1×m2 satisfying

‖X1‖∞ ∨ ‖X2‖∞ ≤ (1 + %)a, the two following inequalities hold for all Ω:

L(X;Y,Ω)− L(X̃;Y,Ω)− 〈∇L(X̃;Y,Ω), X − X̃〉 ≥
σ2
−

2
‖X − X̃‖2

Ω, (31)

‖∇L(X;Y,Ω)−∇L(X̃;Y,Ω)‖F ≤ σ2
+‖X − X̃‖Ω. (32)

Plugging (31) into (30) allows to construct a lower bound on the left hand side term and
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obtain σ2
−‖∆X‖2

Ω/2 ≤ A1 + A2,

A1 = λ1

(
‖L0‖∗ − ‖L̂‖∗

)
+
∣∣〈∇L(X0;Y,Ω),∆L〉

∣∣ ,
A2 = λ2

(
‖α0‖1 − ‖α̂‖1

)
+
∣∣〈∇L(X0;Y,Ω), fU(∆α)〉

∣∣ . (33)

Let us upper bound A1. The duality of the norms ‖ · ‖∗ and ‖ · ‖ implies that∣∣〈∇L(X0;Y,Ω),∆L〉
∣∣ ≤ ‖∇L(X0;Y,Ω)‖‖∆L‖∗.

Denote by S1 and S2 the linear subspaces spanned respectively by the left and right singular

vectors of L0, and PS⊥1 and PS⊥2 the orthogonal projectors on the orthogonal of S1 and S2,

PL0⊥ : X 7→ PS⊥1 XPS⊥2 and PL0 : X 7→ X − PS⊥1 XPS⊥2 . The triangular inequality yields

‖L̂‖∗ = ‖L0 − PL0⊥(∆L)− PL0(∆L)‖∗ ≥ ‖L0 + PL0⊥(∆L)‖∗ − ‖PL0(∆L)‖∗. (34)

Moreover, by definition of PL0⊥ , the left and right singular vectors of PL0⊥(∆L) are respec-

tively orthogonal to the left and right singular spaces of L0, implying ‖L0 +PL0⊥(∆L)‖∗ =

‖L0‖∗ + ‖PL0⊥(∆L)‖∗. Plugging this identity into (34) we obtain

‖L0‖∗ − ‖L̂‖∗ ≤ ‖PL0(∆L)‖∗ − ‖PL0⊥(∆L)‖∗, (35)

and A1 ≤ λ1

(
‖PL0(∆L)‖∗ − ‖PL0⊥(∆L)‖∗

)
+ ‖∇L(X0;Y,Ω)‖‖∆L‖∗.

Using ‖∆L‖∗ ≤ ‖PL0(∆L)‖∗+‖PL0⊥(∆L)‖∗ and the assumption λ1 ≥ 2‖∇L(X0;Y,Ω)‖

we get A1 ≤ 3λ1‖PL0(∆L)‖∗/2. In addition, ‖PL0(∆L)‖∗ ≤
√

rank (PL0(∆L))‖PL0(∆L)‖F ,

and rank (PL0(∆L)) ≤ 2 rank (L0) (see, e.g. (Klopp, 2014, Theorem 3)). Together with

‖PL0(∆L)‖F ≤ ‖∆L‖F , this finally implies the following upper bound:

A1 ≤
3λ1

2

√
2r‖∆L‖F . (36)

We now derive an upper bound for A2. The duality between ‖ · ‖1 and ‖ · ‖∞ ensures∣∣〈∇L(X0;Y,Ω), fU(∆α)〉
∣∣ ≤ ‖∆α‖1‖∇L(X0;Y,Ω)‖∞u. (37)
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The assumption λ2 ≥ 2‖∇L(X0;Y,Ω)‖∞u in conjunction with (37) and the triangular

inequality ‖∆α‖1 ≤ ‖α0‖1 + ‖α̂‖1 yield

A2 ≤
3λ2

2
‖α0‖1. (38)

Combining inequalities (33), (36) and (38) we obtain

‖∆X‖2
Ω ≤

3λ1

σ2
−

√
2r‖∆L‖F +

3λ2

σ2
−
‖α0‖1. (39)

We now show that when the errors ∆L and ∆α belong to a subspace C and for a residual

D - both defined later on - the following holds with high probability:

‖∆X‖2
Ω ≥ ‖∆X‖2

Π − D. (40)

We start by defining our constrained set and prove that it contains the errors ∆L and ∆α

with high probability (Lemma 5-6); then we show that restricted strong convexity holds

on this subspace (Lemma 7). For non-negative constants d1, dΠ, ρ < m and ε that will be

specified later on, define the two following sets where ∆α and ∆L should lie:

A(d1, dΠ) =
{
α ∈ RN : ‖α‖1 ≤ d1, ‖fU(α)‖2

Π ≤ dΠ

}
. (41)

L(ρ, ε) =

{
L ∈ Rm1×m2 , α ∈ RN : ‖L+ fU(α)‖2

Π ≥
72 log(d)

p log(6/5)
,

‖L+ fU(α)‖∞ ≤ 1, ‖L‖∗ ≤
√
ρ‖L‖F + ε

} (42)

If ‖∆X‖2
Π is too small, the right hand side of (40) is negative. The first inequality in the

definition of L(ρ, ε) prevents from this. Condition ‖L‖∗ ≤
√
ρ‖L‖F + ε is a relaxed form

of the condition ‖L‖∗ ≤
√
ρ‖L‖F satisfied for matrices of rank ρ. Finally, we define the

constrained set of interest:

C(d1, dΠ, ρ, ε) = L(ρ, ε) ∩
{
Rm1×m2 ×A(d1, dΠ)

}
.
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Recall u = maxk ‖Uk‖1 and let

d1 = 4‖α0‖1, and dΠ =
3λ2

σ2
−
‖α0‖1 + 64a2uE [‖ΣR‖∞] ‖α0‖1 + 3072a2p−1 +

72a2 log(d)

log(6/5)
.

Lemma 5. Let λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + u)a
)

and assume H1-2 hold. Then,

with probability at least 1− 8d−1, ∆α ∈ A(d1, dΠ).

Proof. See Appendix E.

Lemma 5 implies the upper bound on ‖∆α‖2
2 of Theorem 2. Thus, we only need to

prove the upper bound on ‖∆L‖2
F . Let ρ = 32r and ε = 3λ2/λ1‖α0‖1.

Lemma 6. Assume H2 and let

λ1 ≥ 2‖∇L(X0;Y,Ω)‖, λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + u)a
)
.

Then ‖∆L‖∗ ≤
√
ρ‖∆L‖F + ε.

Proof. See Appendix F

As a consequence, under the conditions on the regularization parameters λ1 and λ2

given in Lemma 6 and whenever ‖∆L+ fU(∆α)‖2
Π ≥ 72 log(d)/(p log(6/5)), the error terms

(∆L,∆α) belong to the constrained set C(d1, dΠ, ρ, ε) with high probability.

Case 1: Suppose ‖∆L+ fU(∆α)‖2
Π < 72 log(d)/(p log(6/5)). Then, Lemma 5 combined

with the fact that ‖M‖2
F ≤ p−1‖M‖2

Π for all M , and the identity (a + b)2 ≥ a2/4 − 4b2

ensures that ‖∆L‖2
F ≤ 4‖∆L + fU(∆α)‖2

F + 16‖fU(∆α)‖2
F . Therefore we obtain (ii) of

Theorem 2:

‖∆L‖2
F ≤

288a2 log(d)

log(6/5)
+ 16

‖α0‖1

p
Θ1.
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Case 2: Suppose ‖∆L + fU(∆α)‖2
Π ≥ 72 log(d)/(p log(6/5)). Then, Lemma 5 and 6

yield that with probability at least 1− 8d−1,(
∆L

2(1 + %)a
,

∆α

2(1 + %)a

)
∈ C(d′1, d′Π, ρ′, ε′),where

d′1 =
d1

2(1 + %)a
, d′Π =

dΠ

4(1 + %)2a2
, ρ′ = ρ, ε′ =

ε

2(1 + %)a
,

and where d1, dΠ, ρ and ε are the same as in Lemma 5 and 6. We use the following result,

proven in Appendix G. Recall that we assume for all (i, j) ∈ Jm1K× Jm2K, P(Ωij = 1) ≥ p

and define:

Ã(d1) =

{
α ∈ RN : ‖α‖∞ ≤ 1; ‖α‖1 ≤ d1; ‖fU(α)‖2

Π ≥
18 log(d)

p log(6/5)

}
,

Dα = 8%d1uE [‖ΣR‖∞] + 768p−1,

DX =
112ρ

p
E [‖ΣR‖]2 + 8%εE [‖ΣR‖] + 8%d1uE [‖ΣR‖∞] + dΠ + 768p−1.

(43)

Lemma 7. (i) For any α ∈ Ã(d1), with probability at least 1− 8d−1,

‖fU(α)‖2
Ω ≥

1

2
‖fU(α)‖2

Π − Dα.

(ii) For any pair (L, α) ∈ C(d1, dΠ, ρ, ε), with probability at least 1− 8d−1

‖L+ fU(α)‖2
Ω ≥

1

2
‖L+ fU(α)‖2

Π − DX . (44)

Proof. See Appendix G.

Lemma 7 (ii) applied to
(

∆L
2(1+%)a

, ∆α
2(1+%)a

)
implies that with probability at least 1−8d−1,

‖∆X‖2
Π ≤ 2‖∆X‖2

Ω +4(1+%)aDX . Combined with (39), ‖∆X‖2
F ≤ p−1‖∆X‖2

Π, ‖∆X‖2
F ≥

‖∆L‖2
F/2−‖fU(∆α)‖2

F and 6
√

2rλ1/(pσ
2
−)‖∆L‖F ≤ ‖∆L‖2

F/4 + 288rλ2
1/(p

2σ4
−), we obtain

the result of Theorem 2 (ii):

‖∆L‖2
F ≤

1152rλ2
1

p2σ4
−

+
24λ2‖α0‖1

pσ2
−

+ 4(1 + %)aDX + 4
‖α0‖
p

Θ1.
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D Proof of Theorem 4

We will establish separately two lower bounds of order rM/p and s/p respectively. Define

L̃ =

{
L̃ ∈ Rm1×r : L̃ij ∈

{
0, ηmin(a, σ+)

(
r

pm

)1/2
}
,∀(i, j) ∈ Jm1K× JrK

}
,

where 0 ≤ η ≤ 1 will be chosen later. Define also the associated set of block matrices

L =
{
L = (L̃| . . . |L̃|O) ∈ Rm1×m2 : L̃ ∈ L̃

}
,

where O denotes the m1 × (m2 − r bm2/rc) null matrix and, for some x ∈ R, bxc is the

integer part of x. We also define the following set of vectors

A =
{
α = (Õ|α̃) ∈ RN , α̃k ∈ {0, η̃min(a, σ+)} ∀1 ≤ k ≤ s

}
,

with Õ ∈ Rm2−s denoting the null vector. Finally, we set

X =
{
X = L+ fU(α) ∈ Rm1×m2 , α ∈ A, L ∈ L

}
.

For any X ∈ X there exists a matrix L ∈ L of rank at most r and a vector α with at

most s non-zero components satisfying X = L + fU(α). Furthermore, for any X̃ ∈ X

there exists a matrix L̃ ∈ L of rank at most r and a vector α̃ with at most s non-zero

components satisfying X− X̃ = L̃+ fU(α̃). Finally, for all X ∈ X and (i, j) ∈ Jm1K× Jm2K,

0 ≤ Xij ≤ (1 + %)a. Thus, X ⊂ F(r, s), where F(r, s) is defined in (27).

Lower bound of order rM/p. Consider the set

XL = {X = L+ fU(α) ∈ X ;α = 0}.

Lemma 2.9 in Tsybakov (2008) (Varshamov Gilbert bound) implies that there exists a

subset X 0
L ⊂ XL satisfying Card(X 0

L) ≥ 2rM/8 + 1, such that the zero m1 × m2 matrix
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0 ∈ X 0
L, and that for any two X and X ′ in X 0

L, X 6= X ′ we have

‖X −X ′‖2
F ≥

Mr

8

(
η2 min(a, σ+)2 r

pm

⌊m2

r

⌋)
≥ η2

16
min(a2, σ2

+)
rM

p
. (45)

For X ∈ X 0
L we compute the Kullback-Leibler divergence KL(P0,PX) between P0 and PX .

Using Assumption H2 we obtain

KL(P0,PX) =
∑
i,j

πij
(
gj(Xij)− gj(0)− g′j(0)Xij

)
≤
σ2

+η
2 min(a, σ+)2Mr

2
. (46)

Inequality (46) implies that

1

Card(X 0
L)− 1

∑
X∈X 0

L

KL(P0,PX) ≤ 1

16
log(Card(X 0

L)− 1) (47)

is satisfied for η̃ = min
{

1, (8σ+ min(a, σ+))−1}. Then, conditions (45) and (46) guarantee

that we can apply Theorem 2.5 from Tsybakov (2008). We obtain that for some constant

δ > 0 and with Ψ1 = C min
(
σ−2

+ ,min(a, σ2
+)
)
:

inf
L̂,α̂

sup
(L0,α0)∈E

PX0

(
‖∆L‖2

F + ‖∆α‖2
2 >

Ψ1rM

p

)
≥ δ, (48)

Lower bound of order s/p. Using again the Varshamov-Gilbert bound (Tsybakov

(2008), Lemma 2.9) we obtain that there exists a subset A0 ∈ A satisfying Card(A0) ≥

2s/8 + 1 and containing the null vector 0 ∈ RN and such that, for any α and α′ of A0,

α 6= α′,

‖α− α′‖2
2 ≥

s

8
η̃2 min(a, σ+)2. (49)

Define Xα ⊂ X the set of matrices X = fU(α) such that α ∈ A0 and L = 0. For any

X ∈ Xα we compute the Kullback-Leibler divergence KL(P0,PX) between P0 and PX

KL(P0,PX) =
∑
i,j

πij(gj(Xij)− gj(0)− g′j(0)Xij ≤ σ2
+‖fU(α)‖2

Π ≤ σ2
+p‖fU(α)‖2

F . (50)
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Using Assumption H2

KL(P0,PX) ≤ σ2
+p
(

max
k
‖Uk‖2

F + 2τ
)
‖α‖2

2

≤ sσ2
+p
(

max
k
‖Uk‖2

F + 2τ
)
η̃2 min(a, σ+)2.

(51)

From (51) we deduce that

1

Card(A0)− 1

∑
A0

KL(P0,PX) ≤ sp
(

max
k
‖Uk‖2

F + 2τ
)
σ2

+η̃
2 min(a, σ+)2. (52)

Choosing η̃ = min
{

1,
(√

pσ+ maxk(‖Uk‖F + 2τ) min(a, σ+)
)−1
}
, we now use Tsybakov

(2008), Theorem 2.5 which implies for some constant δ > 0

inf
L̂,α̂

sup
(L0,α0)∈E

PX0

{
‖∆L‖2

F + ‖
N∑
k=1

(α0
k − α̂k)Uk‖2

F > Ψ2
sκ2

p

}
≥ δ, (53)

Ψ2 = C

(
1

σ2
+ (maxk ‖Uk‖2

F + 2τ)
∧ (a ∧ σ+)2

)
,

where we have used that ‖
∑N

k=1(α0
k− α̂k)Uk‖2

F ≥ κ2‖α̂−α0‖2
2. We finally obtain the result

by combining (48) and (53).

E Proof of Lemma 5

We start by proving ‖∆α‖1 ≤ 4‖α0‖1. By the optimality conditions over a convex set

(Aubin and Ekeland, 1984, Chapter 4, Section 2, Proposition 4), there exist two subgradi-

ents f̂L in the subdifferential of ‖ · ‖∗ taken at L̂ and f̂α in the subdifferential of ‖ · ‖1 taken

at α̂, such that for all feasible pairs (L, α) we have

〈∇L(X̂;Y,Ω), L− L̂+
N∑
k=1

(αk − α̂k)Uk〉+ λ1〈f̂L, L− L̂〉+ λ2〈f̂α, α− α̂〉 ≥ 0. (54)
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Applying inequality (54) to the pair (L̂, α0) we obtain 〈∇L(X̂;Y,Ω),
∑N

k=1 ∆αkU
k〉 +

λ2〈f̂α,∆α〉 ≥ 0. Denote X̃ = L̂+
∑N

k=1 α
0
kU

k. The last inequality is equivalent to

〈∇L(X0;Y,Ω),
N∑
k=1

∆αkU
k〉︸ ︷︷ ︸

B1

+ 〈∇L(X̃;Y,Ω)−∇L(X0;Y,Ω),
N∑
k=1

∆αkU
k〉︸ ︷︷ ︸

B2

+ 〈∇L(X̂;Y,Ω)−∇L(X̃;Y,Ω),
N∑
k=1

∆αkU
k〉︸ ︷︷ ︸

B3

+λ2〈f̂α,∆α〉 ≥ 0.

We now derive upper bounds on the three terms B1, B2 and B3 separately. Recall that we

denote u = maxk ‖Uk‖1 and use (37) to bound B1:

B1 ≤ ‖∆α‖1‖∇L(X0;Y,Ω)‖∞u. (55)

The duality between ‖ · ‖∞ and ‖ · ‖1 gives B2 ≤ ‖∆α‖1‖∇L(X̃;Y,Ω)−∇L(X0;Y,Ω)‖∞u.

Moreover, ∇L(X̃;Y,Ω)−∇L(X0;Y,Ω) is a matrix with entries g′j(X̃ij)−g′j(X0
ij), therefore

assumption H2 ensures ‖∇L(X̃;Y,Ω) − ∇L(X0;Y,Ω)‖∞ ≤ 2σ2
+(1 + %)a, and finally we

obtain

B2 ≤ ‖∆α‖12σ2
+(1 + %)au. (56)

We finally bound B3 as follows. We have that B3 =
∑m1

i=1

∑m2

j=1 Ωij(g
′
j(X̂ij)−g′j(X̃ij))(X̃ij−

X̂ij). Now, for all j ∈ Jm2K, g′j is increasing therefore (g′j(X̂ij) − g′j(X̃ij))(X̃ij − X̂ij) ≤ 0,

which implies B3 ≤ 0. Combined with (55) and (56) this yields

λ2〈f̂α, α̂− α0〉 ≤ ‖∆α‖1u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
)
.

Besides, the convexity of ‖ · ‖1 gives 〈f̂α, α̂− α0〉 ≥ ‖α̂‖1 − ‖α0‖1, therefore{
λ2 − u

(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
)}
‖α̂‖1 ≤{

λ2 + u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
)}
‖α0‖1,
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and the condition λ2 ≥ 2
{
u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
)}

gives ‖α̂‖1 ≤ 3‖α0‖1 and

finally

‖∆α‖1 ≤ 4‖α0‖1. (57)

Case 1: ‖fU(∆α)‖2
Π < 72a2 log(d)/(p log(6/5)). Then the result holds trivially.

Case 2: ‖fU(∆α)‖2
Π ≥ 72a2 log(d)/(p log(6/5)). For d1 > 0 recall the definition of the set

Ã(d1) =

{
α ∈ RN : ‖α‖∞ ≤ 1; ‖α‖1 ≤ d1; ‖fU(α)‖2

Π ≥
18 log(d)

p log(6/5)

}
.

Inequality (57) and ‖∆α‖∞ ≤ 2a imply that ∆α/(2a) ∈ Ã(2‖α0‖1/a). Therefore we can

apply Lemma 7(i) and obtain that with probability at least 1− 8d−1,

‖fU(∆α)‖2
Π ≤ 2‖fU(∆α)‖2

Ω + 64%a‖α0‖1uE [‖ΣR‖∞] + 3072a2p−1. (58)

We now must upper bound the quantity ‖fU(∆α)‖2
Ω. Recall that X̃ =

∑N
k=1 α

0
kU

k + X̂. By

definition, L(X̂;Y,Ω) + λ1‖L̂‖∗ + λ2‖α̂‖1 ≤ L(X̃;Y,Ω) + λ1‖L̂‖∗ + λ2‖α0‖1, i.e.

L(X̂;Y,Ω)− L(X̃;Y,Ω) ≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
.

Substracting 〈∇L(X̃;Y,Ω), X̂− X̃〉 on both sides and using the restricted strong convexity

((31)), we obtain

σ2
−

2
‖fU(∆α)‖2

Ω ≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
+ 〈∇L(X̃;Y,Ω), fU(∆α)〉

≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
+
∣∣〈∇L(X0;Y,Ω), fU(∆α)〉

∣∣︸ ︷︷ ︸
C1

+
∣∣∣〈∇L(X0;Y,Ω)−∇L(X̃;Y ), fU(∆α)〉

∣∣∣︸ ︷︷ ︸
C2

. (59)
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The duality of ‖ · ‖1 and ‖ · ‖∞ yields C1 ≤ ‖∇L(X0;Y,Ω)‖∞u‖∆α‖1, and

C2 ≤ ‖∇L(X0;Y,Ω)−∇L(X̃;Y,Ω)‖∞u‖∆α‖1.

Furthermore, ‖∇L(X0;Y,Ω) − ∇L(X̃;Y,Ω)‖∞ ≤ 2σ2
+a, since for all (i, j) ∈ Jm1K × Jm2K

|X̃ij −X0
ij| ≤ 2a and g′′j (X̃ij) ≤ σ2

+. The last three inequalities plugged in (59) give

σ2
−

2
‖fU(∆α)‖2

Ω ≤ λ2

(
‖α0‖1 − ‖α̂‖1

)
+ u‖∆α‖1

{
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+a
}
.

The triangular inequality gives

σ2
−

2
‖fU(∆α)‖2

Ω ≤
{
u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+a
)

+ λ2

}
‖α0‖1

+
{
u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+a
)
− λ2

}
‖α̂‖1.

Then, the assumption λ2 ≥ 2u
(
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
)

gives

‖fU(∆α)‖2
Ω ≤

3λ2

σ2
−
‖α0‖1.

Plugged into (58), this last inequality implies that with probability at least 1− 8d−1

‖fU(∆α)‖2
Π ≤

3λ2

σ2
−
‖α0‖1 + 64%a‖α0‖1uE [‖ΣR‖∞] + 3072a2p−1. (60)

Combining (57) and (60) gives the result.

F Proof of Lemma 6

Using (54) for L = L0 and α = α0 we obtain

〈∇L(X̂;Y,Ω),∆L+
N∑
k=1

(∆αk)U
k〉+ λ1〈f̂L,∆L〉+ λ2〈f̂α,∆α〉 ≥ 0.
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Then, the convexity of ‖ · ‖∗ and ‖ · ‖1 imply that ‖L0‖∗ ≥ ‖L̂‖∗ + 〈∂‖L̂‖∗,∆L〉 and

‖α0‖1 ≥ ‖α̂‖∗ + 〈∂‖α̂‖1,∆α〉. The last three inequalities yield

λ1

(
‖L̂‖∗ − ‖L0‖∗

)
+ λ2

(
‖α̂‖1 − ‖α0‖1

)
≤ 〈∇L(X̂;Y,Ω),∆L〉

+ 〈∇L(X̂;Y,Ω),
N∑
k=1

(∆αk)U
k〉

≤ ‖∇L(X̂;Y,Ω)‖‖∆L‖∗ + u‖∇L(X̂;Y,Ω)‖∞‖∆α‖1.

Using (35) and the conditions

λ1 ≥ 2‖∇L(X0;Y,Ω)‖, λ2 ≥ 2u
{
‖∇L(X0;Y,Ω)‖∞ + 2σ2

+(1 + %)a
}
,

we get

λ1

(
‖P⊥L0(∆L)‖∗ − ‖PL0(∆L)‖∗

)
+ λ2

(
‖α̂‖1 − ‖α0‖1

)
≤

λ1

2

(
‖P⊥L0(∆L)‖∗ + ‖PL0(∆L)‖∗

)
+
λ2

2
‖∆α‖1,

which implies ‖P⊥L0(∆L)‖∗ ≤ 3‖PL0(∆L)‖∗ + 3λ2/λ1‖α0‖1. Now, using

‖∆L‖∗ ≤ ‖P⊥L0(∆L)‖∗ + ‖PL0(∆L)‖∗, ‖PL0(∆L)‖F ≤ ‖∆L‖F

and rank(PL0(∆L)) ≤ 2r, we get ‖∆L‖∗ ≤
√

32r‖∆L‖F + 3λ2/λ1‖α0‖1. This completes

the proof of Lemma 6.

G Proof of Lemma 7

Proof of (i): Recall Dα = 8%d1uE [‖ΣR‖∞] + 768p−1 and

Ã(d1) =

{
α ∈ RN : ‖α‖∞ ≤ 1; ‖α‖1 ≤ d1; ‖fU(α)‖2

Π ≥
18 log(d)

p log(6/5)

}
.
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We will show that the probability of the following event is small:

B =

{
∃α ∈ Ã(d1) such that

∣∣‖fU(α)‖2
Ω − ‖fU(α)‖2

Π

∣∣ > 1

2
‖fU(α)‖2

Π + Dα

}
.

Indeed, B contains the complement of the event we are interested in. We use a peeling

argument to upper bound the probability of event B. Let ν = 18 log(d)/(p log(6/5)) and

η = 6/5. For l ∈ N set

Sl =
{
α ∈ Ã(d1) : ηl−1ν ≤ ‖fU(α)‖2

Π ≤ ηlν
}
.

Under the event B, there exists l ≥ 1 and α ∈ Ã(d1) ∩ Sl such that

∣∣‖fU(α)‖2
Ω − ‖fU(α)‖2

Π

∣∣ >
1

2
‖fU(α)‖2

Π + Dα >
1

2
ηl−1ν + Dα =

5

12
ηlν + Dα. (61)

For T > ν, consider the set of vectors

Ã(d1, T ) =
{
α ∈ Ã(d1) : ‖fU(α)‖2

Π ≤ T
}

and the event

Bl =

{
∃α ∈ Ã(d1, η

lν) :
∣∣‖fU(α)‖2

Ω − ‖fU(α)‖2
Π

∣∣ > 5

12
ηlν + Dα

}
.

If B holds, then (61) implies that Bl holds for some l ≤ 1. Therefore ,B ⊂ ∪+∞
l=1Bl, and it is

enough to estimate the probability of the events Bl and then apply the union bound. Such

an estimation is given in the following lemma, adapted from Lemma 10 in Klopp (2015).

Lemma 8. Define ZT = supα∈Ã(d1,T ) |‖fU(α)‖2
Ω − ‖fU(α)‖2

Π| . Then,

P
(
ZT ≥ Dα +

5

12
T

)
≤ 4e−pT/18.
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Proof. By definition,

ZT = supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

ΩijfU(α)2
ij − E

∑
(i,j)

ΩijfU(α)2
ij

∣∣∣∣∣∣ .
We use the following Talagrand’s concentration inequality, proven in Talagrand (1996) and

Chatterjee (2015).

Lemma 9. Assume f : [−1, 1]n 7→ R is a convex Lipschitz function with Lipschitz constant

L. Let Ξ1, . . . ,Ξn be independent random variables taking values in [−1, 1]. Let Z :=

f(Ξ1, . . . ,Ξn). Then, for any t ≥ 0, P (|Z − E [Z]| ≥ 16L+ t) ≤ 4e−t
2/2L2

.

We apply this result to the function

f(x11, . . . , xm1m2) = supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij

∣∣∣∣∣∣ ,
which is Lipschitz with Lipschitz constant

√
p−1T . Indeed, for any (x11, . . . , xm1m2) ∈
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Rm1×m2 and (z11, . . . , zm1m2) ∈ Rm1×m2 :

|f(x11, . . . , xm1m2)− f(z11, . . . , zm1m2)|

=

∣∣∣∣∣∣supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij

∣∣∣∣∣∣− supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(zij − πij)fU(α)2
ij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ supα∈Ã(d1,T )

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
(i,j)

(zij − πij)fU(α)2
ij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − πij)fU(α)2
ij −

∑
(i,j)

(zij − πij)fU(α)2
ij

∣∣∣∣∣∣
≤ supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

(xij − zij)fU(α)2
ij

∣∣∣∣∣∣
≤ supα∈Ã(d1,T )

√∑
(i,j)

π−1
ij (xij − zij)2

√∑
(i,j)

πijfU(α)4
ij

≤ supα∈Ã(d1,T )

√
p−1

√∑
(i,j)

(xij − zij)2

√∑
(i,j)

πijfU(α)2
ij

≤
√
p−1T

√∑
(i,j)

(xij − zij)2,

where we used ||a| − |b|| ≤ |a − b|,‖fU(α)‖∞ ≤ 1 and ‖A‖2
Π ≤ T . Thus, Lemma 9 and the

identity
√
p−1T ≤ 96p−1

2
+ T

2×96
imply

P
(
|Z − E [Z]| ≥ 768p−1 +

1

12
T + t

)
≤ 4e−t

2p/2T .

Taking t = T/3 we get

P
(
|Z − E [Z]| ≥ 768p−1 +

5

12
T

)
≤ 4e−pT/18. (62)
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Now we must bound the expectation E [ZT ]. To do so, we use a symmetrization argument

(Ledoux, 2001) which gives

E [ZT ] = E

supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

ΩijfU(α)2
ij − E []

∑
(i,j)

ΩijfU(α)2
ij

∣∣∣∣∣∣


≤ 2E

supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

εijΩijfU(α)2
ij

∣∣∣∣∣∣
 ,

where {εij} is an i.i.d. Rademacher sequence independent of {Ωij}. We apply an extension

Talagrand’s contraction inequality to Lipschitz functions (see Koltchinskii (2011), Theorem

2.2) and obtain

E [ZT ] = E

[
sup
A∈T

∣∣∣∣∣∑
i,j

εijΩijA
2
ij

∣∣∣∣∣
]
≤ 4%E

supα∈Ã(d1,T )

∣∣∣∣∣∣
∑
(i,j)

εijΩijAij

∣∣∣∣∣∣


= 4%E
[
supα∈Ã(d1,T ) |〈ΣR, fU(α)〉|

]
,

where ΣR =
∑

(i,j) εijΩijEij. Moreover, for α ∈ Ã(d1, T ) we have

|〈ΣR, fU(α)〉| =

∣∣∣∣∣〈ΣR,
N∑
k=1

αkU
k〉

∣∣∣∣∣ ≤ ‖α‖1u‖ΣR‖∞.

Finally, we get E [ZT ] ≤ 4%d1uE [‖ΣR‖∞] . Combining this with the concentration inequality

(62) we complete the proof of Lemma 8:

P
(
ZT ≥ 8%d1uE [‖ΣR‖∞] + 768p−1 +

5

12
T

)
≤ 4e−pT/18.
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Lemma 8 gives that P (Bl) ≤ 4 exp(−pηlν/18). Applying the union bound we obtain

P (B) ≤
∞∑
l=1

P (Bl) ≤ 4
∞∑
l=1

exp(−pηlν/18)

≤ 4
∞∑
l=1

exp(−p log(η)lν/18),

where we used ex ≥ x. Finally, for ν = 18 log(d)/(p log(6/5)) we obtain

P (B) ≤ 4 exp(−pν log(η)/18)

1− exp(−pν log(η)/18)
≤ 4 exp(− log(d))

1− exp(− log(d))
≤ 8

d
,

since d− 1 ≥ d/2, which concludes the proof of (i).

Proof of (ii): The proof is similar to that of (i); we recycle some of the notations for

simplicity. Recall DX = 112ρp−1E [‖ΣR‖]2 + 8%εE [‖ΣR‖] + 8%d1uE [‖ΣR‖∞] + dΠ + 768p−1,

and let

B =
{
∃(L, α) ∈ C(d1, dΠ, ρ, ε);∣∣‖L+ fU(α)‖2

Ω − ‖L+ fU(α)‖2
Π

∣∣ > 1

2
‖L+ fU(α)‖2

Π + DX

}
,

ν = 72 log(d)/(p log(6/5)), η = 6/5 and for l ∈ N

Sl =
{

(L, α) ∈ C(d1, dΠ, ρ, ε) : ηl−1ν ≤ ‖L+ fU(α)‖2
Π ≤ ηlν

}
.

As before, if B holds, then there exist l ≥ 2 and (L, α) ∈ C(d1, dΠ, ρ, ε) ∩ Sl such that∣∣‖L+ fU(α)‖2
Ω − ‖L+ fU(α)‖2

Π

∣∣ >
5

12
ηlν + DX . (63)

For T > ν, consider the set C̃(T ) = {(L, α) ∈ C(d1, dΠ, ρ, ε) : ‖L+ fU(α)‖2
Π ≤ T}, and the

event

Bl =

{
∃(L, α) ∈ C̃(ηlν) :

∣∣‖L+ fU(α)‖2
Ω − ‖L+ fU(α)‖2

Π

∣∣ > 5

12
ηlν + DX

}
.
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Then, (63) implies that Bl holds and B ⊂ ∪+∞
l=1Bl. Thus, we estimate in Lemma 10 the

probability of the events Bl, and then apply the union bound.

Lemma 10. Let WT = sup(L,α)∈C̃(T ) |‖L+ fU(α)‖2
Ω − ‖L+ fU(α)‖2

Π| .

P
(
WT ≥ DX +

5

12
T

)
≤ 4e−pT/72.

Proof. The proof is two-fold: first we show that WT concentrates around its expectation,

then bound its expectation. By definition,

WT = sup(L,α)∈C̃(T )

∣∣∣∣∣∣
∑
(i,j)

Ωij(Lij + fU(α)ij)
2 − E

∑
(i,j)

Ωij(Lij + fU(α)ij)
2

∣∣∣∣∣∣ .
The concentration proof is exactly similar to the proof in Lemma 8, but we choose t = T/6,

and we obtain

P
(
|WT − E [WT ]| ≥ 768p−1 +

3

12
T

)
≤ 4e−pT/72. (64)

Let us now bound the expectation E [WT ]. Again, we use a standard symmetrization

argument (Ledoux, 2001) which gives

E [WT ] ≤ 2E

sup(L,α)∈C̃(T )

∣∣∣∣∣∣
∑
(i,j)

εijΩij(Lij + fU(α)ij)
2

∣∣∣∣∣∣
 ,

where {εij} is an i.i.d. Rademacher sequence independent of Ωij. Then, the contraction

inequality (see Koltchinskii (2011), Theorem 2.2) yields

E [WT ] ≤ 4%E
[
sup(L,α)∈C̃(T ) |〈ΣR, L+ fU(α)〉|

]
,

where ΣR =
∑

(i,j) εijΩijEij. Moreover

|〈ΣR, L+ fU(α)〉| ≤ |〈ΣR, L〉|+ |〈ΣR, fU(α)〉|

≤ ‖L‖∗‖ΣR‖ + ‖α‖1u‖ΣR‖∞.
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For (L, α) ∈ C̃(T ) we have by assumption ‖α‖1 ≤ d1, ‖fU(α)‖Π ≤
√
dΠ and ‖L‖∗ ≤

√
ρ‖L‖F + ε. We obtain

‖L‖∗ ≤
√
ρ

p
‖L‖Π + ε ≤

√
ρ

p
(‖L+ fU(α)‖Π + ‖fU(α)‖Π) + ε

≤
√
ρ

p

(√
T +

√
dΠ

)
+ ε.

This gives

E [WT ] ≤ 4%

{√
ρ

p

(√
T +

√
dΠ

)
+ ε

}
‖ΣR‖ + 4%d1u‖ΣR‖∞

≤ T

12
+
dΠ

2
+ 56%2ρ

p
‖ΣR‖2 + 4%ε‖ΣR‖ + 4%d1u‖ΣR‖∞.

Combining this with the concentration inequality (64) we finally obtain:

P
(
WT ≥ DX +

5

12
T

)
≤ 4e−pT/72.

Lemma 10 gives that P (Bl) ≤ 4 exp(−pηlν/72). Applying the union bound we obtain

P (B) ≤
∞∑
l=1

P (Bl) ≤ 4
∞∑
l=1

exp(−pηlν/72)

≤ 4
∞∑
l=1

exp(−p log(η)lν/72),

where we used ex ≥ x. Finally, for ν = 72 log(d)/(p log(6/5)) we obtain

P (B) ≤ 4 exp(−pν log(η)/72)

1− exp(−pν log(η)/72)
≤ 4 exp(− log(d))

1− exp(− log(d))
≤ 8d−1,

since d− 1 ≥ d/2, which concludes the proof of (ii).
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H Proof of Lemma 1

The first inequality is trivially true using that ‖Σ‖∞ = maxi,j |Ωijεij| ≤ 1. We prove the

second inequality using an extension to rectangular matrices via self-adjoint dilation of

Corollary 3.3 in Bandeira and van Handel (2016).

Proposition 1. Let A be an m1 × m2 rectangular matrix with Aij independent centered

bounded random variables. then, there exists a universal constant C∗ such that

E [‖A‖] ≤ C∗
{
σ1 ∨ σ2 + σ∗

√
log(m1 ∧m2)

}
,

σ1 = max
i

√∑
j

E
[
A2
ij

]
, σ2 = max

j

√∑
i

E
[
A2
ij

]
, σ∗ = max

i,j
|Aij|.

Applying Proposition 1 to ΣR with σ1 ∨ σ2 ≤
√
β and σ∗ ≤ 1 we obtain

E [‖ΣR‖] ≤ C∗
{√

β +
√

log(m1 ∧m2)
}
.

I Proof of Lemma 2

Denote Σ = ∇L(X0;Y,Ω). Definition (2) implies that E [Yij] = g′j(X
0
ij), (i, j) ∈ Jm1K ×

Jm2K. Combined with the sub-exponentiality of the entries Yij, we obtain that for all i, j,

Yij−g′j(X0
ij) is sub-exponential with scale and variance parameters 1/γ and σ2

+ respectively.

Then, noticing that |Ωij| ≤ 1 implies that for all t ≥ 0,

P
{∣∣Ωij

(
Yij − g′j(X0

ij)
)∣∣ ≥ t

}
≤ P

{∣∣Yij − g′j(X0
ij)
∣∣ ≥ t

}
,

we obtain that the random variables Σij = Ωij

(
Yij − g

′
j(X

0
ij)
)

are also sub-exponential.

Thus, for all i, j and for all t ≥ 0 we have that |Σij| ≤ t with probability at least 1 −

62



max
{

2e−t
2/2σ2

+ , 2e−γt/2
}

. A union bound argument then yields

‖Σ‖∞ ≤ t w. p. at least 1−max
{

2m1m2e
−t2/2σ2

+ , 2m1m2e
−γt/2

}
,

where γ and σ+ are defined in H2. Using log(m1m2) ≤ 2 log d, where d = m1 + m2 and

setting t = 6 max
{
σ+

√
log d, γ−1 log d

}
, we obtain that with probability at least 1− d−1,

‖Σ‖∞ ≤ 6 max
{
σ+

√
log d, γ−1 log d

}
,

which proves the first inequality. Now we prove the second inequality using the following

result obtained by extension of Theorem 4 in Tropp (2012) to rectangular matrices.

Proposition 2. Let W1, . . . ,Wn be independent random matrices with dimensions m1×m2

that satisfy E [Wi] = 0. Suppose that

δ∗ = sup
i∈JnK

inf
δ>0
{E [exp (‖Wi‖/δ)] ≤ e} < +∞. (65)

Then, there exists an absolute constant c∗ such that, for all t > 0 and with probability at

least 1− e−t we have∥∥∥∥∥ 1

n

n∑
i=1

Wi

∥∥∥∥∥ ≤ c∗max

{
σW

√
t+ log d

n
, δ∗

(
log

δ∗
σW

)
t+ log d

n

}
,

where

σW = max


∥∥∥∥∥ 1

n

n∑
i=1

E
[
WiW

>
i

]∥∥∥∥∥
1/2

,

∥∥∥∥∥ 1

n

n∑
i=1

E
[
W>
i Wi

]∥∥∥∥∥
1/2
 .

For all (i, j) ∈ Jm1K×Jm2K define Zij = −Ωij

(
Yij − g

′
j(X

0
ij)
)
Eij. The sub-exponentiality

of the variables Ωij

(
Yij − g

′
j(X

0
ij)
)

implies that for all i, j ∈ Jm1K× Jm2K

δij = infδ>0

{
E
[
exp

(∣∣∣Ωij

(
Yij − g

′

j(X
0
ij)
)∣∣∣ /δ)] ≤ e

}
≤ 1

γ
.
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We can therefore apply Proposition 2 to the matrices Zij defined above, with the quantity

σZ = max

{∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

,

∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
Z>ijZij

]∥∥∥∥∥
1/2}

. (66)

We obtain that for all t ≥ 0 and with probability at least 1− e−t,

‖Σ‖ ≤ c∗max

{
σZ
√
m1m2(t+ log d),

(
log

1

γσZ

)
t+ log d

γ

}
.

We bound σZ from above and below as follows.

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]
=

m1∑
i=1

{
m2∑
j=1

E
[
Ω2
ij

]
E
[(
Yij − g

′

j(X
0
ij)
)2
]}

Eii(m1),

where Eii(n), i, n ≥ 1 denotes the n×n square matrix with 1 in the (i, i)-th entry and zero

everywhere else. Therefore∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

=

√√√√ 1

m1m2

max
i

m2∑
j=1

E
[
Ω2
ij

]
E
[(
Yij − g

′
j(X

0
ij)
)2
]
.

Then, assumption H2 gives∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

≤ σ+

√√√√ 1

m1m2

(
max
i

m2∑
j=1

E
[
Ω2
ij

])
,

and ∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
ZijZ

>
ij

]∥∥∥∥∥
1/2

≥ σ−

√√√√ 1

m1m2

(
max
i

m2∑
j=1

E
[
Ω2
ij

])
.

Similarly, we obtain∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
Z>ijZij

]∥∥∥∥∥
1/2

≤ σ+

√√√√ 1

m1m2

(
max
j

m1∑
i=1

E
[
Ω2
ij

])
,
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and ∥∥∥∥∥ 1

m1m2

m1∑
i=1

m2∑
j=1

E
[
Z>ijZij

]∥∥∥∥∥
1/2

≥ σ−

√√√√ 1

m1m2

(
max
j

m1∑
i=1

E
[
Ω2
ij

])
.

Combining the last four inequalities, we obtain

σ−

√
β

m1m2

≤ σZ ≤ σ+

√
β

m1m2

,

and setting t = log d, we further obtain for all t ≥ 0 and with probability at least 1− d−1:

‖Σ‖ ≤ c∗max

{
σ+

√
2β log d,

2 log d

γ
log

(
1

σ−

√
m1m2

β

)}
,

which proves the result.
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