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INTRODUCTION

Many case studies have demonstrated the potential of Field-Programmable Gate Arrays (FPGAs) as accelerators for a wide range of applications, from scientific and financial computing to signal and data processing, bioinformatics, molecular dynamics, stencil computations and cryptography [START_REF] Vanderbauwhede | High-performance computing using FPGAs[END_REF]. FPGAs offer massive parallelism and programmability at the bit level. These characteristics enable programmers to exploit a range of techniques that avoid many bottlenecks of classical von Neumann computing: data-flow operation without the need of instruction decoding; massive register and memory bandwidth, without contention on a register file and single memory bus; operators and storage elements tailored to the application in nature, number and size.

However, to unleash this potential, development costs for FPGAs are orders of magnitude higher than classical programming. High performance and high development costs are the two faces of the same coin.

One reason for the high development costs on FPGAs is that they inherited their programming model from digital circuit design. The hardware description languages (HDLs) used there have a very different programming paradigm than the languages used for software design. When accelerating software code with FPGAs, software-oriented languages such as C/C++ are increasingly being considered as hardware description languages. This has many advantages. Experimenting with different options of FPGA acceleration is simpler since no rewriting of software into HDL is needed. The language itself is more widely known than any HDL. The sequential execution model makes int mul7(int x){ return x*7; } Listing 1. C code.

(...) a: 89 d0 mov %edx,%eax c: c1 e0 03 shl $0x3,%eax f: 29 d0 sub %edx,%eax (...) Listing 2. Objdump of Figure 1 when compiled with gcc.

designing and debugging much easier. One can use software execution on a processor for simulation. All this drastically reduces development time.

Compiling a software description (such as a C program) into hardware is called High-Level Synthesis (HLS). Examples of HLS tools include Vivado HLS [START_REF]Vivado Design Suite User Guide: High-Level Synthesis[END_REF], Intel HLS [START_REF]Intel High Level Synthesis Compiler: Best Practices Guide[END_REF] or Catapult C1 among others [START_REF] Nane | A survey and evaluation of FPGA high-level synthesis tools[END_REF]. Turning a C description into a circuit requires to extract parallelism from sequential programs constructs (e.g. loops) and expose this parallelism in the target design. Today's HLS tools are reasonably good at this task, and can automatically synthesize highly efficient pipelined data-flow architectures.

Early HLS tools had a bottom-up approach, inherited from hardware design, of assembling optimized hardware IP components into more complex designs. This approach failed to scale to large and irregular applications. Conversely, modern HLS tools are built upon mainstream compiler projects such as GCC or Clang/LLVM. This top-down approach, from the language down to the hardware, ensures comprehensive language support and a large number of state-of-theart optimization techniques [START_REF] Allen | Optimizing compilers for modern architectures[END_REF][START_REF] Morgan | Building an optimizing compiler[END_REF][START_REF] Muchnick | Advanced compiler design implementation[END_REF]. However, most of these optimizations were designed for standard CPUs. It is therefore relevant to question if they make sense in an FPGA context [START_REF] Huang | The effect of compiler optimizations on high-level synthesis-generated hardware[END_REF]. It is also relevant to attempt to identify new optimizations that did not make sense in a software context but make sense in the FPGA context. Even hardware-specific optimizations that were already performed by some of the early HLS tools can be reconsidered and improved in the new context of modern optimizing compiler frameworks. This is the main objective of the present work, with a focus on arithmetic-related optimizations.

Consider for example the integer multiplication by a constant. Optimization of hardware constant multiplication has been the subject of much research [START_REF] Aksoy | Optimization of area in digital FIR filters using gate-level metrics[END_REF][START_REF] Andrew | Constant integer multiplication using minimum adders[END_REF][START_REF] Gustafsson | Lower Bounds for Constant Multiplication Problems[END_REF][START_REF] Kumm | Optimal single constant multiplication using ternary adders[END_REF][START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF][START_REF] Voronenko | Multiplierless multiple constant multiplication[END_REF], some of which is specific to FPGAs [START_REF] Chapman | Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner)[END_REF][START_REF] Florent De Dinechin | Table-Based versus Shift-And-Add constant multipliers for FPGAs[END_REF][START_REF] Walters | Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs[END_REF][START_REF] Michael J Wirthlin | Constant coefficient multiplication using look-up tables[END_REF]. Some of the early HLS tools could exploit this literature and generate optimized architecture. However, it was not optimized for the big picture: this is what modern compiler frameworks provide, with global program transformations such as (interprocedural) constant propagation and folding, strength reduction, etc [START_REF] Muchnick | Advanced compiler design implementation[END_REF]. Unfortunately, some optimizations of the leaf hardware operators got lost in this transition to modern compiler frameworks, as we now show.

Listing 1 implements a simple integer multiplication by 7. Listing 2 shows the assembly code of Listing 1, when compiled with gcc 7.4.0 without any particular optimization flag. One can see that the multiplication by 7 has been transformed by the compiler into a shift-and-add algorithm (here actually a shift-and-sub, hardware addition and subtraction being equivalent in this context): 7x = 8x -x = 2 3 x -x, where the multiplication by 2 3 is a simple shift left by 3 bits (this multiplication by 8 may also be implemented by the lea instruction in a slightly less obvious way, and this is what happens, both on GCC or Clang/LLVM, when using -O2 optimization). As a consequence, the architecture produced by a HLS tool based on GCC or Clang/LLVM will implement this algorithm. This optimization makes even more sense in HLS, since the constant shifts reduce to wires and therefore cost nothing. Indeed, the synthesis of Listing 1 in VivadoHLS reports 32 LUTs, the cost of one addition. Experiments with Vivado HLS (based on Clang/LLVM) and Intel HLS (based on GCC) show that for all the constant multiplications that can be implemented as an addition, these tools instantiate an adder instead of a multiplier. Now consider the multiplication by another constant in Listing 3. On this example, the Clang/L-LVM x86 backend keeps the operation as a multiplication.

Indeed, the synthesis of this operator by VivadoHLS on a Kintex reports 2 LUTs and 2 DSPs, which are the resources needed to implement a 32-bit multiplier.

However, although the constant looks more complex, it barely is: the multiplication by 2228241 can be implemented in two additions only if one remarks that 2228241 = 2 17 • 17 + 17: first compute t = 17x = 2 4 x + x (one addition), then compute 2228241x = 2 17 t + t (another addition). Still, neither the x86 backend of Clang/LLVM nor GCC use a shift-and-add in this case. The rationale could be the following: the cost of one addition will always be lower than or equal to the cost of a multiplication, whatever the processor, so replacing one multiplication with one addition is always a win. Conversely, it may happen on some (if not most) processors that the cost of two additions and two shifts is higher than the cost of one multiplication.

Is this true in an HLS context? The best architecture for this multiplication, achieved by the C program of Listing 5, consists of two adders: one that computes the 32 lower bits of t = 17x = 2 4 x +x (and should cost only 28 LUTs, since the lower 4 bits are those of x); one that computes the 32 lower bits of 2 17 t + t, and should cost 32-17=15 LUTs, for the same reason (the 17 lower bits are those of t). The total cost should be 43 LUTs.

For Listing 5, VivadoHLS indeed reports 46 LUTs, very close to the predicted 43 (and not much higher than the cost of the multiplication by 7).

In summary, the observation is that the arithmetic optimization has been completely delegated to the underlying compiler x86 backend, and that we have a case here for enabling further optimizations when targetting hardware or FPGAs.

The broader objective of the present work is to list similar opportunities of hardware-specific arithmetic optimizations that are currently unexploited, and demonstrate their effectiveness. We classify these optimizations in two broad classes:

• Optimizations that strictly respect the semantic of the original program are presented in Section 2. The previous constant multiplication examples belong to this class, we also discuss division by a constant, and we add in this section a few floating-point optimizations that make sense only in a hardware context. This section should be perfectly uncontroversial: all optimizations in this class should be available in an HLS flow as soon as they improve some metric of performance. The only reason why it is not yet the case is that HLS is still a relatively young research domain. • Optimizations that relax (and we argue, only for the better) the constraint of preserving the program semantics are presented in Section 3. In this more controversial and forward-looking Section, we assume that the programmer who used floating-point data in their programs intended to compute with real numbers, and we consider optimizations that that lead to cheaper and faster, but also more accurate hardware. This approach is demonstrated in depth on examples involving floating-point summations and sums of products. In each case, we use a compilation flow illustrated by Figure 1 that involves one or several sourceto-source transformations using the GeCoS framework [START_REF] Floc | GeCoS: A framework for prototyping custom hardware design flows[END_REF] to improve the generated designs. Source-to-source compilers are very convenient in an HLS context, since they can be used as optimization front-ends on top of closed-source commercial tools. This approach is not new as source-to-source compilers are already used in an HLS context for dataflow optimization [START_REF] Cong | Source-to-source optimization for HLS[END_REF].

Finally, Section 4 concludes and discusses what we believe HLS tools should evolve to. 

OPTIMIZATION EXAMPLES THAT DO NOT CHANGE THE PROGRAM SEMANTIC

The arithmetic optimizations that fit in this section go well beyond the constant multiplications studied in introduction. In particular, there are opportunities of floating-point optimizations in FPGAs that are more subtle than operator specialization.

Floating-point corner-case optimization

Computing systems follow the IEEE-754 standard on floating-point arithmetic, which was introduced to normalize computations across different CPUs. Based on this standard, the C standard prevents compilers from performing some floating-point optimizations. Here are a some examples that can be found in the C11 standard [25]:

• x/x and 1.0 are not equivalent if x can be zero, infinite, or NaN (in which case the value of x/x is NaN).
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• xy and -(y -x) are not equivalent because 1.0 -1.0 is +0 but -(1.0 -1.0) is -0 (in the default rounding direction). • xx and 0 are not equivalent if x is a NaN or infinite.

• 0 × x and 0 are not equivalent if x is a NaN, infinite, or -0.

• x + 0 and x are not equivalent if x is -0, because (-0) + (+0), in the default rounding mode (to the nearest), yields +0, not -0. • 0 -x and -x are not equivalent if x is +0, because -(+0) yields -0, but 0 -(+0) yields +0. Of course, programmers usually do not write x/x or x + 0 in their code. However, other optimization steps, such as code hoisting, or procedure specialization and cloning, may lead to such situations: their optimization is therefore relevant in the context of a global optimizing compiler [START_REF] Muchnick | Advanced compiler design implementation[END_REF].

Let us consider the first example (the others are similar): A compiler is not allowed to replace x/x with 1.0 unless it is able to prove that x will never be zero, infinity or NaN. This is true for HLS as well as for standard compiler. However, it could replace x/x with something like (is_zero(x)||is_infty(x)||is_nan(x))?NaN:1.0;. This is, to our knowledge, not implemented. The reason is again probably that in software, the test on x becomes more expensive than the division.

However, if implemented in hardware, this test is quite cheap: it consists in detecting if the exponent bits are all zeroes (which capture the 0 case) or all ones (which captures both infinity and NaN cases). The exponent is only 8 bits for single precision and 11 bits for double-precision.

In an FPGA context, it therefore makes perfect sense to replace x/x (Figure 2a) with an extremely specialized divider depicted on Figure 2b. Furthermore, the two possible values are interesting to propagate further (1.0 because it is absorbed by multiplication, NaN because it is extremely contagious). Therefore, this optimization step enables further ones, where the multiplexer will be pushed down the computation, as illustrated by Figure 2c. Note that this figure replaces 1.0*a by a: this is a valid floating-point optimization, in the sense that it is valid even if a is a signed zero, an infinity or a NaN.

Occurrences of xx, 0 × x, x + 0, 0 -x can similarly be replaced with a multiplexer and very little logic, and may similarly enable further optimizations.

Since these arithmetic optimizations are expected to be triggered by optimizations (procedure specialization) and trigger further optimizations (conditional constant propagation), they need to be implemented and evaluated within an optimizing compiler. The source-to-source flow depicted on Figure 1 is ill-suited to studying such cascaded optimizations. Furthermore, the multiple conditional constant propagation that transforms Figure 2b into Figure 2c is probably not implemented yet, since it doesn't make much sense in software. This evaluation is therefore left out of the scope of the present article.

In the following, we focus on FPGA-specific semantic-preserving optimizations which will not trigger further optimizations. int div7(int in){ return in/7; } Listing 6. C code.

(...) 0: ... movslq %edi,%rax 3: ... imul $0xffffffff92492493,%rax,%rcx a: ... shr $0x20,%rcx e: ... add %ecx,%eax 10: ... mov %eax,%ecx 12: ... shr $0x1f,%ecx 15: ... sar $0x2,%eax 18: ... add %ecx,%eax 1a: ... retq

Listing 7. Objdump of Figure 6 when compiled with Clang -O2.

Integer multiplication by a constant

Multiplication by a constant has already been mentioned in introduction. We just refer to the rich existing literature on the subject [START_REF] Aksoy | Optimization of area in digital FIR filters using gate-level metrics[END_REF][START_REF] Chapman | Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner)[END_REF][START_REF] Florent De Dinechin | Table-Based versus Shift-And-Add constant multipliers for FPGAs[END_REF][START_REF] Andrew | Constant integer multiplication using minimum adders[END_REF][START_REF] Gustafsson | Lower Bounds for Constant Multiplication Problems[END_REF][START_REF] Kumm | Optimal single constant multiplication using ternary adders[END_REF][START_REF] Thong | An optimal and practical approach to single constant multiplication[END_REF][START_REF] Voronenko | Multiplierless multiple constant multiplication[END_REF][START_REF] Walters | Reduced-Area Constant-Coefficient and Multiple-Constant Multipliers for Xilinx FPGAs with 6-Input LUTs[END_REF][START_REF] Michael J Wirthlin | Constant coefficient multiplication using look-up tables[END_REF]. These are mostly academic works, but back-end tools already embed some of it, so this optimization could be the first to arrive. An issue is that its relevance, in the big picture of a complete application, is not trivial: Replacing DSP resources with logic resources is an optimization only in a design that is more DSP-intensive than logic-intensive. Besides, as soon as a logic-based constant multiplier requires more than a handful of additions, it may entail more pressure on the routing resources as well. Discussing this trade-off in detail in the context of an application is out of scope of the present article.

Integer division by a small constant

Integer division by a constant adds one more layer of optimization opportunities: In some cases, as illustrated by Listing 6 and Listing 7, a compiler is able to transform this division into a multiplication by a (suitably rounded) reciprocal. This then triggers the previous optimization of a constant multiplier. Actually, one may observe that on this example that the constant 1/7 has the periodic pattern 100100100100100100100100100 2 (hidden in the hexadecimal pattern 924 16 in Listing 7). This enables a specific optimization of the shift-and add constant multiplication algorithm [START_REF] De | Multiplication by rational constants[END_REF].

Table 1 shows synthesis results on the two FPGA mainstream HLS tools at the time of writing (Vivado HLS and Intel HLS). As a reminder of the resource names used by these tools: LUTs and ALMs are look-up tables, Regs. and FFs are registers, DSPs are dedicated hardware blocks (essentially for multipliers), SRLs are shift registers and MLABs are aggregated LUTs to emulate small RAM blocks. The timing constraint was set to 100 MHz, however this factor is not important here as it does not change the structure of the generated operators. The goal here is to observe the optimizations performed (or not) by the tools. Here is what we can infer from this table:

• The generic divider (Divisor=x) is based on Xilinx on a shift-and-add algorithm, while on Intel a polynomial approach is used [START_REF] Pasca | Correctly rounded floating-point division for DSP-enabled FPGAs[END_REF] that consumes multipliers and DSP resources. • Both tools correctly optimize the division by a power of two, converting it into a shift.

• Division by non-power of two integers is implemented by a multiplication by the inverse on Xilinx (it consumes DSP blocks). On Intel, this multiplication is further optimized as a logic-only operation.

For the division of an integer by a very small constant, the best alternative is the algorithm described by Ugurdag et al. [START_REF] Fatih Ugurdag | Hardware division by small integer constants[END_REF]. It is based on the decimal paper-and-pencil algorithm illustrated in The only computation in each step is the Euclidean division by 3 of of a number between 0 and 29: it can be pre-computed for these 30 cases and stored in a look-up table (LUT). There, the input X is written in hexadecimal (each 4-bit word X i is an hexadecimal digit). The quotient bits come out in hexadecimal. The remainder of the division by 3 is always between 0 and 2, therefore fits on 2 bits. Each look-up table (LUT) on the figure therefore stores the quotient Q i and the remainder R i of the division by 3 of a number R i+1 X i . This number is between 00 h and 2F h . On a recent LUT-based FPGA, each 6-input, 6-output LUT of Figure 4 consumes exactly 6 FPGA LUTs: This architecture is very well suited to FPGAs. Table 2 compares the performance on Xilinx of the division of a 64-bit integer by a small constant, when left to the Vivado HLS tool (left part), and when first replaced by an HLS description of the architecture of Figure 4 by a source-to-source transformation (right part of the table). For constants smaller than 9, all the metrics (logic resources, DSP, latency and frequency) are improved by this transformation. The wall clock time (WCT) is also reported. Throughout the rest of this paper, the WCT is given in ns, unless stated otherwise. As the constant grows larger, the latency degrades and the resource consumption increases: for division by 9 we already have a worst latency and frequency than the default multiplication-based implementation, but still with much less resources. For smaller constants, the transformed operators reduce the resource usage by at least a factor 2 while still requiring a smaller or equal WCT. 
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Floating-point multiplications and division by small constants

As illustrated by Table 3, there are even fewer optimizations for floating-point multiplication and division by a constant.

• Both Vivado HLS and Intel HLS are able to remove the constant multiplication and division by 1.0 (unsurprisingly, since it is a valid simplification in software compilers). • Intel HLS seems to optimize constant multiplications (it never requires a DSP). Vivado HLS, on the other hand, doesn't even optimize floating-point multiplications by 2.0 or a power of 2. This class of operations should resume to an addition on the exponents, and specific overflow/underflow logic. • Both tools use a specific optimization when dividing by a power of two. This can easily be explained by looking at the assembly code generated by GCC or Clang/LLVM in such cases: both compiler will transform a division by 4.0 into a multiplication by 0.25, which is bit-for-bit equivalent, and much faster on most processors. • Both tools use a standard divider for constants that are not a power of 2, with minor resource reductions thanks to the logic optimizer. Again we may question the relevance of these choices on FPGAs. It is indeed possible to design floating-point versions of both constant multiplications [START_REF] Brisebarre | Integer and Floating-Point Constant Multipliers for FPGAs[END_REF] and constant divisions [START_REF] Fatih Ugurdag | Hardware division by small integer constants[END_REF] that are bit-for-bit compatible with IEEE correctly rounded ones. For instance, in the case of division, the remainder R that is output by Figure 4 can be used to determine the proper rounding of the significand quotient (for the full details, see [START_REF] Fatih Ugurdag | Hardware division by small integer constants[END_REF]).

As we expect constant multiplications to be properly supported soon (it seems to be already the case on Intel HLS), we focus our evaluation on constant division. Table 4 provides synthesis results of Vivado HLS C++ generated operators for floating-point divisions by small constants. The standard floating-point division is also given for comparison purposes, since Table 3 shows that it is the default architecture. All these operators can be more/less deeply pipelined to achieve higher/lower frequencies at the expense of latency and registers: we attempt to achieve a frequency comparable to that of the standard divider.

Each optimized constant divider uses fewer resources (up to 5.55 times) and has a lower latency (up to 2.3 times) for a comparable frequency. When dividing by a power of two, the cost of the custom divider is virtually nothing (again it resumes to an operation on the exponents).

Evaluation in context

We implemented a C-to-C source-to-source transformation that detects floating-point multiplications and divisions by constants in the source code, and replaces it by a custom operator that is bit-for-bit equivalent. This transformation was implemented as a plug-in within the open source source-to-source GeCoS compiler framework [START_REF] Floc | GeCoS: A framework for prototyping custom hardware design flows[END_REF], as per Figure 1.

This work was then evaluated on the Polybench benchmark suite [START_REF] Pouchet | Polybench: The polyhedral benchmark suite[END_REF]. It contains several C programs that fit the polyhedral model. The focus here is on the stencil codes of this benchmark suite. Most of them contains a division by a small constant. Indeed, out of the 6 stencil codes, 5 were well suited for our transformations. The Jacobi-1d benchmark contains two divisions by 3; Jacobi-2d contains two divisions by 5; Seidel-2d contains a division by 9; Fdtd-2d contains two divisions by 2 and a multiplication by 0.7; finally, Heat-3d contains six divisions by 8 and six multiplications by 2.

Table 5 compares the synthesis results obtained • using the original C code, targeting the maximum frequency achievable, and • using the code after transformation by our GeCoS plug-in. Each benchmark benefits from the transformations. Wall-clock time is always improved, with latency improved up to 13.9 times for similar frequencies. The benefits of the transformations in 

OPTIMIZATION EXAMPLES THAT CHANGE THE PROGRAM SEMANTIC

From a compiler point of view, the previous transformations were straightforward and semantic preserving. Conversely, the case study in this section replaces the standard semantics of a floatingpoint code fragment with a new one, based on a user-specified accuracy with respect to the exact computation on the reals. This enables deeper program transformations, such as a change of the internal number representation that enables both improved accuracy and tightened loop-carried dependencies.

Before detailing it, we must digress a little on the subtleties of the management of floating-point arithmetic by compilers.

HLS faithful to the floats

Most recent compilers, including the HLS ones [START_REF] Hrica | Floating-Point Design with Vivado HLS[END_REF], attempt to follow established standards, in particular C11 and, for floating-point arithmetic, IEEE-754. This brings the huge advantage of almost bit-exact reproducibility -the hardware will compute exactly the same results as the software. However, it also greatly reduces the freedom of optimization by the compiler. For instance, as floating-point addition is not associative, C11 mandates that code written a+b+c+d is executed as ((a+b)+c)+d, although (a+b)+(c+d) would have a shorter latency.

This also prevents exploiting parallelism in floating-point reductions. A reduction is a computation which reduces a set of input values into a reduction location using an associative operation. Examples of reductions include summations, products, wide logical AND, etc.

Reductions are typically expressed as loops. If floating-point addition was associative, Listing 8 would be an example of reduction, where acc is the reduction location. The first column of Table 6 gives the synthesis results of Listing 8 using Vivado HLS for Kintex7. The latency of a floating-point addition is 7 cycles in this case. However, using a feedback loop that injects the current denormalized sum as a new input to the adder [START_REF] Dibrino | Floating point multiplier/accumulator with reduced latency and method thereof[END_REF][START_REF] Bruce | System and method for a floating point unit with feedback prior to normalization and rounding[END_REF], the Vivado HLS IP is able to achieve an initiation interval is 4 cycles. Still, the adder is only active one cycle out of 4 due to the loop-carried dependency.

Listing 9 shows a different version of Listing 8 that we manually unrolled in such a way to express more parallelism. However, this transformation assumes that floating-point addition is associative, which it is not. Indeed, Vivado HLS is not allowed to transform Listing 8 into Listing 9. According to C or C++ semantics, Listing 9 and 8 are not equivalent. Remark that a parallel execution with the sequential semantics is possible, but very expensive [START_REF] Kapre | Optimistic parallelization of floating-point accumulation[END_REF].

Vivado HLS is able to exploit the parallelism in Listing 9 (second column of Table 6). It reports using two floating-point adder. The one inside the loop is now active at each cycle on a different sub-sum, hence a factor 4 gain on latency. The second floating-point adder (whose shifts are implemented using DSP blocks) is used for the final additions. Note that Listing 9 represents the easy case when N is a multiple of the initialization interval of the addition: it would become more complex otherwise. As a final remark, it is important to point out that the accuracy of these solutions is far from perfect: the 100K rounding errors in the reduction sum up. For test data, we use as in Muller et al. [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF] the input values in[i]=(float)cos(i), where i is the input array's index. Therefore the accumulation computes i in [i]. The golden value to compare with is obtained using the MPFR library [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF]. We measure that only 20 bits of the result are correct (out of the 24 bits of a float significand). When computing the sum of the sines, the accuracy is reduced down to 17 bits. A solution to this is to perform the accumulation in double precision (changing the keyword float into double in the second lines of Listings 8 and 9). This is obviously more expensive, as the two middle columns of Table 6 show.

Towards HLS faithful to the reals

Many floating-point programmers routinely assume associativity of floating-point addition and multiplication, tweaking their code in the same way as we transformed Listing 8 into Listing 9, sometimes assisted by source-to-source compilers or "unsafe" compiler optimizations.

The point of view chosen in this work is to go one step further, and allow the programmer to express that some of the floating-point C/C++ program is intended to describe a computation on real numbers. In other words, under programmer control, some of the floats in the C/C++ will be interpreted as real numbers.

This recovers the associativity of the addition, so Listing 8 is again a reduction and can validly be transformed into Listing 9. Besides, this new point of view brings in the picture a new degree of freedom: accuracy. In an hardware context, designers want to tailor the precision (hence the cost) to the accuracy requirements of the application -a classical concern in HLS [START_REF] Caffarena | High-level synthesis of multiple word-length DSP algorithms using heterogeneous-resource FPGAs[END_REF][START_REF] Gort | Range and bitmask analysis for hardware optimization in high-level synthesis[END_REF]. Now that the C/C++ describes a computation on the reals, the user should also be able to specify the accuracy of the computation with respect to this exact (real) result. It should then be the task of the compiler to determine the best way to ensure the prescribed accuracy. This is what we explore in the sequel.

The arithmetic side: application-specific accumulator support

Several approaches for performing a floating-point summation using non-standard hardware have been proposed [START_REF] Kadric | Accurate parallel floating-point accumulation[END_REF][START_REF] Luo | Accelerating pipelined integer and floating-point accumulations in configurable hardware with delayed addition techniques[END_REF]. In this work, we chose an approach better suited to the HLS context: a generalization of an idea developed by Kulisch. He advocated to augment processors with a very large fixed-point accumulator [START_REF] Kulisch | The exact dot product as basic tool for long interval arithmetic[END_REF] whose 4288 bits would cover the entire range of double precision floating-point, and then some more: Such an accumulator would remove rounding errors from all the possible floating-point additions and sums of products. The added bonus of an exact addition is that it becomes associative, since the loss of associativity in floating-point is due to rounding. So far, Kulisch's full accumulator has proven too costly to appear in mainstream processors. However, in the context of application acceleration with FPGAs, it can be tailored to the accuracy requirements of applications. Its cost then becomes comparable to classical floating-point operators, although it vastly improves accuracy [START_REF] Florent De Dinechin | An FPGA-specific approach to floatingpoint accumulation and sum-of-products[END_REF]. This operator can be found in the FloPoCo [START_REF] De | High-Performance Computing using FPGAs[END_REF] generator and in Intel DSP Builder Advanced. Its core idea, illustrated on Figure 5, is to use a large fixed-point register into which the mantissas of incoming floating-point summands are shifted (top) then accumulated (middle). A third component (bottom) converts the content of the accumulator back to the floating-point format. The sub-blocks visible on this figure (shifter, adder, and leading zero counter) are essentially the building blocks of a classical floating-point adder. The accumulator used here slightly improves the one offered by FloPoCo [START_REF] Florent De Dinechin | An FPGA-specific approach to floatingpoint accumulation and sum-of-products[END_REF]:

• It supports subnormal numbers [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF].

• In FloPoCo, FloatToFix and Accumulator form a single component, which restricts its application to simple accumulations similar to Listing 8. The decomposition in two components of Figure 5 enable a generalization to arbitrary summations within a loop, as Section 3.4 will show.

s bit weight -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
2 MSBA 2 MSBA-1 2 0 2 LSBA Fig. 6. Fixed-point accumulator format, here (MSBA, LSBA) = (7, -8).

#define N 100000 float acc = 0; ap_int<68> long_accumulator = 0; for(int i = 0; i < N; i++) { long_accumulator += FloatToFix(in[i]); } acc = FixToFloat(long_accumulator); Listing 10. Sum of floats using the large fixed-point accumulator.

3.3.1

The parameters of a large accumulator. The main feature of this approach is that the internal fixed-point format is configurable in order to control accuracy. For this purpose, this format (represented in Figure 6) has two parameters:

• MSBA is the weight of the most significant bit of the accumulator. For example, if MSBA = 17, the accumulator can accommodate values up to a magnitude of 2 17 ≈ 10 5 . • LSBA is the weight of the least significant bit of the accumulator. For example, if LSBA = -50, the accumulator can hold data accurate to 2 -50 ≈ 10 -15 . The accumulator width w a is then computed as MSBA -LSBA + 1, for instance 68 bits in the previous example. 68 bits represents a wide range and high accuracy, and still additions on this format will have one-cycle latency for practical frequencies on recent FPGAs. If this is not enough the frequency can be improved thanks to partial carry save [START_REF] Florent De Dinechin | An FPGA-specific approach to floatingpoint accumulation and sum-of-products[END_REF] but this was not useful in the present work. For comparison, for the same frequency, a floating-point adder has a latency of 7 to 10 cycles, depending on the target, with an initiation interval of about 4 cycles.

Implementation within a HLS tool.

This accumulator has been implemented in C/C++, using arbitrary-precision fixed point types (ap_int) and the Modern Arithmetic Tools for HLS library [START_REF] Uguen | Evaluating the hardware cost of the posit number system[END_REF].

For modularity purposes, FloatToFix and FixToFloat are wrapped into C/C++ functions (respectively 33 and 28 lines of code). Their calls are inlined to enable HLS optimizations. The implementation of the FloatToFix function has one more parameter, called MaxMSBX: it defines the largest possible exponent of the floating-point input. Its default value is equal to MSBA, but it may be smaller, when the application context dictates an upper bound on the magnitude of the input to FloatToFix. In this case, the size of the shifter (Figure 5) can be reduced.

Because the internal accumulation is performed on a fixed-point integer representation, the combinational delay between two accumulations is lower compared to a full floating-point addition. HLS tools can take advantage of this delay reduction by more aggressive loop pipelining (with shorter Initiation Interval), resulting in a design with a shorter overall latency.

Validation.

To evaluate and refine this implementation, we used Listing 10, which we compared to Listings 8 and 9. The parameters chosen for the accumulator in this experiment are:

× f x / w f f y / w f / 1 + w f / 1 + w f m p / 2 + 2w f
• MSBA = 17. Indeed, as we are adding cos(i) 100K times, an upper bound is 100K, which can be encoded in 17 bits. • MaxMSBX = 1 as the maximum input value is 1.

• LSBA = -50: the accumulator itself will be accurate to the 50th fractional bit. Note that a float input will see its mantissa rounded by FloatToFix only if its exponent is smaller than 2 -25 , which is very rare. In other words, this accumulator is much more accurate than the data that is thrown to it.

The results are reported in the two rightmost columns of Table 6. The Accuracy line of the table reports the number of correct bits of each implementation, after the result has been converted to a float. The proposed fixed-point accumulator achieves minimal latency and maximum accuracy, for a LUT usage comparable to the naive float accumulation of Listing 8.

Removing the control part from Listing 10 reduces resource usage to 395 LUTs, very comparable to the 375 LUTs of the corresponding FloPoCo-generated VHDL (which doesn't include this control, nor subnormal support). This shows that there is no overhead due to the use of HLS.

Using this implementation method, we also created an exact floating-point multiplier with the final rounding removed [START_REF] Florent De Dinechin | An FPGA-specific approach to floatingpoint accumulation and sum-of-products[END_REF]. This component is depicted in Figure 7. The corresponding function is called ExactProduct and represents 44 lines of code. The result mantissa is twice as large as the input mantissas (48 bits in single precision). To add it to the large accumulator, the Float-to-Fix block has to be adapted: in the sequel, it is called ExactProductFloatToFix (21 lines of code).

The compiler side: source-to-source transformation

The previous section, as well as previous works by various groups [START_REF] Forget | A type-safe arbitrary precision arithmetic portability layer for HLS tools[END_REF][START_REF] Thomas | Templatised soft floating-point for High-Level Synthesis[END_REF] has shown that Vivado HLS can be used to synthesize very efficient specialized floating-point operators which rival in quality with those generated by FloPoCo or vendor tools. Our goal is now to study how such optimizations can be automated. More precisely, we aim at automatically optimizing Listing 8 into Listing 10, and generalizing this transformation to many more situations.

For convenience, this optimization was also developed as a source-to-source transformation implemented within GeCoS and is publicly available (https://gitlab.inria.fr/gecos/gecos-arith). This part focuses on two computational patterns, namely the accumulation and the sum of product. Both are specific instances of the reduction pattern, which can be optimized by many compilers or parallel run-time environments. Reduction patterns are exposed to the compiler/runtime either though user directives (e.g #pragma reduce in openMP), or automatically inferred using static analysis techniques [START_REF] Doerfert | Polly's polyhedral scheduling in the presence of reductions[END_REF][START_REF] Redon | Detection of scans[END_REF].

As the problem of detecting reductions is not the main focus on this work, our tool uses a straightforward solution to the problem using a combination of a user-provided compiler directive (pragma) and some simple program analysis.

More specifically, the proposed code transformation are triggered by a pragma that defines a target accumulation variable, along with application-level information such as the dynamic range of the accumulated data or the overall target accuracy.

We found this approach easier, more general and less invasive than those attempting to convert a whole floating-point program into a fixed-point implementation [START_REF] Sentieys | Automatic Fixed-Point Conversion: a Gateway to High-Level Power Optimization[END_REF].

The pragma approach has another advantage: we advocate relaxing the standard C semantics, which is in principle dangerous. Therefore the user should explicitely ask for it. A pragma may allow such relaxation in a local, controlled way, without sacrificing standard compliance for the rest of the program.

Proposed compiler directive.

In imperative languages such as C, reductions are implemented using for or while loop constructs. The proposed compiler directive must therefore appear right outside such a construct. Listing 11 illustrates its usage on the code of Listing 8.

The pragma must contain the following information:

• The keyword FPacc, which triggers the transformation.

• The name of the variable in which the accumulation is performed, preceded with the keyword VAR. In the example, the accumulation variable is acc. In addition, it may provide the following information:

• The maximum value that can be reached by the accumulator through the use of the MaxAcc keyword. This value is used to determine MSBA. • The desired accuracy of the accumulator using the epsilon keyword. This value is used to determine LSBA. • The maximum value that the inputs can take, using the MaxInput keyword. This value is used to determine MaxMSBX. If this information is not provided, then MaxMSBX is set to MSBA. Note that the user can quietly overestimate the maximum value of the accumulator without major impact on area. For instance, overestimating MaxAcc by a factor 10 only adds 3 bits to the accumulator width.

In cases when the user is unable to provide such information, a full-range Kulisch accumulator is used as a fall-back strategy -a recent study has evaluated different implementations of the full Kulisch accumulator in an FPGA context [START_REF] Uguen | Design-space exploration for the Kulisch accumulator[END_REF]. To illustrate the transformation, consider the toy but non-trivial program of Listing 12. This program performs a reduction into the variable sum, involving both sums and sums of product operations. Figure 8a shows the operation data-flow graph for the loop body of this program. In this Figure, dotted arrows represent loop-carried dependencies between operations belonging to distinct loop iterations. Such loop-carried dependencies have a very negative impact on the kernel latency as they prevent loop pipelining. For example, when using a pipelined floating-point adder with an inner latency of 4 cycles the HLS tool will schedule a new iteration of the loop at best every 4 cycles.

As illustrated in Figure 9a, the proposed transformation hoists the floating-point normalization step out of the loop, and performs the accumulation using fixed point arithmetic. Since integer add operations can be implemented with a 1-cycle delay at our target frequency, the HLS tool may now be able to initiate a new iteration every cycle, improving the overall latency by a factor of 4.

The code transformation first identifies all relevant basic blocks (i.e those associated to the pragma directive). It then performs a backward traversal of the data-flow graph, starting from a FloatAdd node that writes to the accumulation variable identified by the #pragma.

During this traversal, the following actions are performed depending on the visited nodes:

• A node with the summation variable is ignored.

• A FloatAdd node is transformed to an accurate fixed-point adder. The analysis is then recursively launched on that node. • A FloatMul node is replaced with a call to the ExactProduct function followed by a call to ExactProdFloatToFix. • Any other node has a call to FloatToFix inserted. This algorithm rewrites the DFG from Figure 8a into the new DFG shown on Figure 9a. In addition, a new basic block containing a call to FixToFloat is inserted immediately after the transformed loop, in order to expose the floating-point representation of the results to the remainder of the program.

in2[i-1] in1[i] FloatMul FloatAdd in2[i+1] FloatAdd FloatAdd sum sum (a) Loop body dataflow graph in2[i-1] in1[i] in2[i+1]
From there, it is then possible to regenerate the corresponding C code. As an illustration of the whole process, Figures 8b and9b describe the architectures corresponding to the code before and and after the transformation. 7 shows how resource consumption depends on epsilon, all the other parameters being those given in the pragma of Listing 12.

Compared to the classical IEEE-754 implementation, the transformed code uses similar or more LUTs depending on the precision of the accumulator. The original code requires 3 DSPs for the floating-point multiplier (the adder is implemented in LUTs). The transformed code only requires 2 DSPs as the floating-point multiplier IP is removed for the custom exact multiplier that removes the normalisation part (which required an extra DSP). In all cases, on this example, the transformed code has its latency reduced by a factor 9.

Evaluation

In order to evaluate the relevance of the proposed transformations on real-life programs, we used the EEMBC FPMark benchmark suite [START_REF] Eembc | the Embedded Microprocessor Benchmark Consortium[END_REF]. This suite consists of 10 programs. A first result is that half of these programs contain floating-point accumulations:

• Enhanced Livermore Loops (1/16 kernels contains a sum of product).

• LU Decomposition (multiple accumulations).

• Neural Net (multiple sum-of-products).

• Fourier Coefficients (one accumulation).

• Black Scholes (one accumulation). The following focuses on these, and ignores the other half (Fast Fourier Transform, Horner's method, Linpack, ArcTan, Ray Tracer) as they do not benefit from the transformations (code is unchanged).

Most benchmarks come in single-precision and double-precision versions. We focus here on the single-precision. Double-precision benchmarks lead to the same conclusions.

3.5.1 Benchmarks and accuracy: methodology. Each benchmark comes with a golden reference against which the computed results are compared. As the proposed transformations are controlled by the accuracy, it may happen that the transformed benchmark is less accurate than the original. In this case, it will not pass the benchmark verification test, and rightly so.

A problem is that the transformed code will also fail the test if it is more accurate than the original. Indeed, the golden reference is the result of a certain combination of rounding errors using the standard FP formats, which we do not attempt to replicate.

To work around this problem, each benchmark was first transformed into a high-precision version where the accumulation variable is a 10,000-bit floating-point numbers using the MPFR library [START_REF] Fousse | MPFR: A multipleprecision binary floating-point library with correct rounding[END_REF]. We used the result of this highly-accurate version as a "platinum" reference, against which we could measure the accuracy of the benchmark's golden reference. This allowed us to choose our epsilon parameter such that the transformed code would be at least as accurate as the golden reference. This way, the epsilon of the following results is obtained through profiling. The accuracy of the obtained results are computed as the number of correct bits of the result.

Let us review in detail how each benchmark is improved by the proposed transformation. All the synthesis results (before and after transformation) are given in Table 8. Enhanced Livermore Loops. This program contains 16 kernels of loops that compute numerical equations. Among these kernels, there is one that performs a sum-of-product (banded linear equations). This kernel computes the sum of 20000 products 300 times resulting in 6M accumulated terms. The values accumulated are pre-computed. This is a perfect candidate for the proposed transformations.

For this benchmark, the optimal accumulation parameters were found as:

MaxAcc=50000.0 epsilon=1e-5 MaxInput=22000.0 As in the previous toy examples, latency is vastly improved while achieving improved accuracy. The area is comparable as the operator implemented in the transformation uses a bit more LUTs and fewer DSPs (as discussed in 3.4.3). the neural net program, inner loops accumulate between 8 and 45 values, and such accumulations are performed more than 5K times.

LU

Both programs accumulate values from registers or memory that are already computed. It makes these programs good candidates for the proposed transformations.

Vivado HLS is unable to predict a latency for these designs due to their non-constant loop trip counts. As a consequence, instead of presenting results for the complete benchmark, we restrict ourselves to the LU innermost loops. Table 8 shows the results obtained for the smallest (8 terms) and the largest (45 terms) sums-of-products in lines LU-8 and LU-45 respectively. The latency is vastly improved even for the smallest one. The accuracy results of the original code here varies from 8 to 23 bits between different instances of the loops. To have a fair comparison, we generated a conservative design that performs 23 bits accuracy on all loops, using a sub-optimal amount of resources. Still, the transformed code requires fewer resources.

Black Scholes. This program contains an accumulation that sums 200 terms. These terms are computed performing polynomial approximations and exponentiations from the input data. The result of the accumulation is divided by a constant (that could be further optimized by using transformations from Section 2). This process is performed 5000 times, hence it results in 1M accumulations.

Here the optimal accumulator parameters are the following:

MaxAcc=245000.0 epsilon=1e-4 MaxInput=278.0 This gives us an accumulator that uses 19 bits for the integer part and 10 bits for the fractional part.

The original code is only able to achieve an initiation interval of 4 cycles (limited by the accumulation). Because of this 4 cycles latency between two iterations, Vivado HLS is able to reuse some of the hardware that computes the terms to accumulate in order to reduce the hardware consumption. For example, a floating-point exponential IP is reused for the computation of a single term to accumulate.

The transformed code is able to achieve an initiation interval of 1 cycle. Therefore, this exponential hardware can no longer be reused and must be replicated to feed the accumulator. This explains the increased resource usage presented as Transformed II=1.

As the transformed code can achieve a 1-cycle initiation interval, it is also able to achieve any higher initiation intervals (2, 3, or 4 cycles), maintaining the same accuracy. The transformation then offers a trade-off between latency and resource usage. The most conservative alternative (keeping the original latency, but for reduced resource usage and improved accuracy), is presented as Transformed II=4.

Fourier Coefficients. This program computes the coefficients of a Fourier series, using an accumulation performed in single precision. It comes in three different configurations: small, medium and big. Each of them computes the same algorithm but with a different number of iterations. The big version is supposed to compute the most accurate answer. Therefore, the parameters of the custom accumulator are chosen according to this version: MaxAcc=6000.0 epsilon=1e-7 MaxInput=10.0 This results in an accumulator using 14 bits for the integer part and 24 bits for the fractional part. Table 8 shows that area is considerably reduced, while accuracy is improved by 5 bits (more than one order of magnitude). However, Vivado HLS cannot statically compute the overall latency due to the use of a floating-point power function. Therefore, the latencies reported here are obtained through cosimulation. In order to keep the cosimulation duration reasonable, only the small dataset is used. It computes 100 accumulations of 20 terms, followed by other computations. In that case, the latency is also reduced.

CONCLUSION

This study first demonstrates how today's HLS tools fail at exploiting full FPGAs potential when dealing with numerical programs, in particular with floating-point numbers.

One reason is the historical heritage of processor-oriented compiler backends. We advocate the integration in HLS compilers of well-known hardware-oriented low-level arithmetic optimizations. Some of them can be applied at the level of the front-end, as showcased by the source-to-source approach used in this study. Others need to be integrated as optimization passes on a compiler intermediate representation. The benefits demonstrated by this study, both in terms of resource usage and latency, makes these optimizations a must do.

This study also looks a bit further, towards compiler directives that would instruct the compiler to treat floats as reals in a local, user-controlled way. The role of the compiler is then to achieve the prescribed accuracy (defined with respect to an ideal, exact computation on the reals) with the best performance at the minimal cost. In the context of hardware synthesis, this approach opens the opportunity of using non-standard internal formats and operators, as demonstrated on the the case study of floating-point sums and sums of products. With improvements in performance, cost, and accuracy, this is a promising research direction for higher-level synthesis tools.

  int mul2228241 ( int x ){ return x*2228241; } Listing 3. C code. (...) 10: ... imul $0x220011,%edi,%eax 16: ... retq (...) Listing 4. Objdump of Figure 3 compiled with Clang/LLVM -O2. int mul2228241 ( int x ){ int t = (x<<4) + x; return (t<<17) + t; } Listing 5. C code using a shift-and-add algorithm.

Fig. 1 .

 1 Fig. 1. The proposed compilation flow.

Fig. 2 .

 2 Fig. 2. Optimization opportunities for floating-point x/x * a.
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  We first compute the Euclidean division of 7 by 3. This gives the first digit of the quotient, here 2, and the remainder is 1. In other words 7 = 3 × 2 + 1. The second step divides 77 by 3 by first rewriting 77 = 70 + 7 = 3 × 20 + 10 + 7: dividing 17 by 3 gives 17 = 3 × 5 + 2. The third steps rewrites 776 = 770 + 6 = 250 + 20 + 6 where 26 = 3 × 8 + 2, hence 776 = 3 × 258 + 2.

Fig. 3 .

 3 Fig. 3. Illustrative example: division by 3 in decimal.

Figure 3 .

 3 Figure 3. Figure4describes an unrolled architecture for a binary-friendly variant of this algorithm. There, the input X is written in hexadecimal (each 4-bit word X i is an hexadecimal digit). The quotient bits come out in hexadecimal. The remainder of the division by 3 is always between 0 and 2, therefore fits on 2 bits. Each look-up table (LUT) on the figure therefore stores the quotient Q i and the remainder R i of the division by 3 of a number R i+1 X i . This number is between 00 h and 2F h . On a recent LUT-based FPGA, each 6-input, 6-output LUT of Figure4consumes exactly 6 FPGA LUTs: This architecture is very well suited to FPGAs.Table2compares the performance on Xilinx of the division of a 64-bit integer by a small constant, when left to the Vivado HLS tool (left part), and when first replaced by an HLS description of the architecture of Figure4by a source-to-source transformation (right part of the table). For constants smaller than 9, all the metrics (logic resources, DSP, latency and frequency) are improved by this transformation. The wall clock time (WCT) is also reported. Throughout the rest of this paper, the WCT is given in ns, unless stated otherwise. As the constant grows larger, the latency degrades and the resource consumption increases: for division by 9 we already have a worst latency and frequency than the default multiplication-based implementation, but still with much less resources. For smaller constants, the transformed operators reduce the resource usage by at least a factor 2 while still requiring a smaller or equal WCT.

Fig. 4 .

 4 Fig.[START_REF] Allen | Optimizing compilers for modern architectures[END_REF]. Architecture for division by 3 of a 16-bit number written in hexadecimal, using LUTs with 6 input bits.
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Fig. 5 .

 5 Fig. 5. Conversion from float to fixed-point (top), fixed-point accumulation (middle), and conversion from fixed-point to float (bottom).

ExactProduct

  

Fig. 7 .

 7 Fig. 7. Exact floating-point multiplier.

#

  define N 100000 float accumulation(float in[N]){ float acc = 0; #pragma FPacc VAR=acc MaxAcc=100000.0 epsilon=1E-15 MaxInput=1.0 for(int i=0; i<N; i++){ acc+=in[i]; } return acc; } Listing 11. Illustration of the use of a pragma for the naive accumulation. , Vol. 1, No. 1, Article . Publication date: October 2019.

3. 4 . 2

 42 Proposed code transformation. The proposed transformation operates on the compiler program intermediate representation (IR). It relies on the ability to identify loops constructs, and expose def/use relations between instructions within a basic block in the form of an operation data-flow graph (DFG). #define N 100000 float computeSum(float in1[N], float in2[N]){ float sum = 0; #pragma FPacc VAR=sum MaxAcc=300000.0 epsilon=1e-15 MaxInput=3.0 for (int i=1; i<N-1; i++){ sum+=in1[i]*in2[i-1]; sum+=in1[i]; sum+=in2[i+1]; } return sum; } Listing 12. Simple reduction with multiple accumulation statements.

Fig. 8 .Fig. 9 .

 89 Fig. 8. DFG of the loop body from Figure 12 (left) and its corresponding architecture (right). FloatMul and FloatAdd correspond to floating-point multipliers and adders respectively.

3. 4 . 3

 43 Evaluation of the toy example of Listing 12. The proposed transformations work on non-trivial examples such as the one represented in Listing 12. Table

  Decomposition and Neural Net. Both the LU decomposition and the neural net programs contain multiple nested small accumulations. In the LU decomposition program, an inner loop accumulates between 8 and 45 values. Such accumulations are performed more than 7M times. In , Vol. 1, No. 1, Article . Publication date: October 2019.

Table 1 .

 1 Synthesis results of 32-bit integer dividers with Vivado HLS 2019.1 for Kintex 7, and Intel HLS 19.2 for Arria 10, targeting 100MHz.

		(a) Vivado HLS	
	Divisor LUTs Regs. DSPs
	x	217	294	0
	1	0	0	0
	2	78	0	0
	3	162	67	4
	4	77	0	0
	5	162	67	4
	6	162	67	4
	7	163	68	4
	8	75	0	0
	9	160	65	4

Table 2 .

 2 Synthesis results of 64-bit integer constant dividers using Vivado HLS 2019.1 targeting Kintex 7 at 330MHz.

		(a) C division				(b) [44] division in HLS	
	Divisor LUTs reg. DSPs Cycles @ Freq WCT	LUTs reg. Cycles @ Freq WCT
	x	8704 8588	0 67 @ 291MHz 230.24	NA NA	NA	NA
	2	162 193	0	2 @ 464MHz	4.31	2	2	1 @ 988MHz	1.00
	3	550 728	16 22 @ 343MHz 64.13	108 227 16 @ 343MHz 46.64
	4	161 190	0	2 @ 453MHz	4.41	2	2	1 @ 988MHz	1.00
	5	548 726	16 22 @ 348MHz 63.21	204 273 22 @ 340MHz 64.70
	6	548 726	16 22 @ 348MHz 63.21	132 226 16 @ 340MHz 47.05
	7	548 726	16 22 @ 348MHz 63.21	204 273 22 @ 340MHz 64.70
	8	159 187	0	2 @ 451MHz	4.43	2	2	1 @ 988MHz	1.00
	9	550 726	16 22 @ 351MHz 62.67	170 343 32 @ 306MHz 104.57

Table 3 .

 3 Synthesis results of single-precision floating-point multipliers/dividers using Vivado HLS 2019.1 (Kintex 7) and Intel HLS 19.2 (Arria 10) at 100 MHz.

			(a) Vivado HLS					(b) Intel HLS		
		Value LUTs Regs. DSPs SRLs	ALMs FFs RAMs DSPs MLABs
		x	74	99	3	0	76.5	104	0	1	2
		1.0	0	0	0	0	26.5	45	0	0	0
	Mult	2.0 3.0	53 53	67 67	3 3	0 0	85.5 111	63 62	0 0	0 0	2 2
		4.0	59	67	3	0	86	60	0	0	2
		5.0	59	67	3	0	124	61	0	0	2
		x	754	391	0	24	343.5 706	3	4	7
		1.0	0	0	0	0	26.5	45	0	0	0
	Div	2.0 3.0	58 686	67 244	3 0	0 23	85 341	60 547	0 3	0 4	2 9
		4.0	58	67	3	0	86.5	62	0	0	2
		5.0	688	244	0	24	331	540	3	4	9

, Vol. 1, No. 1, Article . Publication date: October 2019.

Table 4 .

 4 Synthesis results of floating-point constant dividers for single and double precision that implements[START_REF] Fatih Ugurdag | Hardware division by small integer constants[END_REF] using Vivado HLS 2019.1 for Kintex 7.

			(a) float			(b) double	
	Divisor LUTs reg. Cycles @ Freq. WCT(ns)	LUTs reg. Cycles @ Freq. WCT(ns)
	x	808 1444	29 @ 451MHz	64.30	3266 3177	30 @ 183MHz	163.93
	2.0	63	61	2 @ 619MHz	3.23	126 227	3 @ 574MHz	5.22
	3.0	266	177 10 @ 359MHz	27.85	588 459 17 @ 187MHz	90.90
	4.0	89	62	2 @ 608MHz	3.28	176 281	3 @ 452MHz	6.63
	5.0	292	199 12 @ 356MHz	33.70	687 488 22 @ 204MHz	107.84
	6.0	276	178 10 @ 361MHz	27.70	596 438 17 @ 189MHz	89.94
	7.0	301	193 17 @ 360MHz	47.22	685 540 22 @ 185MHz	118.91
	8.0	85	61	2 @ 579MHz	3.45	176 228	3 @ 577MHz	5.19
	9.0	329	258 17 @ 242MHz	70.24	698 590 32 @ 209MHz	153.11
	10.0	301	198 13 @ 325MHz	40.00	696 472 22 @ 190MHz	115.78
	11.0	328	269 17 @ 229MHz	74.23	697 572 32 @ 189MHz	169.31

Table 5 .

 5 Benchmark synthesis results using Vivado HLS 2019.1 for Kintex 7, before and after constant multplications and divisions transformations. differ from one benchmark to another, the best improvements being achieved when the transformed operator is in the critical path of an inner loop.Concerning resource usage, only the Heat-3d benchmark has more LUTs and registers in the transformed version. However, it has fewer DSPs. This is explained by the transformation of 6 dividers and 2 multipliers from DSP-based architectures to LUT-based ones. In all other cases, LUT and register usage is reduced for the same amount of DSPs.

	Benchmark	Type	LUTs regs. DSPs	Cycles @ Freq. WCT(ms)
	Fdtd-2d	Original Transformed 3326 4386 4780 6162	17 17	153G @ 349MHz 11G @ 349MHz	438.39 31.51
	Heat-3d	Original Transformed 5737 6629 3842 6081	31 17	193G @ 349MHz 141G @ 348MHz	553.00 405.17
	Jacobi-1d	Original Transformed 2167 2792 4274 4964	3 3	185M @ 348MHz 129M @ 358MHz	0.53 0.36
	Seidel-2d	Original Transformed 1878 2341 4419 5126	6 6	373G @ 351MHz 321G @ 304MHz	1062.67 1053.52
	Jacobi-2d	Original Transformed 2548 3294 4588 5462	9 9	213G @ 347MHz 176G @ 335MHz	613.83 525.37
	terms of timing				

Table 6 .

 6 Synthesis results of different accumulators using Vivado HLS for Kintex 7 at 100MHz

		float acc	double acc	68-bit fixed-point acc
		Listing 8 Listing 9 Listing 8 Listing 9 Listing 10 FloPoCo VHDL
	LUTs	387	835	784	1908	462	375*
	DSPs	0	2	0	3	0	0
	Latency	400K	100K	400K	100K	100K	100K
	Accuracy 20 bits	20 bits	24 bits	24 bits	24 bits	24 bits

*: does not include the control part

Table 7 .

 7 Comparison between the naive code from Listing 12 and its transformed equivalent. Results obtained with Vivado HLS 2019.1 targeting Kintex7. All these versions run at 100MHz.

		Naive Transformed Transformed Transformed
			LSBA = -14 LSBA = -20 LSBA = -50
	LUTs	534	501	587	1089
	DSPs	3	2	2	2
	Latency 900K	100K	100K	100K

Table 8 .

 8 Synthesis results of benchmarks before and after sum-of-product transformations. Results obtained with Vivado HLS 2019.1 targeting Kintex7. All these versions run at 100MHz.

	Benchmark	Type	LUTs DSPs BRAM Latency Accuracy
	Livermore	Original Transformed	398 608	5 4	0 0	54M 6M	11 bits 13 bits
	LU-8	Original Transformed	435 274	3 2	0 0	38 14	8-23 bits 23 bits
	LU-45	Original Transformed	472 300	4 3	0 0	186 51	8-23 bits 23 bits
		Original	14388 147	0	4M	19 bits
	Black Scholes	Transformed II=4 13623 138	0	4M	23 bits
		Transformed II=1 22646 308	0	1M	23 bits
	Fourier Coefficients	Original Transformed	22707 319 13990 145	14 7	34K* 25K*	6 bits 11 bits

*: obtained through cosimulation

Extension of Conference Paper. This work extends[START_REF] Uguen | Bridging high-level synthesis and application-specific arithmetic: The case study of floating-point summations[END_REF] by proposing other floating-point arithmetic optimizations for high-level synthesis tools. The previous optimizations were modifying the semantic of the original program to boost performance and accuracy. This work adds semantic preserving optimizations that should be applied in every scenario.
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