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Abstract

This work studies hardware-specific optimization opportunities currently unexploited by HLS
compilers. Some of these optimizations are specializations of floating-point operations that respect
the usual semantics of the input program, without changing the numerical result. Some other opti-
mizations, locally triggered by the programmer thanks to a pragma, assume a different semantics,
where floating-point code is interpreted as the specification of computation with real numbers.
The compiler is then in charge to ensure an application-level accuracy constraint expressed in the
pragma, and has the freedom to use non-standard arithmetic hardware when more efficient. These
two classes of optimizations are prototyped in the GeCoS source-to-source compiler, and evaluated
on the Polybench and EEMBC benchmark suites. Latency is reduced by up to 93%, and resource
usage is reduced by up to 58%.

1 Introduction

Many case studies have demonstrated the potential of Field-Programmable Gate Arrays (FPGAs)
as accelerators for a wide range of applications, from scientific and financial computing to signal
and data processing, bioinformatics, molecular dynamics, stencil computations and cryptography [46].
FPGAs offer massive parallelism and programmability at the bit level. These characteristics enable
programmers to exploit a range of techniques that avoid many bottlenecks of classical von Neumann
computing: data-flow operation without the need of instruction decoding; massive register and memory
bandwidth, without contention on a register file and single memory bus; operators and storage elements
tailored to the application in nature, number and size.

However, to unleash this potential, development costs for FPGAs are orders of magnitude higher
than classical programming. High performance and high development costs are the two faces of the

0Extension of Conference Paper. This work extends [43] by proposing other floating-point arithmetic optimizations
for high-level synthesis tools. The previous optimizations were modifying the semantic of the original program to boost
performance and accuracy. This work adds semantic preserving optimizations that should be applied in every scenario.
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same coin. One reason for the high development costs on FPGAs is that they inherited their program-
ming model from digital circuit design. The hardware description languages (HDLs) used have a very
different programming paradigm than the languages used for software design. When accelerating soft-
ware code with FPGAs, software-oriented languages such as C/C++ are increasingly being considered
as hardware description languages. This has many advantages. Experimenting with different options
of FPGA acceleration is simpler since no rewriting of software into HDL is needed. The language itself
is more widely known than any HDL. The sequential execution model makes designing and debugging
much easier. One can use software execution on a processor for simulation. All this drastically reduces
development time.

Compiling a software description (such as a C program) into hardware is called High-Level Syn-
thesis (HLS). Examples of HLS tools include Vivado HLS [3], Intel HLS[2] or Catapult C 1 among
others [35]. Turning a C description into a circuit requires to extract parallelism from sequential pro-
grams constructs (e.g. loops) and expose this parallelism in the target design. Today’s HLS tools
are reasonably good at this task, and can automatically synthesize highly efficient pipelined data-flow
architectures.

Early HLS tools had a bottom-up approach, inherited from hardware design, of assembling opti-
mized hardware IP components into more complex designs. This approach failed to scale to large and
irregular applications. Conversely, modern HLS tools are built upon mainstream compiler projects
such as GCC or Clang/LLVM. This top-down approach, from the language down to the hardware, en-
sures comprehensive language support and a large number of state-of-the-art optimization techniques
[33, 32, 5]. However, most of these optimizations were designed for standard CPUs. It is therefore
relevant to question if they make sense in an FPGA context [25]. It is also relevant to attempt to
identify new optimizations that did not make sense in a software context but make sense in the FPGA
context. Even hardware-specific optimizations that were already performed by some of the early HLS
tools can be reconsidered and improved in the new context of modern optimizing compiler frameworks.

This is the main objective of the present work, with a focus on arithmetic-related optimizations.
Consider for example the integer multiplication by a constant. Optimization of hardware constant

multiplication has been the subject of much research [14, 23, 47, 4, 41, 30], some of which is specific
to FPGAs [8, 49, 48, 11]. Some of the early HLS tools could exploit this literature and generate
an optimized architecture. However, it was not optimized for the big picture: this is what modern
compiler frameworks provide, with global program transformations such as (interprocedural) constant
propagation and folding, strength reduction, etc [33]. Unfortunately, some optimizations of the leaf
hardware operators got lost in this transition to modern compiler frameworks, as we now show.

Listing 1 implements a simple integer multiplication by 7. Listing 2 shows the assembly code of
Listing 1, when compiled with gcc 7.4.0 without any particular optimization flag, targeting an x86
microprocessor. One can see that the multiplication by 7 has been transformed by the compiler into
a shift-and-add algorithm (here actually a shift-and-sub, hardware addition and subtraction being
equivalent in this context): 7x = 8x − x = 23x − x, where the multiplication by 23 is a simple shift
left by 3 bits. Both on GCC or Clang/LLVM, if the code is compiled using -O2 optimization flag, the
algorithm is the same but the multiplication by 8 is implemented by the lea instruction in a slightly
less obvious way.

As a consequence, the architecture produced by an HLS tool based on GCC or Clang/LLVM will
use a shift-and-add algorithm. It makes even more sense in HLS, since the constant shifts reduce to
wires and therefore cost very little hardware. Indeed, the synthesis of Listing 1 in VivadoHLS reports
32 LUTs (on a Kintex7 FPGA), the cost of one 32-bit adder. Experiments with Vivado HLS (based

1Catapult C Synthesis, Mentor Graphics, 2011, http://calypto.com/en/products/catapult/overview/
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int mul7(int x){

return x*7;

}

Listing 1: C code.

(...)

a: 89 d0 mov %edx,%eax

c: c1 e0 03 shl $0x3,%eax

f: 29 d0 sub %edx,%eax

(...)

Listing 2: Objdump of Listing 1 when compiled with gcc (x86).

int mul2228241 ( int x ){

return x*2228241;

}

Listing 3: C code.

(...)

10: ... imul $0x220011,%edi,%eax

16: ... retq

(...)

Listing 4: Objdump of Listing 3 compiled with Clang/LLVM -O2
(x86).

on Clang/LLVM) and Intel HLS (based on GCC) show that for all the constant multiplications that
can be implemented as an addition, these tools instantiate an adder instead of a multiplier.

Now consider the multiplication by another constant in Listing 3. On this example, the Clang/L-
LVM x86 backend keeps the operation as a multiplication.

Indeed, the synthesis of this operator by VivadoHLS on a Kintex reports 2 LUTs and 2 DSPs,
which are the resources needed to implement a 32-bit multiplier.

However, although the constant looks more complex, it barely is: the multiplication by 2228241
can be implemented in two additions as 2228241 = 217 · 17 + 17: first compute t = 17x = 24x + x
(one addition), then compute 2228241x = 217t + t (another addition). Still, neither the x86 backend
of Clang/LLVM nor GCC use a shift-and-add in this case. The rationale could be the following: the
cost of one addition will always be lower than or equal to the cost of a multiplication, whatever the
processor, so replacing one multiplication with one addition is always a win. Conversely, it may happen
on some (if not most) processors that the cost of two additions and two shifts is higher than the cost
of one multiplication.

Is this true in an HLS context? The best architecture for this multiplication, achieved by the C
program of Listing 5, consists of two adders: one that computes the 32 lower bits of t = 17x = 24x+x
(and should cost only 28 LUTs, since the lower 4 bits are those of x); one that computes the 32 lower
bits of 217t + t, and should cost 32-17=15 LUTs, for the same reason (the 17 lower bits are those of
t). The total cost should be 43 LUTs.

For Listing 5, VivadoHLS indeed reports 46 LUTs, very close to the predicted 43 (and not much
higher than the cost of the multiplication by 7).

In summary, the observation is that the arithmetic optimization has been completely delegated to
the underlying compiler x86 backend, and that we have a case here for enabling further optimizations
when targetting hardware or FPGAs.

The broader objective of the present work is to list similar opportunities of hardware-specific
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int mul2228241 ( int x ){

int t = (x<<4) + x;

return (t<<17) + t;

}

Listing 5: C code using a shift-and-add algorithm.

arithmetic optimizations that are currently unexploited, and demonstrate their effectiveness. We
classify these optimizations in two broad classes:

• Optimizations that strictly respect the semantic of the original program are presented in Section
2. The previous constant multiplication examples belong to this class, we also discuss division
by a constant, and we add in this section a few floating-point optimizations that make sense only
in a hardware context. This section should be perfectly uncontroversial: all optimizations in this
class should be available in an HLS flow as soon as they improve some metric of performance.
The only reason why it is not yet the case is that commercial HLS tools are relatively young and
don’t include the portfolio of HLS optimizations that have been researched.

• Optimizations that relax (and we argue, only for the better) the constraint of preserving the
program semantics are presented in Section 3. In this more controversial and forward-looking
Section, we assume that programmers who used floating-point datatypes in their programs in-
tended to compute with real numbers, and we consider optimizations that lead to cheaper and
faster, but also more accurate hardware. This approach is demonstrated in depth on examples
involving floating-point summations and sums of products.

In each case, we use a compilation flow illustrated by Figure 1 that involves one or several source-
to-source transformations using the GeCoS framework [19] to improve the generated designs. Source-
to-source compilers are very convenient in an HLS context, since they can be used as optimization
front-ends on top of closed-source commercial tools. This approach is not new as source-to-source
compilers are already used in an HLS context for dataflow optimization [9].

Finally, Section 4 concludes and discusses what we believe HLS tools should evolve to.

High level
C/C++

GeCoS
source-to-source

compiler

arithmetic
optimization

plugin
C/C++

with low-level
description
of context-

specific
arithmetic
operators

HLS tool
(Vivado HLS)

Hardware
description

Contribution of
this work

Figure 1: The proposed compilation flow.
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2 Optimization examples that do not change the program se-
mantic

The arithmetic optimizations that fit in this section go well beyond the constant multiplications studied
in introduction. In particular, there are opportunities of floating-point optimizations in FPGAs that
are more subtle than operator specialization.

2.1 Floating-point corner-case optimization

Computing systems follow the IEEE-754 standard [1] on floating-point arithmetic, which was intro-
duced to normalize computations across different CPUs. Based on this standard, the C standard
prevents compilers from performing some floating-point optimizations. Here are a some examples that
can be found in the C11 standard [26]:

• x/x and 1.0 are not equivalent if x is zero, infinite, or NaN (in which case the value of x/x is
NaN).

• x − y and −(y − x) are not equivalent because 1.0 − 1.0 is +0 but −(1.0 − 1.0) is −0 (in the
default rounding direction).

• x− x and 0 are not equivalent if x is a NaN or infinite.

• 0 × x and 0 are not equivalent if x is a NaN, infinite, or -0.

• x + 0 and x are not equivalent if x is -0, because (-0) + (+0), in the default rounding mode (to
the nearest), yields +0, not -0.

• 0 − x and −x are not equivalent if x is +0, because -(+0) yields -0, but 0 - (+0) yields +0.

Of course, programmers usually do not write x/x or x+0 in their code. However, other optimization
steps, such as code hoisting, or procedure specialization and cloning, may lead to such situations: their
optimization is therefore relevant in the context of a global optimizing compiler [33].

Let us consider the first example (the others are similar): A compiler is not allowed to replace
x/x with 1.0 unless it is able to prove that x will never be zero, infinity or NaN. This is true
for HLS as well as for a standard compiler. However, it could replace x/x with something like
(is_zero(x)||is_infty(x)||is_nan(x))?NaN:1.0;. This is, to our knowledge, not implemented.
The reason is again probably that in software, the test on x becomes more expensive than the division.

However, if implemented in hardware, this test is quite cheap: it consists in detecting if the exponent
bits are all zeroes (which capture the 0 case) or all ones (which captures both infinity and NaN cases).
The exponent is only 8 bits for single precision and 11 bits for double-precision.

In an FPGA context, it therefore makes perfect sense to replace x/x (Figure 2a) with an extremely
specialized divider depicted in Figure 2b. Furthermore, the two possible values are interesting to
propagate further (1.0 because it is absorbed by multiplication, NaN because it is extremely conta-
gious). Therefore, this optimization step enables further ones, where the multiplexer is pushed down
the computation, as illustrated by Figure 2c.

Note that figure 2c replaces 1.0*a by a: this is a valid floating-point optimization, in the sense
that it is valid even if a is a signed zero, an infinity or a NaN.

Occurrences of x−x, 0×x, x+ 0, 0−x can similarly be replaced with a multiplexer and very little
logic, and may similarly enable further optimizations.
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Figure 2: Optimization opportunities for floating-point x/x ∗ a.

Since these arithmetic optimizations are expected to be triggered by optimizations (procedure
specialization) and trigger further optimizations (conditional constant propagation), they need to be
implemented and evaluated within an optimizing compiler. The source-to-source flow depicted on
Figure 1 is ill-suited to studying such cascaded optimizations. Furthermore, the multiple conditional
constant propagation that transforms Figure 2b into Figure 2c is probably not implemented yet, since
it doesn’t make much sense in software. This evaluation is therefore left out of the scope of the present
article.

In the following, we focus on FPGA-specific semantic-preserving optimizations which do not trigger
further optimizations.

2.2 Integer multiplication by a constant

Multiplication by a constant has already been mentioned in introduction. We just refer to the rich
existing literature on the subject [8, 14, 49, 23, 47, 4, 41, 48, 30, 11]. These are mostly academic works,
but back-end tools already embed some of it, so this optimization could be the first to be implemented.
An issue is that its relevance, in the big picture of a complete application, is not trivial: Replacing
DSP resources with logic resources is an optimization only in a design that is more DSP-intensive than
logic-intensive. Besides, as soon as a logic-based constant multiplier requires more than a handful of
additions, it may entail more pressure on the routing resources as well. Discussing this trade-off in
detail in the context of an application is out of scope of the present article.

2.3 Integer division by a small constant

Integer division by a constant adds one more layer of optimization opportunities: In some cases, as
illustrated by Listing 6 and Listing 7, a compiler is able to transform this division into a multiplication
by a (suitably rounded) reciprocal. This then triggers the previous optimization of a constant multi-
plier. Actually, one may observe that on this example that the constant 1/7 has the periodic pattern
1001001001001001001001001002 (hidden in the hexadecimal pattern 92416 in Listing 7). This enables
a specific optimization of the shift-and add constant multiplication algorithm [10].

Table 1 shows synthesis results on the two FPGA mainstream HLS tools at the time of writing
(Vivado HLS and Intel HLS). As a reminder of the resource names used by these tools: LUTs and
ALMs are look-up tables, Regs. and FFs are registers, DSPs are dedicated hardware blocks (essentially
for multipliers), SRLs are shift registers and MLABs are aggregated LUTs to emulate small RAM
blocks. The timing constraint was set to 100 MHz, however this factor is not important here as it does
not change the structure of the generated operators. The goal here is to observe the optimizations
performed (or not) by the tools. Here is what we can infer from this table:
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int div7(int in){

return in/7;

}

Listing 6: C code.

(...)

0: ... movslq %edi,%rax

3: ... imul $0xffffffff92492493,%rax,%rcx

a: ... shr $0x20,%rcx

e: ... add %ecx,%eax

10: ... mov %eax,%ecx

12: ... shr $0x1f,%ecx

15: ... sar $0x2,%eax

18: ... add %ecx,%eax

1a: ... retq

Listing 7: Objdump of Listing 6 when compiled with Clang -O2 (x86).

7 7 6

1 7

2 6

2

2 5 8

3

We first compute the Euclidean division of 7 by 3. This gives the first digit of the
quotient, here 2, and the remainder is 1. In other words 7 = 3 × 2 + 1. The second
step divides 77 by 3 by first rewriting 77 = 70 + 7 = 3 × 20 + 10 + 7: dividing 17 by
3 gives 17 = 3 × 5 + 2. The third steps rewrites 776 = 770 + 6 = 250 + 20 + 6 where
26 = 3 × 8 + 2, hence 776 = 3 × 258 + 2.
The only computation in each step is the Euclidean division by 3 of of a number
between 0 and 29: it can be pre-computed for these 30 cases and stored in a look-up
table (LUT).

Figure 3: Illustrative example: division by 3 in decimal.

• The generic divider (Divisor=x) is based on Xilinx on a shift-and-add algorithm, while on Intel
a polynomial approach is used [36] that consumes multipliers and DSP resources.

• Both tools correctly optimize the division by a power of two, converting it into a shift.

• Division by non-power of two integers is implemented by a multiplication by the inverse on
Xilinx (it consumes DSP blocks). On Intel, this multiplication is further optimized as a logic-
only operation.

For the division of an integer by a very small constant, the best alternative is the algorithm described
by Ugurdag et al. [45]. It is based on the decimal paper-and-pencil algorithm illustrated in Figure 3.
Figure 4 describes an unrolled architecture for a binary-friendly variant of this algorithm. There, the
input X is written in hexadecimal (each 4-bit word Xi is an hexadecimal digit). The quotient bits come
out in hexadecimal. The remainder of the division by 3 is always between 0 and 2, therefore fits on 2
bits. Each look-up table (LUT) on the figure therefore stores the quotient Qi and the remainder Ri of
the division by 3 of a number Ri+1Xi. This number is between 00h and 2Fh. On a recent LUT-based
FPGA, each 6-input, 6-output LUT of Figure 4 consumes exactly 6 FPGA LUTs: This architecture
is very well suited to FPGAs.

Table 2 compares the performance on Xilinx of the division of a 64-bit integer by a small constant,
when left to the Vivado HLS tool (left part), and when first replaced by an HLS description of the
architecture of Figure 4 by a source-to-source transformation (right part of the table). For constants
smaller than 9, all the metrics (logic resources, DSP, latency and frequency) are improved by this

7



Table 1: Synthesis results for the division y/x, where y is a 32-bit integer variable and x is either a
32-bit integer variable, or an integer constant between 1 and 9. Synthesis is performed using Vivado
HLS 2019.1 for Kintex 7, and Intel HLS 19.2 for Arria 10, targeting 100MHz.

(a) Vivado HLS

Divisor LUTs Regs. DSPs

x 217 294 0
1 0 0 0
2 78 0 0
3 162 67 4
4 77 0 0
5 162 67 4
6 162 67 4
7 163 68 4
8 75 0 0
9 160 65 4

(b) Intel HLS

ALMs FFs RAMs DSPs MLABs

668 707 4 10 9
26.5 45 0 0 0
31.5 41 0 0 0
126.5 102 0 0 2
30.5 40 0 0 0
132.5 110 0 0 2
123.5 99 0 0 2
136 106 0 0 2
30.5 40 0 0 0
165.5 103 0 0 2
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Figure 4: Architecture for division by 3 of a 16-bit number written in hexadecimal, using LUTs with
6 input bits.

Table 2: Synthesis results for the division y/x, where y is a 64-bit integer variable and x is either
a 64-bit integer variable, or a constant between 1 and 9. Synthesis is performed using Vivado HLS
2019.1 for Kintex 7, and Intel HLS 19.2 for Arria 10, targeting 100MHz.

(a) C division

Divisor LUTs reg. DSPs Cycles @ Freq WCT

x 8704 8588 0 67 @ 291MHz 230.24
2 162 193 0 2 @ 464MHz 4.31
3 550 728 16 22 @ 343MHz 64.13
4 161 190 0 2 @ 453MHz 4.41
5 548 726 16 22 @ 348MHz 63.21
6 548 726 16 22 @ 348MHz 63.21
7 548 726 16 22 @ 348MHz 63.21
8 159 187 0 2 @ 451MHz 4.43
9 550 726 16 22 @ 351MHz 62.67

(b) [45] division in HLS

LUTs reg. Cycles @ Freq WCT

NA NA NA NA
163 193 2 @ 396MHz 5.05
301 230 16 @ 364MHz 43.95
162 190 2 @ 406MHz 4.92
391 272 22 @ 316MHz 69.62
222 208 16 @ 362MHz 44.19
414 469 22 @ 316MHz 69.62
160 187 2 @ 390MHz 5.12
371 354 32 @ 294MHz 108.84

transformation. The wall clock time (WCT) is also reported. Throughout the rest of this paper, the
WCT is given in ns, unless stated otherwise. As the constant grows larger, the latency degrades and
the resource consumption increases: for division by 9 we already have a worst latency and frequency
than the default multiplication-based implementation, but still with much less resources. For smaller
constants, the transformed operators reduce the resource usage by at least a factor 2 while still requiring
a smaller or equal WCT.

2.4 Floating-point multiplications and division by small constants

As illustrated by Table 3, even fewer optimizations are implemented for floating-point multiplications
and divisions by a constant.

• Both Vivado HLS and Intel HLS are able to remove the constant multiplication and division by
1.0 (unsurprisingly, since it is a valid simplification in software compilers).
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Table 3: Synthesis results for the multiplication y ∗x and the division y/x, where y is a single precision
floating-point variable and x is either a single precision floating-point variable, or an integer constant
between 1 and 5. Synthesis is performed using Vivado HLS 2019.1 for Kintex 7, and Intel HLS 19.2
for Arria 10, targeting 100MHz.

(a) Vivado HLS

Value LUTs Regs. DSPs SRLs

M
u

lt

x 74 99 3 0
1.0 0 0 0 0
2.0 53 67 3 0
3.0 53 67 3 0
4.0 59 67 3 0
5.0 59 67 3 0

D
iv

x 754 391 0 24
1.0 0 0 0 0
2.0 58 67 3 0
3.0 686 244 0 23
4.0 58 67 3 0
5.0 688 244 0 24

(b) Intel HLS

ALMs FFs RAMs DSPs MLABs

76.5 104 0 1 2
26.5 45 0 0 0
85.5 63 0 0 2
111 62 0 0 2
86 60 0 0 2
124 61 0 0 2

343.5 706 3 4 7
26.5 45 0 0 0
85 60 0 0 2
341 547 3 4 9
86.5 62 0 0 2
331 540 3 4 9

• Intel HLS seems to optimize constant multiplications (it never requires a DSP). Vivado HLS, on
the other hand, doesn’t even optimize floating-point multiplications by 2.0 or a power of 2. This
class of operations should resume to an addition on the exponents, and specific overflow/under-
flow logic.

• Both tools use a specific optimization when dividing by a power of two. This can easily be
explained by looking at the assembly code generated by GCC or Clang/LLVM in such cases:
both compilers will transform a division by 4.0 into a multiplication by 0.25, which is bit-for-bit
equivalent, and much faster on most processors.

• Both tools use a standard divider for constants that are not a power of 2, with minor resource
reductions thanks to the logic optimizer.

Again we may question the relevance of these choices on FPGAs. It is indeed possible to design
floating-point versions of both constant multiplications [6] and constant divisions [45] that are bit-for-
bit compatible with IEEE correctly rounded ones. For instance, in the case of division, the remainder
R that is output by Figure 4 can be used to determine the proper rounding of the significand quotient
(for the full details, see [45]).

As we expect constant multiplications to be properly supported soon (it seems to be already the
case on Intel HLS), we focus our evaluation on constant division. Table 4 provides synthesis results of
Vivado HLS C++ generated operators for floating-point divisions by small constants. The standard
floating-point division is also given for comparison purposes, since Table 3 shows that it is the default
architecture. All these operators can be more/less deeply pipelined to achieve higher/lower frequencies

10



Table 4: Synthesis results of the division of y/x, where y is a floating-point numbers and x is either a
floating-point variable, or an integer constant between 1 and 5. In the constant case the architecture
from [45] is used. Synthesis is performed using Vivado HLS 2019.1 for Kintex 7, and Intel HLS 19.2
for Arria 10, targeting 100MHz.

(a) float

Divisor LUTs reg. Cycles @ Freq. WCT(ns)

x 808 1444 29 @ 451MHz 64.30
2.0 63 61 2 @ 619MHz 3.23
3.0 266 177 10 @ 359MHz 27.85
4.0 89 62 2 @ 608MHz 3.28
5.0 292 199 12 @ 356MHz 33.70
6.0 276 178 10 @ 361MHz 27.70
7.0 301 193 17 @ 360MHz 47.22
8.0 85 61 2 @ 579MHz 3.45
9.0 329 258 17 @ 242MHz 70.24
10.0 301 198 13 @ 325MHz 40.00
11.0 328 269 17 @ 229MHz 74.23

(b) double

LUTs reg. Cycles @ Freq. WCT(ns)

3266 3177 30 @ 183MHz 163.93
126 227 3 @ 574MHz 5.22
588 459 17 @ 187MHz 90.90
176 281 3 @ 452MHz 6.63
687 488 22 @ 204MHz 107.84
596 438 17 @ 189MHz 89.94
685 540 22 @ 185MHz 118.91
176 228 3 @ 577MHz 5.19
698 590 32 @ 209MHz 153.11
696 472 22 @ 190MHz 115.78
697 572 32 @ 189MHz 169.31

at the expense of latency and registers: we attempt to achieve a frequency comparable to that of the
standard divider.

Each optimized constant divider uses fewer resources (up to 5.55 times) and has a lower latency
(up to 2.3 times) for a comparable frequency. When dividing by a power of two, the cost of the custom
divider is virtually nothing (again it resumes to an operation on the exponents).

2.5 Evaluation in context

We implemented a C-to-C source-to-source transformation that detects floating-point multiplications
and divisions by constants in the source code, and replaces it by a custom operator that is bit-for-bit
equivalent. This transformation was implemented as a plug-in within the open source source-to-source
GeCoS compiler framework [19], as per Figure 1.

This work was then evaluated on the Polybench benchmark suite [37]. It contains several C
programs that fit the polyhedral model. The focus here is on the stencil codes of this benchmark
suite. Most of them contains a division by a small constant. Indeed, out of the 6 stencil codes, 5 were
well suited for our transformations. The Jacobi-1d benchmark contains two divisions by 3; Jacobi-2d
contains two divisions by 5; Seidel-2d contains a division by 9; Fdtd-2d contains two divisions by 2
and a multiplication by 0.7; finally, Heat-3d contains six divisions by 8 and six multiplications by 2.

Table 5 compares the synthesis results obtained

• using the original C code, targeting the maximum frequency achievable, and

• using the code after transformation by our GeCoS plug-in.
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Table 5: Benchmark synthesis results using Vivado HLS 2019.1 for Kintex 7, before and after constant
multplications and divisions transformations.

Benchmark Type LUTs regs. DSPs Cycles @ Freq. WCT(ms)

Fdtd-2d
Original 4780 6162 17 153G @ 349MHz 438.39

Transformed 3326 4386 17 11G @ 349MHz 31.51

Heat-3d
Original 3842 6081 31 193G @ 349MHz 553.00

Transformed 5737 6629 17 141G @ 348MHz 405.17

Jacobi-1d
Original 4274 4964 3 185M @ 348MHz 0.53

Transformed 2167 2792 3 129M @ 358MHz 0.36

Seidel-2d
Original 4419 5126 6 373G @ 351MHz 1062.67

Transformed 1878 2341 6 321G @ 304MHz 1053.52

Jacobi-2d
Original 4588 5462 9 213G @ 347MHz 613.83

Transformed 2548 3294 9 176G @ 335MHz 525.37

Each benchmark benefits from the transformations. Wall-clock time is always improved, with
latency improved up to 13.9 times for similar frequencies. The benefits of the transformations in
terms of timing differ from one benchmark to another, the best improvements being achieved when
the transformed operator is in the critical path of an inner loop.

Concerning resource usage, only the Heat-3d benchmark has more LUTs and registers in the trans-
formed version. However, it has fewer DSPs. This is explained by the transformation of 6 dividers and
2 multipliers from DSP-based architectures to LUT-based ones. In all other cases, LUT and register
usage is reduced for the same amount of DSPs.

3 Optimization examples that change the program semantic

From a compiler point of view, the previous transformations were straightforward and semantic pre-
serving. Conversely, the case study in this section replaces the standard semantics of a floating-point
code fragment with a new one, based on a user-specified accuracy with respect to the exact compu-
tation on the reals. This enables deeper program transformations, such as a change of the internal
number representation that enables both improved accuracy and tightened loop-carried dependencies.

Before detailing it, we must digress a little on the subtleties of the management of floating-point
arithmetic by compilers.

3.1 HLS faithful to the floats

Most recent compilers, including the HLS ones [24], attempt to follow established standards, in par-
ticular C11 and, for floating-point arithmetic, IEEE-754. This brings the huge advantage of almost
bit-exact reproducibility – the hardware will compute exactly the same results as the software. How-
ever, it also greatly reduces the freedom of optimization by the compiler. For instance, as floating-point
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#define N 100000

float acc = 0;

for(int i=0; i<N; i++){

acc+=in[i];

}

Listing 8: Usual reduction.

#define N 100000

float acc=0, t1=0, t2=0, t3=0, t4=0;

for(int i=0; i<N; i+=4){

t1+=in[i]; t2+=in[i+1]; t3+=in[i+2]; t4+=in[i+3];

}

acc=t1+t2+t3+t4;

Listing 9: Unrolled reduction to express parallelism.

addition is not associative, C11 mandates that code written a+b+c+d is executed as ((a+b)+c)+d, al-
though (a+b)+(c+d) would have a shorter latency.

This also prevents exploiting parallelism in floating-point reductions. A reduction is a computation
which reduces a set of input values into a reduction location using an associative operation. Examples
of reductions include summations, products, wide logical AND, etc.

Reductions are typically expressed as loops. If floating-point addition was associative, Listing 8
would be an example of reduction, where acc is the reduction location. The first column of Table 6
gives the synthesis results of Listing 8 using Vivado HLS for Kintex7. The latency of a floating-point
addition is 7 cycles in this case. However, using a feedback loop that injects the current denormalized
sum as a new input to the adder [15, 18], the Vivado HLS IP is able to achieve an initiation interval
of 4 cycles. Still, the adder is only active one cycle out of 4 due to the loop-carried dependency.

Listing 9 shows a different version of Listing 8 that we manually unrolled in such a way to express
more parallelism. However, this transformation assumes that floating-point addition is associative,
which it is not. Indeed, Vivado HLS is not allowed to transform Listing 8 into Listing 9. According to
C or C++ semantics, Listing 9 and 8 are not equivalent. Remark that a parallel execution with the
sequential semantics is possible, but very expensive [28].

Vivado HLS is able to exploit the parallelism in Listing 9 (second column of Table 6). It reports
using two floating-point adder. The one inside the loop is now active at each cycle on a different sub-
sum, hence a factor 4 gain on latency. The second floating-point adder (whose shifts are implemented
using DSP blocks) is used for the final additions. Note that Listing 9 represents the easy case when N
is a multiple of the initialization interval of the addition: it would become more complex otherwise.

As a final remark, it is important to point out that the accuracy of these solutions is far from perfect:
the 100K rounding errors in the reduction sum up. For test data, we use as in Muller et al. [34] the
input values in[i]=(float)cos(i), where i is the input array’s index. Therefore the accumulation
computes

∑
i

in[i]. The golden value to compare with is obtained using the MPFR library [21]. We

measure that only 20 bits of the result are correct (out of the 24 bits of a float significand). When
computing the sum of the sines, the accuracy is reduced down to 17 bits. A solution to this is to
perform the accumulation in double precision (changing the keyword float into double in the second
lines of Listings 8 and 9). This is obviously more expensive, as the two middle columns of Table 6
show.
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Table 6: Synthesis results of different accumulators using Vivado HLS for Kintex 7 at 100MHz

float acc double acc 68-bit fixed-point acc

Listing 8 Listing 9 Listing 8 Listing 9 Listing 10 FloPoCo VHDL
LUTs 387 835 784 1908 462 375*
DSPs 0 2 0 3 0 0

Latency 400K 100K 400K 100K 100K 100K
Accuracy 20 bits 20 bits 24 bits 24 bits 24 bits 24 bits

*: does not include the control part

3.2 Towards HLS faithful to the reals

Many floating-point programmers routinely assume associativity of floating-point addition and multi-
plication, tweaking their code in the same way as we transformed Listing 8 into Listing 9, sometimes
assisted by source-to-source compilers or “unsafe” compiler optimizations.

The point of view chosen in this work is to go one step further, and allow the programmer to
express that some of the floating-point C/C++ program is intended to describe a computation on
real numbers. In other words, under programmer control, some of the floats in the C/C++ will be
interpreted as real numbers.

This recovers the associativity of the addition, so Listing 8 is again a reduction and can validly
be transformed into Listing 9. Besides, this new point of view brings in the picture a new degree of
freedom: accuracy. In an hardware context, designers want to tailor the precision (hence the cost)
to the accuracy requirements of the application – a classical concern in HLS [22, 7]. Now that the
C/C++ describes a computation on the reals, the user should also be able to specify the accuracy of
the computation with respect to this exact (real) result. It should then be the task of the compiler to
determine the best way to ensure the prescribed accuracy. This is what we explore in the sequel.

3.3 The arithmetic side: application-specific accumulator support

Several approaches for performing a floating-point summation using non-standard hardware have been
proposed [31, 27]. In this work, we chose an approach better suited to the HLS context: a generalization
of an idea developed by Kulisch. He advocated to augment processors with a very large fixed-point
accumulator [29] whose 4288 bits would cover the entire range of double precision floating-point, and
then some more: Such an accumulator would remove rounding errors from all the possible floating-
point additions and sums of products. The added bonus of an exact addition is that it becomes
associative, since the loss of associativity in floating-point is due to rounding.

So far, Kulisch’s full accumulator has proven too costly to appear in mainstream processors. How-
ever, in the context of application acceleration with FPGAs, it can be tailored to the accuracy require-
ments of applications. Its cost then becomes comparable to classical floating-point operators, although
it vastly improves accuracy [13]. This operator can be found in the FloPoCo [12] generator and in Intel
DSP Builder Advanced. Its core idea, illustrated on Figure 5, is to use a large fixed-point register into
which the mantissas of incoming floating-point summands are shifted (top) then accumulated (mid-
dle). A third component (bottom) converts the content of the accumulator back to the floating-point
format. The sub-blocks visible on this figure (shifter, adder, and leading zero counter) are essentially
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the building blocks of a classical floating-point adder.
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Figure 5: Conversion from float to fixed-point (top), fixed-point accumulation (middle), and conversion
from fixed-point to float (bottom).

The accumulator used here slightly improves the one offered by FloPoCo [13]:

• It supports subnormal numbers [34].

• In FloPoCo, FloatToFix and Accumulator form a single component, which restricts its application
to simple accumulations similar to Listing 8. The decomposition in two components of Figure 5
enable a generalization to arbitrary summations within a loop, as Section 3.4 shows.

3.3.1 The parameters of a large accumulator

The main feature of this approach is that the internal fixed-point format is configurable in order to
control accuracy. For this purpose, this format (represented in Figure 6) has two parameters:

• MSBA is the weight of the most significant bit of the accumulator. For example, if MSBA = 17,
the accumulator can accommodate values up to a magnitude of 217 ≈ 105.
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Figure 6: Fixed-point accumulator format, here (MSBA,LSBA) = (7,−8).

• LSBA is the weight of the least significant bit of the accumulator. For example, if LSBA = −50,
the accumulator can hold data accurate to 2−50 ≈ 10−15.

The accumulator width wa is then computed as MSBA − LSBA + 1, for instance 68 bits in the
previous example. 68 bits represents a wide range and high accuracy, and still additions on this
format will have one-cycle latency for practical frequencies on recent FPGAs. If this is not enough
the frequency can be improved thanks to partial carry save [13] but this was not useful in the present
work. For comparison, for the same frequency, a floating-point adder has a latency of 7 to 10 cycles,
depending on the target, with an initiation interval of about 4 cycles.

3.3.2 Implementation within a HLS tool

This accumulator has been implemented in C/C++, using arbitrary-precision fixed point types (ap int)
and the Modern Arithmetic Tools for HLS library [44].

For modularity purposes, FloatToFix and FixToFloat are wrapped into C/C++ functions (respec-
tively 33 and 28 lines of code). Their calls are inlined to enable HLS optimizations. The implementation
of the FloatToFix function has one more parameter, called MaxMSBX: it defines the largest possible
exponent of the floating-point input. Its default value is equal to MSBA, but it may be smaller, when
the application context dictates an upper bound on the magnitude of the input to FloatToFix. In
this case, the size of the shifter (Figure 5) can be reduced.

Because the internal accumulation is performed on a fixed-point integer representation, the com-
binational delay between two accumulations is lower compared to a full floating-point addition. HLS
tools can take advantage of this delay reduction by more aggressive loop pipelining (with shorter
Initiation Interval), resulting in a design with a shorter overall latency.

3.3.3 Validation

To evaluate and refine this implementation, we used Listing 10, which we compared to Listings 8 and
9.

The parameters chosen for the accumulator in this experiment are:

• MSBA = 17. Indeed, as we are adding cos(i) 100K times, an upper bound is 100K, which can
be encoded in 17 bits.

• MaxMSBX = 1 as the maximum input value is 1.

• LSBA = -50: the accumulator itself will be accurate to the 50th fractional bit. Note that a
float input will see its mantissa rounded by FloatToFix only if its exponent is smaller than
2−25, which is very rare. In other words, this accumulator is much more accurate than the data
that is thrown to it.
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#define N 100000

float acc = 0;

ap_int<68> long_accumulator = 0;

for(int i = 0; i < N; i++) {

long_accumulator += FloatToFix(in[i]);

}

acc = FixToFloat(long_accumulator);

Listing 10: Sum of floats using the large fixed-point accumulator.
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Figure 7: Exact floating-point multiplier.

The results are reported in the two rightmost columns of Table 6. The Accuracy line of the table
reports the number of correct bits of each implementation, after the result has been converted to a
float. The proposed fixed-point accumulator achieves minimal latency and maximum accuracy, for a
LUT usage comparable to the usual float accumulation of Listing 8.

Removing the control part from Listing 10 reduces resource usage to 395 LUTs, very comparable
to the 375 LUTs of the corresponding FloPoCo-generated VHDL (which doesn’t include this control,
nor subnormal support). This shows that there is no overhead due to the use of HLS.

Using this implementation method, we also created an exact floating-point multiplier with the final
rounding removed [13]. This component is depicted in Figure 7. The corresponding function is called
ExactProduct and represents 44 lines of code. The result mantissa is twice as large as the input
mantissas (48 bits in single precision). To add it to the large accumulator, the Float-to-Fix block has
to be adapted: in the sequel, it is called ExactProductFloatToFix (21 lines of code).

3.4 The compiler side: source-to-source transformation

The previous section, as well as previous work by various groups [40, 20] has shown that Vivado HLS
can be used to synthesize very efficient specialized floating-point operators which rival in quality with
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those generated by FloPoCo or vendor tools. Our goal is now to study how such optimizations can
be automated. More precisely, we aim at automatically optimizing Listing 8 into Listing 10, and
generalizing this transformation to many more situations.

For convenience, this optimization was also developed as a source-to-source transformation imple-
mented within GeCoS and is publicly available (https://gitlab.inria.fr/gecos/gecos-arith).

This part focuses on two computational patterns, namely the accumulation and the sum of prod-
uct. Both are specific instances of the reduction pattern, which can be optimized by many compilers
or parallel run-time environments. Reduction patterns are exposed to the compiler/runtime either
though user directives (e.g #pragma reduce in openMP), or automatically inferred using static anal-
ysis techniques [38, 16].

As the problem of detecting reductions is not the main focus on this work, our tool uses a straight-
forward solution to the problem using a combination of a user-provided compiler directive (pragma)
and some simple program analysis.

More specifically, the proposed code transformation are triggered by a pragma that defines a target
accumulation variable, along with application-level information such as the dynamic range of the
accumulated data or the overall target accuracy.

We found this approach easier, more general and less invasive than those attempting to convert a
whole floating-point program into a fixed-point implementation [39].

The pragma approach has another advantage: we advocate relaxing the standard C semantics,
which is in principle dangerous. Therefore the user should explicitely ask for it. A pragma may allow
such relaxation in a local, controlled way, without sacrificing standard compliance for the rest of the
program.

3.4.1 Proposed compiler directive

In imperative languages such as C, reductions are implemented using for or while loop constructs.
The proposed compiler directive must therefore appear right outside such a construct. Listing 11
illustrates its usage on the code of Listing 8.

The pragma must contain the following information:

• The keyword FPacc, which triggers the transformation.

• The name of the variable in which the accumulation is performed, preceded with the keyword
VAR. In the example, the accumulation variable is acc.

In addition, it may provide the following information:

• The maximum value that can be reached by the accumulator through the use of the MaxAcc

keyword. This value is used to determine MSBA.

• The desired accuracy of the accumulator using the epsilon keyword. This value is used to
determine LSBA.

• The maximum value that the inputs can take, using the MaxInput keyword. This value is used
to determine MaxMSBX. If this information is not provided, then MaxMSBX is set to MSBA.

Note that the user can quietly overestimate the maximum value of the accumulator without major
impact on area. For instance, overestimating MaxAcc by a factor 10 only adds 3 bits to the accumulator
width.
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#define N 100000

float accumulation(float in[N]){

float acc = 0;

#pragma FPacc VAR=acc MaxAcc=100000.0 epsilon=1E-15 MaxInput=1.0

for(int i=0; i<N; i++){

acc+=in[i];

}

return acc;

}

Listing 11: Illustration of the use of a pragma for the usual accumulation.

In cases when the user is unable to provide such information, a full-range Kulisch accumulator is
used as a fall-back strategy – a recent study has evaluated different implementations of the full Kulisch
accumulator in an FPGA context [42].

3.4.2 Proposed code transformation

The proposed transformation operates on the compiler program intermediate representation (IR). It
relies on the ability to identify loops constructs, and expose def/use relations between instructions
within a basic block in the form of an operation data-flow graph (DFG).

#define N 100000

float computeSum(float in1[N], float in2[N]){

float sum = 0;

#pragma FPacc VAR=sum MaxAcc=300000.0 epsilon=1e-15 MaxInput=3.0

for (int i=1; i<N-1; i++){

sum+=in1[i]*in2[i-1];

sum+=in1[i];

sum+=in2[i+1];

}

return sum;

}

Listing 12: Simple reduction with multiple accumulation statements.

To illustrate the transformation, consider the non-trivial code of Listing 12. This program performs
a reduction into the variable sum, involving both sums and sums of product operations. Figure 8a shows
the operation data-flow graph for the loop body of this program. In this Figure, dotted arrows represent
loop-carried dependencies between operations belonging to distinct loop iterations. Such loop-carried
dependencies have a very negative impact on the kernel latency as they prevent loop pipelining. For
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example, when using a pipelined floating-point adder with an inner latency of 4 cycles the HLS tool
will schedule a new iteration of the loop at best every 4 cycles.

As illustrated in Figure 9a, the proposed transformation hoists the floating-point normalization
step out of the loop, and performs the accumulation using fixed point arithmetic. Since integer add
operations can be implemented with a 1-cycle delay at our target frequency, the HLS tool may now
be able to initiate a new iteration every cycle, improving the overall latency by a factor of 4.

in2[i-1] in1[i]

FloatMul

FloatAddin2[i+1]

FloatAdd

FloatAdd

sum

sum

(a) Loop body dataflow graph

in2[i-1]in1[i]in2[i+1]

FloatMul

FloatAdd

FloatAdd

FloatAdd

sum

delayed by
4 cycles

(b) Architecture

Figure 8: DFG of the loop body from Figure 12 (left) and its corresponding architecture (right).
FloatMul and FloatAdd correspond to floating-point multipliers and adders respectively.

The code transformation first identifies all relevant basic blocks (i.e those associated to the pragma

directive). It then performs a backward traversal of the data-flow graph, starting from a FloatAdd

node that writes to the accumulation variable identified by the #pragma.
During this traversal, the following actions are performed depending on the visited nodes:

• A node with the summation variable is ignored.

• A FloatAdd node is transformed to an accurate fixed-point adder. The analysis is then recursively
launched on that node.

• A FloatMul node is replaced with a call to the ExactProduct function followed by a call to
ExactProdFloatToFix.

• Any other node has a call to FloatToFix inserted.

This algorithm transforms the DFG from Figure 8a into the new DFG shown on Figure 9a. In
addition, a new basic block containing a call to FixToFloat is inserted immediately after the trans-
formed loop, in order to expose the floating-point representation of the results to the remainder of the
program.
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Figure 9: DFG of the loop body from Figure 12 (left) and its corresponding architecture (right) after
transformations.

From there, it is then possible to regenerate the corresponding C code. As an illustration of the
whole process, Figures 8b and 9b describe the architectures corresponding to the code before and and
after the transformation.

3.4.3 Evaluation on the code of Listing 12

The proposed transformations work on non-trivial examples such as the one represented in Listing 12.
Table 7 shows how resource consumption depends on epsilon, all the other parameters being those
given in the pragma of Listing 12.

Compared to the classical IEEE-754 implementation, the transformed code uses similar or more
LUTs depending on the precision of the accumulator. The original code requires 3 DSPs for the
floating-point multiplier (the adder is implemented in LUTs). The transformed code only requires 2
DSPs as the floating-point multiplier IP is removed for the custom exact multiplier that removes the
normalisation part (which required an extra DSP). In all cases, on this example, the transformed code
has its latency reduced by a factor equal to 9.

3.5 Evaluation on the EEMBC FPMark benchmarks

In order to evaluate the relevance of the proposed transformations on real-life programs, we used the
EEMBC FPMark benchmark suite [17]. The only transformations considered in this evaluation are
the ones presented in Section 3.4. This suite consists of 10 programs. A first result is that half of these
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Table 7: Comparison between the usual code from Listing 12 and its transformed equivalent. Results
obtained with Vivado HLS 2019.1 targeting Kintex7. All these versions run at 100MHz.

Usual Transformed Transformed Transformed
LSBA = −14 LSBA = −20 LSBA = −50

LUTs 534 501 587 1089
DSPs 3 2 2 2

Latency 900K 100K 100K 100K

programs contain floating-point accumulations:

• Enhanced Livermore Loops (1/16 kernels contains a sum of product).

• LU Decomposition (multiple accumulations).

• Neural Net (multiple sum-of-products).

• Fourier Coefficients (one accumulation).

• Black Scholes (one accumulation).

The following focuses on these, and ignores the other half (Fast Fourier Transform, Horner’s method,
Linpack, ArcTan, Ray Tracer) as they do not benefit from the transformations (code is unchanged).

Most benchmarks come in single-precision and double-precision versions. We focus here on the
single-precision. Double-precision benchmarks lead to the same conclusions.

3.5.1 Benchmarks and accuracy: methodology

Each benchmark comes with a golden reference against which the computed results are compared.
As the proposed transformations are controlled by the accuracy, it may happen that the transformed
benchmark is less accurate than the original. In this case, it will not pass the benchmark verification
test, and rightly so.

A problem is that the transformed code will also fail the test if it is more accurate than the original.
Indeed, the golden reference is the result of a certain combination of rounding errors using the standard
FP formats, which we do not attempt to replicate.

To work around this problem, each benchmark was first transformed into a high-precision version
where the accumulation variable is a 10,000-bit floating-point numbers using the MPFR library [21].
We used the result of this highly-accurate version as a “platinum” reference, against which we could
measure the accuracy of the benchmark’s golden reference. This allowed us to choose our epsilon

parameter such that the transformed code would be at least as accurate as the golden reference. This
way, the epsilon of the following results is obtained through profiling. The accuracy of the obtained
results are computed as the number of correct bits of the result.

Let us review in detail how each benchmark is improved by the proposed transformation. All the
synthesis results (before and after transformation) are given in Table 8.
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Table 8: Synthesis results of benchmarks before and after sum-of-product transformations. Results
obtained with Vivado HLS 2019.1 targeting Kintex7. All these versions run at 100MHz.

Benchmark Type LUTs DSPs BRAM Latency Accuracy

Livermore
Original 398 5 0 54M 11 bits

Transformed 608 4 0 6M 13 bits

LU-8
Original 435 3 0 38 8-23 bits

Transformed 274 2 0 14 23 bits

LU-45
Original 472 4 0 186 8-23 bits

Transformed 300 3 0 51 23 bits

Black Scholes
Original 14388 147 0 4M 19 bits

Transformed II=4 13623 138 0 4M 23 bits
Transformed II=1 22646 308 0 1M 23 bits

Fourier Coefficients
Original 22707 319 14 34K* 6 bits

Transformed 13990 145 7 25K* 11 bits

*: obtained through cosimulation

Enhanced Livermore Loops This program contains 16 kernels of loops that compute numerical
equations. Among these kernels, there is one that performs a sum-of-product (banded linear equations).
This kernel computes the sum of 20000 products 300 times resulting in 6M accumulated terms. The
values accumulated are pre-computed. This is a perfect candidate for the proposed transformations.

For this benchmark, the optimal accumulation parameters were found as:

MaxAcc=50000.0 epsilon=1e-5 MaxInput=22000.0

As previously, latency is vastly improved while achieving improved accuracy. The area is compa-
rable as the operator implemented in the transformation uses a bit more LUTs and fewer DSPs (as
discussed in 3.4.3).

LU Decomposition and Neural Net Both the LU decomposition and the neural net programs
contain multiple nested small accumulations. In the LU decomposition program, an inner loop accu-
mulates between 8 and 45 values. Such accumulations are performed more than 7M times. In the
neural net program, inner loops accumulate between 8 and 45 values, and such accumulations are
performed more than 5K times.

Both programs accumulate values from registers or memory that are already computed. It makes
these programs good candidates for the proposed transformations.

Vivado HLS is unable to predict a latency for these designs due to their non-constant loop trip
counts. As a consequence, instead of presenting results for the complete benchmark, we restrict
ourselves to the LU innermost loops. Table 8 shows the results obtained for the smallest (8 terms) and
the largest (45 terms) sums-of-products in lines LU-8 and LU-45 respectively. The latency is vastly
improved even for the smallest one. The accuracy results of the original code here varies from 8 to 23
bits between different instances of the loops. To have a fair comparison, we generated a conservative
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design that performs 23 bits accuracy on all loops, using a sub-optimal amount of resources. Still, the
transformed code requires fewer resources.

Black Scholes This program contains an accumulation that sums 200 terms. These terms are
computed performing polynomial approximations and exponentiations from the input data. The result
of the accumulation is divided by a constant (that could be further optimized by using transformations
from Section 2). This process is performed 5000 times, hence it results in 1M accumulations.

Here the optimal accumulator parameters are the following:

MaxAcc=245000.0 epsilon=1e-4 MaxInput=278.0

This gives us an accumulator that uses 19 bits for the integer part and 10 bits for the fractional part.
The original code is only able to achieve an initiation interval of 4 cycles (limited by the accumula-

tion). Because of this 4 cycles latency between two iterations, Vivado HLS is able to reuse some of the
hardware that computes the terms to accumulate in order to reduce the hardware consumption. For
example, a floating-point exponential IP is reused for the computation of a single term to accumulate.

The transformed code is able to achieve an initiation interval of 1 cycle. Therefore, this exponential
hardware can no longer be reused and must be replicated to feed the accumulator. This explains the
increased resource usage presented as Transformed II=1.

As the transformed code can achieve a 1-cycle initiation interval, it is also able to achieve any
higher initiation intervals (2, 3, or 4 cycles), maintaining the same accuracy. The transformation then
offers a trade-off between latency and resource usage. The most conservative alternative (keeping the
original latency, but for reduced resource usage and improved accuracy), is presented as Transformed
II=4.

Fourier Coefficients This program computes the coefficients of a Fourier series, using an accumu-
lation performed in single precision. It comes in three different configurations: small, medium and
big. Each of them computes the same algorithm but with a different number of iterations. The big
version is supposed to compute the most accurate answer. Therefore, the parameters of the custom
accumulator are chosen according to this version:

MaxAcc=6000.0 epsilon=1e-7 MaxInput=10.0

This results in an accumulator using 14 bits for the integer part and 24 bits for the fractional part.
Table 8 shows that area is considerably reduced, while accuracy is improved by 5 bits (more than

one order of magnitude). However, Vivado HLS cannot statically compute the overall latency due to
the use of a floating-point power function. Therefore, the latencies reported here are obtained through
cosimulation. In order to keep the cosimulation duration reasonable, only the small dataset is used.
It computes 100 accumulations of 20 terms, followed by other computations. In that case, the latency
is also reduced.

4 Conclusion

This study first demonstrates how today’s commercial HLS tools such as Vivado HLS and Intel HLS
fail at exploiting full FPGAs potential when dealing with numerical programs, in particular with
floating-point numbers.
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One reason is the historical heritage of processor-oriented compiler backends. We advocate the in-
tegration in HLS compilers of well-known hardware-oriented low-level arithmetic optimizations. Some
of them can be applied at the level of the front-end, as showcased by the source-to-source approach
used in this study. Others need to be integrated as optimization passes on a compiler intermediate
representation. The benefits demonstrated by this study, both in terms of resource usage and latency,
makes these optimizations a must do.

This study also looks a bit further, towards compiler directives that would instruct the compiler
to treat floats as reals in a local, user-controlled way. The role of the compiler is then to achieve
the prescribed accuracy (defined with respect to an ideal, exact computation on the reals) with the
best performance at the minimal cost. In the context of hardware synthesis, this approach opens the
opportunity of using non-standard internal formats and operators, as demonstrated on the the case
study of floating-point sums and sums of products. With improvements in performance, cost, and
accuracy, this is a promising research direction for higher-level synthesis tools.
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[47] Yevgen Voronenko and Markus Püschel. Multiplierless multiple constant multiplication. Trans-
actions on Algorithms, 3(2), 2007.

[48] E. George Walters. Reduced-area constant-coefficient and multiple-constant multipliers for xilinx
FPGAs with 6-input LUTs. Electronics, 6(4):101, 2017.

[49] Michael J Wirthlin. Constant coefficient multiplication using look-up tables. Journal of VLSI
signal processing systems for signal, image and video technology, 36(1):7–15, 2004.

28


