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In this paper is proposed a vectorial equation that relates the absolute pole velocities of three moving rigid bodies with a planar motion of general type. From this equation, it is possible to obtain a relation between the pole velocities of the three mathematical points, related between them by the Aronhold-Kennedy Theorem. The formula allows the calculation of one of the pole velocities from the other two, being known the angular velocities and accelerations of the moving bodies. It is applicable regardless of whether the instantaneous centers (poles) are located on physical points on the linkage or not. Illustrative examples of the application of the formula on representative planar linkages are included. In the final section, is discussed a similar concept associating a mathematical point to the curvature centers of a point's path, so called centroma.

Introduction and approach to the problem

The instantaneous center (pole) of a rigid body with planar motion has the property of being a physical point that instantaneously (or even permanently) has no speed. Consequently, the planar motion of a rigid body can be studied as a sequence of differential rotations about an axis perpendicular to the plane containing the pole. This point has a physical-mathematical duality. The physical point, which belongs to the moving body, is the one whose velocity is zero. But the mathematical point has the so called pole velocity, in the direction of the centrode tangent. In this paper, the velocities corresponding to linkage joints or physical points will be identified by the vector v while those corresponding to pole velocities will have the vector u associated.

The poles can be absolute if they have null velocity with respect to the frame, or relative having null velocity in a relative motion between two bodies. Authors like Hunt [START_REF] Hunt | Kinematics Geometry of Mechanisms[END_REF] have already investigated in the relations obtained when referring to the study of the pole in the relative motion. The present research is based on [START_REF] Hernández | Cinemática de mecanismos[END_REF], where the planar motion bases and the motion of a mechanism are explained with the geometry that underlies behind.

All the examples analysed and the calculations done, have been simulated and verified using the GIM research and educational numerical software [START_REF] Gim | Educational software tools for the kinematic analysis of mechanisms[END_REF]. This software is being developed by the COMPMECH research group of the University of the Basque Country -UPV/EHU (www.ehu.es/compmech). Also in [START_REF] Luck | Getriebetechnik. Analyse, Synthese, Optimierung[END_REF], a relationship for computing several angular velocities of rigid bodies can be found.

The curvature theory and the envelope theory are presented in detail in [START_REF] Rosenauer | Kinematics of Mechanisms[END_REF][START_REF] Bottema | Theoretical kinematics[END_REF]. In references [START_REF] Bottema | Theoretical kinematics[END_REF][START_REF] Dijksman | Motion Geometry of Mechanisms[END_REF] the general form of Euler-Savary equation, together with the Aronhold theorem and Hartman´s construction are explained. The inflection circle and the cuspidal circle are explained in [START_REF] Hall | Kinematics and Linkage Design[END_REF] while in [START_REF] Maxwell | Kinematics and Dynamics of Machinery[END_REF] is clearly presented the concept of instantaneous center and the relative velocity field. In [START_REF] Hinkle | Kinematics of Machinery[END_REF][START_REF] Lichtenheld | Konstruktionslehre der Getriebe[END_REF] the kinematic analysis of complex mechanisms is presented.

In references [START_REF] Amezua | Mecánica Aplicada: Estática y Cinemática[END_REF][START_REF] Altuzarra | Mecánica Aplicada: Dinámica[END_REF] the concepts of relative angular velocity and acceleration are introduced and applied in representative examples. In [START_REF] Pennestrì | Dual Cayley-Klein parameters and Möbius transform: Theory and applications[END_REF], new formulas for the first and second time derivatives of 2x2 transforms based on the Cayley-Klein parameters are derived. Based on these, an extension to the computation of velocities and accelerations of the kinematic analysis proposed by Denavit [START_REF] Denavit | Displacement analysis of mechanisms based on 2x2 matrices and dual numbers[END_REF] is presented.

Reference [START_REF] Ramakrishna | Transitory second-order reciprocal connection for two surfaces in point contact[END_REF] investigates the instantaneous spatial higher pair to lower pair substituteconnection which is kinematically equivalent up to acceleration analysis for two smooth surfaces in point contact. In [START_REF] Ramakrishna | A note on enveloping curves in plane[END_REF] using the contact kinematics equations of the enveloping curves, is shown how the theorem on coordinated centers is valid for a position in which the instantaneous relative angular velocity is zero [START_REF] Veldkamp | Curvature theory in plane kinematics[END_REF]. This is possible since the approach does not make any reference to the polodes. Fig. 1 shows the case of pure rolling motion between two disks being 1 the frame. The null velocities of the absolute poles P 12 , P 13 , the velocity of the relative pole P 23 and the absolute pole velocities u 12 , u 12 y u 23 are depicted. Being 𝝎 𝑖 the angular velocity of the moving body i, 𝜌 𝑓 and 𝜌 𝑚 the radius of curvature of the fixed and moving centrodes respectively and using the Euler-Savary formula, u 12 and u 13 are,

u 12 = 𝜔 2 1 𝜌 𝑓2 - 1 𝜌 𝑚2 ; u 13 = 𝜔 3 1 𝜌 𝑓3 - 1 𝜌 𝑚3 (1) 
The approach of the present work is to obtain a formula for calculating, in a general case, the absolute pole velocity of the relative pole (u 23 in Fig. 1) as a function of the pole velocities of the absolute poles (u 12 and u 13 in Fig. 1), the angular velocities (𝝎 2 , 𝝎 3 ) and accelerations (𝛂 2 , 𝛂 3 ) of the two moving rigid bodies.

Focusing on the kinematics of linkages, sometimes the relative pole between two bodies lies permanently on a physical point. This is the case of the revolute pairs. As it has been said before, this relative pole has the same absolute velocity belonging to each of the mechanism's links.

This concept is shown in Fig. 2, using the RRRP linkage. The relative pole P 23 lies always over the physical point B. Thus the velocity u 23 = v 𝐵 , simplifying the problem and making direct the solution. But in a general situation, there is no physical point associated to the relative pole.

Then, the convenience of developing an expression to calculate in an easy way the pole velocity of a relative pole arises. The paper is organized as follows. In section 2, the absolute motion of two bodies is studied and an equation relating the three absolute pole velocities is proposed. In section 3, the formula is generalized by studying the relative motion of three bodies. In section 4, the proposed formula is validated in two representative examples of planar linkages. Finally in section 5, the vectorial formula is projected in its two components verifiying its coherence with the Hartman's Theorem and proposing the concept of centroma.

Studying the absolute motion of two bodies

Aronhold-Keneddy's theorem states that the three poles related to the motion between three rigid bodies lie permanently on the same line. Focusing on the case of two rigid bodies in motion 

u'31

with respect to a fixed one (frame), Fig. 3 shows the velocity fields of both moving rigid bodies along the line that joins the three poles.

Figure 3:Velocity fields of two moving bodies

From Fig. 3, the velocity of the relative pole 𝑃 23 , 𝒗 𝐴2 = 𝒗 𝐴3 , can be expressed as follows.

Since the study is in planar kinematics and thus the angular velocities are normal to the moving plane, equation ( 4) can be expressed as,

r 𝑃 21 𝑃 23 = 𝐫 𝑃 21 𝑃 31 • 𝜔 3 𝜔 3 -𝜔 2 = 𝐫 𝑃 21 𝑃 31 • 𝜔 3 𝜔 3𝑟 2 (5) 
Equation ( 5) is a relation between the distances of the poles. Deriving [START_REF] Rosenauer | Kinematics of Mechanisms[END_REF] 

Then the derivatives of ( 7) and ( 8) can be expressed as follows, 

𝑑

Studying the relative motion of three bodies

In this section, equation ( 12) will be generalized for the case of three moving bodies 2, 3 and 4, that is 𝒖 34 = 𝑓(𝒖 23 , 𝒖 24 ).

Applying equation [START_REF] Amezua | Mecánica Aplicada: Estática y Cinemática[END_REF] between the three bodies (Fig. 5 For the resolution of this system of three equations in three unknowns, the following parameters are defined. By using them, the solving is highly simplified since computer softwares like Mathematica cannot obtain directly the solution sought, Having in mind the concepts of relative angular velocity and acceleration,

𝑘
𝜶 3 𝑟 2 = 𝜶 3 -𝜶 2 -𝝎 4 × 𝝎 3
In the planar motion, the Resal complementary angular acceleration -𝝎 4 × 𝝎 3 turns out to be zero [START_REF] Amezua | Mecánica Aplicada: Estática y Cinemática[END_REF][START_REF] Altuzarra | Mecánica Aplicada: Dinámica[END_REF]. Thus, the equations are, This generalization leads to the same expression as [START_REF] Amezua | Mecánica Aplicada: Estática y Cinemática[END_REF]. There are no additional terms like those derived from Resal and Coriolis accelerations, since the formula is still in the velocity level.

It is important to remark that this is not an obvious result. Expressing equation ( 12) with respect to a mobile observer, for example body 2, is indeed somewhat trivial. That would be the case of a formula that relates relative poles velocities as shown in (32).

𝒖 34 ② = 𝑓 1 (𝒖 31 ② , 𝒖 41 ② ) (32) 
The case studied in this section is different. In fact, the formula obtained relates absolute pole velocities.

𝒖 34 = 𝑓 2 (𝒖 32 , 𝒖 42 ) (33)

Illustrative examples

In this section two illustrative examples of application are presented.

The first example is the case of a 1-dof guiding mechanism composed of two four-bar linkages synchronized by a coupler bar (Fig. 7.). The goal is to obtain the absolute pole velocity 𝒖 41 . In this case, the relative poles permanently lie on the mechanism revolute pairs. Table 1 shows the data provided by the GIM software [START_REF] Gim | Educational software tools for the kinematic analysis of mechanisms[END_REF] after a kinematic analysis, for the position depicted in Fig. 7 and an input of 𝜔 2 = 2п rad/s and 𝛼 2 = 0 rad/s 2 .

𝑇𝑎𝑏𝑙𝑒 1: 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Figure7:Application example1

Equation ( 12) is first applied to links 2 and 3 to obtain 𝒖 31 . Then, it is applied to 3 and 4 to achieve 𝒖 41 .

𝒖 Being the result of 𝒖 31 and 𝒖 41 (Table 2) coincident with those obtained from the kinematic analysis made using GIM software.

𝑇𝑎𝑏𝑙𝑒 2: 𝑃𝑜𝑙𝑒𝑠 𝑎𝑛𝑑 𝑝𝑜𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠

The second example is the case of another 1-dof guiding mechanism composed in this case by one four-bar linkage and a slider-crank mechanism linked by a coupler bar (Fig. 8). The goal of the problem is to obtain the absolute pole velocity 𝒖 41 .

Again, the relative poles permanently lie on the mechanism revolute pairs. The following tables show the data provided by the GIM software [START_REF] Gim | Educational software tools for the kinematic analysis of mechanisms[END_REF] for the position of Fig. 8 

Projecting the formula in its two components

As said, equation ( 12) is a vectorial relation. So, it can be projected on specific axes to obtain two algebraic equations.

In Fig. 9, is depicted the graphical construction derived from Hartman's theorem [START_REF] Rosenauer | Kinematics of Mechanisms[END_REF]. The moving plane 2 corresponds to the one in study of known movement. The moving plane 3 will be the so called "normal plane", which is the one associated to the motion of the tangent line to the path of point A.

Figure 9.Graphical construction of Hartman's Theorem

Projection along the tangential direction

Hartman's theorem states that the tip of the velocity vector of a moving point, the center of curvature of its trajectory, and the component of the pole velocity parallel to the point velocity vector, are aligned (Fig. 9.). Thus, This is a scalar proportion that can also be verified by the formula proposed in this article. To obtain the same relation, formula [START_REF] Amezua | Mecánica Aplicada: Estática y Cinemática[END_REF] is projected along the tangent line of the trajectory of A.

In equation (39) both terms of equation ( 12) are premultiplied by the unit vector 𝒕. 

Projection along the normal direction.Velocity of the mathematical point associated with the centre of curvature

As it is known, the centre of curvature of the path of a point is a fixed point. Thus, a mathematical point OA will be defined in order to study the position variation of the different centres of curvature of the path generated by A. In this paper is used the name centroma to refer to this concept. Consequently the path described by this mathematical point O A will be the evolute curve of the path generated by the motion of A. Now the objective is to obtain an expression that provides the velocity module of such mathematical point associated to the center of curvature of the path of any mobile point. As expressed in Fig. 7, from Hartman's theorem: 

r
It can be seen, how this locus corresponds to the inflection circle.

The inflection circle is the locus of physical points whose normal acceleration is instantaneously zero. Thus, they describe a linear path during a differential step of time. In other words, the center of curvature of the path described by these points lies at infinity.

As explained, when substituting the locus (63) in the equation (45) the result turns out to be an infinite distance between the pole and the centroma, verifying the feature of the inflection circle. Hence according to this result, the centromas at infinity have an infinite speed.

Conclusions

In this paper by studying the relative planar motion of three bodies, has been presented a formula for the calculation of the absolute pole velocities of the relative poles in the planar motion of three rigid bodies. It relates three absolute pole velocities and the position vector of the corresponding poles with the angular velocities and accelerations of the moving bodies. The formula allows the calculation of one of the absolute pole velocities from the other two, being known the angular velocities and accelerations of the moving bodies. It is applicable regardless of whether the instantaneous centers (poles) are located on physical points on the linkage or not. Previously, in section 2 the formula for the case of the absolute motion of two moving bodies has been obtained. It is verified that this is a particularization of the proposed formula. Finally, the vectorial formula is projected in its two components verifiying its coherence with the Hartman's Theorem and proposing the concept of centroma. This concept corresponds to a a mathematical point associated to the centers of curvature of the path described by a physical point of the moving body-Finally, the velocity of the centroma is obtained.

The future work is focused on the application of the velocity of the centroma to obtain the locus of points in a moving solid that traces circumferential paths.
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 1 Figure 1: Rolling motion between two disks.
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 2 Figure 2: RRRP linkage.

  Angular acceleration: 𝜶 (rad/𝐬 𝟐 ) 0 -15.11 -0.62

  The formula is applied to two representative guiding mechanisms: the first one composed of two four-bar linkages synchronized by a coupler and the second one composed by one four-bar linkage and a slider-crank mechanism linked by a coupler bar All the examples analysed and the calculations done, have been simulated and verified using the GIM research and educational numerical software.
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Figure 4:Position vector diagram of two moving solids

From Fig.
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, it is possible to express the two vectors that appear in equation (
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) as,
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			𝒖 24 =	𝒖 41 𝜔 4 -𝒖 21 𝜔 2 𝜔 4 -𝜔 2	+ 𝐫 𝑃 21 𝑃 41	(𝜔 4 -𝜔 2 ) 2 𝜔 4 𝛼 2 -𝜔 2 𝛼 4	(13)
			𝒖 23 =	𝒖 31 𝜔 3 -𝒖 21 𝜔 2 𝜔 3 -𝜔 2	+ 𝐫 𝑃 21 𝑃 31	(𝜔 3 -𝜔 2 ) 2 𝜔 3 𝛼 2 -𝜔 2 𝛼 3	(14)
			𝒖 34 =	𝒖 41 𝜔 4 -𝒖 31 𝜔 3 𝜔 4 -𝜔 3	+ 𝐫 𝑃 31 𝑃 41	(𝜔 4 -𝜔 3 ) 2 𝜔 4 𝛼 3 -𝜔 3 𝛼 4	(15)
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		Figure 5:Position vector relations between the three moving bodies.

  𝜔 3 𝑟 2 ) 2 [-𝛼 4 𝑟 2 𝜔 3 + 𝛼 3 𝑟 2 𝜔 4 + 𝛼 3 𝑟 2 𝜔 2 [𝜔 3 𝑟 2 -𝜔 4 𝑟 2 ] 𝜔 3 𝑟 2Considering Fig.2and taking into account the geometrical relation shown in Fig.6,

						Figure 6: Geometrical relations
						𝜔 2 = 𝑡𝑎𝑛 𝜑 2 =	r 𝑃 21 𝑃 31 𝑣 𝐵 2	(29)
						𝜔 3 = 𝑡𝑎𝑛 𝜑 3 =	r 𝑃 31 𝑃 23 𝑣 𝐴 3	(30)
	Substituting these relations together with (2), (3) and (5) and grouping terms, the final compact
	formula (31) is obtained:	
		𝒖 34 =	𝒖 24 𝜔 4 𝑟 2 -𝒖 23 𝜔 3 𝑟 2 (𝜔 4 𝑟 2 -𝜔 3 𝑟 2 )	+ 𝐫 𝑃 23 𝑃 24	(𝜔 4 𝑟 2 -𝜔 3 𝑟 2 ) 2 𝛼 3 𝑟 2 𝜔 4 𝑟 2 -𝛼 4 𝑟 2 𝜔 3 𝑟 2	(31)
				𝜔 3 𝑟 2 = 𝜔 3 -𝜔 2 ; 𝛼 3 𝑟 2 = 𝛼 3 -𝛼 2	(24)
				𝜔 4 𝑟 2 = 𝜔 4 -𝜔 2 ; 𝛼 4 𝑟 2 = 𝛼 4 -𝛼 2	(25)
	From Fig. 5,				
						𝐫 𝑃 31 𝑃 41 = 𝐫 𝑃 21 𝑃 41 -𝐫 𝑃 21 𝑃 31	(26)
						𝐫 𝑃 23 𝑃 24 = 𝐫 𝑃 21 𝑃 24 -𝐫 𝑃 21 𝑃 23	(27)
	Developing the expression (22) by means of the Cramer's method and incorporating (24), (25),
	(26) and (27), the formula of 𝒖 34 turns out to be of the following form,
	𝒖 34 =	𝒖 24 𝜔 4 𝑟 2 -𝒖 23 𝜔 3 𝑟 2 (𝜔 4 𝑟 2 -𝜔 3 𝑟 2 )	+	𝐫 𝑃 21 𝑃 41 (𝜔 4 𝑟 2 -𝜔 3 𝑟 2 ) 2 [𝛼 3 𝑟 2 𝜔 4 -𝛼 4 𝑟 2 𝜔 3 +	𝛼 4 𝑟 2 𝜔 2 [𝜔 4 𝑟 2 -𝜔 3 𝑟 2 ] 𝜔 4 𝑟 2	]
		-	𝐫 𝑃 21 𝑃 31 (𝜔 4 𝑟 2

-] (28)

Angular acceleration: 𝜶 (rad/𝐬 𝟐

  Being the result of 𝒖 31 and 𝒖 41 the same as the kinetic analysis provided by the GIM program.

		Horizontal	Vertical		Horizontal	Vertical
	Velocity	Component of	component of		Pole	Component of	Component of
	Poles	the Velocity	the Velocity	velocities	the Pole	the Pole
		Poles (m)	Poles (m)		Velocities (m/s)	Velocities (m/s)
	P 21	0.33		0.34			𝒖 21	0	0
	P 23	0.27		0.60			𝒖 23	-0.52	-0.23
	P 43	0.05		0.39			𝒖 43	-0.57	0.03
	P 31	0. 08		0.91			𝒖 31	-0.58	-8.38
	P 41	0.07		0.85			𝒖 41	-0.24	-1.08
	2п [rad/s] and 𝛼 2 = 0 [rad/s 2 ]. 𝒖 23 = 𝒖 31 𝜔 3 -𝒖 21 𝜔 2 𝜔 3 -𝜔 2	+ 𝐫 𝑃 21 𝑃 31	𝜔 3 𝛼 2 -𝜔 2 𝛼 3 (𝜔 3 -𝜔 2 ) 2 → 𝒖 31	and an input of 𝜔 2 = (36)
		𝒖 43 =	Elements 𝒖 31 𝜔 3 -𝒖 41 𝜔 4 𝜔 3 -𝜔 4 + 𝐫 𝑃 41 𝑃 31	2 𝜔 3 𝛼 4 -𝜔 4 𝛼 3 (𝜔 3 -𝜔 4 ) 2 → 𝒖 41 3 4	(37)
			Angular velocity: 𝝎 (rad/s)	2п -2.32 -3.21
		Horizontal	Vertical		Horizontal	Vertical
	Velocity	𝑇𝑎𝑏𝑙𝑒 3: 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 Component of component of Pole Component of	Component of
	Poles	the Velocity	the Velocity	Velocities	the Pole	the Pole
		Poles (m)	Poles (m)		Velocities (m/s)	Velocities (m/s)
	P 21	0.20	0.40		𝒖 21	0	0
	P 23	0.33	0.54		𝒖 23	-0.91	0.86
	P 43	0.52	0.47		𝒖 43	-1.07	0.43
	P 31	0.71	0.93		𝒖 31	-1.24	5.44
	P 41	0.65	0.80		𝒖 41	-3.05	-0.56
				𝑇𝑎𝑏𝑙𝑒 4: 𝑃𝑜𝑙𝑒𝑠 𝑎𝑛𝑑 𝑝𝑜𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠

) 0 13.24 -25.95 Figure 8: Application example 2 Equation (

12

) is first applied to links 2 and 3 to obtain 𝒖 31 . Then, it is applied to 3 and 4 to achieve 𝒖 41 .

  Being 𝛿 2 the diameter of the inflection circle, and 𝜃 angle formed by the position vector of point A in the Euler-Savary local reference frame. Additionally, from Fig.9can also be obtained obtain the angular velocity of the rigid body 3. This angular velocity 𝑤 3 represents the rotation of the normal line to the path. Deriving this

	r 𝑂 𝐴 𝑃 21 = Substituting (53), (54), (55) and (56) in (52), 1 𝛿 2 𝑠𝑒𝑛𝜃 𝒏 • 𝐫 𝑂 𝐴 𝑃 21 = -r 𝑂 𝐴 𝑃 21 1 -r 𝑃 21 𝐴 1	(45) (56)
			𝑢 31 𝜔 3 = 𝑢 21	′′ 𝜔 2 -r 𝑂 𝐴 𝑃 21	𝜔 3 -𝜔 2 𝜔 3 𝛼 2 -𝜔 2 𝛼 3	(57)
	Substituting the previous results of angular velocity and accelerations (50), (51) in (57),
	𝑢 𝑂 𝐴 𝜔 2 (1 -ɣ) = 𝑢 21	𝜔 3 r 𝑂 𝐴 𝑃 21 = 𝑢 21 ′′ 𝜔 2 -r 𝑂 𝐴 𝑃 21 𝜔 2 𝛼 2 (1 -ɣ) -𝜔 2 𝛼 2 (1 -ɣ) + 𝜔 2 ′ 𝜔 2 (1 -ɣ) -𝜔 2	2 𝑑ɣ 𝑑𝑡	(46) (58)
	𝜔 3 =	𝑢 21 r 𝑂 𝐴 𝑃 21 ′	→ 𝜔 3 = 𝑢 𝑂 𝐴 (1 -ɣ) = 𝑢 21 𝑐𝑜𝑠 𝜃 + r 𝑂 𝐴 𝑃 21 𝜔 2 𝛿 2 𝑠𝑒𝑛 𝜃 r 𝑂 𝐴 𝑃 21 → 𝜔 3 = 𝜔 2 𝛿 2 𝑠𝑒𝑛 𝜃 ( ɣ 𝑑𝑡 1 𝑑ɣ	1 𝛿 2 sen 𝜃	-	1 r 𝑃 21 𝐴	)	(47) (59)
	𝜔 3 = 𝜔 2 (1 -So, the velocity of the centroma, has its direction normal to the trajectory of the point, and being 𝛿 2 (48) 𝑠𝑒𝑛 𝜃) r 𝑃 21 𝐴 its module,
	Being,		𝑢 𝑂 𝐴 = 𝑢 21	𝑐𝑜𝑠 𝜃 (1 -ɣ)	+	ɣ(1 -ɣ) r 𝑂 𝐴 𝑃 21	𝑑𝑡 𝑑ɣ	(60)
	where,					ɣ = 𝜔 3 = 𝜔 2 (1 -ɣ) 𝛿 2 r 𝑃 21 𝐴 𝑠𝑒𝑛 𝜃 ɣ = 𝛿 2 𝑠𝑒𝑛 𝜃 r 𝑃 21 𝐴	(49) (50) (61)
	expression with respect to the time, From equation (60) it can be observed that exists a locus of centromas, whose speed is infinite
	at a certain instant,		𝛼 3 = 𝛼 2 (1 -ɣ) -𝜔 2 1 -ɣ = 0	𝑑ɣ 𝑑𝑡	(51) (62)
	As explained, equation (12) has a vectorial form. In this section, the equation is projected in the
	normal direction n obtaining,	𝛿 2 𝑠𝑒𝑛 𝜃 = r 𝑃 21 𝐴
		𝒏 • 𝒖 23 = 𝒏 •	𝒖 31 𝜔 3 -𝒖 21 𝜔 2 𝜔 3 -𝜔 2	+ 𝒏 • 𝐫 𝑃 21 𝑃 31	𝜔 3 𝛼 2 -𝜔 2 𝛼 3 (𝜔 3 -𝜔 2 ) 2	(52)
	Being,							
						𝒏 • 𝒖 23 = 0	(53)
						𝒏 • 𝒖 21 = 𝑢 21	′′	(54)
					𝑂 𝐴 𝐴 𝑣 𝐴 𝐫 𝑃 21 𝑃 31 = -𝐫 𝑂 𝐴 𝑃 21 r 𝑂 𝐴 𝑃 21 = 𝑢 21 ′	(44) (55)
	Simplifying,						
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