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Abstract. This work aims to develop and test a projection technique for the

construction of closing equations of moment systems. One possibility to define

such a closure consists in reconstructing an underlying kinetic distribution from
a vector of moments, then expressing the closure based on this reconstructed

function.

Exploiting the geometry of the realizability domain, i.e. the set of moments
of positive distribution function, we decompose any realizable vectors into two

parts, one corresponding to the moments of a chosen equilibrium function, and

one obtain by a projection onto the boundary of the realizability domain in the
direction of equilibrium function. A realizable closure of both of these parts

are computed with standart techniques providing a realizable closure for the
full system.

Such a technique is available for moments over [−1,+1], over R or over R+,

and is tested for the reduction of a radiative transfer equation in slab geometry.

1. Introduction. This paper aims to develop closure relations for 1D moment
models that is based on positive measures and that recovers both purely anisotropic
distriution and a chosen regular equilibrium function. The starting point is a kinetic
equation of the form

∂tf + s∂xf = C(f), (1)

where the unknown f is a distribution function depending on time t ∈ R+, position
x ∈ Ω ⊂ R and a state variable s ∈ E ⊂ R. In the applications we have in mind,
this state variable s corresponds respectively to a consine direction of flight s = µ
belonging to E = [−1,+1] in radiative transfer, a velocity variable s = v belonging
to E = R in rarefied gas dynamics, or a size of droplets s ∈ E = R+ in dispersed
flows.

In (1), the unknown f is a density of particles in a phase space Ω× E, i.e.

dN = f(t, s, x)dsdx

is the quantity of particles in a spatial neighbourhood dx around x and having a
state in the neighbourhood ds around s at time t. The operator C models collision
effects. Here, we consider only 1D problems such that the space variable and the
state variable evolve respectively in subsets of R.
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Due to the high dimensionality of the phase space, equations of the form (1)
are often solved numerically using a reduction technique based on a moment ex-
traction (see e.g. [14, 40, 18]). Such a technique consists in studying the moments
of f according to the s variable instead of f itself. Such moments depend on less
variables than f and require therefore less computational efforts to compute (see
e.g. comparisons in [45, 32, 51, 3, 6, 44, 43]). Those moments, afterward written
f in bold, are weighted integrals of f against a vector b(s) of polynomial weights.
This yields

f =

∫
E

b(s)f(s)ds. (2)

The moments of the kinetic distribution function f follow an equation of the
form

∂tf + ∂xF = C, (3a)

F =

∫
E

sb(s)f(s)ds, C =

∫
E

b(s)C(f)(s)ds. (3b)

The system (3a) is underdetermined, because the flux F and the collision operator
C do not depend on the unknown f . One common idea to close the system (3a)
consists in expressing f as the moments of an underlying kinetic distribution which
is constructed such that it has f for moments. In practice, one inverts (2), i.e. one

seeks a function f̃ satisfying ∫
E

b(s)f̃(s)ds = f , (4a)

then, the system (3a) is closed by approaching F and C based on f̃ by

F ≡ F̃(f) =

∫
E

sb(s)f̃(s)ds, C ≡ C̃(f) =

∫
E

b(s)C(f̃)(s)ds. (4b)

Through this method, one expresses the flux F̃ and the collision operator C̃ as
a function of the unknown f in (3b). This corresponds to approximating the s-

dependencies of f in (1). Indeed, f̃ can be interpreted as an approximation of f ,
the moments of which satisfy the same PDE system (3a) as the moments of f .

In this paper, we focus on the construction of the flux function F̃(f) and we

only consider linear collision operator C̃(f). We especially focus on the positivity
property of the reconstruction f , referred to as the realizability property at the
moment level, for two reasons:

• One major property of the kinetic models of the form (1) is the positivity of
the density f of particles in phase space, which is a density function. One
commonly expects this property to be preserved through the moment extrac-
tion. This is the case e.g. for the well-established entropy-based closure MN

([40, 41, 34, 38]) or for the atom-based closures KN (based on the idea of [31]
then developped in [42, 43] and exploited in [52]). Furthermore, when using
such closures, the positivity of the underlying kinetic function needs to be
preserved during the computations, for the fluxes F̃ and the collision operator
C̃ to be well-defined.

• This positivity property is also of major importance for modelling purely
anisotropic regimes, i.e. when modelling perfect beams of particles. In such a
physical limit, the underlying kinetic distribution behaves as a narrow Gauss-
ian or a Dirac peak (see previous work [46, 45, 36]). Non-realizable closures,
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such as the polynomial PN closure, i.e. when f̃ is obtained from a spherical
harmonics expansion of f , often misbehaves in such a limit. Such closures
are generally overdiffusive in this case, and one requires a high number of
moments for such simulations to be accurate (e.g. order up to 21 in 1D and 17

in 3D in [32]). Instead, closures based on a positive reconstruction f̃ capture
these phenomena properly, even with low order moments (see e.g. [46, 36, 50]).
Though, those closures are more difficult to construct and to compute numer-
ically.

At the moment level, a vector V is said to be realizable if there exists a positive
reconstruction f̃ satisfying the moment constraints (4a). The set of realizable vector
is called the realizability domain and the problem of characterizing the existence
of a positive reconstruction f̃ is called ”the Truncated Moment Problem” (TMP)
after [56, 33]. Several TMP were solved, mostly when the set of integration is 1D. We
may list the truncated moment problems of Hausdorff (E = [−1,+1]), Hamburger
(E = R; [1]), Stieltjes (R+; [56]), Toeplitz (E = S1), see e.g. [15] for a review on
those results.

The objective of this work is to provide a numerically tractable realizable clo-
sure (4b) for arbitrary high order moment models in 1D. We present a technique
based on a projection on the boundary of the realizability domain in the direction
of a chosen equilibrium function feq which provides such a solution to such 1D mo-

ment problems. This solution leads to an atomic closure, i.e. the reconstruction f̃
is based on a sum of Dirac peaks called atoms ([15, 16, 17]) and of a regular inte-
grable function. Such atomic decompositions was also used for the construction of
KN closure ([31, 42, 43, 52]) for moments over [−1,+1], or of quadrature-based clo-
sures ([20, 59, 36]) for moments over R+, which are also realizable and numerically
tractable. However, the present closure differs from those closures as

• the underlying distribution possesses the minimum number of atoms.
• when considering the moments feq of an equilibrium distribution feq for the

original problem (1), the underlying distribution of the present closure re-
treives exactly the equilibrium distribution feq (with KN only its moment
flux F(feq) is obtained).

• this closure’s definition is general to all types of TMP, such as Stieltjes’ or
Hamburger’s, for which the realizability property is enforced by the positivity
of moment matrices.

In the following, the superscript ˜ is droped, and the TMP are understood in
terms of integrable functions f as well as in terms of measures γ, i.e. replacing
f(s)ds by dγ(s) in (2-4).

This paper is organized as follows. The next sections recalls definitions and pre-
liminary results exploited in the rest of the paper, especially around the construction
and the properties of the realizability domain. Section 3 provides the construction
and the numerical computation of realizable closures, namely the Kershaw KN clo-
sure and closure, afterward called ΠN , based on projections on the boundary of
the realizability domain. These closures are tested and analyse on practical test
cases emerging from the field of radiative transfer. The last section is devoted to
conclusive remarks and perspectives of this work.

2. Preliminaries. The present section is devoted to set up the problems con-
sidered in the paper and to provide the basics of the theory and state-of-the-art
solutions.
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2.1. Definitions and notations. In the present work, we focus on polynomial
moments and we classically use the monomial basis

b(s) = bN (s) = (1, s, ..., sN )T . (5)

The monomial basis is used for its simplicity, though others can equally be used,
e.g. the Legendre basis are often prefered for their orthogonality property. One may
also extend the notions presented here, with non-polynomial basis functions as long
as it satisfies the pseudo-Haar property (i.e. some functional linear independence;
[35]). This is used e.g. to construct the partial moments method ([22, 21, 54, 51]).

We first give the following definitions.

Definition 2.1. • We denote L1(E)+ the set of the non-negative integrable
functions over E and that are non-zero, in the sense f ∈ L1(E)+ iff

f ∈ L1(E), f ≥ 0 a.e., and ∃(c, d) ∈ E2, c < d, s.t. essinfs∈[c,d]f(s) > 0.
(6a)

• We denote L1
N (E)+ the set of the non-negative functions which have finite

moments over E up to order N , i.e. f ∈ L1
N (E)+ iff

f ∈ L1(E)+, s.t. s 7→ sif(s) ∈ L1(E) ∀i = 0, . . . , N.

• A vector V ∈ RN+1 is said to be realizable if it is the vector of moments of a
positive function, i.e. if

∃f ∈ L1
N (E)+, s.t.

∫
E

bN (s)f(s)ds = V. (6b)

• The set of all realizable vectors is called the realizability domain. It is defined
by

Rb =

{∫
E

b(s)f(s)ds, f ∈ L1
Card(b)+1(E)+

}
. (6c)

• We will also use extensively the closure set of Rb in RCard(b)

Rmb = Rb ∩ RCard(b). (6d)

The superscript m refers to ”measure” as, according to the definitions (6a-6d),
any element of this set is the moment vector of a positive measure γ in the
sense

V ∈ Rmb ⇒ ∃γ ∈M(E), V =

∫
E

b(s)dγ(s). (6e)

For notation purposes, we also use extensively the following function.

Definition 2.2 (Riesz functional).
Consider a vector b ∈ (R[X])N of N polynomials, and a vector V ∈ RN . The

Riesz functional RV associated to V sends any polynomial p = λb onto

RV(p) = λV. (7)

Remark that the Riesz functional associated to V is a linear map from Span(b)
to R.

If the vector V =
∫
E

b(s)f(s)ds is the vector of moments of a function f ∈
L1
Card(b)+1(E)+, then the Riesz functional of p is the moment of f according to p

RV(p) =

∫
E

p(s)f(s)ds.
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In the next sections, the Riesz functional is also applied componentwise to ma-
trices of polynomials

RV(M)i,j = RV(Mi,j).

Example: Consider the vector f = (f0, f1, f2) ∈ R3, and the vector of monomials
b(s) = (1, s, s2). The Riesz function according to the vector f of the polynomial

p(s) = 1 + 3s− s2

reads

Rf (p) = Rf (1) + 3Rf (s) − Rf (s2)

= f0 + 3 f1 − f2.

The first problem studied in this paper is the truncated moment problem in 1D

Find γ ∈M(E), s.t. V =

∫
E

b(s)dγ(s). (8)

2.2. Properties of the realizability domain. In the following sections, we widely
exploit the following results.

Proposition 1. The realizability domain Rb is an open convex cone.

Proof. The set Rb is a convex cone because of the linearity of the integral.
To prove that it is open, for all V ∈ Rb, we exhbibit a neighborhood of V

included in Rb. Write

V =

∫
E

b(s)f(s)ds ∈ Rb, ε := essinfs∈[c,d]f(s) > 0.

Define

M0 =

∫ d

c

bbT (s)ds.

By assumption, for all i, the function b2
i 6= 0 on [a, b]. Thus, M0 is symmetric

positive definite, and especially non-singular. Then, the family (V0
i ){i=1,...,Card(b)}

of its column is a basis of RCard(b). Therefore, for all α > 0, the set

V =

{
V + α

∑
i

λiV
0
i , λi ∈]− 1, 1[, i = 1, ..., Card(b)

}
(9)

is a neighborhood of V in RCard(b). Now, chose a coefficient α such that

0 < α <
ε∑

i

‖bi‖∞,[c,d]
. (10)

With this choice of α, one shows that∥∥∥∥∥α∑
i

λibi

∥∥∥∥∥
∞,[c,d]

< ε, ∀λi ∈]− 1, 1[, i = 1, ..., Card(b).

Thus, any vector in V is realized by a function of f+α1[c,d]

∑
i

λibi ∈ L1
Card(b)+1(E)+,

thus V ⊂ Rb.

Remark 1. • This also provides that Rmb is a convex cone, and that Rb =
int(Rmb ).
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• This property is commonly used when constructing numerical schemes for mo-
ment equations in order to prove that such schemes preserve the realizability
property from one step to another (see e.g. [2, 47, 48]).

2.3. Characterizations of the realizability domain. In this subsection, we
recall the well-known Hausdorff, Hamburger and Stieltjes moment problems ([1, 15])
which provides characterizations of the realizability property.

Theorem 2.3 (Hausdorff). Suppose that b = b2K (even case) or b = b2K+1 (odd
case). Then a vector V ∈ Rmb is realizable iff the matrices

Even case : M1
V=RV(bKbTK), M2

V=RV

(
(1− s2)bK−1b

T
K−1

)
,

(11a)

Odd case : M1
V=RV

(
(1 + s)bKbTK

)
, M2

V=RV

(
(1− s)bKbTK

)
. (11b)

are positive semi-definite.

Theorem 2.4 (Hamburger). Suppose that b = b2K (even case) or b = b2K+1

(odd case). Then a vector V ∈ Rmb is realizable iff

Even case : M1
V=RV(bKbTK) is positive semi-definite, (12a)

Odd case : M1
V=RV

(
bKbTK

)
is positive semi-definite (12b)

and RV(sK+1bTK) ∈ Im(M1
V).

Theorem 2.5 (Stieltjes). Suppose that b = b2K (even case) or b = b2K+1 (odd
case). Then a vector V ∈ Rmb is realizable iff the matrices

Even case : M1
V=RV(bKbTK), M2

V=RV(sbK−1b
T
K−1), (13a)

Odd case : M1
V=RV

(
bKbTK

)
M2

V=RV(sbKbTK). (13b)

are positive semi-definite.

Proofs of these theorems can be found e.g. in [1, 15, 33]. For the construction
of the closure, we widely exploit the following description of the boundary of the
realizability domain ([19]).

Proposition 2. For all vector V ∈ ∂Rmb on the boundary of the realizability do-
main, there exists a unique representing measure for V. This measure is given
by

γ =

J∑
i=1

αiδsi , (14)

where the coefficients (αj)j=1,...,J ∈ (R+)J are positive, the positions (sj)j=1,...,J ∈
EJ and the number of atoms 0 ≤ J ≤ K is

J = min
i

(
rank(M i

V)
)
,

where the matrices M i
V are given either by (11), (12) or (13) depending on the

considered problem.

This so-called atomic decomposition ([15]), in 1D, can be deduced as a corollary
of the truncated Riesz-Haviland theorem, see e.g. [49, 27, 28, 15, 17] or surveys in
[19, 33], or of Tchakaloff theorem, see e.g. [57, 5, 16, 33].
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3. Realizable closures in 1D. We present in this section a strategy to construct
a realizable closure for 1D problems. In the following section, we will focus on
moments over s ∈ [−1,+1] and compare such realizable closures to the linear PN
closure.

3.1. Computation of the closure: Decomposition of moment vectors. In
the following, we will assume that the collision operator is a simple linear function
of the unknown, and we will only focus on the construction of the flux vector F as
a function of a vector of moments f .

3.1.1. Construction of the closure. The main idea to construct a closure, realizable
or not, is to reconstruct from a vector f a representing measure γ, i.e. satisfying∫

E

b(s)dγ(s) = f . (15)

Once this reconstruction γ is found, one simply construct the flux vector as the
moment flux associated to this representing measure γ, i.e. one defines

F(f) =

∫
E

sb(s)dγ(s),

where γ satisfies (15).
As we only consider monomial basis bN defined in (5), one observes that all but

the last coefficient of the flux F already belong to the vector f . In practice, we
denote κ the closure, i.e. this only unknown coefficient that can be defined as

κ(f) =

∫
E

sN+1dγ(s).

Definition 3.1. A function κ : RN+1 → R is called a realizable closure iff the
vector function (IdRN+1 , κ) sends RbN

into RbN+1
.

This definition equivals to defining κ from a positive measure γ satisfying the
moment constraints (15).

In order to obtain appropriate descriptions of certain physical phenomena, we
need to impose the value of the closure and its representing measure when the
moment vector correpsonds to the moment of specific measures. In practice, we
focus on two types of measure that we aim to retreive when reconstructing the
measure γ:

• some equilibrium function feq for the PDE (1). Then, when

f = Veq =

∫
E

b(s)feq(s)ds,

we aim to construct underlying measure γ and a closure such that

dγ(s) = feq(s)ds, κ =

∫
E

sN+1feq(s)ds.

• some purely anistropic measures, i.e. Dirac measures δsi in some locations si,
and potentially sums of such measures. Then, when

f = b(si),

we aim to construct underlying measure γ and a closure such that

dγ(s) = δsi(s), κ = sN+1
i .
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Since δsi is the only positive measure representing b(si). This implies that all
realizable closures capture these purely anisotropic measure.

3.1.2. Decomposition of the moment vector. The strategy for constructing realizable
closures consists in decomposing the known vector of moments V ∈ RbN

into
different realizable parts

V =
∑
i

Vi with Vi ∈ RbN
,

for which a realizable closure κi(Vi) is known, or can be computed. Then, one
simply define the closure

κ(V) =
∑
i

κi(Vi),

which is realizable since the realizability domains are convex cones, i.e. we construct
(Vi, κi) ∈ RmbN+1

then

∑
i

(Vi, κi(Vi)) =

(∑
i

Vi,
∑
i

κi(Vi)

)
= (V, κ(V)) ∈ RmbN+1

.

For such decompositions, we will exploit two types of vectors V ∈ RbN
for which

we know easily how to construct realizable closures. These are simply the ones
described in the previous paragraph that we aim to capture exactly:

• Realizable moments Veq ∈ RbN
of some known given function feq ∈ L1

N (E)+

Veq =

∫
E

bN (s)feq(s)ds.

In practice, we chose a function feq corresponding to an equilibrium of the
PDE (1) we aim to solve. Here the designated closure of such a vector is
simply the N + 1-th moment of feq as this function is data

κeq =

∫
E

sN+1feq(s)ds.

• Moments Vs ∈ ∂RmbN
on the boundary of the realizability domain.

Using Proposition 2, we have the uniqueness of a representing measure γs for
Vs which is singular over E, i.e.

γs =

J∑
i=1

αiδsi ∈M(E), Vs =

∫
E

bN (s)dγs(s) =

J∑
i=1

αiδsi .

Thus, there exists a unique realizable closure for such vector

κs(Vs) =

∫
E

sN+1dγs(s) =
∑
i

αis
N+1
i . (16)

In the following, we will focus on two realizable closures based on such decom-
position methods.

3.2. Kershaw KN closure for Hausdorff problem. For completeness, we recall
the construction of KN closure ([31, 42, 52]) for Hausdorff problem E = [−1,+1].
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Decomposition of V: Here, we decompose a vector V ∈ RbN
into two parts

V = αV1 + (1− α)V2, V1 = V = V2,

the α coefficient will be explicited below. The closure becomes

κKN
(V) = ακ1(V) + (1− α)κ2(V),

and we use different closures κ1 for V1 and κ2 for V2.
Closures for V1 and V2: Both closures are constructed such that (Vi, κi) ∈ ∂RbN+1

are on the boudary of the realizability domain. In practice, using the notations (11-
13), we chose these closures κi(Vi) such that

M i
(Vi,κi)

is positive semi-definite and singular.

The numerical computation of these closures is detailed in Subsection 3.4 below.
Computation of κKN

: Finally, the coefficients α ∈ [0, 1] in the convex combination
is chosen in order to recover the closure κeq of some given equilibrium state Veq,
i.e.

Veq =

∫ +1

−1

bN (s)feq(s)ds, κeq =

∫ +1

−1

sN+1feq(s)ds,

typically for the given function feq = 1. Thus α is defined by

κKN
(Veq) = κeq ⇒ α =

κeq − κ2(Veq)

κ1(Veq)− κ2(Veq)
.

Remark 2. In practice, Kershaw method recover the exact value of the closure
κKN

= κeq when f = Veq, but it does not retreive the exact value of the representing
measure dγKN

(s) 6= feq(s)ds.

Representing measure γKN
: In practice, with such a KN model, the kinetic distri-

bution f is approximated by a measure γKN
of the form

γKN
= γ1α+ γ2(1− α), γ1 =

J∑
i=1

αiδsi , γ2 =

2J∑
i=J+1

αiδsi , (17)

where γ1 and γ2 are the unique representing measure for (V, κ1) ∈ ∂RmbN+1
and

(V, κ2) ∈ ∂RmbN+1
. Following Proposition 2, the number of Diracs in this KN

representation can reach at most 2J = 2 min
i
rank(M i

V), i.e. 2K = N if N is even

or 2K = N−1 if N is odd. Remark that the number of Diracs in this decomposition,
so-called atoms in [15, 17, 16], is not minimized.

A numerical method to compute the coefficient αi and the positions si is given
below in Section 3.5.2.

Remark 3. This construction only holds for moments over [−1,+1], because it
requires two extensions of a realizable moment vector of size N onto the boundary
of the realizability domain for moments of order N + 1. And such extensions are
unique for Hamburger (E = R) or Stieltjes (E = R+) problems.

3.3. Projective ΠN closure. The construction of the present projection closure,
afterward called ΠN closure for projection (PN being already taken for polynomial
closure), is based on a decomposition of any realizable vector into a regular part
Veq, i.e. moments of a given regular function

Veq =

∫
E

bN(s)feq(s)ds,
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and a part Vs on the boundary of the realizability domain, i.e. moments of a
singular measure γs =

∑
i

αiδsi according to Proposition 2.

Decomposition of V: Here, we decompose

V = x̄Veq + Vs, (18)

and we construct the closure as

κΠN
(V) = x̄(V)κeq + κs(V − x̄(V)Veq),

where κeq =
∫
E
sN+1feq(s)ds is a given value.

Computation of the closures: In practice, we follow two steps the computations of
which will be detailed in the next subsections:

1. Regular part: The closure of the regular part κeq is already known, only the
multiplicative coefficient x̄ needs to be computed. Find a maximum scalar
x̄ ≥ 0 s.t.

V − x̄Veq ∈ ∂Rmb .
This part is computed in Subsection 3.4.

2. Singular part: Compute the unique realizable closure for the singular part

κs(V − x̄(V)Veq).

This part is computed in Subsection 3.5.

Remark 4. This construction also generalizes out of the realizability domain. One
would only need to seek for a x̄ < 0. In the result below, we prove that there exists
a unique x̄ > 0 satisfying the second step. This only holds if V ∈ Rb is in the
interior of the realizability domain.

Representing measure γΠN
: In practice, with such a ΠN model, the kinetic distri-

bution f is approximated by a measure γΠN
of the form

γΠN
(s) = x̄feq(s)ds+ γ0, γ0 =

J∑
i=1

αiδsi , (19)

where γ0 is the unique representing measure for V − x̄Veq ∈ ∂RmbN
. Following

Proposition 2, the number of Diracs in this KN representation can reach at most
J = min

i
rank(M i

V−x̄Veq
), i.e. K − 1 = N

2 − 1 if N is even or K − 1 = N−1
2 − 1 if N

is odd. This number depends on the choice of feq but is inferior to the one in (17)
for KN closure.

3.4. Projection on the boundary ∂Rb: Computation of the regular part.
From a chosen regular distribution feq(s), we construct a projection of any realizable
vector V ∈ Rmb onto the boundary of the realizability domain. This is simply
performed by removing from V the moments of feq. For this purpose, we define

Veq :=

∫
E

b(s)feq(s)ds.

We first exhibit the uniqueness of a decomposition of any realizable vector into
the sum of Veq ∈ Rb and a vector on the boundary Vs ∈ ∂Rmb .

Proposition 3. For all measure realizable vectors V ∈ Rmb , there exists a unique
decomposition of the form

V = x̄Veq + Vs. (20a)
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where Vs ∈ ∂Rmb and x̄ ∈ R+. These parameters are given by

M̃ i
V := (M i

Veq
)−1/2M i

V

(
(M i

Veq
)−1/2

)T
, (20b)

x̄ = min
i

minSp
(
M̃ i

V

)
, Vs = V − x̄Veq, (20c)

where M−1/2 is positive definite such that M−1/2M(M−1/2)T = I (use e.g. Cholesky
decomposition of M), and the matrices M i

V are defined in (11), (12) or (13) de-
pending on the considered problem.

Proof. We perform the computations in the case of even order moment over [−1,+1]
but the method can be generalized to all the other cases. We first prove the existence
and uniqueness of the decomposition, then we compute x̄ and Vs.

Existence of the decomposition:
As Veq ∈ Rmb , then its moment matrices M i

V are symmetric positive definite.
First, we consider the case V ∈ ∂Rmb . Then V ∈ Rmb . Furthermore, the asso-

ciated moment matrices (11) are positive semi-definite and one is singular. Write
MV the singular matrix and its eigenvector e0 associate to the eigenvalue 0.

As the moment matrices of Veq are positive definite, then eT0 MVeq
e0 > 0. One

obtains
∀y > 0, eT0 MV−yVeq

e0 = −yeT0 MVeq
e0 < 0.

Thus, for all y > 0, we have V − yVeq 6∈ Rmb , and x̄ = 0 is the unique scalar of R+

such that V − x̄Veq ∈ ∂Rmb .
Second, we consider the case V ∈ Rb. Then its moment matrices (11) are

positive definite. Defining
W(y) = V − yVeq,

we have W(0) ∈ Rb. One observes that

∀y > z :=
max
i

max(Sp(M i
V))

min
i

min(Sp(M i
Veq

))
, M i

W(y) is symmetric negative definite,

then especially −W(z) ∈ Rmb . As y 7→W(y) is a linear (continuous) function of y,
then there exists a point x̄ ∈]0, z] such that W(x̄) ∈ ∂Rmb .

Uniqueness of the decomposition:
Finally, suppose that there exists two points 0 < x1 < x2 such that W(x1) ∈ ∂Rmb
and W(x2) ∈ ∂Rmb . By convexity of Rmb , we have W(x) ∈ Rmb for all x ∈ [x1, x2].
However,

W(x) = W(x2)(1− α) + W(x1)α

= W(x2) + α(x2 − x1)Veq.

As α(x2 − x1) > 0, then W(x) is a positive combination of W(x2) ∈ ∂Rmb and
of Veq ∈ Rb = int(Rmb ), then W(x) ∈ Rb which contradicts with W(x1) ∈ ∂Rmb .
Thus x̄ > 0 is unique.

Computation of x̄ and Vs:
Remark that M i

Veq
is symmetric positive definite, then invertible and we may de-

fine (M i
Veq

)−1/2 using its diagonalization. Based on the characterizations of Theo-

rem 2.5, and on the construction (20b), we observe that

V ∈ Rmb ⇔ M i
V symmetric positive semi-definite

⇔ M̃ i
V symmetric positive semi-definite.
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Then, exploiting the linearity of the Riesz functional, we obtain

M̃ i
W(y) = M̃ i

V − yI.

Through this formula, considering that M̃ i
W(x̄) is positive semi-definite and singular,

we obtain that

x̄ = min
i

minSp(M̃ i
V).

In all the following, the coefficient x̄ is defined as (20c) where (M i
Veq

)−1/2 is the

inverse of the Cholesky decomposition of M i
Veq

. Remark that since Veq ∈ Rb is

in the interior of the realizability domain, then the matrices M i
Veq

are symmetric

positive definite and their Cholesky decomposition exist.

3.5. Computation of the closure on the boundary ∂Rmb : Computation of
the singular part. Naively, one could compute all the coefficients αi and si, and
then reinject it in (16) to obtain κs. However, this would not be very efficient from
a numerical point of view.

3.5.1. Computation of the closure κs. Instead, as we only look for one higher order
moment, it is cheaper to exploit the principle of flat extension proposed by [15, 19],
which was also implicitly exploited in the construction of Kershaw KN closure
([31, 42, 52]). This consists in remarking that the set of moments f − x̄feq is
recursively generated, i.e. that it is generated by J < N Diracs. If Vs is generated
by J Diracs, so is the extended vector (Vs, κs) and therefore the matrices M i

(Vs,κs)

are also singular. Remarking that the moment of order N + 1, i.e. fN+1 = κs,
appears only once in the matrix in the last diagonal entry. Then, we may decompose:
Hausdorff even case N = 2K:

R(Vs,κs)((1 + s)bKbTK) =

(
RVs

((1 + s)bK−1b
T
K−1) RVs

((1 + s)sKbK−1)
RVs((1 + s)sKbK−1)T RVs(s2K) + κs

)
,

(21a)

R(Vs,κs)((1− s)bKbTK) =

(
RVs

((1− s)bK−1b
T
K−1) RVs

((1− s)sKbK−1)
RVs((1− s)sKbK−1)T RVs(s2K)− κs

)
.

(21b)

According to the previous decomposition, these matrices are singular and the last
column is in the Span of the others. This provides

κs =−RVs
(s2K) +RVs

((1 + s)sKbK−1)TRVs
((1 + s)bK−1b

T
K−1)+RVs

((1 + s)sKbK−1)
(22a)

= RVs
(s2K)−RVs

((1− s)sKbK−1)TRVs
((1− s)bK−1b

T
K−1)+RVs

((1− s)sKbK−1),
(22b)

where the superscript + refers to pseudo-inverse, and it can be computed by stan-
dart methods.
Hausdorff odd case N = 2K + 1:

R(Vs,κs)(bK+1b
T
K+1) =

(
RVs

(bKbTK) RVs
(sK+1bK)

RVs
(sK+1bK)T κs

)
,

R(Vs,κs)((1− s2)bKbTK) =

(
RVs

((1− s2)bK−1b
T
K−1) RVs

((1− s2)sKbK−1)
RVs

((1− s2)sKbK−1)T RVs
(s2K)− κs

)
.
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which leads to

κs = RVs
(sK+1bK)T RVs

(bKbTK)+ RVs
(sK+1bK)

= RVs
(s2k)−RVs

((1− s2)sKbK−1)TRVs
((1− s2)bK−1b

T
K−1)+RVs

((1− s2)sKbK−1),

Hamburger even case N = 2K: The vector

R(Vs,κs)(s
K+1bTK) ∈ Im

(
RVs(bKbTK)

)
,

where the matrix on the RHS is singular. This can be rewritten(
RVs

(sK+1bK−1)T , κs
)T ∈ Im( RVs

(bK−1b
T
K−1) RVs

(sKbK−1)
RVs(sKbK−1)T RVs(s2K)

)
.

This leads to

κs = RVs
(sKbK−1)TRVs

(bK−1b
T
K−1)+RVs

(sK+1bK−1)

Hamburger odd case N = 2K + 1: The matrix

R(Vs,κs)(bK+1b
T
K+1) =

(
RVs

(bKbTK) RVs
(sK+1bK)

RVs(sK+1bK)T κs

)
.

is singular. This leads to

κs = RVs
(sK+1bK)TRVs

(bKbTK)+RVs
(sK+1bK).

Stieltjes even case N = 2K: The matrix

R(Vs,κs)(sbKbTK) =

(
RVs(sbK−1b

T
K−1) RVs(sK+1bK−1)

RVs
(sK+1bK−1)T κs

)
.

is singular. This leads to

κs = RVs
(sK+1bK−1)TRVs

(sbK−1b
T
K−1)+RVs

(sK+1bK−1).

Stieltjes odd case N = 2K + 1: The matrix

R(Vs,κs)(bK+1b
T
K+1) =

(
RVs(bKbTK) RVs(sK+1bK)

RVs
(sK+1bK)T κs

)
.

is singular. This leads to

κs = RVs
(sK+1bK)TRVs

(bKbTK)+RVs
(sK+1bK).

Remark 5. These computations can be the source of roudoff errors which can be
amplified. In order to smooth them out, we propose the following tricks.

• These computations are all based on the computations of pseudo-inverses M+

of matrices M which are expected to be singular by construction. In practice,
we simply use a basic QR decomposition for such pseudo-inverse. However, as
roundoff errors may occure in the construction of those matrices, we filter the
lowest eigenvalues of R in the QR decomposition below a certain threshold
(10−10 maxi,j Ri,j in the applications below).

• Similarily, in the Hausdorff case, the closure κs is obtained equivalently by
two formula (22), in the applications below, again to smooth roudoff errors,
we use a convex combinations of the two definitions with a parameter based
on the determinant of the non-zero part of the R in the QR decompositions
of RVs

((1± s)bK−1b
T
K−1).
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3.5.2. Computation of the representing measure γs. Even if its computation is more
expensive, it remains possible to compute numerically the coefficients αi and the
positions si in the definition of the closue. These computations are also exploited
in the numerical experiments in Section 4.
Computation of the positions si. One first needs to compute the positions si ∈ E.
For this purpose, we exploit again the singularity of one of the matrices M i

Vs
. We

know that these matrices are symmetric positive semi-definite and one is singular.
Furthermore, Vs is a non-negative sum of b(si) for some si ∈ E. Let us write X
the eigenvector associated to the eigenvalue zero of M i

Vs
, i.e.

M i
Vs

X = 0bK
.

Since Vs is the moment vector of a (singular) measure γs, we have

XTM i
Vs

X =

∫
E

pi(s)
(
b(s)TX

)2
dγ(s) = 0,

where pi are the polynomial 1, (1±s), or (1−s2) depending on the case considered,
associated to the matrix M i

V, i.e. from formula (11-13). Especially, pi is non-

negative on E. Since γ is non-negative and p(s)
(
b(s)TX

)2
also, this implies that

the locations si of the Diracs composing γ are the roots of (bTX)p. As this holds
for all eigenvectors X associated to zero, we obtain

Supp(γ) =
⋂
i

⋂
MVi

s
X=0

Z (pbX) , (23)

where Supp(γ) is the support of the measure γ, and Z(p) is the zero set of p. This
all rewrites:

Hausdorff even case N = 2K: • If RVs
(bKbTK) is singular,

∀X ∈ RN s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

• If RVs((1− s2)bK−1b
T
K−1) is singular,

∀X ∈ RK s.t. RVs
((1−s2)bK−1b

T
K−1)X = 0RK−1 then Supp(γ) ⊂ Z((1−s2)bK−1X).

Hausdorff odd case N = 2K + 1: • If RVs
((1− s)bKbTK) is singular,

∀X ∈ RK s.t. RVs
((1−s)bKbTK)X = 0RK then Supp(γ) ⊂ Z((1−s)bKX).

• If RVs((1 + s)bKbTK) is singular,

∀X ∈ RK s.t. RVs
((1+s)bKbTK)X = 0RK then Supp(γ) ⊂ Z((1+s)bKX).

Hamburger even case N = 2K: • If RVs(bKbTK) is singular,

∀X ∈ RK s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

Hamburger odd case N = 2K + 1: • If RVs
(bKbTK) is singular,

∀X ∈ RK s.t. RVs(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

Stieltjes even case N = 2K: • If RVs
(bKbTK) is singular,

∀X ∈ RK s.t. RVs(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

• If RVs
(sbK−1b

T
K−1) is singular,

∀X ∈ RK−1 s.t. RVs(sbK−1b
T
K−1)X = 0RK−1 then Supp(γ) ⊂ Z(sbK−1X).
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Stieltjes odd case N = 2K + 1: • If RVs(bKbTK) is singular,

∀X ∈ RK s.t. RVs
(bKbTK)X = 0RK then Supp(γ) ⊂ Z(bKX).

• If RVs
(sbKbTK) is singular,

∀X ∈ RK s.t. RVs(sbKbTK)X = 0RK then Supp(γ) ⊂ Z(sbKX).

Both the eigenvectors X and the roots of these polynomials can be computed
with standart techniques.
Computation of the coefficients αi. Finally, in order to retreive the coefficients αi

in front of the Diracs, we use the fact that γs =
J∑
i=1

αiδsi realize the moments

Vs. Knowing the locations si, we simply compute the first J moments of such
distribution to obtain

RVs
(bJ) =

J∑
i=1

αibJ(si).

This is a simple linear system that we can invert to obtain the coefficients αi.

4. Numerical test for the radiative transfer equation. We consider here the
equation (1) with s ∈ [−1,+1] and its moment system (3a) and a collision operator
of the form

C(f) = K

(
1

2

∫ +1

−1

f(s)ds− f
)
, C(f) = K

(
Rf (1)

2
Viso − f

)
, Vi

iso =

∫ +1

−1

sids.

The equation is discretized with the following scheme

fn+1
i − fni

∆t
+
Fn
i+ 1

2

−Fn
i− 1

2

∆x
= K

(
Rfni

(1)

2
Viso − fn+1

i

)
, (24a)

Fi+ 1
2

=
1

2

[
F(fni+1) + F(fni ) + (fni+1 − fni )

]
. (24b)

One easily proves using standart techniques (see e.g. [43, 3, 51, 45, 32]) that this
schemes preserves realizability as the solution fn+1

i is a linear combination with
positive coefficients of realizable vectors of the form f or f ± F(f). The consis-
tence with (3a) is classical. The stability is however more complicated to study as
it relies on the fact that the eigevalues of the Jacobian of the fluxes are smaller
than one, i.e. that Sp(∇fF(f)) ⊂ [−1, 1], which is commonly expected in radiative
transfer, though this remains to verify with the present ΠN closure. This analysis
is postponed to futur work.

We test and compare the closure presented in the previous section with the PN
polynomial approximation and the KN closure (see Section 3.2 and [31, 42, 52])
on three test cases. The first one is simply meant to study quantitatively the
accuracy of the methods. The other two cases are known to be difficult to model
with moment approaches as they require good approximation of both isotropic and
purely anisotropic regimes. The methods are compared qualitatively on these two
cases.

For the first two test cases, the obtained solution is compared to a reference
which is computed using the following method. Remarking that the kinetic orig-
inal equation (1) is linear, we decompose its solution f into two parts fn and fs
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respectively solution of

∂tfn + s∂xfn = −Kfn, (25a)

fn(x) = f(x) on the boundaries x = 0 and x = L, (25b)

∂tfs + s∂xfs = K

(
1

2

∫ +1

−1

fs(s) + fn(s)ds− fs
)
, (25c)

fs(x) = 0 on the boundaries x = 0 and x = L. (25d)

Physically, fn and fs correspond to the distribution of particles that have never
scattered in the domain and to the ones that have scattered at least once. The
first equation is solved analytically, while the second is solved using a P24 moment
method and the scheme (24). This decomposition is commonly more accurate than
discretizing directly (1) because fn is analytical and fs is smooth enough with re-
spect to s such that basic moment approximation is accurate enough. This technique
was exploited e.g. for the developpement of the codes [37, 58, 29, 7, 6, 13, 12, 44].

For the last test case, the distribution fn of non-scattered particles is enhanced
by the initial condition which is thus a Dirac in time and position. Even if this
distribution can be computed, it requires a special treatement when introduced in
the second equation. Instead, we compare to the P24 solution applied directly to
the full equation (1). We found experimentally this solution smooth and accurate
enough for the present problem.

4.1. Simple beam test. The beam is modeled by giving as boundary conditions
the moments of

f(t, x = 0) = 1012b(1) exp(−10t).

The initial condition is set to

f(t = 0, x) = 0RCard(b) .

Remark that numerical simulations using realizable closures, typically MN , com-
monly require realizable initial and boundary conditions in the sense of L1(E)+

functions, i.e. in Rb. Here, this is not necessary and those are chosen on the
boundary ∂Rmb .

We fix a spatial domain [0, L = 1] meshed with 101 cells, the collision parameter
is fixed at K = 6 low enough to preserve an anisotropic distribution in the domain,
but sufficiently large such that the discontinuity due to the propagation of non-
scattered particles fn in (25) is smoothed down. Such discontinuities may affect the
convergence of the method with respect to the number N of moments. The final
time Tmax = 0.8 is chosen such that the beam has not yet reach the other end at
final time. The time step is computed from the fixed Courant number at ∆t

∆x = 0.95.
The moments of order 0 and 1 obtained at final time with Π7, K7, P7 and the

reference solution of (25) (first equation solved analytically, second one solved with
P24) are plotted on Fig. 1 as an indication of the expected solution. The discrete
l1, l2 and l∞ errors of the f0 component compared to the reference solution are
plotted as a function of N on Fig. 2.

On this simple test case, the realizable KN and ΠN methods provides much more
accurate results. This is expected since realizable closures captures perfectly Dirac
distributions, while polynomial approximations cannot. And the solution of the
present problem (1) or equivalently of (25) is the sum of the propagation of a Dirac
distribution fn with a regular one fs.
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Figure 1. Moments of order 0 (left) and 1 (right) obtained with
P7, K7, Π7 and reference solution for the simple beam test case.

2 3 4 5 6 7
N

109

er
ro
r l

1

PN
KN

ΠN

2 3 4 5 6 7
N

109

1010

er
ro
r l

2
PN
KN

ΠN

2 3 4 5 6 7
N

1010

6×109

er
ro
r l

∞

PN
KN

ΠN

Figure 2. Discrete l1 (top left), l2 (top right) and l∞ (bottom)
errors on the moment of order 0 compared to a reference solution
for the PN , KN and ΠN as a function of N for the simple beam
test case.

One observes convergence with respect to N in discrete l1 and l2 norm for the
KN and ΠN models. This convergence is faster than for the PN method which is
already exponential. The discrete l∞ error cannot tend to zero on this test because
of the discontinuity due to the propagation of the front of fn.

Qualitatively, the moment results are similar for both odd and even order mo-
ment methods. Though, quantitatively, one observes a small difference of precision
between the odd and even order ΠN methods. Both methods converge in discrete l1

and l2 and l∞ norms (the solution being smooth enough for that), but the odd order
ones are more accurate. These discrepencies are due to the numerical methods used
for the computation of the closure for several reasons which are mainly related to
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the moment matrices RV((1 ± µ)b ⊗ b), RV((1 − µ2)b ⊗ b) and RV(b ⊗ b) that
we exploit for the construction of ΠN closure:

• The matrices to pseudo-invert have a different size between odd and even
orders.

• Some moment matrices RV((1±µ)b⊗b), RV((1−µ2)b⊗b) and RV(b⊗b) are
expected to be singular. We may expect for this test case that the moment
solution in most of the cells to be close to the moment of a Dirac peak in
s = +1. For this reason, RV((1 − µ)b ⊗ b) should have a smaller dimension
than the other matrices (due to the position of the Dirac). Thus, the numerical
errors producted during the computations of the different moment matrices
may affect differently the QR algorithm used.

• Similarily, the formula (21) and (22) are simply different between odd and
even orders and this may affect differently the numerical accuracy.

4.2. Double beam test. This test case ([26, 46, 45]) consists in having two beams
of particles cross each other. As beams are used, purely anisotrpic distribution
need to be well-modeled by the approach. Furthermore, in the mixing region, the
distribution is the sum of two anisotropic distribution, and low order approaches
(first order) are insufficient to model such distributions.

The two beams are modeled by giving as boundary conditions the moments of
Diracs

f(t, x = 0) = 1012b(+1) exp(−20t),

f(t, x = L) = 1012b(−1) exp(−20t),

Again the initial condition is fixed at

f(t = 0, x) = 0RCard(b) .

We fix a spatial domain [0, L = 2] meshed with 201 cells, the collision parameter
is again fixed at K = 6. The final time Tmax = 1.5 is chosen such that the beam
emerging from one end has not reached the other end at final time but they have
crossed each others in the center region. The time step is computed from the fixed
Courant number at ∆t

∆x = 0.95.
The moments of order 0 and 1 obtained at final time with ΠN , KN and PN for

N = 2, 3, 6, 7 (even and odd together) are plotted on Fig. 3. The results with the
reference solution of (25) (sum of resp. analytical and P24 solutions) are also given
as reference. The discrete l1, l2 and l∞ errors on the 0-th moment compared to this
reference of PN , ΠN and KN models are plotted as a function of N on Fig. 4.

On this test case, the realizable closures are again more accurate than the stan-
dart PN closure. This is expected for the same reason as in the previous case.
Especially the kinetic distribution in the middle region is composed of two beams
of opposite directions. Such distributions are poorly approximated by polynomials,
which oscillate around the solution, or by low order moment methods, while high
order realizable closures capture them perfectly. There remains some differences
between ΠN and KN . Mainly, the ΠN models present a small bump, alternatively
positive and negative, in the middle of the domain in the 0-th moment plot. This
bump is characteristic of the moment approximation of double-beam distributions.

As in the previous case, all the models converge with N to the desired solution.
Though, the final time Tmax is higher than in the previous case, and the two beams
cross each others. Such problems are known to be difficult to model with moment
approaches and we observe less regular convergence results with respect to N .
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Figure 3. Moments of order 0 (left) and 1 (right) obtained with
PN , KN , ΠN for N = 2 (first line), N = 3 (second line), N = 6
(third line), N = 7 (fourth line) and reference solution for the
double beam test case.

In order to study the mix of the two beams in the middle region, the measures
γ representing the moments f(Tmax, x = L/2) with the different models are rep-
resented on Fig. 5. These measures are given by (17) for KN , (19) for ΠN and
by a basic polynomial reconstruction for PN . For KN and ΠN , these representing
measures are composed of a regular part and of a sum of Diracs. The Diracs are
represented by a vertical segment of length α, the coefficient in front of the Diracs,
and located in s, the position of the Dirac.
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Figure 4. Discrete l1 (top left), l2 (top right) and l∞ (bottom)
errors on the moment of order 0 compared to a reference solution
for the PN , KN and ΠN as a function of N for the double beam
test case.

Every measure γ is symmetric with respect to s = 0 which is expected from
the x-symmetry of the problem. For this particular problem, at the very location
x = L/2, the PN polynomial approximation is positive. As expected, the represent-
ing measures with ΠN models is composed of less Diracs than for the KN model.
Furthermore, these Dirac peaks have a lower amplitude than with KN . The number
of Dirac peaks raises with N for the KN models, while they seem to remain two
for the ΠN models. The positions and the amplitude of those two Diracs and the
constant value x̄ seem however to oscillate around a stable value.

Comparing the results with the two realizable closures KN and ΠN , we have a
better qualitative and quantitative accuracy with KN models. This can also be
interpreted from the representing measures. On this test case, the expected solu-
tion is supposed to be the superposition of two beams located around s = ±1. The
KN representing measures naturally captures purely anisotropic measures, and even
enhanced some, as it is constructed from the sum of (a priori an oversestimated
number of) Dirac peaks. On the contrary, the ΠN construction tends to overesti-
mate the isotropic part of the underlying representing measure as x̄ is maximized.
This results in an overestimation of the diffusion effects in s, and thus the appear-
ance of this bump in the center region. However, there remain some flexibility in
these model, especially in the choice of the equilibrium function feq the models aim
to capture. Studying alternative choices of such equilibrium functions is part of
outlooks.

4.3. Point source test. The last test case ([11, 24, 26]) is a 1D version of the
line source problem. It consists in defining an isotropic source of particles in the
middle of a domain at initial time and letting it spread in all directions. In this test,
anisotropic distributions are enhanced from an isotropic one because, using a small
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Figure 5. Representation of the measures representing the vector
f(x = L/2) with PN , KN and ΠN models with N = 2 (top left),
3 (top right), 4 (middle left), 5 (middle right), 6 (bottom left), 7
(bottom right) for the double beam test case.

collision parameter K, the distribution tends to a anisotropic distribution pointed
away from the center.

The final time Tmax = 0.5 is again chosen such that no particles has reach a
boundary. In practice, we use as boundary conditions the moments of a realizable
very small distribution

f(t, x = 0) = 0RCard(b) , f(t, x = L) = 0RCard(b) ,

while the initial condition is fixed as

f(t = 0, x) = 1012δL/2(x)Viso,

i.e. a large isotropic distribution in the center of the domain.
The moments of order 0 and 1 obtained at final time with ΠN , KN and PN for

N = 2, 3, 6, 7 (even and odd together) are plotted on Fig. 6. The results with a P24

model are also given as a high order reference. The discrete l1, l2 and l∞ errors
on the 0-th moment compared to the most refined solution P24 of PN , ΠN and KN

models are plotted as a function of N on Fig. 7.
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Figure 6. Moments of order 0 (left) and 1 (right) obtained with
PN , KN , ΠN for N = 2 (first line), N = 3 (second line), N = 6
(third line), N = 7 (fourth line) and a reference P24 solution for
the point source test case.

Again, we observe convergence with respect to N toward the desired solution.
However, we see rather different phenomena compared to the last test case. Here,
the accuracy of ΠN method is lower than the others, even than the polynomial PN
one. Both realizable closures KN and ΠN , as well PN closure, present oscillations
around the reference solution. The quantity of these oscillations raise with N but
dicrease in amplitude. Their amplitudes are higher with ΠN approximation.



A REALIZABLE PROJECTIVE MOMENT CLOSURE IN 1D 23

2 3 4 5 6 7
N

109

1010
er
ro
r l

1
PN
KN

ΠN

2 3 4 5 6 7
N

109

1010

er
ro
r l

1

PN
KN

ΠN

2 3 4 5 6 7
N

1010

er
ro
r l

∞
PN
KN

ΠN

Figure 7. Discrete l1 (top left), l2 (top right) and l∞ (bottom)
errors on the moment of order 0 compared to a reference P24 sim-
ulation for the PN , KN and ΠN as a function of N for the point
source test case.

As for the last test case, in order to study this phenomenum, we plot on Fig. 8 the
measures representing the moments f(Tmax, x = L/2) in the middle of the domain,
where the source was at initial time.

Again, the measure are all symmetric with respect to s = 0. However, for this
test case, the PN approximation is no more positive and have large amplitudes.
Again the ΠN measures possess less Diracs than KN ones and those are located
closer to the center s = 0 than with KN .

Again, we may interprete the difference of accuracy of the models from their
representing measures. On this test case as in the previous one, we expect the
solution at one location to be an accumulation of beams, i.e. the initial one emerging
from the middle of the domain, and secondary ones created by collisional effects.
Such distribution are better captured by an accumulation of Diracs such as the one
used with KN , and less by isotropic distribution such as the one maximized with
ΠN model. Here, we exploited the most standart equilibrium function feq, though
a better understanding of the expected solution could lead to use a better adapted
function in the definition of KN and ΠN models.

One may observe also a very small negative amplitude of two Diracs (symmetric)
in the K7 representation. These negative values are due to the numerical approxi-
mation of the position of ∂Rmb . In practice, the moment matrix associated to K7

closure should be singular (i.e. on the boundary of ∂Rmb ), while round-off errors
may prevent such matrices to have exactly 0 as eigenvalues. In our computations,
we chose to filter away the smallest eigenvalues of those moment matrices, i.e. the
ones below a threshold of 10−4Rf (1). This seems sufficient to have decent simu-
lation results, though some small negative value may appear in the representing
measures of the method. Remark although that the closure remains well-defined
and it affects not the accuracy of the simulation.
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Figure 8. Representation of the measures representing the vector
f(x = L/2) with PN , KN and ΠN models for N = 2 (top left),
3 (top right), 4 (middle left), 5 (middle right), 6 (bottom left), 7
(bottom right) for the point source test case.

5. Conclusing discussions and perspectives. We have presented a method
based on the study of the realizability domain to construct realizable closures for
moment models over 1D domains. This method consists in projecting a realizable
vector on the boundary of the realizability domain along the direction of a given
realizable vector. The numerical computation of the closure relies on standart nu-
merical techniques: one Cholesky decomposition, the computations of eigenvalues
of symmetric positive semi-definite matrices and one pseudo-inverse. However, sev-
eral aspects of the construction and of the analysis of method are still missing. We
list here some that are left as perspectives.

5.1. Closure for multi-D integration domain. The projection techniques pre-
sented in this paper entirely depend on the knowledge of the position of the bound-
ary of the realizability domain. If this boundary is well known and characterized for
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moments in 1D, this remains a difficult question for moment over multi-D domains,
typically on the unit sphere S2 or on R3 for the present applications.

Similar projection techniques were already exploited for the construction of ap-
proximations of the second order entropy-based M2 closure in 3D in [46, 36, 50]
over S2. For moments up to order 2, the associated realizability domain has been
characterized ([31]). However, those constructions are only valid inside the realiz-
ability domain and on its boundary. Especially, they are based on the computation
of some parameters characterizing the distance to the boundary, and which can not
be generalized out of Rmb2

. This non-linear realizability constraint on the numerical
solution also affects the robustness of the numerical method. This holds when using
basic first order schemes, such as (24), to the moment system. It affects even more
the robustness of a code when using high order numerical schemes, which generally
require a particular treatement to preserve realizability (see e.g. [26, 4, 53]).

The present construction remains valid out of the realizability domain and can
therefore be exploited to extend the 3D second order closures [46, 36, 50] out of
Rmb .

5.2. Hyperbolicity and entropy decay. Only the realizability of the present
closure was studied here. However, among the main desirable properties expected
from a moment closure, one should list hyperbolicity of the resulting moment system
of equation, i.e. that the Jacobian of the flux F needs to be diagonalizable in R;and
entropy decay through this model, i.e. the existence of a convex function h that is
dissipated through the the moment system (3a).

From the present construction, it is unclear if both of these properties are satis-
fied by our approach. These two properties are obtained jointly in the construction
of the entropy-based MN models. For such a closure, the representing measure γ
is constructed by minimizing an entropy η ([39, 8, 9, 10, 55, 30, 34]) under the
constraint of satisfying the moments (and potentially of being positive [25]). This
reconstruction is known to be of the form η∗′(λ.b(s))ds where η∗ is the Legendre
dual of η and λ are Lagrange multipliers. The resulting system is symmetric hy-
perbolic ([23]) and dissipates the entropy η.

The KN closure was shown to be hyperbolic for low order N in [42, 43, 52] by
straight computations of the Jacobian of the flux. The present ΠN construction is
a priori not based on an entropy minimization. However, the representing measure
γ behind ΠN closure is constructed to minimize the distance, in a certain measure
sense, to the chosen equilibrium function feq(s)ds. In our computations, this results
in maximizing x̄ in (18).

Furthermore, the present approach was only tested on a simple radiative transfer
equation. Experimentally, such problems over s ∈ [−1,+1] present less stiffness
than problems over non-bounded domains s ∈ R or s ∈ R+. For instance, one
typically requires the bounds on Sp(∇f (F(f)) to construct stable numerical scheme
for (3a). If those bounds are highly expected to be ±1 for moments over s ∈ [−1,+1]
(this holds for most of the reasonable closures), they are unknown for moments on
unbounded domains.

5.3. Solution-dependent equilibrium functions. For application in radiative
transfer, one expects the solution to relax toward an equilibrium represented by an
isotropic distribution. This choice is neither realistic for moments on unbounded
domains, nor possible since such a constant function is not integrable. One more
realistic choice would be to define the equilibrium function from a minimum-entropy
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solution, typically a Maxwellian. However, such a Maxwellian is defined from the
first moments. Such a choice of solution-dependent equilibrium function would not
affect the present construction of the closure. It could be interpreted as a realizable
correction of low order moment method exploiting higher order moments.
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[6] G. Birindelli. Modèle entropique pour le calcul de dose en radiothrapie externe et curi-
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