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Abstract. The type problem is the problem of deciding, for a simply connected Riemann surface, whether it is conformally equivalent to the complex plane or to the unit dic in the complex plane.

We report on Teichmüller's results on the type problem from his two papers Eine Anwendung quasikonformer Abbildungen auf das Typenproblem (An application of quasiconformal mappings to the type problem) (1937) and Untersuchungen über konforme und quasikonforme Abbildungen (Investigations on conformal and quasiconformal mappings) (1938). They concern simply connected Riemann surfaces defined as branched covers of the sphere. At the same time, we review the theory of line complexes, a combinatorial device used by Teichmüller and others to encode branched coverings of the sphere.

In the first paper, Teichmüller proves that any two simply connected Riemann surfaces which are branched coverings of the Riemann sphere with finitely many branch values and which have the same line complex are quasiconformally equivalent. For this purpose, he introduces a technique for piecing together quasiconformal mappings. He also obtains a result on the extension of smooth orientation-preserving diffeomorphisms of the circle to quasiconformal mappings of the disc which are conformal at the boundary.

In the second paper, using line complexes, Teichmüller gives a type criterion for a simply-connected surface which is a branched covering of the sphere, in terms of an adequately defined measure of ramification, defined by a limiting process. The result says that if the surface is "sufficiently ramified" (in a sense to be made precise), then it is hyperbolic. In the same paper, Teichmüller answers by the negative a conjecture made by Nevanlinna which states a criterion for parabolicity in terms of the value of a (different) measure of ramification, defined by a limiting process. Teichmüller's results in his first paper are used in the proof of the results of the second one.

The final version of this paper will appear in Vol. VII of the Handbook of Teichmüller theory (European Mathematical Society Publishing House, 2020).

Introduction: The type problem

By the uniformization theorem, every simply connected Riemann surface S is either conformally equivalent to the unit disc, or to the complex plane, or to the Riemann sphere. In the first case, the surface is said to be of hyperbolic type, in the second, of parabolic type, and in the third, of elliptic type. The last case is distinguished from the two others by topology: if S is contractible, it is not homeomorphic to the Riemann sphere. How can we distinguish between the other two cases? In other words, suppose that a contractible Riemann surface S is constructed by some process, for example, by assembling pieces which are themselves simply connected surfaces, or by analytic continuation, or-as in the papers considered-as an infinite branched covering of the sphere with information on the ramification index at the branching points. How can we decide if the surface is of hyperbolic or parabolic type? This is the so-called type problem.

Ahlfors writes in his comments to his Collected works [4, vol. 1, p. 84], that the type problem was formulated for the first time by Andreas Speiser 1 in his paper Probleme aus dem Gebiet der ganzen transzendenten Funktionen (Problems related to entire transcendental functions) [35] (1929). He stresses on the importance of this problem in his paper Quelques propriétés des surfaces de Riemann correspondant aux fonctions méromorphes (Some properties of Riemann surfaces corresponding to meromorphic functions) [START_REF] Ahlfors | Quelques propriétés des surfaces de Riemann correspondant aux fonctions méromorphes[END_REF] (1932), where he writes: "This problem is, or ought to be, the central problem in the theory of functions. It is evident that its complete solution would give us, at the same time, all the theorems which have a purely qualitative character on meromorphic functions."

Nevanlinna, in the introduction of his book Analytic functions (1953), writes (p. 1 of the English edition [26]): "[. . . ] Value distribution theory is thus integrated into the general theory of conformal mappings. From this point of view the central problem of the former theory is the type problem, an interesting and complicated question, left open by the classical uniformization theory."

Teichmüller addressed the type problem in several papers. We shall report here on his work on this subject in his two papers Eine Anwendung quasikonformer Abbildungen auf das Typenproblem (An application of quasiconformal mappings to the type problem) [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF], published in 1937, and Untersuchungen über konforme und quasikonforme Abbildungen (Investigations on conformal and quasiconformal mappings) [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF], published in 1938.

The Riemann surfaces that are considered by Teichmüller in these two papers are coverings of the sphere of the sphere branched over a finite number of values. Nevanlinna, in his papers [START_REF] Nevanlinna | Über die Riemannsche Fläche einer analytischen Funktion[END_REF][START_REF] Nevanlinna | Über Riemannsche Fläche mit endlich vielen Windunspunkten[END_REF] and in his book [26] (in particular in §XI.2 and §XII.1), studies a particular class of such surfaces. A particularly important class of examples is constituted by surfaces associated with automorphic functions, but there are many others. As a matter of fact, the idea of studying a Riemann surface which is a branched cover of the sphere and the problem of reconstructing it from the combinatorial information at the branch points and branch values originates with Riemann. The latter introduced Riemann surfaces in his doctoral dissertation [START_REF] Riemann | Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse[END_REF] and described, for the first time, the domain of a meromorphic function to be a branched covering of the sphere. In this setting, he talked about surfaces "spread over the sphere" ( Überlagerungsfläche). The problem of reconstructing the Riemann surface from combinatorial information at the branch points is a form of the so-called Riemann existence problem [START_REF] Riemann | Theorie der Abel'schen Functionen[END_REF]; see also Stoïlov's work [START_REF] Stoïlov | Leçons sur les principes topologiques de la théorie des fonctions analytiques : Professées à la Sorbonne et à l'université de Cernauti. 2e édition[END_REF] on the so-called Brouwer problem, asking for a topological characterization of an analytic function. All this includes the kind of problems considered in Teichmüller's papers in a broader contex which can be traced back to the origin of Riemann surface theory.

We shall also review some fundamental tools that appear in Teichmüller's papers [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF] and [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF], in particular the notion of line complex that was extensively used by Nevanlinna and others, which is a topological/combinatorial tool that describes a type of branched covering. Independently of the work reviewed here, the ideas around the theory of line complexes associated to Riemann surfaces should be interesting to low-dimensional geometers and topologists.

Teichmüller, in his work on the type problem, also relied on quasiconformal mappings. As a matter of fact, the paper Eine Anwendung quasikonformer Abbildungen auf das Typenproblem [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF], whose subject is the type problem, is the first one written by Teichmüller in which he uses these mappings. Teichmüller made extensive use of quasiconformal mappings in his approach to the type problem as well as in other works he did on complex analysis, namely, his papers on Riemann's moduli problem [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF] [46] [START_REF] Teichmüller | Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung[END_REF], on the Bieberbach coefficient problem [START_REF] Teichmüller | Ungleichungen zwischen den Koeffizienten schlichter Funktionen[END_REF] and on value distribution theory [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] [START_REF] Teichmüller | Ungleichungen zwischen den Koeffizienten schlichter Funktionen[END_REF].

Line complexes

We recall the definition of a line complex associated with a branched covering M of the Riemann sphere. This is a graph embedded in M which carries the combinatorics of this covering. We shall follow the exposition in Nevanlinna's book [26], which is also the one Teichmüller uses in the two papers [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF] and [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF].

We assume that M is a simply connected Riemann surface which is a branched covering of the Riemann sphere S 2 = C ∪ {∞}, branched over finitely many points a 1 , . . . , a q ∈ S 2 (q ≥ 2) called the branching values. Such a point is either of algebraic type (that is, the corresponding branching degree is finite) or of logarithmic type (that is, the corresponding branching degree is infinite). Nevanlinna considers the class of such surfaces in [26, Chapter XI, §2 and §3] and he denotes a surface belonging to this class by F q , or by F (a 1 , • • • , a q ) if the branching values are prescribed. We shall keep using Teichmüller's notation M. One example of such a surface is the universal covering of the sphere punctured at a finite set of points a 1 , . . . , a q , q ≥ 2 (see [26, §I.3] for further details). Nevanlinna says that this surface is distinguished among the others as being "as ramified as possible" [26, p. 290].

To define the line complex associated to M, we start by drawing a simple closed curve γ passing through the points a 1 , . . . , a q in the given cyclic order (chosen arbitrarily). This curve decomposes the sphere into two simply connected regions I and A that have a natural polygonal structures with vertices a 1 , . . . , a q and sides (a 1 a 2 ), (a 2 a 3 ), . . . (a q a 1 ). The pre-image of γ by the covering map M → S 2 is a graph G which divides M into a finite or infinite number of pieces that are equipped with a natural polygonal structure induced from either I or A. These pieces are called "half sheets," and are labeled by I, A.

The line complex is a graph embedded in the surface M which encodes the way the half sheets are glued together. We recall now more precisely the definition.

If ψ : M → S 2 denotes the branched covering map, then this map restricted to the set M \ ψ -1 ({a 1 , . . . , a q }) is an unbranched covering map onto its image S 2 \ {a 1 , . . . , a q }. A point lying above a branch value a i (i = 1, . . . , q) (or, equivalently, a vertex of a half sheet in M, allowing also a vertex to be at infinity), may be of three kinds:

(1) Infinite order: such a vertex is not in M but lies at infinity.

(2) Finite order: there are 2m half sheets glued cyclically at such a point; in this case the point is said to be of order m -1. (3) An unbranched point, called also "nonliteral". These are points of order zero.

We construct a dual graph to the polygonal curve γ in the sphere S 2 by choosing two points P 1 and P 2 in the interior of the polygons I and A respectively and joining, for each edge (a i a i+1 ) of γ, P 1 and P 2 by a simple arc that crosses γ at a single point in the interior of that edge. This defines the dual graph of γ. Its lift by ψ -1 , as a planar graph embedded in M, is the line complex Γ of the covering.

The line complex Γ might be finite or infinite (in the sense that it may have a finite or infinite number of edges) depending on whether the Riemann surface M is a finite or infinite branched covering of the sphere. As a graph, it is homogeneous of degree q, and it is bipartite: choosing a coloring, say black and white, for the two vertices P 1 or P 2 , the vertices of Γ can also be colored black and white, depending on whether they are lifts of P 1 and P 2 , and such that any edge of Γ joins a white vertex to a black vertex.

The line complex Γ decomposes the surface M into pieces called "elementary regions" (the complementary components of the graph imbedded in that surface). Each elementary region is a polygon. Such a polygon corresponds by the covering projection ψ to a unique branch value a i on the sphere. Corresponding to the above classification of the branch points, the polygons are of three types:

(1) A polygon with an infinite number of sides. It is unbounded in M and it corresponds to a logarithmic ramification point.

(2) A polygon with an even number 2m of sides, containing a ramification point of finite order m -1. (3) A bigon (containing an unramified point over an a i ). Line complexes were introduced by Nevanlinna in [START_REF] Nevanlinna | Über die Riemannsche Fläche einer analytischen Funktion[END_REF] and Elfving in [START_REF] Elfving | Uber eine Klasse von Riemannschen Flächen und ihre Uniformisierung[END_REF]. They were used as an important combinatorial tool by Nevanlinna, Ahlfors, Speiser, Elflving, Ullrich, Teichmüller and other mathematicians in their investigation of the type problem. In this setting, the type problem is reduced to that of recovering the type of a Riemann surface from the properties of its line complex.

As Nevanlinna and Ahlfors put it several times, the idea of encoding a branched covering of the sphere by a graph is contained in the paper [START_REF] Speiser | Über Riemannsche Flächen[END_REF] by Speiser. 2 In fact, the latter introduced an object that was called later Speiser tree, as a topological tool to study the type problem. The definition of a Speiser tree is close to that of a line complex, but we do not need to recall here the difference between the two notions.

The branched covering M of the sphere is uniquely determined by the points a 1 , . . . , a q , the simple closed curve γ joining them and the line complex Γ. In the papers [START_REF] Elfving | Uber eine Klasse von Riemannschen Flächen und ihre Uniformisierung[END_REF] by Elfving and [24] by Nevanlinna, Riemann surfaces are constructed from a given line complex satisfying certain conditions. There are sections on line complexes in the books by Nevanlinna [26] and [27], by Sario and Nakai [START_REF] Sario | Classification Theory of Riemann Surfaces[END_REF], by Goldberg and Ostrovskii [START_REF] Goldberg | Value Distribution of Meromorphic Functions[END_REF], and in other works.

Teichmüller's paper Eine Anwendung quasikonformer Abbildungen auf das Typenproblem

Teichmüller's motivation in his paper Eine Anwendung quasikonformer Abbildungen auf das Typenproblem [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF] is the study of the type problem based on the properties of line complexes. He asks: "How can one determine, from the given line complex, if the corresponding surface can be mapped one-to-one and conformally onto the whole plane, the punctured plane or the unit disc?" He notes that "one is still very far away from sufficient and necessary criteria."

Let us start by making a list of the main ideas and results contained in that paper:

(1) The question of determining the type of a Riemann surface from the properties of its line complex. (2) The formula

D = |K| + K 2 -1 with K = 1 2 u 2 x + u 2 y + v 2 x + v 2 y u x v y -v x u y .
for the dilatation quotient at a point of a map x + iy → u + iv with continuous partial derivatives, and the definition of a 2 In the paper [START_REF] Ahlfors | Riemann surfaces and small point sets[END_REF], Ahlfors writes: "Around 1930 Speiser had devised a scheme to describe some fairly simple Riemann surfaces by means of a graph and had written about it in his semiphilosophical style".

quasiconformal mapping as a mapping with bounded dilatation quotient.

(3) The fact that the type of a simply connected Riemann surface is a quasiconformal invariant. (4) The fact that the unit disc and the complex plane are not quasiconformally equivalent. [START_REF] Ahlfors | Riemann surfaces and small point sets[END_REF] The fact that any two simply connected Riemann surfaces defined as branched coverings of the Riemann sphere with finitely many branch values and which have the same line complex are quasiconformally equivalent. ( 6) Techniques for piecing together quasiconformal mappings. [START_REF] Beniamini | A negative answer to Nevanlinna's type question and a parabolic surface with a lot of negative curvature[END_REF] The extension of an orientation-preserving diffeomorphism of the circle of class C 1 to a quasiconformal mapping of the disc which is conformal at the boundary.

These items are inter-related. For instance, (3) is equivalent to (4), ( 7) is used in the proof of (6), etc.

We now discuss in more detail the content of the paper [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF].

Teichmüller proves the following:

Theorem 3.1. Any two Riemann surfaces with the same line complex have the same type.

In order to prove this result, Teichmüller shows the following key results which we state as propositions: Proposition 3.2. Any two branched coverings of the sphere with equal line complexes can be mapped quasiconformally onto each other. The latter proposition is a direct consequence of the following result: Proposition 3.4. The complex plane and the unit disc cannot be conformally mapped onto each other.

After stating his results, Teichmüller, in §2 of his paper, defines the notion of "dilatation quotient" of a mapping at a point where the mapping is of class C 1 .

We recall that the differential of a C 1 mapping takes an infinitesimal ellipse centered at a point to an infinitesimal ellipse centered at the image. The dilatation quotient of a C 1 mapping f is a function that assigns to each point of the domain of f the ratio of the major axis to the minor axis of an ellipse that is the image of a circle centered at the origin by the differential of f . This dilatation quotient is also known as the distortion of the Tissot indicatrix ; see Grötzsch's paper [START_REF] Grötzsch | Über die Verzerrung bei nichtkonformen schlichten Abbildungen mehrfach zusammenhängender schlichter Bereiche[END_REF] where the author uses this expression, and the review [START_REF] Papadopoulos | Quasiconformal mappings in the work of Nicolas Auguste Tissot[END_REF] on Tissot's work in this volume. There is also a relation with the characteristic functions introduced by Lavrentieff in [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] and [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF]. Teichmüller derives formula (2) above, which allows one to compute the dilatation quotient in terms of the partial derivatives of the mapping.

In §3, Teichmüller first defines a quasiconformal mapping as a continuous one-to-one and sense-preserving mapping between two domains of the plane that is differentiable except at isolated points and whose dilatation quotient is bounded. This definition is close to the one given by Grötzsch in [START_REF] Grötzsch | Über die Verzerrung bei schlichten nicht konformen Abbildungen und über eine damit zussamenhangende Erweiterung des Pikardschen Satzes[END_REF]. The differentiablity conditions in the definition of a quasiconformal mapping were relaxed later; cf. for instance Lehto's historical survey on quasiconformal mappings [START_REF] Lehto | A historical survey of quasiconformal mappings[END_REF].

Teichmüller notes that the definition of a quasiconformal mapping between domains of the plane can be transferred to the setting of mappings between Riemann surfaces. He then gives conditions for piecing together continuously differentiable and quasiconformal mappings defined on two domains S 1 and S 2 separated by a curve C. He concludes this section by solving what he describes as "an important special mapping problem," namely, the problem of extending an arbitrary orientation-preserving C 1 diffeomorphism of the unit circle S 1 to a quasiconformal mapping of the unit disc D that is "conformal at the boundary." Here, a differentiable mapping of the unit disc is said to be conformal at the boundary if its dilatation quotient on sequences of points approaching the boundary approaches 1.

Remarks 3.5. 1. The extension that Teichmüller constructs is (up to a clockwise rotation by π 4 ) the one that appears in Ibragimov's paper [START_REF] Ibragimov | Quasi-isometric extension of quasisymmetric mappings of the real line compatible with composition[END_REF], in which the latter says that such an extension was known to Ahlfors and Beurling (without any further reference). Presumably, Ibragimov was not aware of Teichmüller's result.

2. A result of Ahlfors and Beurling says that a circle homeomorphism can be extended quasiconformally to the unit disc if and only if it is quasisymmetric (see [START_REF] Beurling | The boundary correspondence under quasiconformal mappings[END_REF]). Today, two well-known quasiconformal extensions of quasi-symmetric homeomorphisms of the circle are the Beurling-Ahlfors and the Douady-Earle extensions, introduced in the papers [START_REF] Beurling | The boundary correspondence under quasiconformal mappings[END_REF] and [START_REF] Douady | Conformally natural extension of homeomorphisms of the circle[END_REF] respectively. The two extensions are different from the one described by Teichmüller.

3. Teichmüller's notion of quasiconformal mappings of the disc that are "conformal at the boundary" is used today in the definition of "asymptotically conformal" quasiconformal mappings of the disc, a class of mappings that are at the basis of the notion of asymptotic Teichmüller space of the disc introduced by Gardiner and Sullivan in their paper [START_REF] Gardiner | Symmetric structure on a closed curve[END_REF].

In §4, Teichmüller proves that two surfaces having the same line complexes can be mapped quasiconformally onto each other (Proposition 3.2 above). With the notation introduced for line complexes in §2, after mapping the two discs A and I quasiconformally onto the inside and the outside of the unit disc respectively, he uses the extension he introduced in the previous section in such a way that the mapping obtained is conformal on the simple closed curve γ (the common boundary of the discs A and I), and defining therefore a quasiconformal mapping between the z-plane and the w-plane. He performs the same operation with another Riemann surface M ′ that has the same line complex as M. In this way, he gets a quasiconformal mapping from a z ′ -plane onto the w-plane and then a quasiconformal mapping from the z-plane onto the z ′ -plane. Because M and M ′ share the same line complex, the gluing specification between corresponding half sheets is the same. Teichmüller eventually gets a quasiconformal mapping between M and M ′ .

In §5, he proves that the unit disc and the complex plane cannot be quasiconformally mapped onto each other (Proposition 3.4 above). The proof is by contradiction and it is based on the so-called lengtharea method, a method to which Teichmüller referred in his later papers as the Grötzsch-Ahlfors method (see for instance [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF][START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF][START_REF] Teichmüller | Über Extremalprobleme der konformen Geometrie[END_REF][START_REF] Teichmüller | Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung[END_REF]). More precisely, Teichmüller reasons by contradiction. He assumes that there exists a quasiconformal mapping from the complex plane to the unit disc. Such a mapping sends, for any 0 < r 1 < r 2 , the annulus {z | r 1 < |z| < r 2 } onto a doubly-connected subdomain of the unit disc. The image being bounded, it has a bounded conformal modulus and therefore the modulus of {z | r 1 < |z| < r 2 } is also bounded. This is obviously false since r 2 can be chosen arbitrarily large.

In an amendment made during the page proofs of his paper and written at the end of §5, Teichmüller notes that the final part of the paper [START_REF] Grötzsch | Über die Verzerrung bei schlichten nicht konformen Abbildungen und über eine damit zussamenhangende Erweiterung des Pikardschen Satzes[END_REF] by Grötzsch published in 1928 is closely related to his own proof of Proposition 3.3 (information he obtained from H. Wittich). 3 In that paper, Grötzsch uses this method in order to extend the small and the big Picard theorems to quasiconformal (and not only conformal) mappings. Lavrentieff uses the same idea in his 1935 paper [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] which we mention below. Conceivably, Teichmüller was not aware of Lavrentieff's paper. 4 In the last section, Teichmüller provides an example to briefly show that for a simply connected Riemann surface M defined as a branched covering of the sphere with branch values a 1 , • • • a q , the position of these points and the simple closed curve γ joining them that is used in the construction of the line complex, although it has no influence on the question of deciding the type of the surface, has an influence on the value distribution of the uniformizing mapping, namely, the biholomorphic mapping that sends M onto the disc or to the complex plane. He deals with the explicit example of a branched covering with four branch values and with a line complex determined by the intersection of the real line with infinitely many circles. He gives explicitly the Nevanlinna characteristic of the associated meromorphic mapping and shows that 3 A translation of Grötzsch's paper is provided in the present volume. 4 Teichmüller was aware of Lavrentieff's paper when he wrote the later paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF]; see the footnote in §6.4 of [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF].

the coefficients of this characteristic depend on the choice of γ. He declares that the proof is not difficult but will be carried out in a different context. The same example is further considered in his 1944 paper [START_REF] Teichmüller | Einfache Beispiele zur Wertverteilungslehre[END_REF].

Teichmüller was not the first to be interested in the application of quasiconformal mappings to the type problem, and we refer here again to the 1935 work of Lavrentieff in [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] (see the English translation in the present volume; cf. also [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] for a summary of the results and the paper [START_REF] Alberge | A commentary on Lavrentieff's paper Sur une classe de représentations continues[END_REF] for a commentary also in the present volume). Lavrentieff introduced the notion of fonction presque analytique (almost analytic function), a class of mappings that are more general than the ones introduced earlier by Grötzsch, and whose dilatation quotient is not necessary bounded. He gives, for a particular class of Riemann surfaces defined as the graph of a function of two variables, a sufficient condition on the dilatation quotient that makes the surface of hyperbolic type (see [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF]Théorème 8]). The same year Teichmüller published his paper [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF] (1937), Kakutani published a paper [START_REF] Kakutani | Applications of the theory of pseudo-regular functions to the typeproblem of Riemann surfaces[END_REF] in which he also studies the type problem using (another) notion of quasiconformal mappings. See also Kobayashi's paper [START_REF] Kobayashi | On the Kakutani's theory of Riemann surfaces[END_REF].

In his paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] which we consider in §5, Teichmüller gives a criterion to find the type of Riemann surfaces in a class already considered in his paper [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF], and as a consequence he constructs an example of a hyperbolic Riemann surface with a so-called "mean ramification" equal to 2. We review this in the next section.

Nevanlinna's conjecture

The notation is the one introduced in §2. Nevanlinna's conjecture is based on the fact that the type of the simply connected surface M may be deduced from information on the measure of the amount of ramification of its associated line complex. Roughly speaking, if the amount of ramification is small (in some sense to be defined), the surface is of parabolic type, and if it is large, it is of hyperbolic type. The motivation is that a large degree of ramification will put a large angle structure at the vertices of the graph G. This can be made precise by introducing a notion of combinatorial curvature, and it is the object of these investigations. Nevanlinna writes that "it is natural to imagine the existence of a critical degree of ramification that separates the more weakly branched parabolic surfaces from the more strongly branched hyperbolic surfaces" [26, p. 308]. To make precise this observation, he introduces a notion of curvature of a line complex, which he calls the mean excess. His conjecture says that the surface M is parabolic or hyperbolic depending on whether the mean excess of its line complex is zero or negative respectively. Teichmülller in his paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF], disproves the conjecture by exhibiting a hyperbolic simply connected Riemann surface branched over the sphere whose mean excess of the corresponding line complex is equal to zero.

Nevanlinna's study of this topic is restricted to the class of surfaces F q that we defined earlier (simply connected surfaces that are branched covers of the sphere and whose branch points project to a finite number of points a 1 , . . . , a q ). We quote him from his book [26, p. 312]:

[. . . ] Relative to transcendental surfaces Fq the following question arises: Is the surface parabolic or hyperbolic according to the angle geometry of the surface Fq is "euclidean" or "Lobachevskyan," i.e. according as the mean excess E = 2 -V is zero or negative? This question was answered (1938) by Teichmüller [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] and, indeed, in the negative.

In the rest of this section, we explain Nevanlinna's conjecture. We use the notation for line complexes introduced in §2. The vertices of the complex Γ correspond to the half sheets in M and the faces of Γ, which are all homeomorphic to discs, are called elementary polygons. The number of sides of an elementary polygon may be infinite, but if it is finite, then it is even. Indeed, an elementary polygon covers a cell in the Riemann sphere whose boundary consists of two edges. Therefore, each face has 2m edges, with m = 1, 2, . . . , ∞. Each elementary polygon with 2m sides is associated with a branch point of order m -1.

In order to give an idea of the ramification measure that he introduces, Nevanlinna first considers the case of a closed surface which is a finite-sheeted covering of the sphere. In this case, the ramification measure is the sum of the orders of the branch points divided by the number of sheets of the covering. The calculation in this special case is made in terms of the associated line complex.

The goal is to assign a ramification measure to each vertex of the graph. (Recall that the ramification points of the covering map ψ from M to the Riemann sphere are at the "centers" of the polygons that are the complementary components of the line complex.)

To each branch point of order m -1 corresponds an elementary polygon with 2m sides and 2m vertices. Twice the order of the branch point, that is, 2m-2, is distributed onto the 2m vertices of the polygon. In this way, each vertex P of Γ receives from the given elementary polygon a contribution of the line complex 2m-2 2m = 1 -1 m of the order of ramification. Therefore, the total ramification at a vertex P is equal to

V P = W (1 - 1 m ),
the sum, for each P , being taken over the elementary polygon W having P as a vertex. Since the number of vertices of Γ is equal to 2n (twice the number of sheets of the covering), the mean ramification of the surface, which is naturally defined as 1 2n

P V P , is equal to 2 - 2 n .
We now return to our simply connected infinitely-sheeted surface M, branched over q points, with associated line complex Γ.

As in the previous special case, to each vertex P of Γ is associated a ramification index V P coming from its adjacent elementary polygons. With the above notation, the index coming from one polygon is equal to 1 -1 m and since the number of edges of the elementary polygons may be infinite, we allow m to be infinite, in which case the ramification index coming from this region is 1.

Since P is a vertex of at least 2 and at most q adjacent elementary regions whose order m -1 is positive, we always have 1 ≤ V P ≤ q.

Since the surface M has infinitely many sheets, to define the average ramification of the associated line complex Γ, Nevanlinna uses what he calls a wreathlike exhaustion (see [26, §XII.1.3]) of this graph by an infinite sequence of subgraphs Γ ν (ν = 1, 2, . . .). This is done by starting with a vertex P 0 chosen arbitrarily, which we call the base vertex, then defining the complex Γ 1 as the subgraph of Γ obtained by adding to P 0 the vertices P 1 at distance one from this base vertex (first generation) together with the edges joining these new vertices to P 0 , then the complex Γ 2 as the one obtained by adding the vertices P 2 at distance one from Γ 1 (second generation) together with the edges joining these new vertices to Γ 1 , etc. Here, the distance between two vertices is defined as the minimal number of edges joining them.

For every ν = 1, 2, . . ., we let n ν be the number of vertices in the approximating graph Γ ν . The mean ramification of Γ ν is defined as

V ν = 1 n ν F ν V P .
The mean ramification of Γ (and of the surface M) is the limit

V = lim ν→∞ V ν ,
provided this limit exists. If this limit does not exist, Nevanlinna works with the lower limit lim V ν and the upper limit lim V ν .

There is a geometric way of calculating this measure of ramification, in relation with a combinatorial notion of curvature. We return to the graph G = ψ -1 (γ) in M, that is, the pre-image by the projection map of the simple closed curve γ in the Riemann sphere that joins the branchvalues a 1 , . . . , a q . We recall that G defines a combinatorial decomposition of M whose cells have q sides and whose vertices lie above the branching values a 1 , . . . a q . There is a natural combinatorial angle structure associated to this polygonal decomposition of M, where to each vertex of G which corresponds to a branch point of order m -1 one associates an angle measure equal to π/m. The excess of a polygon P with q sides is then defined as

E P = 1 m -q + 2
where the sum is taken over the angles of the polygon. This is justified as follows:

If the q-sided polygon were a Euclidean polygon, then its angle sum would be equal to (q -2)π. Suppose now that we are given a q-sided polygon which is equipped with a metric or more generally with a structure that assigns to it a reasonable angle structure at the vertices. Then, the "excess" of this polygon, which is a measure of its deviation from being Euclidean, is taken to be its angle sum divided by π minus the angle sum of a Euclidean polygon with the same number of sides divided by π. This is consistent with the formula we gave for E P .

The above formula for the ramification V P of a polygon P gives

V P = (1 - 1 m ) = q - 1 m .
Thus, we have

V P + E P = 2,
that is, the sum of the ramification and the excess of a fundamental polygon P is equal to 2.

To get a more precise idea of the geometric meaning of ramification, we consider the case of a regularly ramified surface, where V = V P for every fundamental polygon P . There are three cases:

(1) Elliptic case: V < 2. One can take the fundamental polygons on M to be spherical polygons with geodesic sides and angle excess πE (E = E P being the excess defined above). (2) Parabolic case: V = 2, E = 0. The fundamental polygons can be taken as Euclidean polygons, with zero excess. (3) Hyperbolic case: V > 2, E < 0. The fundamental polygons can be taken as hyperbolic polygone, with angle deficit equal to π|E|.

This motivates the following conjecture which Nevanlinna made in the general case of a non-necessarily regular surface [26, p.312]: The surface is parabolic (respectively hyperbolic) if the mean excess E = 2 -V is zero (respectively negative).

Teichmüller, in §7 of the paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] disproves the conjecture by exhibiting a hyperbolic simply connected surface S branched over the sphere and whose mean excess is zero. We review Teichmüller's work in the next section.

Let us note that in a more recent paper [START_REF] Beniamini | A negative answer to Nevanlinna's type question and a parabolic surface with a lot of negative curvature[END_REF], the authors disprove the second part of the conjecture by giving an example of a simply connected Riemann surface which is parabolic and which has negative mean excess.

5.

The type problem in Teichmüller's paper Untersuchungen über konforme und quasikonforme Abbildungen

In this section, we review the criterion for hyperbolicity of surfaces in a certain class given by Teichmüller in the last section of his paper Untersuchungen über konforme und quasikonforme Abbildungen. The section is titled A type criterion.

Teichmüller considers a class of surfaces M satisfying the following properties (we use the notation of the previous section):

(1) no branch point is algebraic;

(2) the line complex Γ associated to M does not have any infinite chain of edges with no branch points; (3) each vertex of Γ has either two or q edges starting from it. Teichmüller proves that such a surface is hyperbolic if and only if it is sufficiently ramified, and for this, introduces a notion of measure of ramification which is different from the one introduced by Nevanlinna ( §4 above). We recall the definition.

We take a vertex B 0 adjacent to q simple edges (by Conditions ( 2) and ( 3), such a vertex exists). From B 0 , we follow, from each edge adjacent to it, a chain of edges until we arrive at a branch vertex. We define in this way q vertices that are branch points, and we call this set of vertices B 1 . By Condition (3), each vertex in B 1 has q -1 outgoing branches. Continuing in the same manner, we obtain q(q -1) branch vertices B 2 , then q(q-1) 2 branch vertices B 3 , etc. Thus, for each k ≥ 1, there are q(q -1) k-1 chains leading from the set of vertices B k-1 to the set of vertices B k . Condition (1) says that continuing in this way we traverse the entire line complex without repetitions.

Each chain of vertices has a well-defined length, and Teichmüller denotes by ϕ(k) the maximum of the lengths of all chains connecting an element in B k to an element in B k-1 . For each k ≥ 1, he sets

ψ(k) = Max κ=1,...,k ϕ(k).
The smaller ϕ(k) and ψ(κ) are, the more ramified is the surface M. Teichmüller proves the following:

Theorem 5.1. If the series ∞ k=1 ψ(k) k 2 converges, then M is of hyper- bolic type.
The proof uses an explicit conformal representation onto the unit disc and hyperbolic geometry. It is based on the construction of a quasiconformal mapping (with a non-necessarily bounded dilatation) from M onto the modular surface (the universal covering of the Riemann sphere punctured at the points a 1 , a 2 , . . . , a q ), which is known to be hyperbolic. In order to conclude with the invariance of the type, Teichmüller uses a result he previously obtained (see [41, §6.5]) and which is a generalisation of Proposition 3.4. The quasiconformal mapping from M onto the modular surface is constructed by first modifying the line complex associated to M and making it a Speiser tree, by replacing all chains without branching by bundles of edges arranged in a row. Teichmüller gives then an example of a surface M whose mean ramification V in the sense of Nevanlinna ( §2 above) is equal to 2, while ∞ k=1 ψ(k) k 2 converges. Thus, the surface is hyperbolic, which disproves Nevanlinna's conjecture.

In an addendum to his paper written on the page proofs, Teichmüller notes that Kakutani, in his paper [START_REF] Kakutani | Applications of the theory of pseudo-regular functions to the typeproblem of Riemann surfaces[END_REF] (1937), obtained a sufficient criterion for hyperbolicity that applies to a class of surfaces he considers in § 7.3 of his paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF]. He says that Kakutani's criterion does not contain his own criterion, but gives a better order of magnitude. He then writes about Kakutani: "If he had worked with unbounded dilatation coefficients and applied my § 6.5, he would have obtained a much better criterion for § 7.3 than the one developed here. His quasiconformal mapping is hence more suitable than mine; it is (for now) restricted to the special surfaces in §7.3."

Remarks 5.2. 1.-The results on the type problem obtained in Teichmüller's papers considered here concern surfaces which are branched coverings of the Riemann sphere with logarithmic branch points. There is a result of Ahlfors on the type problem for branched coverings with only algebraic branch points, see [START_REF] Ahlfors | Zur Bestimmung des Typus einer Riemannschen Fläche[END_REF] (1931) and results by Speiser [START_REF] Speiser | Über Riemannsche Flächen[END_REF][START_REF] Speiser | Über beschtänkte automorphe Funktionen[END_REF] and Ullrich [START_REF] Ullrich | Über ein Problem von Herrn Speiser[END_REF]. Ahlfors' first works on the type problem (see [START_REF] Ahlfors | Zur Bestimmung des Typus einer Riemannschen Fläche[END_REF] and [START_REF] Ahlfors | Sur le type d'une surface de Riemann[END_REF]), unlike the works of Laverentieff on the same problem, involve the so-called length-area method which is a common tool used by Grötzsch and himself, and later by Teichmüller, in relation to quasiconformal mappings.

2.-We already noted that Lavrentieff, before Teichmüller, used quasiconformal maps (in the version he called "almost analytic") in the study of the type problem (cf. [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] and [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF]). His approach was Riemannian, unlike the combinatorial approach of Teichmüller. See the translation of Lavrentieff's paper [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] in the present volume and the corresponding commentary [START_REF] Alberge | A commentary on Lavrentieff's paper Sur une classe de représentations continues[END_REF]).

4.-There is a large literature on the type problem. Kakutani made the relation with Brownian motion. In [START_REF] Kakutani | Two-dimensional Brownian motion and the type problem of Riemann surfaces[END_REF] (1945), he proved the following: Let S be a simply-connected open Riemann surface which is an infinite cover of the sphere. Let D be a simply connected subsurface of S which is bounded by a Jordan domain Γ. For a point ζ in S \ D, let u(ζ) be the probability that the Brownian motion on S starting on ζ enters into Γ without getting out of S -D before. Then, one of the following two cases holds:

(1) u(ζ) is < 1 everuwhere in S -D, and in this case S is hyperbolic (2) u(ζ) is identically equal to 1 on S -D, and in this case S is parabolic.

Doyle made a relation between the type problem, Brownian motion and the propagation of an electric current on the surface, see [START_REF] Doyle | Random walks and electric networks[END_REF]. In fact, this is a return to Riemann's point of view. Indeed, the latter relied, at several places in his work on Riemann surfaces, to arguments from electricity (see Riemann's doctoral dissertation [START_REF] Riemann | Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse[END_REF] and his paper on Abelian functions [START_REF] Riemann | Theorie der Abel'schen Functionen[END_REF]. The interested reader may also refer to the survey [START_REF] Papadopoulos | Physics in Riemann's mathematical papers[END_REF] on physics in Riemann's mathematical work).
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  Andreas Speiser (1885[START_REF] Nevanlinna | Analytic functions[END_REF] was a Swiss mathematician. He studied in Göttingen, first with Minkowski and then with Hilbert, who became his doctoral advisor after the death of Minkowski. He defended his PhD thesis, in Göttingen, in 1909 and his habilitation in 1911, in Strasbourg. Speiser worked in group theory, number theory and Riemann surfaces, but he is mostly known as the main editor of Euler's Opera Omnia. (He edited 11 volumes and collaborated to 26 others.)
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