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Introduction

The paper Untersuchungen über konforme und quasikonforme Abbildungen (Investigations of conformal and quasiconformal mappings) [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] is Teichmüller's Habilitationsschrift, which he presented in Berlin in 1938, under the supervision of Ludwig Bieberbach. 1 In 1936, Teichmüller attended lectures on function theory by Rolf Nevanlinna who was teaching at the University of Göttingen as a visiting professor for Date: December 23, 2019. [START_REF] Abikoff | Oswald Teichmüller[END_REF] Teichmüller had obtained his doctorate in 1935 in Göttingen under the supervision of Helmut Hasse. The subject was linear operators on Hilbert spaces over the quaternions [START_REF] Teichmüller | Operatoren im Wachsschen Raum[END_REF]. In the meanwhile, he shifted his topics of interest. For details about Teichmüller's life, we refer the reader to [START_REF] Abikoff | Oswald Teichmüller[END_REF] and [START_REF] Schappacher | Oswald Teichmüller -Leben und Werk[END_REF].

the academic year. These lectures had a major influence on him. Teichmüller remained interested in this topic until the end of his (short) life. His Habilitationsschrift is one of his important papers on complex analysis. He wrote several other papers related to this subject, see [START_REF] Teichmüller | Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungslehre[END_REF][START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF][START_REF] Teichmüller | Eine Verschärfung des Dreikreisesatzes[END_REF][START_REF] Teichmüller | Vermutungen und Sätze über die Werverteilung gebrochener Funktionen endlicher Ordnung[END_REF][START_REF] Teichmüller | Einfache Beispiele zur Wertverteilungslehre[END_REF].

The paper we are commenting on here is difficult to read. Like several other of Teichmüller's paper, while the mathematical ideas it contains are very dense, and the proofs are concise, sometimes sketchy, Cazacu observes in [START_REF] Cazacu | Foundations of quasiconformal mapping[END_REF]: "Teichmüller's paper(s) are written in a warm, direct style. He emphasizes aims, ideas, difficulties, clearly explains notations, methods, and compares his results with others concerning similar problems." All throughout the paper, Teichmüller gives credit to the works of other mathematicians which he uses, improves or has been motivated by. Another characteristic of this paper is that its spirit and the proofs it contains are purely geometric. We may quote here a passage from the paper, during a computation he makes of the module function Φ(P ). Teichmüller writes ( §2.1):

[. . . ] Explicitly calculating this requires the introduction of elliptic functions and one can observe a connection between the function Φ(P ) and the values of the elliptic modular function for purely imaginary periodic ratios. In the interest of preserving the purity of the method used and to avoid tedious calculations, we will not make use of this connection at all; rather, we derive everything we wish to know about the function Φ(P ) from its geometric definition.

The paper has seven sections. The first six are concerned with the conformal geometry of doubly-and simply-connected domains (the latter with marked points), extremal problems for conformal invariants, and quasiconformal mappings. Teichmüller studies properties of modules of quadrilaterals and ring domains and reduced modules of simplyconnected domains. He often relies on applications of the length-area method. One of the main motivations for his investigations is to give a geometric proof of what he calls the Main Lemma (see Item [START_REF] Ahlfors | Über eine in der neueren Wertverteilungslehre betrachtete Klasse transzendenter Funktionen[END_REF] and Theorem 5.2 below), stated at the beginning of the paper, of which an improved version is now known as the Teichmüller-Wittich-Belinskiȋ theorem. This result was motivated by the developments of (at that time) new value distribution theory. Indeed, Teichmüller says that he reached this statement while we was working with Hans Wittich on a class of Riemann surfaces introduced by Egon Ullrich. (Such surfaces are now called surfaces with finitely periodic ends). Teichmüller also writes that he first tried to prove this lemma without success by using analytical methods developed by Ahlfors in [START_REF] Ahlfors | Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen[END_REF] and [START_REF] Ahlfors | Über eine in der neueren Wertverteilungslehre betrachtete Klasse transzendenter Funktionen[END_REF]. Throughout Teichmüller's paper, there is no explanation about how this result could be used and we have to quote another paper by Teichmüller. In [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF], Teichmüller writes:

In order to study a conformal mapping from a Riemann surface A to another Riemann surface B, one constructs an explicitly known quasiconformal mapping from A to some Riemann surface C [...] so that B and C are closely related and so that the best possible estimate from above for the dilatation quotients viewed as a function of points of C is known. [...] One then determines the properties attached to the mappings from C to B whose dilatation quotients satisfy this estimate. Thanks to the known mapping A → C, each of these properties gives a statement about the mapping A → B to be studied. This method and therefore the Main Lemma has been first applied by Lê Vȃn [START_REF] Vȃn | Über das Umkehrproblem der Wertverteilungstheorie[END_REF] to solve a particular case of the so-called Nevanlinna inverse problem. We refer to the paper [START_REF] Papadopoulos | Value distribution theory and Teichmüller's paper Einfache Beispiele zur Wertverteilungslehre[END_REF] in the present volume and to the paper [START_REF] Drasin | Quasiconformal mappings in value-distribution theory[END_REF] for an exposition of this problem, to which, later on, Drasin provided a full solution in [START_REF] Drasin | The inverse problem of the Nevanlinna theory[END_REF]; see also the monograph [START_REF] Goldberg | Value Distribution of Meromorphic Functions[END_REF]. The last section of Teichmüller's paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] is a contribution to the type problem, in which the author gives a negative answer to a conjecture made by Nevanlinna. The methods rely to some extent on the quasiconformal techniques developed in the previous sections, but are not based on the Main Lemma.

Let us add that Teichmüller's main interest in the paper we are concerned with here is the question of uniformization and conformal representation. He writes ( §5.1): " [. . . ] it seems necessary to stress that I do not investigate the concept of module of a ring domain for its own sake, but that the focus is on an investigation of the problem of conformal mappings and uniformization."

Let us give a list of other main results and tools that are introduced in this paper.

(1) A study of the conformal geometry of annuli and quadrilaterals: monotonicity of modules, regions that are solutions of extremal problems, the introduction of new conformal objects: conformal radius, reduced module, reduced logarithmic area, and others. (2) A distortion theorem which is an improvement of the main distortion lemma in Ahlfors' thesis, obtained (unlike Ahlfors' proof) without using differential equations but using only geometric methods. (3) An important lemma known today as Teichmüller's Modulsatz which is used in his proof of the Main Lemma (see [START_REF] Ahlfors | Über eine in der neueren Wertverteilungslehre betrachtete Klasse transzendenter Funktionen[END_REF] or 5.2). The lemma gives a sufficient condition for a set that lies between two doubly-connected domains in the complex plane to be close to a circle. (4) The use of a class of quasiconformal mappings w = w(z) of the complex plane which is more general than the class used today:

the dilatation quotient of such a map at each point (that is, the quotient of the great to the small axis of the infinitesimal ellipse whic is the image of an infinitesimal circle) is not required to be bounded by a uniform constant, but it is assumed that it is bounded by some specific function of |z| with controlled growth. (5) An asymptotic result for quasiconformal mappings, namely, a bound as in [START_REF] Ahlfors | Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen[END_REF], that insures that |w| ∼ const.|z| as z → ∞ (a property we call "circularity at infinity" of the image of circles by such quasiconformal mappings). Following Teichmüller, we shall refer to this result as the Main Lemma. (6) A contribution to the type problem, and more precisely, a condition for a Riemann surface to be of hyperbolic type. Teichmüller uses for this purpose the notion of line complex, a combinatorial device to encode a Riemann surface that is a branched cover of the sphere. At the same time, he settles (by the negative) a question posed by Nevanlinna on the type problem. We have divided this commentary into sections which highlight the main results we stated above. More precisely, in Section 2 we will recall the geometric tools used by Teichmüller, such as the module of a ring domain, the reduced module of a simply-connected domain and the module of a quadrilateral. In Section 3, we will comment on the improvement made by Teichmüller to the Ahlfors distortion theorem. In Section 4, we will present the main ideas of the proof of the Modulsatz theorem along with some applications. In the last section, Section 5, we will recall the notion of quasiconformal mappings that Teichmüller uses and we will explain the Main Lemma and its improvements. Let us point out that we have decided to comment on the last section of [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF], that is the contribution to the type problem, in another chapter of the present volume, [START_REF] Alberge | Teichmüller's work on the type problem[END_REF].

Module theorems

In the first two sections of his paper, Teichmüller develops from first principles properties of modules of ring domains using logarithmic area and logarithmic length and modules of quadrilaterals, and he defines and studies properties of reduced modules of simply-connected domains. The references to his paper for what concerns reduced module, in the monographs by Wittich [START_REF] Wittich | Neuere Untersuchungen über eindeutige analytische Funktionen[END_REF] and Jenkins [START_REF] Jenkins | Univalent Functions and Conformal Mappings[END_REF], suggest that he was the first to develop this kind of results. We can also mention the book by Künzi [41] which contains the main results of Teichmüller from [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF] that we are commenting on here. In his study of moduli of ring domains, Teichmüller, as he mentions in the introduction, was motivated by an estimate of Ahlfors, which he uses after applying a suitable auxiliary conformal map. Since this involves only considerations of the point ∞, he was led to study conformal mappings of neighborhoods of this point, excluding this point itself, that is, of annuli.

Let us recall in detail the notions introduced and used in Teichmüller's paper [START_REF] Teichmüller | Untersuchungen über konforme und quasikonforme Abbildung[END_REF].

Teichmüller starts in §1.1 by recalling the definition of a ring domain, that is, a doubly-connected domain bounded by two continua.

In §1.2, he shows that any ring domain G can be mapped conformally onto an annulus r < |w| < R, where 0 < r < R < ∞. The proof uses the uniformization theorem (Teichmüller refers to Koebe). He then defines the module M of G as log R r . This is a conformal invariant and the definition is equivalent to a well-known classical definition based on extremal length, see [START_REF] Ahlfors | Conformal invariants: Topics in geometric function theory[END_REF][START_REF] Ahlfors | Quasiconformal mappings and their applications[END_REF]. Let us point out that Teichmüller's definition of module differs by a multiplicative ratio of 2π from the definition of the module that involves the notion of extremal length. We also note that conformal invariants of ring domains were already studied by Schottky. The latter proved in his doctoral dissertation [START_REF] Schottky | Über konforme Abbildung von mehrfach zusammenhängenden Fläche[END_REF] (1877) that two annuli {r 1 < |z| < r 2 } and {r ′ 1 < |z| < r ′ 2 } are conformally equivalent if and only if we have

r 2 r 1 = r ′ 2 r ′ 1 .
In §1.3, Teichmüller introduces the logarithmic length of a curve γ in C \ {0}, defined as

γ |d log z| = γ |dz| |z| 2 ,
and the logarithmic area F of a domain G ⊂ C \ {0}, defined as

G d log z = G dz |z| 2 ,
where, dz = dxdy. These two quantities represent the Euclidean length and area of the transformed, to the log z-plane, original curve and domain, where the log z-plane is the rectangle in the Euclidean plane which is the image of the annulus r < |w| < R by the logarithm map, after the annulus has been cut along the interval [-R, -r]. If M and F denote respectively the module and the logarithmic area of G, Teichmüller shows that [START_REF] Abikoff | Oswald Teichmüller[END_REF] 2πM ≤ F.

Let us say a few words about Teichmüller's proof of (1). This proof uses the so-called length-area method, a method that he refers to in the introduction as the "Grötzsch's and Ahlfors' methods" Let us recall that the length-area method involves comparison of Euclidean lengths of curves and area in the logarithmic plane w = log z-plane, followed by a repeated integration and use of the Cauchy-Schwarz inequality. The concept of extremal length takes root in the use of this method which was initiated by Beurling in his thesis [START_REF] Beurling | Étude sur un problème de majoration[END_REF] (see also the end of this section), and further developed by Beurling and Ahlfors2 in the 1940s by working not only with the Euclidean metric but with a whole class of conformal metrics (see [START_REF] Ahlfors | Invariants conformes et problèmes extrémaux[END_REF] and [8, p. 50]). According to Ahlfors,3 his first used of the length-area method appears in his thesis (see also [START_REF] Ahlfors | Sur le nombre des valeurs asymptotiques d'une fonction entières d'ordre fini[END_REF][START_REF] Ahlfors | Über die asymptotischen Werte der ganzen Funktionen endlicher Ordnung[END_REF][START_REF] Ahlfors | Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen[END_REF]) and was inspired by the book Funktionentheorie (1922) by Hurwitz and Courant [START_REF] Hurwitz | Funktionentheorie[END_REF]. In §1.4 and §1.5, Teichmüller presents an elegant proof of the following two properties of the module, and, at the same time, a solution of two extremal problems:

Proposition 2.1. If a ring domain G ′ with module M ′ is a subset of a ring domain G with module M such that G ′ separates the two complementary continua of G, then M ′ ≤ M. Equality holds if and only if G ′ = G.
Proposition 2.2. If a ring domain G contains two disjoint ring domains G ′ and G ′′ each of which separates the complementary continua of G and has modules M ′ and M ′′ respectively, then M ′ + M ′′ ≤ M.

Equality holds if and only if

G = {r < |z| < R}, G ′ = {r < |z| < ρ} and G ′′ = {ρ < |z| < R}.
This kind of module inequalities and of solutions of extremal problems involving ring domains were first studied by Grötzsch in [START_REF] Grötzsch | A'Campo-Neuen, On some extremal problems of conformal mappings[END_REF]. The reader may also refer to the chapter [START_REF] Alberge | On five papers by Herbert Grötzsch[END_REF] in the present volume containing an exposition of these results.

In §1.6, Teichmüller starts by recalling the notion of conformal radius, which he calls "mapping radius." We recall that the conformal radius of a simply-connected domain G of C containing 0 is the positive number R for which G is mapped conformally onto the unit disc such that 0 is mapped onto 0 and the derivative at 0 is equal to 1 R . He continues by defining the notion of reduced module of a simply-connected domain G containing z = 0 as follows. Let ρ > 0 be small enough in order to have the disc of radius ρ centered at z = 0 contained in G and let M ρ be the module of the ring domain obtained from G by removing such a disc. By means of what Teichmüller calls a "distortion theorem" (a term which refers to one of Koebe's theorems), he obtains the following estimate:

(2)

|M ρ + log ρ -log R| ≤ 2ρ R -4ρ .
Then, the reduced module M of G at z = 0 is defined as lim

ρ→0 (M ρ +log ρ)
and by means of ( 2) is equal to the logarithm of the conformal radius of G. The definition is then extended to the reduced module at any point of G, and by the transformation

z → 1 z , if ∞ ∈ G, it is also extended at z = ∞.
In the special case where

G ′ = {0 < |z| < R} and G ′′ = {|z| > R}, we have M ′ = log R and M ′′ = -log R, respectively, thus M ′ + M ′′ = 0.
In §1.7, Teichmüller defines the reduced logarithmic area of a simplyconnected domain G containing z = 0 but not z = ∞ by the formula

F = F ρ + 2π log ρ,
where ρ is small enough so that the disc D ρ of radius ρ centered at z = 0 is contained in G, and F ρ denotes the logarithmic area of the ring domain G \ D ρ . He then obtains an inequality similar to (1), namely, he proves that for a simply-connected domain G containing z = 0 of reduced module M and of reduced logarithmic area F , we have

(3) 2π M ≤ F ,

and this equality holds if and only if

G = |z| < e M .
Teichmüller's proof involves the length-area method but he points out that it can be done by what he calls "Bieberbach's method." Teichmüller justifies such a preference by saying that he only wants to apply geometric methods.

In §1.8, as a conclusion of its first section, Teichmüller deduces two results on simply-connected domains which are analoguous to Propositions 2.1 and 2.2. He also obtains the following result which is of special importance since it is used in the proof of the special Modulsatz, see §4 below.

Proposition 2.3. Let G ′ and G ′′ be two disjoint simply-connected domains with G ′ containing z = 0 and G ′′ containing z = ∞ and having reduced modules M ′ and M ′′ respectively. Then

M ′ + M ′′ ≤ 0.

Equality holds only when

G ′ = |z| < e M ′ and G ′′ = |z| > e M ′ .
We now review extremal domains studied by Teichmüller in §3 and §4.

In §2.1- §2.3, Teichmüller works with a particular class of ring domains, namely, for P > 1, the class of ring domains that separate the unit disc from z = ∞ such that the distance of the unbounded component of their corresponding complementary region from the origin is at most P .

Let G P be the exterior of the unit disc cut along the real axis from z = P to z = ∞. Teichmüller proves several properties of G P , including the following: Proposition 2.4. Let log Φ(P ) be the module of G P . Then, (1) Φ(P ) > P .

(2) Φ(P ) is a continuous strictly monotone increasing function of P , and Φ(P ) takes all values between 1 and ∞.

(3) Φ(P )/4P → 1 in an increasing manner as P → ∞.

(4) Suppose that for P > 1 the ring domain G belongs to the above class. Let M be the module of this domain. Then,

M ≤ log Φ(P )
and equality holds if and only if G is equal to some G P up to a rotation about the origin.

Let us make a few remarks on these results.

Remarks 2.5. 1.-Items (1), ( 2) and ( 3) are consequences of Inequality (2) above, with R = 4.

2.-The value log 4 is the reduced module of the whole plane cut along the real axis from 1 to ∞.

3.-Teichmüller's proofs of these results do not involve use of elliptic integrals and rely only on geometric methods. The reason, as he says, is that he wanted to preserve "purity" and "avoid tedious calculations."

4.

-Proofs of such results by means of elliptic integrals can be found in Hersch's thesis [START_REF] Hersch | Longueurs extrémales et théories des fonctions[END_REF] and also in the book by Lehto and Virtanen [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF].

5.-The result in item ( 4) is referred to in [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF] as the Grötzsch module theorem-the extremal domain G P is called the Grötzsch extremal domain-and Teichmüller proves it in two different geometric ways. He also explains how one of them can be used to prove "Koebe's theorem with the exact constant 1 4 ." Teichmüller notes at the beginning of §2.1 that this extremal problem has been already solved by Grötzsch in [START_REF] Grötzsch | A'Campo-Neuen, On some extremal problems of conformal mappings[END_REF], using the so-called Grötzsch method of strips. A proof based on the extremal length is contained in [START_REF] Ahlfors | Lectures on quasiconformal mappings. Second Version[END_REF] and in [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF].

6.-Teichmüller uses these results in [64] in order to prove that "a quasiconformal mapping of the unit circle |z| < 1 onto itself, where all boundary points remain fixed, shifts the center z = 0 by at most 2 (sup D(z)) In §2.4, Teichmüller solves another extremal problem, namely, he proves that for 1 < P 1 < P 2 , the annulus 1 < |z| < P 2 with a slit along the segment [P 1 , P 2 ] has the largest module amongst all ring domains separating their |z| = 1 boundary component from ∞ and such that the outer boundary component lies in the annulus r < |z| < P 2 , for some 1 < r ≤ P 1 . After proving this extremal property, Teichmüller concludes this subsection by a result which is a weak version of the Modulsatz (see Theorem 4.1 below for the statement).

In §2.5, Teichmüller leaves the investigation of extremal problems in order to study normal families between doubly-connected domains, where the base domain is the annulus 1 < |z| < R.

He then returns in §2.6 (and until the end of §2) to the study of another extremal problem and proves what is often referred to as Teichmüller's module theorem. (This is a terminology used in Lehto and Virtanen's monograph [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF].) We recall that this result says that among all doubly-connected domains that separate the points 0 and ρe iϕ from P e iθ and ∞, the one with the largest module is (up to a rotation) the so-called Teichmüller extremal domain, that is, the complex plane cut along the real axis from -ρ to 0 and from P to ∞. Teichmüller denotes the module of the latter by log Ψ P ρ . The proof of this property is sketchy (it is not as detailed as the one for the corresponding result on Grötzsch's module). A more detailed proof can be found for instance in [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF], [START_REF] Ahlfors | Lectures on quasiconformal mappings. Second Version[END_REF] and [START_REF] Ahlfors | Conformal invariants: Topics in geometric function theory[END_REF].

Teichmüller then compares the functions Ψ and Φ. He obtains, using conformal mappings, In the last subsection, §2.8, as a consequence of the extremal problem, Teichmüller deduces that any doubly-connected domain of the plane separating 0 from ∞ whose module is at least equal to e π always contains a circle of center 0.

Ψ P ρ = Φ 1 + 2 P ρ 1 +
We conclude our comments on §2 by adding that, as Teichmüller writes, the study of extremal domain and its module are related to Ahlfors' proof of Denjoy's conjecture. As we shall see, this relation leads to an improvement of the distortion lemma of Ahlfors.

Teichmüller starts §3 by recalling different conformal invariants associated with a quadrilateral, namely, the cross-ratio, the harmonic measure and the module. He concludes §3.1 by explaining how these notions are related to each other. Let us recall here that the module of a quadrilateral is the ratio of the sides of a Euclidean rectangle that is conformally equivalent to it.

Teichmüller gives in §3.2 an estimate of this module that he qualifies as "simple" and which is at the basis of the length-area method. We give below the statement, following Teichmüller's notation.

Proposition 2.6. Let V be a quadrilateral with sides a, b, c, d and let it be mapped conformally onto the rectangle 0 < u < a, 0 < v < b in the w = u + iv-plane, with a, b, c, d mapped respectively to v = 0, u = a, v = a, u = 0. Let β be the infimum of the lengths of all curves in V joining a and c, and let F be the area of V. Then

a b ≤ F β 2 .
Equality holds if and only if V is a rectangle with sides a, b, c, d.

In §3.2, Teichmüller derives some consequences from this result. For instance, using the same notation as above, he proves that [START_REF] Ahlfors | Quasiconformal mappings and their applications[END_REF] αβ ≤ F with equality only for rectangles. He also proves that such an inequality is also satisfied for quadrilaterals on a Riemannian surface. He then observes that [START_REF] Ahlfors | Lectures on quasiconformal mappings. Second Version[END_REF] min {α, β} 2 ≤ F, with equality only for squares. 4 Teichmüller concludes this subsection by generalizing the notion of extremal distance introduced by Beurling in his thesis, [START_REF] Beurling | Étude sur un problème de majoration[END_REF], for a pair of disjoint boundary arcs, and proves by means of Proposition 2.6 that in the case of a quadrilateral, the extremal length coincides with the reciprocal of the associated module.

One has to note here that Teichmüller's notion of extremal distance is different from the notion of extremal distance of a pair of disjoint boundary curves introduced later on by Ahlfors and Beurling. 5 We are now ready to talk about Ahlfors' distortion result and its improvement by Teichmüller. 4 These two results were proved later by Besicovitch in [START_REF] Besicovitch | On two problems of Löwner[END_REF] in a manner which according to Jenkins in [START_REF] Jenkins | Univalent Functions and Conformal Mappings[END_REF] is a "length-area proof of primitive type." Besicovitch in his paper does not mention Teichmüller though he refers to Löwner. Let us add that using the same strategy as Teichmüller, it is not difficult to prove that one obtains the same inequalities as ( 6) and ( 7) by replacing the Euclidean lengths α and β by appropriate extremal lengths. The inequalities so obtained are attributed by Hersch in [START_REF] Hersch | Longueurs extrémales et géométrie globale[END_REF] and Jenkins in [START_REF] Jenkins | Univalent Functions and Conformal Mappings[END_REF] to Teichmüller. Indeed, it is not difficult to see that Teichmüller only deals with conformal metrics that are pullback of the Euclidean metric by conformal mappings.

Ahlfors' distortion theorem

Ahlfors proves the Denjoy conjecture in his doctoral dissertation, written under the supervision of Nevanlinna and published in [START_REF] Ahlfors | Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen[END_REF]. The result is announced in [START_REF] Ahlfors | Sur le nombre des valeurs asymptotiques d'une fonction entières d'ordre fini[END_REF], and it also appears in [START_REF] Ahlfors | Über die asymptotischen Werte der ganzen Funktionen endlicher Ordnung[END_REF]. This conjecture says that the number of finite asymptotic values of an entire function of order k is at most 2k. Making this statement precise needs the definition of an appropriate notion of "order" and "asymptotic value" of an entire function, and this is done in the setting of Nevanlinna's theory (or value distribution theory); see the paper [START_REF] Papadopoulos | Value distribution theory and Teichmüller's paper Einfache Beispiele zur Wertverteilungslehre[END_REF] in the present volume. As mentionned earlier in the paper, Ahlfors' approach to the Denjoy conjecture was completely new and based on the length-area method. From such a method he obtains two "main inequalities," one of which is called the "Erste Hauptungleichung" (first main inequality) and is the key result for the proof of the Denjoy conjecture. It is now known as the Ahlfors distortion theorem. Regarding this result, Ahlfors writes in [10, Vol. 1, p.1]: [...] In my thesis [START_REF] Ahlfors | Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen[END_REF] the lemma on conformal mapping has become the main theorem in the form of a strong and explicit inequality or distortion theorem for the conformal mapping from a general strip domain to a parallel strip, together with a weaker inequality in the opposite direction. [...] A more precise form of the first inequality was later given by O. Teichmüller.

One can also point out that Jenkins and Oikawa in [START_REF] Jenkins | On results of Ahlfors and Hayman[END_REF] gave another proof of the two Ahlfors inequalities by means of the extremal length method. Their proof of the first one was described by Ahlfors as a "virtually trivial proof." Following Teichmüller's exposition (from §3.5 to §3.7), we now present Ahlfors' distortion theorem along with the main ideas of its proof given by Teichmüller. For this purpose, we first need to set the framework.

Let G be a strip domain, that is, a simply-connected domain of the z = (x, y)-plane with two marked accessible boundary points (that is, points that can be joined by a continuous curve to an interior point) r 1 and r 2 satisfying ℜr 1 < ℜr 2 .

For every x in the open interval ℜr 1 < x < ℜr 2 , the strip domain G is divided by the line ℜz = x into at most countably many subsets of which one, denoted by G x , contains r 1 on its boundary. This set G x has also the property that the last piece of every curve in G ending at r 1 lies in G x . The interior points of G which are boundary points of G x satisfy ℜz = x and are divided into countably many cross-cuts S i of G, that is, simple arcs whose endpoints lie in the boundary of G and whose interior points lie in the interior of G. Each of these cross-cuts S i partitions G into two pieces, one containing G x and another one which we will call for now G i . The strip G is then the disjoint union of G x , the S i , and G i . Note that all cross-cuts ℜz = x of G that do not lie on the boundary of G x are erased, so that G i may contain points with ℜz < x. Whichever G i contains r 2 as boundary point, and also contains the end piece of each curve in G terminating in r 2 , will be separated from G x by the cross-cut S i = S x .

Let Θ(x) be the length of S x . As Nevanlinna points out in [49, p. 93], such a function "[...] is in general of a complicated nature," but Teichmüller proves that it is lower semi-continuous and therefore measurable. By the uniformization theorem, one maps the domain G onto the parallel strip {w = u + iv | 0 < v < B} such that the boundary points r 1 and r 2 are sent respectively to -∞ and ∞. For ℜr 1 < x < ℜr 2 , the cross-cut S x is thus mapped onto an arc L x that connects the two boundary straight lines of the strip.

We set

u 1 (x) = min {ℜw | w ∈ L x } and u 2 (x) = max {ℜw | w ∈ L x } .
Then, as recalled by Teichmüller, Ahlfors' distortion theorem says that (8)

u 1 (x ′′ ) -u 2 (x ′ ) B > x ′′ x ′ dx Θ(x) -4 whenever for ℜr 1 < x ′ < x ′′ < ℜr 2 , x ′′ x ′ dx Θ(x) > 2.
In order to prove this, Teichmüller first proves by means of the length-area method that (9) ∀x ∈ (ℜr 1 , ℜr 2 ) ,

x ′′ x ′ dx Θ(x) ≤ a b ,
where a and b are the lengths of the sides of the rectangle R(a, b) that is biholomorphic to the quadrilateral Q(x ′ , x ′′ ) bounded by G and the cross-cuts S x ′ and S x ′′ and for which the sides of length a are images of the cross-cuts by such a biholomorphism. Then, he continues by applying suitable conformal mappings as follows. First, he maps the rectangle R(a, b) conformally onto the upper half of an annulus of module π a b . Then he maps the quadrilateral Q(x ′ , x ′′ ) onto the upper half-part of a symmetric doubly-connected domain that separates the points 0 and 1 from e π u 1 (x ′′ )-u 2 (x ′ ) B and ∞. From the extremal problem he proves earlier, namely, the so-called Teichmüller module theorem, he obtains [START_REF] Ahlfors | Collected works, in 2 volumes, Series: Contemporary Mathematicians Ser[END_REF] 

a b ≤ 1 π log Ψ e π u 1 (x ′′ )-u 2 (x ′ ) B .
By using the inverse function of 1 π log Ψ(e πx ), inequalities ( 5), ( 9) and ( 10), Teichmüller finally obtains

(11) u 1 (x ′′ ) -u 2 (x ′ ) B > x ′′ x ′ dx Θ(x) - 4 log 2 π - 1 π log 1 1 -8e -π x ′′ x ′ dx Θ(x)
.

It now becomes elementary to verify that such an inequality implies Ahlfors' distortion theorem. Let us conclude this section by adding that the main steps of Teichmüller's proof can be found in [49, p. 97] and [8, p. 76].

The Modulsatz

We now comment on the Modulsatz and its consequences. At the beginning of §4, Teichmüller explains that he is interested in estimating the location of the points that lie between two disjoint ring subdomains of a given annulus G = {z | r < |z| < R}. For this purpose, he states what he calls the Modulsatz and which says the following:

Theorem 4.1 (The Modulsatz). For every ε > 0, there exists δ > 0 such that for any two disjoint ring subdomains G ′ and G ′′ of G where G ′ separates 0 from G ′′ and with modules M and M ′ respectively, if

M ′ + M ′′ ≥ log R r -δ,
then each point separated from 0 by G ′ and from ∞ by G ′′ belongs to the annulus

(12) log r + M ′ -ε ≤ log |z| ≤ log R -M ′′ + ε.
As he explains, such a result is a consequence of the following: Theorem 4.2 (Special Modulsatz). For every ε > 0, there exists δ = δ(ε) such that for any two disjoint simply connected domains of the Riemann sphere G ′ and G ′′ containing respectively 0 and ∞ and of reduced modules respectively M ′ and M ′′ , if

M ′ + M ′′ ≥ -δ, then the complement of G ′ ∪ G ′′ is contained in the circular ring M ′ -ε ≤ log |z| ≤ -M ′′ + ε.
Indeed, one has just to apply Theorem 4.2 to the regions obtained from G ′ and G ′′ by adjoining to them their corresponding complements containing 0 and ∞ respectively.

Since the Modulsatz is a consequence of the special Modulsatz, Section 4 of Teichmüller's paper is mainly devoted to the proof of the latter.

Teichmüller gives two proofs. The first one is a proof by contradiction which is based on a normal family argument and the Rouché theorem but as Teichmüller points out it is "purely existential," in the sense that it only assures the existence of δ = δ(ε) without specifying how it depends on ε. His second proof gives the relationship between δ and ε and is among the major geometric and more sophisticated achievements of the paper. Following Teichmüller's notation, we now present the main ideas of this proof.

Let G ′ and G ′′ be two disjoint simply connected domains containing respectively 0 and ∞ and of reduced modules respectively M ′ and M ′′ . By means of a homothety of center the origin, one can assume that z 0 = -1 does not belong to G ′ ∪ G ′′ . Therefore, proving the so-called Special Modulastz is equivalent to finding δ such that if M ′ + M ′′ ≥ -δ then M ′ ≤ ε and M ′′ ≤ ε. With this in mind, Teichmüller constructs two disjoint simply connected domains that solve an extremal problem. The construction is as follows. Let q > 1 be a parameter. Let I and A be respectively the interior and exterior of the unit circle in the wplane. By multiplying the argument of a complex number by q one identifies the boundary arc w = e iθ , |θ| ≤ π q of I with the boundary curve of A. Furthermore, one glues the remaining boundary arc of I by identifying each element with its complex conjugate. Therefore, one obtains a closed Riemann surface of genus 0 and one can prove (Teichmüller does!) that it can be conformally mapped onto the whole z-plane where w = 0 and w = ∞ correspond to respectively z = 0 and z = ∞, the boundary arc w = e iθ , |θ| ≤ π q of I corresponds to a closed curve which starts and ends at z = -q 2 and encloses the origin, and the remaining boundary arc of I corresponds to the line segment that connects z = -1 to z = -q 2 . The domains I and A are then carried to disjoint simply connected domains denoted respectively by S ′ q and S ′′ q . By setting M ′ q for the reduced module of S ′ q and M ′′ q for the reduced module of S ′′ q , Teichmüller proves the following extremal property:

Proposition 4.3.
Let G ′ and G ′′ be two disjoint simply connected domains containing respectively 0 and ∞ and both not containing z = -1.

Let M ′ and M ′′ be their corresponding reduced modules. Then,

∀q > 1, q 2 M ′ + M ′′ ≤ q 2 M ′ q + M ′′ q .
Moreover, the equality holds only when G ′ = G ′ q and G ′′ = G ′ q . Teichmüller's proof of such a result uses the same idea as the one of his second proof of the so-called Grötzsch module theorem. After showing this result, Teichmüller gives a planar description of the set B of all possible pairs of reduced modules associated with two disjoint simply connected domains defined as in the statement of Proposition 4.3. More precisely, he proves that B is a convex region that is bounded by the curve formed by the points M ′ q , M ′′ q , (0, 0) and M ′′ q , M ′ q and when the parameter q varies over the set of real numbers greater than 1. He continues by determining the exact values of M ′ q and M ′′ q and thus he proves that the boundary curve of B is twice differentiable but not thrice differentiable at (0, 0). He concludes his second proof of Theorem 4.2 by setting

ε = M ′ q δ = -M ′ q -M ′′ q
and he obtains the following estimates:

(13) δ ∼ ε 2 log 1 ε
, as ε → 0. §4 ends by discussion of the possibilities of improving δ(ε) (making it larger) in the case of the Modulsatz. Teichmüller suggests a methodsimilar to the one of the proof of the special Modulsatz-for finding the best pair (M ′ , M ′′ ) of modules of subdomains G ′ and G ′′ of G = {z | r < |z| < R} that would determine such a δ. He does not execute the argument, as it leads to methods which involve elliptic functions, methods that he does not want to use, as he states at several places in his paper. 6Teichmüller derives in §5 a few consequences of the Modulsatz. In particular, he studies the behaviour of a family Γ = {C λ } λ∈I of disjoint simple closed curves indexed by a subset I of R that accumulates at +∞ satisfying the following two properties:

(i) for any pair (λ, µ) ∈ I 2 such that λ < µ, the closed curve C λ separates 0 from C µ ; (ii) the curve C λ shrinks to ∞ as λ → +∞. For such a family of curves, if λ < µ then because of (i). one has a ring domain bounded by C λ and C µ . If its module is denoted by M(λ, µ) then (ii). implies that, for λ fixed, M(λ, µ) → ∞ as µ → ∞. Teichmüller examines conditions on M(λ, µ) under which the family Γ is almost circular at ∞, that is, when C µ approaches a circle as µ → ∞. Following Teichmüller, we recall that C µ approaches a circle as µ → ∞ if its so-called logarithmic oscillation ω(µ) approaches 0 as µ → ∞. The logarithmic oscillation ω(µ) of C µ is defined as

ω(µ) = log r 2 (µ) r 1 (µ)
where r 1 (µ) = min By observing that for any λ < µ, the doubly-connected domain bounded by C λ and C µ lies between the annuli {z | r 2 (λ) < |z| < r 1 (µ)} and {z | r 1 (λ) < |z| < r 2 (µ)} and using ( 14), Teichmüller proves the sufficient condition for almost circularity. His proof of the necessary condition is more complicated and is based on the Modulsatz, the normal family argument he obtained in his §2.5 and the Koebe distortion theorem. In addition to finding conditions for the almost circularity of Γ at ∞, Teichmüller is interested in the asymptotic behaviour of r i (µ) (i=1,2) as µ → ∞. By means of ( 14) and properties of modules of ring domains he proves the following: As we shall see in the next section, Teichmüller uses Lemma 4.4 in order to prove the Main Lemma. Moreover, as he emphasizes, these investigations on the asymptotic behaviour of the functions ω, r 1 and r 2 are useful in value distribution theory since they allow to estimate the number of solutions in a disc |z| < r of an equation of the type f (z) = a where f is a meromorphic function. Teichmüller continues by proving in §5 a result similar to Lemma 4.4 that gives estimates at infinity of the functions r i (i = 1, 2). His proof is mainly based on the relation [START_REF] Alberge | Teichmüller's work on the type problem[END_REF] and, as he points out, the estimates so obtained are actually an improvement of estimates obtained by Ahlfors in [5, p. 402]. Let us mention that Ahlfors used such estimates to solve a particular case of Nevanlinna's inverse problem. See [START_REF] Papadopoulos | Value distribution theory and Teichmüller's paper Einfache Beispiele zur Wertverteilungslehre[END_REF] for further details.

The Main Lemma

As mentionned earlier, §6 of Teichmüller's paper is devoted to the proof of the Main Lemma. Teichmüller starts this section by defining a quasiconformal mapping as a one-to-one continuous mapping w = w(z) between two domains of the complex plane which, except at isolated exceptional points, is continuously differentiable with a nonzero Jacobian (no assumption about orientation-preservation is made). He then recalls that for such a mapping w = w(z) one can define the dilatation quotient as w (z + re iα ) -w(z) re iα at a point z in the direction α, and where the maximum and the minimum are taken over all directions α. For a conformal mapping, there is a well-defined notion of derivative which does not depend on the direction. Thus, the directional derivative at each point is constant and the dilatation quotient is equal to 1. The converse is also true: at a regular point, if the dilatation quotient is equal to 1, then the derivative does not depend on the direction, which implies that the map is conformal. As recalled by Teichmüller, the value D(z) is also equal to the ratio of the major to the minor axis of an ellipse into which an infinitesimal circle is mapped.

Unlike in Teichmüller's previous paper [START_REF] Teichmüller | Eine Anwendung quasikonformer Abbildungen auf das Typenproblem[END_REF], the dilatation quotient is not assumed to be bounded. He declares that with such an assumption "one does not necessarily get to the intended function-theoretic applications." Indeed, it is now known that this unboundedness condition on the dilatation quotient leads to applications in uniformisation (or the type problem) or in value distribution theory. See for instance [START_REF] Goldberg | Value Distribution of Meromorphic Functions[END_REF] and also the papers [START_REF] Alberge | Teichmüller's work on the type problem[END_REF] and [START_REF] Papadopoulos | Value distribution theory and Teichmüller's paper Einfache Beispiele zur Wertverteilungslehre[END_REF] in the present volume. Let us point out that in the modern definition of quasiconformality, the mapping is assumed to be sense-preserving, the dilatation quotient is assumed to be bounded and the differentiablilty assumption made by Teichmüller (with isolated singularities) is replaced by a weaker assumption of absolute continuity on lines.

Before Teichmüller, Lavrentieff, in his papers [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF][START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF], already considered such mappings under the term "almost analytic functions" (cf. the commentary [START_REF] Alberge | A commentary on Lavrentieff's paper Sur une classe de représentations continues[END_REF] in the present volume).

One can also add that the study of mappings with unbounded dilatation quotient began to attract significant attention after the publication of the work of David [START_REF] David | Solutions de l'equation de Beltrami avec µ ∞ = 1[END_REF]. See also the exposition [START_REF] Otal | Quasiconformal and BMO-quasiconformal homeomorphisms[END_REF] by Otal in Volume III of the present Handbook. One of the results in David's paper are sufficient conditions on the dilatation that allow one to solve a so-called degenerate Beltrami equation. Another approach using estimates of modules of ring domains appears in [START_REF] Lehto | Homeomorphisms with a given dilatation[END_REF][START_REF] Brakalova | On solutions of the Beltrami equation[END_REF][START_REF] Gutlyanskiȋ | On the degenerate Beltrami equation[END_REF][START_REF] Brakalova | On solutions of the Beltrami equation[END_REF]. The investigation of the solutions of the degenerate Beltrami equation led to the development of the theory of mappings of exponentially integrable distortion which are not necessarily quasiconformal in the modern sense. Many of the known properties of quasiconformal mappings were extended to this larger class [START_REF] Astala | Elliptic partial differential equations and quasiconformal mappings in the plane[END_REF][START_REF] Iwaniec | Geometric function theory and nonlinear analysis[END_REF].

After introducing this notion of quasiconformality and before proving the Main Lemma, Teichmüller provides an estimate on the distortion of a ring domain under a quasiconformal mapping. More precisely, he proves by means of the length-area method the following result. Then (16)

r 2 r 1 1 C(r) dr r ≤ log ρ 2 -log ρ 1 ≤ r 2 r 1 C(r) dr r .
It is worth noting that this result implies a well-known distortion inequality for quasiconformal (in the modern sense) mappings which says that the module of the image of a ring domain by a quasiconformal mapping does not exceed a certain upper bound.

As consequences of such a lemma, Teichmüller first gives a necessary condition on the dilatation quotient for having a quasiconformal mapping that maps either the punctured plane onto the unit disc or the unit disc onto the punctured plane. More specifically, he applies [START_REF] Belinskiȋ | Behavior of a quasiconformal mapping at an isolated point (in Russian)[END_REF] to show that if there exists a quasiconformal mapping from the punctured plane onto the unit disc such that D ≤ C (|z|), then [START_REF] Besicovitch | On two problems of Löwner[END_REF] ∞ dr r • C(r) < ∞.

On the other hand, if it is the unit disc that is mapped quasiconformally onto the punctured plane such that D ≤ C (|z|), then by the same techniques he gets (18)

1 C(r) • dr r = ∞.
The condition given in [START_REF] Besicovitch | On two problems of Löwner[END_REF], as pointed out by Teichmüller, was already obtained by Lavrentieff in [42, Théorème 1] (see also [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF]Théorème 7]) and as the latter, Teichmüller uses it in his §7 to obtain a result on the type problem. See [START_REF] Alberge | Teichmüller's work on the type problem[END_REF] for further details. Another consequence of Lemma 5.1 is the Main Lemma that we state again for the convenience of the reader. In order to prove this lemma, Teichmüller considers the family of curves C λ which are the images of |z| = e λ by the given quasiconformal mapping. For sufficiently large λ, the family so defined satisfies conditions (i). and (ii). stated at the end of §5 of this commentary. He uses Let us recall that a proof of this lemma that uses Ahlfors' distortion theorem was obtained by Wittich in [START_REF] Wittich | Zum Beweis eines Satzes über quasikonforme Abbildungen[END_REF]. Another proof can be found in [30, p. 345ff].

Later on, at the end of his most quoted paper [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF], Teichmüller presents a conjecture which says that under the same hypothesis than Theorem 5.2, one has [START_REF] Brakalova | On the local behavior of certain homeomorphisms[END_REF] w(z) ∼ const • z as z → ∞.

In order to justify such a conjecture, Teichmüller says that it "is supported by the 'spiraling value distribution' for certain functions and the induced order of growth. In particular, this holds for the mapping w = ze iη(|z|) (η(r) real)." Teichmüller continues by giving an idea of the proof. Later, a full proof was obtained by Belinskiȋ in [START_REF] Belinskiȋ | Behavior of a quasiconformal mapping at an isolated point (in Russian)[END_REF] and Lehto in [START_REF] Lehto | On the differentiability of quasiconformal mappings with prescribed complex dilatation[END_REF]. See also [48, V.6.6]. This result is now referred to as the Teichmüller-Wittich-Belinskiȋ theorem. A survey of this result with historical comments was written by Drasin in [START_REF] Drasin | On the Teichmüller-Wittich-Belinskii theorem[END_REF]. For further applications of this theorem one refers to [48, V.7] and [START_REF] Bojarski | Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane[END_REF]Ch. 11]. One can also find improvements of this theorem in [START_REF] Reich | On the Behavior of Quasiconformal Mappings at a Point[END_REF][START_REF] Brakalova | On the local behavior of certain homeomorphisms[END_REF][START_REF] Gutlyanskiȋ | Conformality of a quasiconformal mapping at a point[END_REF][START_REF] Brakalova | Sufficient and necessary conditions for conformality. Part I. Geometric viewpoint[END_REF][START_REF] Brakalova | Sufficient and Necessary Conditions for Conformality. Part II. Analytic Viewpoint[END_REF][START_REF] Shishikura | Conformality of quasiconformal mappings at a point, revisited[END_REF]. The last section of Teichmüller's paper concerns the type problem and is discussed in our paper [START_REF] Alberge | Teichmüller's work on the type problem[END_REF] in the present volume. 
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Cf. the historical notes in Ahlfors' book Conformal invariants [8, p. 81].

Cf. L. V. Ahlfors', Collected works[START_REF] Ahlfors | Collected works, in 2 volumes, Series: Contemporary Mathematicians Ser[END_REF], Vol. 1, p. 1

A different and shorter proof of a variation of Theorem 4.1, together with an estimate equivalent to[START_REF] Alberge | Teichmüller's work on the type problem[END_REF], is due to Pommerenke[START_REF] Ch | Boundary behavior of conformal mappings[END_REF], p. 201-202. The result proved by Pommerenke uses the additional assumption that G ′ ∪ G ′′ = G, and thus the estimate[START_REF] Alberge | On five papers by Herbert Grötzsch[END_REF] concerns the points lying on the joint boundary components ∂G ′ ∩ ∂G ′′ . Pommerenke's proof uses the method of extremal length, properties of univalent conformal mappings, the area theorem, and coefficient estimates. A proof of the Modulsatz, following Pommerenke's method, and further applications can be found in the monograph byGarnett and Marshall [29,.
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