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This paper discusses a task, designing a slide, to support the reinvention of the notion of slope of a 

curve in a point. The field test show that the lesson scenario allows teachers to utilize students’ 

informal models to introduce slope more formally.  
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Introduction 

Introducing slope of a curve in a point and the derivative to students is a didactical challenge for 

teachers. It is tempting to choose for an instrumental approach swiftly progressing to differentiation 

techniques, both easier to teach and to learn. Without conceptual understanding this entails merely 

meaningless manipulation of symbols and execution of recipes. The meaning of limit, difference 

quotient and other concepts related to the slope of a curve at a point form serious obstacles for 

students (e.g. Tall, 2013; Zandieh, 2000). 

This paper discusses an attempt to deal with these obstacles inspired by design heuristics from the 

theory of Realistic Mathematics Education (RME) suggesting that a way for students to learn 

mathematics in a meaningful way is to involve them in a process of reinvention (Freudenthal, 

1991). A common approach in RME is to introduce a new concept through a task of which the 

context provides opportunities for students to focus on reasoning and representations related to the 

notion aimed at. As Gravemeijer and Doorman (1999) state it 

The students should first experience a qualitative, global, introduction of a mathematical 

concept. This qualitative introduction then should create the need for a more formal description 

of the concepts involved. (p. 113) 

This study reports initial experiences of an attempt to support students in (re)inventing the notion of 

slope of a curve in a point and related representations (e.g. Zandieh, 2000). Students, collaborating 

in groups of three, are asked to design a slide consisting of a bended and a straight part joining 

without bumps. The desired outcomes are concrete equations describing a line and a curve that meet 

smoothly (imagine the purpose is to feed these equations into a 3D-printer to print the slide). The 

task aims for students to discuss what it means for the line and curve to meet in a not-bumpy, i.e. 

smooth, way. They should search for methods to design a slide and to decide to what extent 

smoothness is achieved. The hypothesis is that they will come up with ideas that are essential to the 

notion of slope of a curve in a point. Informal building blocks, meaningful to the student, that can 

be used by the teacher to afterwards introduce the slope of a curve in a point more formally. 



 

 

The context of the task is a non-kinematic one. Previous research (e.g. Doorman, 2005) exploited 

kinematic contexts. Historically this approach makes sense, given the origin of the notion of 

derivative in mechanics. The presence of dimensions (like meters/second) helps to understand the 

meaning of slope and more generally to make a connection from derivative in mathematics to the 

physics curriculum. The slide-context offers opportunities that are not present in the kinematic 

approach. Students have a tactile and visual understanding of what it means for a surface (or better, 

a curve) to be smooth, as also pointed out by Tall (2013). He suggests students slide their hands 

along a curve to sense the changing slope. The slide task allows students to mathematize this tactile 

and visual experience. A main merit of the slide task is that it is formulated in a very open way: it 

allows for various approaches by students. We discern three options: the standard textbook 

approach through secants of the curve, the locally linear/linear approximation/”zooming in” 

approach (Tall, 2013), and a (more algebraic) approach based on local bounding lines. The most 

important advantage of the slide task is that it allows the teacher connect the student’s work to any 

or all of these approaches, depending on what students produce, possibly providing multiple views 

on the notion of slope.    

The design of the lesson plan (scenario) for the task is based on the Theory of Didactical Situations 

(TDS) (Brousseau, 2002). We investigated whether combining RME and TDS as frameworks for 

the design of an inquiry based mathematics lesson can lead to a successful scenario.  This approach 

of combining ideas from RME and TDS to task design for inquiry based mathematics teaching 

(IBMT) is pioneered in the Erasmus+ project Meria (Winsløw, 2017). 

The research question addressed in this paper is: How do RME-inspired task characteristics and a 

TDS-inspired teaching scenario support students’ invention of the notion of slope of a curve in a 

point? 

RME perspective on the slide task  

The design of the task originates from the RME-principle of a didactical phenomenology 

(Freudenthal, 1983) of the slide context:   

What a didactical phenomenology can do is … starting from those phenomena that beg to be 

organized, and from that starting point teaching the learner to manipulate these means of 

organising. (Didactical phenomenology of mathematical structures) 

The challenge of realizing a smooth connection in the slide context is a phenomenon that begs to be 

organized by the tangent line. Visually at first, but then it begs for symbolic means to decide 

whether the candidate line and curve really join in a smooth way. Some questions that arise are: 

how good is the slide at begging? Does it lead students to mathematize in direction of the learning 

goal, or even reinvent the slope of a curve at a point? What can be expected from students can be 

explained using the emergent models design heuristic (Doorman & Gravemeijer, 2009). The 

context-problem is expected to invite students to develop their own situation-specific solution 

methods. These methods will have to be discussed and compared. A (situational) model expected to 

emerge from the slide task is that of the slope of a curve at a point as the slope of a tangent line. 

This is a model of, produced after one episode of mathematizing. At best, this is a starting point for 



 

 

further mathematizing towards symbolic and computational aspects of the slope at a point and the 

derivative.  

 

The slide task as a TDS-scenario 

How to organize the classroom for a reinvention activity? Freudenthal (1991) claims that “guiding 

means striking a delicate balance between the force of teaching and the freedom of learning” (p. 55). 

TDS might provide a suitable framework to balance the two. Central to the theory is the difference 

between didactical and adidactical situations (Brousseau, 2002). In a didactical situation the teacher 

acts intentionally to share his knowledge. In an adidactical situation the teacher purposefully 

withdraws, leaving space for students to develop their own activities. Students need this space to 

invoke their own meaningful strategies to address the slide problem.  

For Brousseau it served another purpose: to change the expectations the students and the teacher 

have of each other. He calls it finding a new didactical contract. During this adidactical situation 

the teacher cannot be expected to be involved in the mathematizing process. Instead (groups of) 

students interact with the milieu. For the slide task the milieu consists of the problem itself together 

with the artifacts that may be needed to tackle it, for example GeoGebra.  

The slide task lesson plan is set up according to phases from TDS and starts with the teacher 

explaining the problem and introducing artifacts that can be used to work on it. Then the teacher 

symbolically hands over the milieu to the students and withdraws. What follows is an adidactical 

action phase of 20 to 30 minutes. In this phase students work on the problem in groups of three. 

They may apply any approach they think is useful. The teacher, even though not interacting with the 

students, is not inactive: she registers solution strategies from the students and identifies examples 

that might be used in the following formulation phase. The teacher makes sure that for groups that 

have different strategies one student explains their approach on the blackboard. Then follows a 

validation phase. The teacher asks: “are some solutions better than others? Is there a best solution? 

How do you know?”. The classroom discussion that these questions provoke form the input for the 

last phase: the institutionalization phase. In this phase the teacher is expected to be able to organize 

the ideas and strategies presented by students into solution models of the slide problem. The teacher 

makes a start with transforming the emerging model of the situation produced by students into a 

model for mathematical reasoning.   

Method 

Context. This task was conceived during a project meeting of the Erasmus+ project Meria on 

inquiry based mathematics teaching. A working group designed a detailed scenario describing 

teacher and student activities and possible solution strategies. 

Procedure. The data for this pilot include self-reports, including students work, of pilot lessons by 

three Dutch teachers (from now on referred to as teacher A, B and C). Teacher B is involved with 

the whole Meria project as a teacher who performs pilots; the other two teachers signed up for the 

course after reading about it in a national newsletter. They were trained to give the lesson in a three 

hour course taught by the authors. In the course we had a try-out of the scenario and discussed the 



 

 

scenario in detail. The potential of the adidactical phase(s) was stressed as this is an uncommon 

position for teachers to be in. At some point in the following four weeks they taught the lesson. 

After the lesson teachers assembled the work of the students and wrote a report including their 

observations and experiences during the lesson. In a second meeting, after those four weeks, we 

discussed the experiences of the pilot and their reports with the teachers. 

Other data is the self-report on a pilot conducted by the first author. 

Analysis.  

In an a priori analysis we discerned three hypothetical student approaches, based on three formal 

approaches to the tangent line. In the a posteriori analysis, we consider signs or traces of each 

approach as an indicator of a situational student model, which may later be vertically mathematized 

into a more formal mathematical model given by the definition.    

1. (Bounding line approach) Students choose a free line and then move (translate and rotate) it 

until there seems to be just one intersection point in the area of focus. This informal 

approach relates to a formal definition of the tangent line as a unique local bounding line 

(this we will explain more precisely in the continuation of this research project). 

2. (Secant lines approach) Students choose one point on the curve, the intended point of 

tangency. Then they choose another point on the curve, draw the line between the two 

points, and move the second point closer to the first (this works best in Geogebra or similar) 

to obtain a smoother fit. This informal approach relates, of course, to the standard school 

book approach of the tangent line and slope. 

3. (Linear approximation approach) Students choose one point on the curve, draw a line and 

then try to adjust the slope so that it fits best against the curve (perhaps by wiggling their 

ruler). In GeoGebra or similar this can be done by moving the second point needed to draw 

the line. This informal approach relates to the more formal approach of the tangent line as 

the best linear approximation at a point of the curve (this will also be explained more 

precisely in future work). 

The main distinction between the approaches is in the way the smoothness of the slide designs is 

evaluated or controlled by the students in the slider context: (1) by looking for intersection points, 

(2) by moving the point closer and closer and (3) by looking for intuitive smoothness. If students 

allow GeoGebra to compute the intersection point of the line and the curve, then approach 1 and 3 

will resemble approach 2, since they will see the two intersection points approaching each other as 

they move closer to the desired line. In approach 1 students fix the slope and search for 

corresponding point, whereas in approach 2 they fix the point and find the corresponding slope. In 

approach 3 both options are present. 

After students have drawn some lines and curves and written corresponding equations, they will 

have to find out whether their solution is ‘smooth’ enough. In a second a priori analysis, of what 

might be discussed by the students and/or the teacher in the validation phase, we expect three 

possible ways for students to evaluate their own design (in line with Zandieh, 2000):  



 

 

I. (Visual). Some will rely on their visual evaluation of the design: if it looks goods, then it is 

good. Students may also choose to zoom in on the curve (work on a smaller scale), for 

example using GeoGebra or similar, to check whether their fit is smooth. Zooming in the 

curve should more or less coincide with line (see the Locally Straight Approach in Tall 

2013).  

II. (Algebraic). The students may compute whether their system of equation has the intended 

intersection point as a solution. Moreover, students could try and compute that there is 

precisely one solution to the system of two equations (at least locally). For example, if the 

curve is described by      and the line is translated, so      . Finding the value of   

for which the discriminant of the equation        is zero, gives the desired line. For 

general algebraic curves one could study for which value of   the intersection point has 

multiplicity   . 

III. (Numerical). As a continuation of the second and third approach it would seem natural to 

choose the second point very close to the first and see how the slope of the obtained line 

compares to the suggested line. For example, if      and       , the line through 

              and                        has a slope very close to 2. Students may 

even study a sequence of points         ever closer to      , which would bring them very 

close to the definition of a derivative through the difference quotient.  

We collected the work of the students. In some cases that was individual paper work, but in most 

cases groups handed in one A4 with their notes and solutions. Furthermore, the teachers reported 

about the lessons, what they observed during the action phase, to what extent they were able to 

follow the scenario and what they saw as main results of the lesson. We analyzed the data for 

occurrences (of traces) of approaches 1, 2 and 3 during the action phase. In addition, these resources 

were used to find occurrences of the evaluation methods I, II and III during the action phase and 

validation phase (possibly the teacher introducing them during a didactical validation phase). 

These traces were used to hypothesize what informal situational mathematical models emerged 

from the students’ work.   

Finally these observed approaches were analyzed for their connection to what the teachers reported 

to have institutionalized in the final phase of the lessons. In particular, we tried to decide whether 

the potential in the students’ work was seen and used by the teacher.  

Results 

We discuss the work of some groups that represent various 

observed approaches. A group of grade 8 pre-university 

school students from teacher A used approach 1: in GeoGebra 

they translated the line with fixed slope until it seemed to be 

tangent to the hyperbola   
  

 
 (see Figure 1). The suggested 

line has equation         . This looks acceptable 

(evaluation method I), but actually the two intersection points 

are approximately 2 apart. Clearly these students have neither 

Figure 1. Sample student work 



 

 

computed the intersection points (algebraic evaluation) nor zoomed in on the graphs (enhanced 

visual evaluation).  

The teacher reports that students mention that they are looking for the line such that there is one 

intersection point. So these students’ informal model of the situation relates to the bounding line 

definition of tangent line. The teacher writes in her report that she is disappointed that the students 

did not arrive at the notion of slope of a curve at a point. But, in this case, in the institutionalization 

phase the teacher could have used the students’ explanation of their strategy and the fact that 

students mention that they are looking for one intersection point to discuss the tangent line as a 

bounding line. Next, with the students, she could discuss evaluation method II as a step towards the 

target knowledge. This makes clear that there is a difficulty for teachers to realize the potential in 

the informal solutions students present. The challenge is to relate students’ models to the target 

knowledge. 

A group of grade 10 vocational school students from teacher B 

draws a tangent line to      at the point        (see Figure 2). 

First they seem to have drawn a secant line through        and 

      , but this is then dismissed for the sequel. They somehow 

come up with a        for this candidate tangent line on the 

interval        . They compute the slope of the line. What 

follows is unfortunately nonsense, but nevertheless the teacher was 

very excited about their approach and let them present it at the 

blackboard during the formulation phase. Rightfully so, since these 

students’ informal solution method is precisely the model one 

needs to introduce the slope of a curve at a point. The teacher 

writes in her self-report: “The notion of … slope in a point became 

meaningful”.    

Another group from teacher B goes through a sequence of 

improved slide designs (see Figure 3). The first one has an asymptote; students write “does not have 

a straight bit”. The second one is correct, but is 

dismissed, because the straight bit is horizontal instead 

of going up. The third is still with decimal coefficients, 

but the next four all are clearly attempts at exact 

solution (5 and 6 the same). Their approach can be 

classified as type 3. Teacher B told the class that 

zooming in was a good idea, so all students had a 

means of evaluating their solutions (method I). What 

happens in the last attempt is a “nice number wonder”: 

by choosing nice numbers    and 
 

 
 the students hit the 

bull’s eye. 

Teacher C did not formulate the task properly. She said: 

“Figure out in groups which functions could describe 

Figure 2: Sample student work 

Figure 3: Sample student work 



 

 

this curve”. As a consequence, most students did not work with a line and a non-linear curve and 

the teacher got stuck trying to institutionalize the target knowledge as aimed for in the scenario. 

The first author performed a pilot study with twelve grade 9 pre-university students equally divided 

in three groups. One group made drawings of circle segments and approximate tangent lines, using 

that the radius is perpendicular to the tangent. Within a few minutes they say: "the slope of the 

tangent line is important". Then they solve the problem by choosing a circle           which 

goes through the point        . For this point they infer that the slope of the tangent line is -1 

(also visually obvious), which leads them to the equation       . This group’s approach 

seems to be a case of vertical mathematization. Tangents to circles were already meaningful to them 

and for them solving the problem easily changes into symbolic work: doing some computations. 

After they showed the teacher their solution, he asked them to find a solution using a parabola. 

Their quick solution was a vertical line (   ) and a parabola (    ). Then they asked: "How 

can you decide the right slope for a different point on the parabola?". This was a very welcome 

question, later referred to by the teacher in the institutionalization phase. 

Another group quickly decided they wanted to use a tangent line with a parabola and a line design 

and surprisingly knew the algebraic way (II) to evaluate it: using the discriminant to decide whether 

the intersection point is unique. It turned out that the class made an exercise about exactly this a few 

weeks ago. Still the group took a long time to decide on a suitable line, finally settling for a correct 

one. According to the students this was obtained by guessing!  

In the institutionalization phase the teacher used the students’ solution strategies and remarks to 

stress the importance of the slope of the tangent line (both in the circle solution and parabola 

solution). He explained this was called the slope of the curve at a point. With the students they 

decided that for a circle they could compute the slope in every point, but for the parabola new 

techniques would be necessary. This would be the subject for later lessons. 

Discussion 

Did the task and scenario provide opportunities for students to “experience a qualitative, global, 

introduction” to the slope of a curve in a point, as was the goal of the task? More concretely: did 

students come up with ideas that are essential to the notion of slope of a curve in a point? Based on 

the observations above one could conclude the students did. 

Two ideas that are essential to the notion of slope did not come up naturally for students in the pilot. 

Firstly, the secant lines approach (2) did not occur in any of the pilot lessons, neither did any 

numerical evaluation of the design (III). This indicates that for the students in the pilot this 

approach does not come naturally (given the current Dutch curriculum and the task). Many students 

do have a dynamical approach, in the sense that they try to improve their initial and following 

attempts by varying parameters of the curve or the line to end up with a (visually) seemingly 

smoother result. But using two points on the curve to construct such a sequence of better and better 

fitting lines seems not a natural idea to come up with. On the positive side: the dynamical approach 

of “improving on your previous line” is a first step toward understanding the tangent line as the 

result of limit procedure. Secondly, the idea of zooming in or changing scale as an evaluation 

method has not occurred naturally to students. Once told by teacher B, students immediately 



 

 

grasped the idea and could use it, but they did not reinvent it. Students seem to prefer to stick to the 

scale at which they drew their first picture and work with reasonably nice numbers within that scale. 

If students discover that some of their solutions have two intersection points, in the 

institutionalization phase the teacher could try and use this discovery to form a bridge to approach 2 

and the difference quotient. As soon as you have two intersection points the idea of moving one of 

them to find a new line is a reasonable step.  

A more radical conclusion in line with RME principles would be to go with the students’ informal 

models all the way, instead of trying to facilitate a bridge towards the traditional way to introduce 

the slope. If the students’ approach suggests the bounding line definition of a tangent line is the 

more meaningful for them, then the teaching sequence should be based on it. One can design 

instructional sequences following on approach 1 and 3 (in addition to existing sequences based on 

approach 2). These questions will be topic of study during the next steps in the context of this 

project. 

Finally, in this project we combined principles from TDS and RME. This experience showed that 

the TDS emphasis on organizing didactic and adidactic phases by a teacher, in connection with the 

RME principle of reinvention guided by emergent models during these phases, supported the design 

of an inquiry-based scenario for students. 
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