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Abstract

Differential privacy is a formal definition of privacy ensuring that sensitive information relative to individuals
cannot be inferred by querying a database. In this paper, we exploit a modeling of this framework via
labeled Markov Chains (LMCs) to provide a logical characterization of differential privacy : we consider
a probabilistic variant of the Hennessy-Milner logic and we define a syntactic distance on formulae in it
measuring their syntactic disparities. Then, we define a trace distance on LMCs in terms of the syntactic
distance between the sets of formulae satisfied by them. We prove that such distance corresponds to the level
of privacy of the LMCs. Moreover, we use the distance on formulae to define a real-valued semantics for
them, from which we obtain a logical characterization of weak anonymity : the level of anonymity is measured
in terms of the formulae distinguishing the considered LMCs. Then, we focus on bisimulation semantics on
nondeterministic probabilistic processes and we provide a logical characterization of generalized bisimulation
metrics, namely those defined via the generalized Kantorovich lifting. Our characterization is based on the
notion of mimicking formula of a process and the syntactic distance on formulae, where the former captures
the observable behavior of the corresponding process and allows us to characterize bisimilarity. We show
that the generalized bisimulation distance on processes is equal to the syntactic distance on their mimicking
formulae. Moreover, we use the distance on mimicking formulae to obtain bounds on differential privacy.

Keywords: Differential privacy, Metric semantics, Logical characterization, Nondeterministic probabilistic
processes, Labeled Markov chains

1. Introduction

With the ever-increasing use of internet-connected devices, such as computers, IoT appliances and GPS-
enabled equipment, personal data are collected in larger and larger amounts, and then stored and manipu-
lated for the most diverse purposes. The exposure of personal data raises all kinds of privacy threats, and
it has motivated researchers to develop theories and techniques to protect users from these risks.

The state of the art in privacy research is represented by differential privacy (DP) [32], a framework
originally proposed for protecting the privacy of participants in statistical databases, and now applied to
geolocation [47], social networks [49] and many other domains. DP is based on the idea of obfuscating the
link between the answers to queries and the personal data by adding controlled (probabilistic) noise to the
answers by means of a randomized mechanism. One of the main advantages of DP with respect to previous
approaches is its compositionality. Namely, if we combine the information that we obtain by querying two
differentially-private mechanisms, the resulting mechanism is also differentially-private.

In the literature we can find a wealth of proposals of notions of differential-privacy, based on variations
on how the outputs of the randomized mechanism are compared. To avoid confusion, henceforth when we
refer to DP, or standard DP, we intend the so called pure DP, also known as (ε, 0)-DP.
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Recently, a distributed variant of DP has emerged, called local differential privacy (LDP) [31]. In this
variant, users obfuscate their personal data by themselves, before sending them to the data collector. In this
way, the data collector can only see, stock and analyze the obfuscated data. LDP, like DP, is compositional,
and furthermore it has the further advantages that it does not need to trust the data collector. LDP is
having a considerable impact, especially after large companies such as Apple and Google have started to
adopt it for collecting the data of their users for statistical purposes [33].

1.1. Our goal

In this paper, we consider dX -privacy [14], a metric-based generalization of differential privacy that
subsumes both DP and LDP by exploiting a metric in the domain of secrets to capture the desired privacy
protection semantics, and weak probabilistic anonymity [24], which measures the information leakage on
user’s identities. We study them in the context of nondeterministic probabilistic transition systems (PTSs)
[52] and labeled Markov chains (LMCs) [46], aiming at importing the rich concepts and techniques that
have been developed in the area of Concurrency Theory. In particular, we focus on behavioral metrics and
on their logical counterparts, exploring their use to specify privacy properties. More formally, we provide a
logical characterization of dX -privacy and weak anonymity. To the best of our knowledge, ours is the first
attempt in this direction.

1.2. Our contribution

Our work starts from a simple observation: each application of a mechanism, that we use to guarantee
privacy protection, to a secret can be encoded as a LMC. Considering that the privacy protection guarantees
are obtained from the comparison of the results of such applications, it is reasonable to exploit the studies
on LMCs to obtain information on privacy properties.

A natural approach is that of behavioral metrics [19, 22, 27, 36, 44, 53, 56]. They were introduced to
overcome the high sensitivity of behavioral equivalences and preorders with respect to tiny variations in the
values of probabilities. Instead of stating whether the behavior of two processes is exactly the same or not,
behavioral metrics measure the disparities in their behavior. Since, moreover, for verification purposes, the
desired properties (and observable behavior) of processes are usually expressed in terms of modal formulae,
logical characterizations of behavioral metrics have been thoroughly investigated [2, 11, 18, 25, 27]. As
dX -privacy and weak anonymity are measures over privacy protection guarantees of mechanisms, we aim at
providing logical characterizations of them by exploiting the characterizations of the behavioral metrics on
the LMCs induced by those mechanisms.

To this end, we consider the novel characterization technique recently proposed in [11, 12]. The idea is
as follows:

(i) We consider a boolean modal logic powerful enough to express the desired semantics.

(ii) We define a syntactic distance over the formulae in the chosen logic, namely a pseudometric on formulae
measuring their syntactic disparities.

(iii) We express the differences in the behavior of processes, and thus the behavioral metric, in terms of
such distance.

In detail, to obtain the logical characterization of dX -privacy, we reason in terms of trace semantics over
LMCs. We consider a probabilistic refinement L of the Hennessy-Milner logic (HML) [40] and we propose a
novel notion of trace metric defined via the syntactic distance over formulae in L. Informally, we consider
formulae expressing probabilistic linear properties and we define the trace metric between two processes as
the Hausdorff lifting of the syntactic distance over the sets of formulae satisfied by them. We show that the
value of the trace distance between two LMCs equals the privacy guarantee of the mechanism that induced
those LMCs. Interestingly, we also show how it is possible to define a real-valued semantics for formulae in
L starting from their syntactic distance. From this, we obtain a logical characterization of weak anonymity
in the classic sense of [2, 27] (see Section 5 for a detailed description).
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Then we switch from trace to bisimulation semantics and we provide a logical bound on dX -privacy.
We consider processes in the PTS model, which enriches LMCs with nondeterministic choices, and we
study generalized bisimulation metrics [15] on them. Informally, [15] defines bisimulations metrics via a
generalized notion of Kantorovich lifting, which allows to define distances suitable to deal with privacy and
security properties. Then we consider the modal logic L from [23], which extends HML with a probabilistic
choice operator that allows us to properly express the probabilistic behavior of processes with respect to
the bisimulation semantics. By means of L we provide a logical characterization of generalized bisimuation
metrics via the syntactic distance over formulae in L and the notion of mimicking formula of a process
[11]. The latter is a special formula in L that captures the observable behavior of a process and allows us
to characterize bisimilarity. We show that the generalized bisimulation distance between two processes is
equal to the (generalized) distance between their mimicking formulae, called logical distance. Moreover, we
show that we can exploit the logical distance to obtain bounds on dX -privacy. Notice that dealing with
bisimulation semantics instead of traces would allow us to develop efficient algorithms for the evaluation of
the logical distance (following, e.g., [2]), and thus of approximations on dX -privacy. Furthermore, we could
exploit the non-expansiveness results obtained in [15] to favor compositional reasoning over dX -privacy.

1.3. Summary of results

Our contribution can then be summarized as follows:

1. We define a trace metric over LMCs in terms of a syntactic distance on formulae in L, a probabilistic
refinement of HML.

2. We show that such trace metric allows us to obtain a logical characterization of dX -privacy.

3. We exploit the syntactic distance on formulae to define a real-valued semantics for them, from which
we get a logical characterization of weak anonymity.

4. We provide a logical characterization of the generalized bisimilarity metric by using the syntactic
distance over L, a probabilistic extension of HML, and the notion of mimicking formulae of processes
in a PTS.

5. We exploit the characterization of the bisimilarity metric to obtain bounds on dX -privacy.

1.4. Organization of contents

We start by reviewing the background in Section 2 and we recall some basic notions on dX -privacy and
weak anonymity in Section 3. Section 4 comes with our first contribution, namely the definition of a trace
metric on processes in terms of a syntactic distance on modal formulae and the logical characterization of dX -
privacy obtained from it. Our second contribution, the definition of a real-valued semantics for formulae via
the syntactic distance and the logical characterization of weak anonymity built on it, is presented is Section 5.
In Section 6 we present the generalized bisimilarity metrics and in Section 7 we introduce the modal logic
L and the mimicking formulae of processes. We present, in Section 8, our third contribution, namely how
we can combine the mimicking formulae and the syntactic distance to obtain a logical characterization of
generalized bisimilarity metrics. Then, in Section 9, we show how to obtain bounds on dX -privacy from such
a characterization. In Section 10 we discuss related work and some possible extensions of our work. Finally,
we draw some conclusions in Section 11.

1.5. What’s new

A preliminary version of this paper appeared as [10]. Besides providing the full proofs of our results and
new examples, we have enriched our previous contribution as follows:

a. We study the Dining Cryptographers Protocol and show how the well known anonymity results for it can
be obtained via our technique (Section 5.2).
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b. We show that the generalized bisimilarity metrics can be obtained as the limit of the up-to-k generalized
bisimilarity metrics, namely distances taking into account the behavioral differences observable in the
first k computation steps (Section 6.3).

c. We discuss the expressive power of the modal logic L with respect to other logics used in the liter-
ature to provide characterization results for probabilistic relations, showing that L is more expressive
(Section 10.2).

d. We discuss the extension of our characterization technique to processes with recursion. We argue that
by means of the equational µ-calculus framework [1, 45, 51] our results can also be obtained in the case
of recursion (Section 10.3).

2. Background

In this section we review the preliminary notions on probabilistic processes and metric spaces that are
necessary for our dissertation.

The PTS model. Nondeterministic probabilistic labeled transition systems (PTSs) [52] combine LTSs
[42] and discrete time Markov chains [39], to model reactive behavior, nondeterminism and probability. In
a PTS, the state space is a set S of processes, ranged over by s, t, . . . and transition steps take processes to
probability distributions over S, namely mappings π : S → [0, 1] with

∑
s∈S π(s) = 1. The support of π is

the set supp(π) = {x ∈ X | π(x) > 0}. By ∆(X) we denote the set of all finitely supported distributions
over X, ranged over by π, π′, . . . For s ∈ S we denote by δs the Dirac distribution defined by δs(s) = 1 and
δs(t) = 0 for s 6= t.

Definition 1 (PTS, [52]). A nondeterministic probabilistic labeled transition system (PTS) is a triple
(S,A,−→), where: (i) S is a countable set of processes, (ii) A is a countable set of actions, and (iii) −→⊆
S ×A×∆(S) is a transition relation.

We write s
a−→ π for (s, a, π) ∈−→, s

a−→ if there is a distribution π ∈ ∆(S) with s
a−→ π, and s

a−→6
otherwise. Let init(s) = {a ∈ A | s a−→} denote the set of the actions that can be performed by s. Let

der(s, a) = {π ∈ ∆(S) | s a−→ π} denote the set of the distributions reachable from s through action a. Fi-
nally, a PTS is image-finite [41] if der(s, a) is finite for each s ∈ S and a ∈ A. We consider only image-finite
PTSs. Moreover, for sake of readability and to limit the amount of purely technical content of the paper,
we consider processes without recursion. We refer the interested reader to Section 10.3 for a discussion on
how our results can be obtained when also recursion is taken into account.

Labeled Markov Chains. We call trace any finite sequence of action labels in A?, ranged over by
α, α′, . . . , and we use e to denote the empty trace.

A labeled Markov chain (LMC) is a fully probabilistic PTS, namely a PTS in which for each process we
have at most one available transition. In a LMC, a process s induces a probability measure over traces
Pr(s, ·), defined for each trace α ∈ A? recursively as follows:

Pr(s, α) =


1 if α = e

0 if α = aα′ and s
a−→6∑

s′∈supp(π)

π(s′)Pr(s′, α′) if α = aα′ and s
a−→ π.

For a process s ∈ S and a trace α ∈ A?, we will sometimes refer to Pr(s, α) as to the execution probability
of α by s.

We can express the observable behavior of processes in a LMC in terms of the linear properties that they
satisfy, or equivalently in terms of the traces that they can perform. Hence, it is natural to compare process
behavior in LMCs by means of trace semantics (see for instance [2]).
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Figure 1: s is an arbitrary process in the PTS model, whereas t, u and v are three LMCs. For simplicity, an arrow s
a−→ with

no target models the evolution of process s, via the execution of action a, to the Dirac distribution δnil, with nil process that
can execute no action.

Definition 2 (Trace equivalence on LMCs). Assume a LMC (S,A,−→). Processes s, t ∈ S are trace equiv-
alent, written s ∼Tr t, if for all traces α ∈ A? it holds that Pr(s, α) = Pr(t, α).

Example 1. Consider processes t, u, v in Figure 1. We have

Pr(t, a) = 1 Pr(u, a) = 1 Pr(v, a) = 1

Pr(t, ab) = 1 Pr(u, ab) = 1 Pr(v, ab) = 1

Pr(t, abc) = 0.3 Pr(u, abc) = 0.3 Pr(v, abc) = 0.35

Pr(t, abd) = 0.3 Pr(u, abd) = 0.3 Pr(v, abd) = 0.35

thus giving that t and u are trace equivalent, whereas v is not trace equivalent to them.

Pseudometric spaces. For a countable set X, a non-negative function d : X ×X → R+ is a metric on
X whenever it satisfies: (i) d(x, y) = 0 iff x = y, for all x, y ∈ X; (ii) d(x, y) = d(y, x), for all x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X. By relaxing the first axiom to (i)’ d(x, x) = 0 for all
x ∈ X, we obtain the notion of pseudometric. We say that d is an extended (pseudo)metric if we allow
its value to be +∞, notation d : X × X → [0,+∞]. Henceforth, we shall use the term pseudometric to
refer to both, pseudometrics and extended pseudometrics, since the meaning will always be clear from the
co-domain. Given a (pseudo)metric d on X, the pair (X, d) is called (pseudo)metric space.

The kernel of a (pseudo)metric d on X is the set ker(d) = {(x, y) ∈ X ×X | d(x, y) = 0}.
Given two (pseudo)metric spaces (X, dX), (Y, dY ), the function f : X → Y is 1-Lipschitz with respect to

dX , dY iff dY (f(x), f(x′)) ≤ dX(x, x′) for all x, x′ ∈ X. We denote by 1-Lip[(X, dX), (Y, dY )] the set of such
functions.

Given any (pseudo)metric space (X,d), the diameter of X with respect to d, denoted by �d(X), is the
maximal distance of two elements in X, namely �d(X) = supx,y∈X d(x, y).

The Hausdorff lifting allows us to lift a (pseudo)metric over elements in a set X to a (pseudo)metric over
the power set of X, denoted by P(X).

Definition 3 (Hausdorff metric). Let d : X ×X → [0,+∞] be a pseudometric. The Hausdorff lifting of d
is the pseudometric H(d) : P(X)× P(X)→ [0,+∞] defined for all non-empty sets X1, X2 ⊆ X by

H(d)(X1, X2) = max
{

sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x2, x1)
}
.

3. Differential privacy

In this section we briefly recall the definitions of the privacy notions that are of central interest in this
paper, namely dX -privacy and weak probabilistic anonymity. We refer the interested reader to [14] for more
details on the differential privacy framework and to [24] for weak probabilistic anonymity.
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3.1. dX -privacy

Let X be an arbitrary set of secrets provided with distance dX . Let Z be a set of observables, and let M
be a randomized mechanism from X to Z, namely a function that assigns to every element of X a probability
distribution on Z. We say that M is ε ·dX -private if for any two secrets x,x′ ∈ X and any measurable subset
Z of Z, we have M(x)(Z)/M(x′)(Z) ≤ eε·dX (x,x′). The idea is that dX (x,x′) represents a distinguishability level
between x and x′: the more we want to confuse them, the more similar the probabilities of producing the
same answers in the randomization process should be. Notice that dX -privacy subsumes standard DP, by
setting X to be the set of databases, and dX the Hamming distance between databases, namely dX (x,x′) is
the number of records in which x and x′ differ. The resulting property is, by transitivity, equivalent to say
that for all x and x′ which are adjacent (i.e., dX (x,x′) = 1), M(x)(Z)/M(x′)(Z) ≤ eε. Note that we consider
here an equivalent definition of DP in which the adjacency relation is defined as differing in the value of
one record. The standard definition, in which x and x′ are adjacent if x′ is obtained from x by adding or
removing one record, can be specified by using an extra value to indicate the absence of the record.

Furthermore, dX -privacy subsumes LDP as well, by setting dX to be the discrete distance, i.e., dX (x,x′) =
0 if x = x′ and dX (x,x′) = 1 otherwise.

To formalize dX -privacy, we will exploit the multiplicative variant of the total variation distance on
probability distributions.

Definition 4 (Multiplicative total variation distance). Let X be a set. The multiplicative variant of the
total variation distance on ∆(X) is the function tv⊗ : ∆(X)×∆(X)→ [0,+∞] defined, for all π, π′ ∈ ∆(X),
as tv⊗(π, π′) = supx∈X |ln(π(x))− ln(π′(x))| .

For X set of secrets and Z set of observables, dX -privacy is defined as follows.

Definition 5 (dX -privacy, [14]). Let ε > 0 and dX be any distance on X . A randomized mechanism
M : X → ∆(Z) is ε · dX -private if and only if

tv⊗(M(x),M(x′)) ≤ ε · dX (x,x′) ∀ x,x′ ∈ X .

Interestingly, each randomized mechanisms can be modeled as a LMC. Each secret x is mapped to a
state sx in the LMC and the observable result of the mechanism applied to x is modeled by the traces
executable by sx in the LMC. The randomized mechanism M on x is then modeled as the trace distribution
induced by sx. More formally, we consider Z = A? and we define M(x)(α) = Pr(sx, α) for each α ∈ A?.

We give an example based on LDP. The mechanism is called “Randomized responses” and is a simplified
instance of the system RAPPOR used by Google to protect the privacy of their users [33].

Example 2 (Randomized responses). Suppose that we want to collect the answers to some embarrassing
question (for instance “Have you ever cheated on your partner?”) for some statistic purpose. To persuade
people to answer truly, we allow them to report the true answer with probability 3/4, and the opposite answer
with probability 1/4. In this way, the privacy of the user will be protected in the sense that the answers
collector will not know for sure whether the person has cheated or not. In fact, the system is log 3-locally
differentially private. At the same time, if the population is large enough, the collector will be able to obtain
a good statistical approximation of the real percentage of cheaters.

To implement the system, we can use a (fair) coin: the person tosses the coin twice, and if the first result
is head, he answers truly, otherwise he answers “yes” or “no” depending on whether the second result is,
resp., head or tail. The results of the coin tossings, of course, has to be invisible to the data collector, and
thus we represent it as an internal action τ .

The LMCs sy and sn in Figure 2 represent the mechanism applied to two individuals: sy that has cheated
and sn has not. sy will toss the coin and make a transition τ . Then, depending on the result, it will go in a
state sh or st with even probability. From sh it will toss a coin again, and then make a transition yes to a
final state. From st it will toss the coin and go in states sth and stt with even probability. From sth and stt
it will then make transitions yes and no, resp., and then terminate. The system sn is analogous, with yes
and no inverted.
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Figure 2: The mechanism ‘Randomized responses’ as a LMC.
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Figure 3: LMCs representing the behavior of an arbitrary paying cryptographer ci and of the master m.

3.2. Weak anonymity

Weak probabilistic anonymity [24] uses the additive total variation distance tv to measure the degree of
protection of the identity of a user while performing a particular task. Hence, the set of secrets X is now the
set of users’ identities and a randomized mechanism M : X → ∆(Z) has to introduce some noise so that from
the ‘performed tasks’ in Z an adversary cannot discover the identity of the user that actually performed
them. Informally, a randomized mechanism M is ε-weak anonymous if after its interaction with the system
an adversary is more likely to identify x as the user who performed the tasks than user x′ by an additive
factor ε. Finally, we recall that the total variation distance is defined by tv(µ, µ′) = supZ∈Z |µ(Z)− µ′(Z)|
for all µ, µ′ ∈ ∆(Z).

Definition 6 (Weak probabilistic anonymity [24]). LetM be a randomized mechanism defined byM(x)(α) =
Pr(sx, α) for all x ∈ X , α ∈ A?. Then, given ε > 0, M satisfies ε-weak anonymity if and only if

tv(M(x),M(x′)) ≤ ε ∀ x,x′ ∈ X .

Example 3 (Dining cryptographers). One of the most known anonymity protocols, from the literature, is
that of Dining Cryptographers [16]. Briefly, an arbitrary number of cryptographers are dining together with
their master. At the end of the dinner, the master will choose whether to pay the bill or not. In the latter
case, he will secretly say to each cryptographer if he has to pay or not. An external observer will be able
to discover whether the payer is the master or one of the cryptographers. However, in the latter case, the
identity of the payer should not be disclosed.

The original solution in [16], to maintain the paying cryptographer anonymous, is to associate a (fair)
coin to each cryptographer making it visible to himself and to his right neighbor. These coins are then
tossed, and each cryptographer computes the binary sum of the adjacent coins (by letting, for instance,
head= 0 and tail= 1), adds 1 if he is the payer, and outputs the result. It is then proved that the payer is
one of the cryptographers if and only if the binary sum of all the so obtained outputs is 1.

The strong anonymity of the protocol is based on the fact that under fair coins all output configurations
have the same probability and, moreover, for each output obtained in a configuration where the payer
is cryptographer i, there is a different coin configuration producing the same output when the payer is
cryptographer j.

7



c1 c2 c3

pi1 p1 · (1− p2) (1− p1) · (1− p2) (1− p1) · p2

pi2 p1 · p2 (1− p1) · p2 (1− p1) · (1− p2)

pi3 (1− p1) · p2 p1 · p2 p1 · (1− p2)

pi4 (1− p1) · (1− p2) p1 · (1− p2) p1 · p2

Table 1: The probabilities pij evaluated with respect to each paying cryptographer ci.

We are therefore interested in analyzing the case of weak anonymity, namely the one in which we consider
biased coins, and thus some information on the payer’s identity may be leaked due to the biased factor of
the coins. For simplicity of presentation, we will consider the case of a master with three cryptographers.
The LMCs in Figure 3 represent the behavior of any cryptographer ci who has been selected as a payer, and
the behavior of the master m when he is willing to pay the bill. The action of the randomized mechanism,
in this case, can be subsumed in the choice of the biased factor of the coins. The eight actions o1, . . . , o8

represent the possible outputs of the computation be the three cryptographers. In detail, we have

o1 = 111 o2 = 100 o3 = 010 o4 = 001

o5 = 110 o6 = 101 o7 = 011 o8 = 000

in which the i-th bit represents the output of the i-th cryptographer. The most significant ones are the first
four o1, . . . , o4, in that they are obtained only when the payer is one of the cryptographers and the different
probability of observing an output with respect to another could reveal information about the identity of
the payer. Having three cryptographers, we only need two coins, which we assume to be biased: let p1 be
the probability of obtaining 0 on the first coin, and p2 the corresponding probability for the second coin.
Then, the probability pij of the observable oj being obtained when cryptographer ci is the payer is evaluated
in Table 1. In [24] it is then proved that weak anonymity parameter ε of the protocol depends on the biased
factor of the coins as follows

ε =

{
|1− (p1 + p2)| if p1, p2 ≤ 1/2 or p1, p2 ≥ 1/2

|p1 − p2| otherwise.

4. Logical characterization of dX -privacy: a trace metric approach

In this section we present the first proposal of a logical characterization of dX -privacy. To obtain it, we
investigate the semantics of the LMCs induced by the randomized mechanisms. In particular, we exploit
a notion of trace metric evaluated on modal formulae expressing linear properties of LMCs. Informally,
we consider a simple probabilistic variant of the modal logic capturing the trace semantics in the fully
nondeterministic case to define a probabilistic trace semantics for processes. Then, we define a metric for
such a semantics in terms of a syntactic distance over the formulae in the considered logic and we use
such a distance to characterize dX -privacy. Interestingly, although the considered trace semantics is based
on a quite limited observation power, it allows us to obtain the first logical characterization of dX -privacy
(Theorem 2): we show that the trace metrics so defined on LMCs coincides with the multiplicative variant
of the total variation distance (Proposition 2).
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4.1. Trace metrics on LMCs

Probabilistic trace semantics compares the behavior of processes with respect to the probabilities that
they assign to the same linear properties, namely to the same traces. In the literature we can find several
notions of probabilistic trace equivalence, of which ∼Tr given in Definition 2 is an example, and we refer the
interested reader to [7] for a survey. Such a wealth of notions derives from the interplay of nondeterminism
and probability that we can witness in quantitative systems and the different interpretations that researchers
have given to it. We can also find several proposals of behavioral distances measuring the disparities of
processes with respect to the same linear properties, that is their differences in the probabilities of executing
the same traces (see, e.g., [9, 19, 53]).

As the focus of this paper is on dX -privacy, we adopt a different approach, with respect to those referenced,
to the definition of a trace metric on LMCs. In fact, we hark back to the seminal work [27] on bisimulation
metrics and:

(i) We provide a logical characterization of ∼Tr by means of a simple modal logic L that allows us to
express traces and their probability of being executed, so that s and t are trace equivalent if they
satisfy the same formulae in L.

(ii) We quantify the trace metric on processes in terms of the formulae distinguishing them.

Informally, in [27] this is obtained by transforming formulae into functional expressions and by interpreting
the satisfaction relation as integration. Then, the distance on processes is defined on the so obtained real-
valued logic by considering the maximal disparity between the images of processes through all functional
expressions. Here, we propose a much simpler approach based on the boolean valued logic L: we introduce
a (family of generalized) syntactic distance on formulae in L and we define the trace metric on processes as
the Hausdorff lifting of the syntactic distance to the sets of formulae satisfied by processes.

The modal logic L extends the class of formulae used in the fully nondeterministic case to express trace
semantics [8] (and corresponding to the subclass of linear formulae) with a probabilistic modality allowing
us to express the execution probabilities of traces.

Definition 7 (Modal logic L). The logic L = Ll ∪Lp is given by the classes of linear formulae Ll and of
probabilistic formulae Lp over A, defined by:

Ll : Φ ::= > | 〈a〉Φ Lp : Ψ ::= rΦ

where: (i) Φ ranges over Ll, (ii) Ψ ranges over Lp, (iii) a ∈ A; (iv) r ∈ [0, 1].

We say that a trace α is compatible with the linear formula Φ, notation Tr(Φ) = α, if the sequence of ac-
tion labels in α is exactly the same sequence of labels of the diamond modalities in Φ, i.e., Tr(〈a1〉 . . . 〈an〉>) =
α iff α = a1 . . . an. In particular we have that Tr(>) = e.

Definition 8 (Semantics of L). For any s ∈ S, the satisfaction relation |=⊆ S × Ll ∪Lp is defined by
structural induction over formulae in Ll ∪Lp by

• s |= > always;

• s |= 〈a〉Φ iff s
a−→ π for some π such that s′ |= Φ for some s′ ∈ supp(π);

• s |= rΦ iff

– for r > 0, s |= Φ and Pr(s,Tr(Φ)) = r;

– for r = 0, Pr(s,Tr(Φ)) = 0.

For each process s ∈ S, we let L(s) = {Ψ ∈ Lp | s |= Ψ}.
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Example 4 (Randomized responses II). Consider processes sy, sn in Figure 2. One can easily check that,
by omitting the occurrences of probabilistic formulae of the form 0Φ, for some linear formula Φ,

L(sy) = {1〈τ〉>, 1〈τ〉〈τ〉>, 3/4〈τ〉〈τ〉〈yes〉>, 1/4〈τ〉〈τ〉〈no〉>}
L(sn) = {1〈τ〉>, 1〈τ〉〈τ〉>, 1/4〈τ〉〈τ〉〈yes〉>, 3/4〈τ〉〈τ〉〈no〉>}

By means of L we can provide a logical characterization of ∼Tr: two processes are trace equivalent if and
only if they satisfy the same formulae in L.

Theorem 1. Assume an LMC (S,A,−→). Then for all processes s, t ∈ S we have that s ∼Tr t iff L(s) = L(t).

Proof. The proof can be found in Appendix A.

We can now proceed to the definition of the trace metric. The definition of the syntactic distance on
formulae in L is parametric with respect to a generic metric D on [0, 1] that plays the role of a ground
distance on the weights of probabilistic formulae, to which a syntactic distance could not be applied. For
this reason we shall sometimes speak of generalized syntactic distance and trace metric.

Definition 9 (Distance on L). Let ([0, 1],D) be a metric space. The function dm�D : Ll×Ll → {0,�D([0, 1])}
is defined as the discrete metric over Ll, namely dm�D (Φ1,Φ2) = 0 if Φ1 = Φ2 and dm�D (Φ1,Φ2) =
�D([0, 1]) otherwise. The function dp

D : Lp×Lp → [0,�D([0, 1])] is defined over Lp as follows:

dp
D(r1Φ1, r2Φ2) =

{
D(r1, r2) if dm�D (Φ1,Φ2) = 0

�D([0, 1]) otherwise.

The trace metric on processes is then defined as the Hausdorff lifting of the syntactic distance on L to
the sets of formulae satisfied by the processes.

Definition 10 (Trace metric). Let ([0, 1],D) be a metric space. The trace metric over processes dTD : S×S →
[0,�D([0, 1])] is defined for all s, t ∈ S by

dTD(s, t) = H(dp
D)(L(s),L(t)).

Example 5. Consider processes u, v in Figure 1. We have

L(u) = {1〈a〉>, 1〈a〉〈b〉>, 0.3〈a〉〈b〉〈c〉>, 0.3〈a〉〈b〉〈d〉>}
L(v) = {1〈a〉>, 1〈a〉〈b〉>, 0.35〈a〉〈b〉〈c〉>, 0.35〈a〉〈b〉〈d〉>}.

Consider, for instance, as ground distance D the Euclidean distance, namely D(r1, r2) = |r1 − r2| for all
r1, r2 ∈ [0, 1]. Then, we have

dTD(u, v) = H(dp
D)(L(t),L(v))

= max


dp
D(1〈a〉>, 1〈a〉>),

dp
D(1〈a〉〈b〉>, 1〈a〉〈b〉>),

dp
D(0.3〈a〉〈b〉〈c〉>, 0.35〈a〉〈b〉〈c〉>),
dp
D(0.3〈a〉〈b〉〈d〉>, 0.35〈a〉〈b〉〈d〉>)


= dp
D(0.3〈a〉〈b〉〈c〉>, 0.35〈a〉〈b〉〈c〉>)

= 0.05.

By considering a different distance on the probability weights, we can obtain the multiplicative variant of
our trace metric, which we will denote by dT⊗ and that will play a fundamental role in our characterization
theorem. Let D⊗(r1, r2) = | ln(r1)− ln(r2)|, namely D measures the absolute value of the difference between
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the natural logarithms of the probability weights and let dT⊗ be the trace metric obtained using D⊗ as
ground distance. Then, for the processes u, v of this example we obtain

dT⊗(u, v) = dp
⊗(0.3〈a〉〈b〉〈c〉>, 0.35〈a〉〈b〉〈c〉>) = | ln(0.3)− ln(0.35)| ≈ 0.15.

We can prove that the kernel of each generalized trace metric corresponds to ∼Tr.

Proposition 1. For all possible choices of the metric D, trace equivalence is the kernel of the trace metric,
namely ∼Tr= ker(dTD).

Proof. The proof can be found in Appendix A.

4.2. Logical characterization of dX -privacy

We can now present the logical characterization result for dX -privacy. As the dX -privacy property is
basically a measure of the level of privacy of a system, a logical characterization for it should be interpreted
as a logical characterization of a behavioral metric, in the sense of [11, 12, 27], rather than in the sense of
behavioral equivalences. Roughly speaking, we evaluate the dX -privacy property by exploiting the linear
properties of the mechanism as expressed by our trace metric, and thus by the logic L. More formally,
we consider the multiplicative variant dT⊗ of our trace metric introduced in Example 5. We prove that dT⊗
coincides with the multiplicative total variation distance on the trace distributions induced by processes.

Proposition 2. For any s ∈ S let µs = Pr(s, ·). Then dT⊗(s, t) = tv⊗(µs, µt).

Proof. The proof can be found in Appendix A.

We can then formalize our logical characterization of dX -privacy.

Theorem 2 (Logical characterization of dX -privacy). Consider the randomized mechanism M defined by
M(x)(α) = Pr(sx, α) for all x ∈ X , α ∈ A?. Then, given ε > 0, M is ε · dX -private if and only if

dT⊗(sx, sx′) ≤ ε · dX (x,x′) ∀ x,x′ ∈ X .

Proof. Immediate from Proposition 2 and Definition 5.

Example 6 (Randomized responses, III). We can show that the mechanism ‘Randomized responses’ de-
scribed in Example 2 is log 3-locally differentially private by evaluating the trace distance between processes
sy and sn in Figure 2. By comparing the sets of formulae L(sy) and L(sn) given in Example 4, we obtain

dT⊗(sy, sn) = max

{
dp
⊗(3/4〈τ〉〈τ〉〈yes〉>, 1/4〈τ〉〈τ〉〈yes〉>)

dp
⊗(1/4〈τ〉〈τ〉〈no〉>, 3/4〈τ〉〈τ〉〈no〉>)

}
= | ln(3/4)− ln(1/4)| = ln(3).

5. Logical characterization of weak anonymity: from boolean to real semantics

So far, we have seen how we can express the dX -privacy property as a syntactic distance over modal
formulae capturing trace semantics. However, in the literature, when behavioral metrics are considered,
logics equipped with a real-valued semantics are usually used for the characterization, which is expressed as

d(s, t) = sup
φ∈L
|JφK(s)− JφK(t)| (1)

11



where d is the behavioral metric of interest, L is the considered logic and JφK(s) denotes the value of the
formula φ in process s accordingly to the real-valued semantics (see, e.g., [19, 21, 27, 28, 30]). In this
section, we exploit the syntactic distance on L to provide a real-valued semantics for formulae in L and
thus a characterization of weak probabilistic anonymity expressed according to the classic schema in (1)
(Theorem 3).

In detail, we consider all metric spaces ([0, 1],D) with 0 < �D([0, 1]) <∞ and:

(i) We use the syntactic distance over formulae in L to define a (generalized) real-valued semantics for
those modal formulae.

(ii) We show that the total variation distance satisfies the general schema in (1) with respect to such real
semantics.

(iii) We express the ε-weak anonymity property as an upper bound to the total variation distance on the
values of formulae in the processes of the LMCs.

5.1. Real valued semantics

Equipping modal formulae with a real-valued semantics means assigning to each formula φ a real number
in [0, 1] expressing how much a given process s satisfies φ; value 1 stands for s |= φ. Our aim is to exploit
our distance over formulae to define such a semantics.

Example 7. Consider process s in Figure 1. We aim at evaluating how much s satisfies the formulae
Ψ1/2 = 1/2〈a〉〈c〉> and Ψq = q〈a〉〈d〉>, for q ∈ [0, 1].

We start with Ψ1/2. First of all, notice that process s can perform the trace ac and, in particular, we
have that s |= 3/5〈a〉〈c〉> and s |= 1〈a〉〈c〉>. By comparing the formula Ψ1/2 with the latter, we shall say
that there is a discrepancy of 1/2 between the required execution probability (namely 1/2) and the actual
one (namely 1). Clearly, by comparing Ψ1/2 with 3/5〈a〉〈c〉>, such discrepancy decreases to 1/10, and hence s
shows a better behavior with respect to the required one in this second case. Roughly speaking, we should
say that process s satisfies the formula Ψ1/2 except for 1/10. It is then reasonable to set the value of Ψ1/2 in
s to 9/10.

Consider now the family of formulae Ψq. Clearly, process s does not perform trace ad, namely s |=
0〈a〉〈d〉>. This could suggest to set the value of Ψq in s to 0, for each q 6= 0. However, such solution would
flatten the differences in the quantitative requirements imposed by those formulae on varying of q ∈ [0, 1].
In fact the discrepancy between not performing a trace and performing it with a tiny probability should be
negligible with respect to the one between not performing a trace and performing it with high probability.
It is then reasonable to set the value of Ψq in s to 1− q: the higher q, the lower the value of Ψq.

The intuitions discussed in Example 7 can be generalized and formalized as follows. Let L be the class
of formulae of interest, let DD be any generalized syntactic distance defined on L, like, e.g., the distance dp

D
for the logic L. For each process s let L(s) denote the set of formulae in L satisfied by s. To quantify how
much the formula φ ∈ L is satisfied by process s:

1. We evaluate first how far φ is from being satisfied by s. This corresponds to the minimal distance
between φ and a formula satisfied by s, namely to infφ′∈L(s)DD(φ, φ′).

2. Then we simply notice that beingDD(φ, φ′) far from s is equivalent to be�D([0, 1])−infφ′∈L(s)DD(φ, φ′)
close to it. We remark that �D([0, 1]) has to be finite in order to obtain a meaningful value.

3. Finally, we assign to φ the value

�D([0, 1])− infφ′∈L(s)DD(φ, φ′)

�D([0, 1])

in s, where the normalization with respect to �D([0, 1]) ensures that this value is in [0, 1].
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Definition 11 (Real valued semantics). Let ([0, 1],D) be a metric space with 0 < �D([0, 1]) <∞. Assume
any class of formulae L, let DD be any generalized syntactic distance over L. We define the value of φ ∈ L
in process s ∈ S as

JφKD(s) = 1−
infφ′∈L(s)DD(φ, φ′)

�D([0, 1])

Example 8. Consider process s in Figure 1 and the family of formulae Ψp = p〈a〉〈c〉>, for p ∈ [0, 1]. In
Example 7 we have discussed the value of the formula Ψ1/2, from such a family, in s. We now formalize the
intuition provided there and study the value of formulae Ψp in s on varying of p ∈ [0, 1]. By Definition 11,
for D the Euclidean distance (and thus omitting the D subscript), we have that for each p ∈ [0, 1]

JΨpK(s) = 1−
infΨ∈L(s) d

p(Ψp,Ψ)

�([0, 1])
= 1− inf

Ψ∈L(s)
dp(Ψp,Ψ)

since �([0, 1]) = 1. We recall that process s performs the trace ac so that the infimum on L(s) is to be
evaluated over the formulae satisfied by s that subsume the execution of the trace ac. In particular, we have
that s |= Ψ3/5 and s |= Ψ1, so that

JΨpK(s) = 1−min{|p− 3/5|, |p− 1|}.

5.2. Logical characterization of weak anonymity

Before proceeding to the characterization of weak anonymity, notice that for each class of formulae L
equipped with a generalized syntactical distance DD we can provide an equivalent reformulation of the
Hausdorff metric as in the following Proposition.

Proposition 3. Let ([0, 1],D) be a metric space. Assume a class of formulae L and let DD be any generalized
syntactic distance over L. For any non-empty L1, L2 ⊆ L we have that

H(DD)(L1, L2) = sup
φ∈L

∣∣∣∣ inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)

∣∣∣∣ .
Proof. The proof can be found in Appendix B.

If we focus on the class of formulae L, from Proposition 3 we can immediately derive the characterization
of trace metrics in terms of real-valued formulae.

Lemma 1. Let ([0, 1],D) be a metric space with 0 < �D([0, 1]) <∞. For all processes s, t ∈ S it holds that

dTD(s, t) = sup
Ψ∈Lp

|JΨKD(s)− JΨKD(t)| .

By abuse of notation, for any linear formula Φ ∈ Ll, we write JΦKD(s) in place of J1ΦKD(s). Moreover,
we write the ‘generalized’ metrics defined on the metric space ([0, 1],D), with D(x, y) = |x − y| Euclidean
distance, with no D subscripts. Then, the following characterization of the total variation distance holds.

Proposition 4. Let ([0, 1],D) be a metric space with 0 < �D([0, 1]) <∞. For any s ∈ S define µs = Pr(s, ·).
Then, tvD(µs, µt) = supΦ∈Ll |JΦKD(s)− JΦKD(t)|. In particular, we have

tv(µs, µt) = sup
Φ∈Ll

|JΦK(s)− JΦK(t)|.

Proof. The proof can be found in Appendix B.

Finally, we can express ε-weak anonymity property as an upper bound to the total variation distance on
the values of formulae in the processes of the LMCs, accordingly to the general schema in (1).
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c1 c2 c3

JΦ1K(ci) 1− p1 · (1− p2) 1− (1− p1) · (1− p2) 1− (1− p1) · p2

JΦ2K(ci) 1− p1 · p2 1− (1− p1) · p2 1− (1− p1) · (1− p2)

JΦ3K(ci) 1− (1− p1) · p2 1− p1 · p2 1− p1 · (1− p2)

JΦ4K(ci) 1− (1− p1) · (1− p2) 1− p1 · (1− p2) 1− p1 · p2

Table 2: The real-valued semantics of formulae Φj evaluated with respect to each paying cryptographer ci.

Theorem 3 (Logical characterization of weak anonymity). Let M be a randomized mechanism defined by
M(x)(α) = Pr(sx, α) for all x ∈ X , α ∈ A?. Then, for ε > 0, M satisfies ε-weak anonymity if and only if

sup
Φ∈Ll

|JΦK(sx)− JΦK(sx′)| ≤ ε ∀ x,x′ ∈ X .

Proof. Immediate from Proposition 4 and Definition 6.

Example 9 (Dining cryptographers II). We show that we can regain the ε-weak anonymity result discussed
in Example 3 by applying Theorem 3. For j ∈ {1, . . . , 4}, consider the linear formulae Φj = 〈τ〉〈oj〉> that
express the fact that the output oj is observable. Then, accordingly to Definition 11, where we omit the
D subscript since we consider the Euclidean distance, and the probabilities reported in Table 1, for the
formulae Φj we obtain the real-valued semantics showed in Table 2. Hence, we have that

ε = max
i,h∈{1,2,3},j∈{1,2,3,4}

|JΦjK(ci)− JΦjK(ch)|.

Firstly, we notice that

max
i,h∈{1,2,3}

|JΦ1K(ci)− JΦ1K(ch)| = max {|(2p1 − 1) · (1− p2)|, |(1− p1) · (1− 2p2)|, |p1 − p2|}

max
i,h∈{1,2,3}

|JΦ2K(ci)− JΦ2K(ch)| = max {|(2p1 − 1) · p2|, |(1− p1) · (2p2 − 1)|, |1− (p1 + p2)|}

max
i,h∈{1,2,3}

|JΦ3K(ci)− JΦ3K(ch)| = max {|(1− 2p1) · p2|, |p1 · (2p2 − 1)|, |p1 − p2|}

max
i,h∈{1,2,3}

|JΦ4K(ci)− JΦ4K(ch)| = max {|(1− 2p1) · (1− p2)|, |p1 · (1− 2p2)|, |1− (p1 + p2)|}

From these, through case analysis and simple algebra, we regain

ε =

{
|1− (p1 + p2)| if p1, p2 ≤ 1/2 or p1, p2 ≥ 1/2

|p1 − p2| otherwise.

6. From traces to bisimulations

So far we have shown how it is possible to obtain a characterization of dX -privacy by exploiting trace
semantics and a notion of syntactic distance on modal formulae. However, one could argue that there are no
efficient algorithms to evaluate the trace metric, and therefore the dX -privacy property, especially if the state
space of the LMC is infinite. In [2] it is proved that we can obtain upper bounds on the evaluation of trace
metrics by exploiting bisimulation-like distances, for which polynomial-time algorithms can be provided.
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Here, we follow a similar reasoning: we switch from LMCs to the more general semantic model of PTSs, we
consider the generalized bisimulation metrics introduced in [15] and we provide a logical characterization for
them. This is based on the notion of syntactic distance on formulae and the notion of mimicking formula
of a process from [11, 12]. As in Section 4.1, the former is a pseudometric on a probabilistic version of
HML, L from [23], that extends L with modalities allowing us to express the interplay of nondeterminism
and probability typical of PTSs (Section 7). The latter is a special formula in L that alone expresses the
observable behavior with respect to bisimulation semantics of the process to which it is related and allows us
to characterize bisimilarity (Section 7.1). Then we show that the syntactic distance between the mimicking
formulae of processes equals their bisimulation distance (Section 8) and that, when we focus on LMCs, it
gives an upper bound on dX -privacy properties of mechanisms (Section 9).

As a final remark, note that using bisimulation metrics and their characterization would allow us to apply
the compositional results obtained for them in [15] also to dX -privacy properties (see Section 11 for more
insights into this research line). Now, we proceed to recall some base notions on bisimulation semantics and
generalized bisimulation metrics.

6.1. Probabilistic bisimulations

A probabilistic bisimulation is an equivalence relation over S that equates processes s, t ∈ S if they can
mimic each other’s transitions and evolve to distributions that are in turn related by the same equivalence.
To formalize this, we need to lift relations over processes to relations over distributions. Informally, given a
relation R on processes we say that two distributions π, π′ ∈ ∆(S) are related by the lifting of R , denoted
by R† , if and only if they assign the same probabilistic weights to processes related by R .

Definition 12 (Relation lifting, [25]). Let X be a set. The lifting of a relation R ⊆ X ×X is the relation
R† ⊆ ∆(X)×∆(X) with πR† π′ whenever there is a finite set of indexes I s.t.

(i) π =
∑
i∈I piδxi , (ii) π′ =

∑
i∈I piδyi , and (iii) xi R yi for all i ∈ I.

Notice that the xi, for i ∈ I, are not required to be distinct. Similarly for the yi, for i ∈ I. A different
formulation to Definition 12 has been provided elsewhere in the literature in terms of couplings [52]. In [25]
it was proved that the two formulations are equivalent. We decided to present the version of [25] since it
will simplify the technical reasoning in some of the upcoming proofs.

Definition 13 (Probabilistic bisimulation, [46]). Assume a PTS. A binary relation R ⊆ S × S is a
probabilistic bisimulation if whenever sR t

• if s
a−→ πs then there is a transition t

a−→ πt such that πsR† πt;

• if t
a−→ πt then there is a transition s

a−→ πs such that πtR† πs;

The union of all probabilistic bisimulations is the greatest probabilistic bisimulation, denoted by ∼ and
called bisimilarity, and is an equivalence.

6.2. Generalized bisimulation metrics

Bisimulations answer the question of whether two processes behave precisely the same way or not.
Bisimulation metrics answer the more general question of how far the behavior of two processes is: two
processes can be at some given distance ε < 1 only if they can mimic each other’s transitions and evolve to
distributions that are, in turn, at a distance ≤ ε. Hence, for our purposes, we need to lift a pseudometric over
processes to a pseudometric over distributions. We follow the approach of [15], that considers the generalized
Kantorovich lifting. Take a generic metric space (V, dV ), with V ⊆ R a convex subset. A function f : X → V

can be lifted to a function f̂ : ∆(X)→ V by taking its expected value, i.e., f̂(π) =
∑
x∈X π(x)f(x) (requiring

V to be convex ensures that f̂(π) ∈ V ). Then, for each V , we define the lifting of a pseudometric dX over
X to a pseudometric over ∆(X) via the generalized Kantorovich metric KV .
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Definition 14 (Generalized Kantorovich lifting, [15]). For a pseudometric space (X, dX) and a metric
space (V, dV ) with V ⊆ R convex, the generalized Kantorovich lifting of dX with respect to (V, dV ) is the
pseudometric KV (dX) : ∆(X)×∆(X)→ [0,+∞] defined, for all π, π′ ∈ ∆(X) by

KV (dX)(π, π′) = sup
{
dV (f̂(π), f̂(π′)) | f ∈ 1-Lip[(X, dX), (V, dV )]

}
.

Example 10 (The multiplicative variant of the Kantorovich lifting). The generalization of the Kantorovich
lifting proposed in Definition 14 allows us to define the so called multiplicative variant of the Kantorovich
lifting [15], which will play a fundamental role in the definition of the logical bound on dX -privacy. To define
the multiplicative variant, denoted by K⊗, we consider V = [0, 1] equipped with the metric d⊗ : [0, 1]2 →
[0, 1] defined for all x, y ∈ [0, 1] by

d⊗(x, y) = | ln(x)− ln(y)|

namely, d⊗ measures the euclidean distance between the natural logarithms of the reals in [0, 1].

Generalized bisimulation metrics are then defined as the least fixed points of a suitable functional on the
following structure. Let (V, dV ) be a metric space and let D be the set of pseudometrics d on S such that
�d(S) ≤ �dV (V ). Then (D,�) with d1 � d2 if and only if d1(s, t) ≤ d2(s, t) for all processes s, t ∈ S, is a
complete lattice. In detail, for each setD ⊆ D the supremum and infinimum are sup(D)(s, t) = supd∈D d(s, t)
and inf(D)(s, t) = infd∈D d(s, t) for all s, t ∈ S. The bottom element is function 0 with 0(s, t) = 0 for all
s, t ∈ S.

The quantitative analogous to bisimulation is defined by means of a functional BV over the lattice (D,�).
By means of a discount factor λ ∈ (0, 1], BV allows us to specify how much the behavioral distance of future
transitions is taken into account to determine the distance between two processes [20, 27]. Intuitively, any
difference that can be observed only after a long sequence of computation steps does not have the same
impact of the differences that can be witnessed at the beginning of the computation. λ = 1 expresses no
discount, so that the differences in the behavior of s and t are considered irrespective of after how many
steps they can be observed.

Definition 15 (Generalized bisimulation metric functional, [15]). Let (V, dV ) be a metric space, with V ⊆ R
convex. Let BV : D→ D be the function defined for all d ∈ D and s, t ∈ S by

BV (d)(s, t) =

{
�dV (V ) if init(s) 6= init(t)

supa∈AH(λ ·KV (d))(der(s, a),der(t, a)) otherwise.

Remark 1. It is easy to show that for any pseudometric d the lifting KV (d) is an extended pseudometric
for any choice of (V, dV ). However, in general the lifting does not preserve the boundedness properties of d.
To guarantee KV (d) to be bounded we need to assume that the metric dV is ball-convex, namely the open
balls in the generated topology are convex sets. This is not an issue for this paper, since all the considered
metrics satisfy the ball-convex property. Thus, henceforth, whenever we consider a metric space (V, dV )
with V ⊆ R convex, we subsume also the ball-convex property for the metric dV (cf. [15]).

Clearly, if the pseudometric d is not bounded, its Kantorovich lifting cannot be bounded.

We can show that BV is monotone [15]. Then, as (D,�) is a complete lattice, by the Tarski theorem
BV has the least fixed point. Bisimulation metrics are the pseudometrics being prefixed points of BV and
the bisimilarity metric dλ,V is the least fixed point of BV and its kernel is probabilistic bisimilarity [15].

Definition 16 (Generalized bisimulation metric, [15]). A pseudometric d : S×S → [0,+∞] is a bisimulation
metric iff BV (d) � d. The least fixed point of BV is denoted by dλ,V and called the bisimilarity metric.

Example 11. The classic bisimilarity metric dλ, is defined in terms of the Kantorovich metric. Since we are
considering finitely supported distributions, one can prove that the Kantorovich-Rubinstein theorem can be
applied to the metric space (S,dλ,), and thus we can express the Kantorovich metric in its dual formulation,
namely the infimum over the matchings for the distributions. Such formulation of the Kantorovich metric
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Figure 4: The classic bisimilarity distance between s, t is dλ(s, t) = 1/2 · λ.

is known as the Wasserstein metric and stems from optimal transport analysis (reason for which it is also
known as the Earth mover’s distance). Given two distributions π, π′ a matching (or coupling, or weight
function) for π, π′ ∈ ∆(S) is a distribution over the product space w ∈ ∆(S × S) with π and π′ as left and
right marginal, namely: (i)

∑
t∈S w(s, t) = π(s), for all s ∈ S, and (ii)

∑
s∈S w(s, t) = π′(t), for all t ∈ S.

We let W(π, π′) denote the set of all matchings for π and π′. Then, given any pseudometric d on S, the
Kantorovich lifting of d to ∆(S) is defined as

K(d)(π, π′) = min
w∈W(π,π′)

∑
s,t∈S

w(s, t) · d(s, t)

for all π, π′ ∈ ∆(S). Consider processes s, t in Figure 4. We aim at evaluating dλ,(s, t). Notice that
dλ,(s1, t1) = dλ,(s3, t3) = dλ,(s4, t4) = 0 whereas, since s2 can perform both b and c, dλ,(s2, t2) =
dλ,(s2, t3) = 1. Let πs = 1/2δs2 + 1/2δs3 and πt = 1/2δt2 + 1/2δt3 , namely the distributions reached, re-
spectively, by s and t via the execution of the central a action. Then we have

dλ,(s, t) = λ ·max


K(dλ,)(δs1 , δt1)

K(dλ,)(πs, πt)

K(dλ,)(δs4 , δt4)

= λ · min
w∈W(πs,πt)

∑
s′,t′∈S

w(s′, t′) · dλ,(s′, t′)

= λ · (1/2 · dλ,(s2, t2) + 1/2 · dλ,(s3, t3))

= λ · 1/2.

Consider now the multiplicative variant of the Kantorovich metric introduced in Example 10 and let us
evaluate the multiplicative bisimilarity distance dλ,⊗ built on it, on the same processes s, t. Clearly, since
dλ,⊗(s2, t2) = dλ,⊗(s2, t3) = +∞, we obtain K⊗(πs, πt) = +∞ and thus dλ,⊗(s, t) = +∞.

6.3. Up-to k reasoning

We recall that on an image finite PTS, the bisimulation equivalence can be approximated by relations
that consider only the first k transition steps [3, 41].

Definition 17 (Up-to-k bisimulation). Assume an image finite PTS. The family of the up-to-k bisimulations
∼k, for k ∈ N, is inductively defined as follows:

1. ∼0= S × S;

2. s ∼k+1 t if

• whenever s
a−→ πs there is a transition t

a−→ πt such that πs ∼†k πt;

• whenever t
a−→ πt there is a transition s

a−→ πs such that πt ∼†k πs.

Finally, we define ∼ω=
⋂
k≥0 ∼k.

Proposition 5 ([41]). On image-finite PTSs, ∼ω coincides with ∼.
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Similarly, the bisimulation functional BV allows us to define a notion of distance between processes that
considers only the first k transition steps.

Definition 18 (Up-to-k bisimilarity metric). We define the up-to-k bisimilarity metric dkλ,V for k ∈ N by

dkλ,V = Bk
V (0).

Due to the continuity of the lifting functional KV we can infer that also the functional BV is continuous,
besides monotone, thus ensuring that the closure ordinal of BV is ω [55]. Hence, the up-to-k bisimilarity
metrics converge to the bisimilarity metric when k →∞.

Proposition 6. Assume an image-finite PTS such that for each transition s
a−→ π we have that the proba-

bility distribution π has finite support. Then dλ,V = limk→∞ dkλ,V .

Proof. The proof can be found in Appendix C.

7. The modal logic L

We introduce the modal logic L of [23], which extends HML [40] with a probabilistic choice modality
that allows us to express the behavior of probability distributions over processes.

Definition 19 (Modal logic L, [23]). The logic L = Ls ∪Ld is given by the classes of state formulae Ls and
distribution formulae Ld over A defined by:

Ls : ϕ ::= > | ¬ϕ |
∧
j∈J

ϕj | 〈a〉ψ Ld : ψ ::=
⊕
i∈I

riϕi

where: (i) ϕ ranges over Ls, (ii) ψ ranges over Ld, (iii) a ∈ A, (iv) J 6= ∅ is a countable set of indexes,
(v) I 6= ∅ is a finite set of indexes and (vi) ri ∈ (0, 1] for all i ∈ I and

∑
i∈I ri = 1.

We shall write ϕ1 ∧ϕ2 for
∧
j∈J ϕj with J = {1, 2}, and 〈a〉ϕ for 〈a〉

⊕
i∈I riϕi with I = {i}, ri = 1 and

ϕi = ϕ. We use > instead of
∧
∅ to improve readability.

Formulae are interpreted over a PTS. A distribution π satisfies the formula
⊕

i∈I riϕi if, for each i ∈ I,
π assigns probability (at least) ri to processes satisfying the formula ϕi. This is formalized by requiring
that π can be rewritten as a convex combination of distributions πi, using the ri as weights, such that all
the processes in supp(πi) satisfy the formula ϕi.

Definition 20 (Semantics of L, [23]). The satisfaction relation |=⊆ (S × Ls) ∪ (∆(S)× Ld) is defined by
structural induction on formulae in L by

• s |= > always;

• s |= ¬ϕ iff s |= ϕ does not hold;

• s |=
∧
j∈J

ϕj iff s |= ϕj for all j ∈ J ;

• s |= 〈a〉ψ iff s
a−→ π for a distribution π ∈ ∆(S) with π |= ψ,

• π |=
⊕
i∈I

riϕi iff π =
∑
i∈I

riπi for some distributions πi ∈ ∆(S) such that for all i ∈ I we have s |= ϕi

for all states s ∈ supp(πi).

We introduce the relation of L-equivalence over formulae in L, which identifies formulae that are indis-
tinguishable by their syntactic structure. Such an equivalence is obtained as the greatest fixed point of a
proper transformation E of relations on state formulae.
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Definition 21 ([11]). We define E : P(Ls×Ls) → P(Ls×Ls) as the functional such that for all relations
R ∈ P(Ls×Ls) we have that E(R ) is the greatest relation satisfying:

1. (ϕ,ϕ) ∈ E(R );

2. (ϕ′, ϕ) ∈ E(R ) iff (ϕ,ϕ′) ∈ E(R );

3. (¬ϕ1,¬ϕ2) ∈ E(R ) iff (ϕ1, ϕ2) ∈ E(R );

4. (
∧
j∈J

ϕj ,
∧

j∈(J\I)

ϕ′j) ∈ E(R ) for some I 6= ∅, I ⊂ J iff

• for each j ∈ J \ I we have (ϕj , ϕ
′
j) ∈ E(R ),

• for each i ∈ I we have (ϕi, ϕ
′
ji

) ∈ E(R ) for some ji ∈ J \ I;

5. (
∧
j∈J

ϕj ,
∧
i∈I

ϕi) ∈ E(R ) iff there is a bijection f : J → I with (ϕj , ϕf(j)) ∈ E(R ) for all j ∈ J ;

6. (〈a〉ψ, 〈a〉ψ′) ∈ E(R ) iff ψR† ψ′.

We briefly explain the six conditions in Definition 21: 1. Items 1 and 2 ensure, respectively, that E(R )
is a reflexive and symmetric relation. 2. Item 3 extends E(R ) to negation by stating that whenever ϕ1 and
ϕ2 are related be E(R ), then also their negations are related by E(R ). 3. Item 4 establishes the relation
among two formulae defined as conjunctions on the same set of formulae: it states that if we delete multiple
copies of the same formula or copies of formulae that are related to other formulae already occurring in
the conjunction, then we obtain a formula which is related by E(R ) to the original formula. For instance,
item 4 allows us to infer that (ϕ ∧ ϕ, ϕ) ∈ E(R ). 4. Item 5 establishes the relation among two formulae
defined as conjunctions on two different sets of fomulae:

∧
j∈J ϕj and

∧
i∈I ϕi are in E(R ) if and only if the

formulae ϕj and ϕi are in turn related by E(R ) two by two. 5. Item 6 states that whenever two distribution
formulae ψ,ψ′ are related by the (lifted) ground relation R then E(R ) relates any pair of equally labeled
diamond modalities having, respectively, ψ and ψ′ in the scope.

It is easy to check that the transformation E is monotone on the complete lattice (P(Ls×Ls),⊆) and
hence, by Tarski’s theorem, E has the greatest fixed point. We define the L-equivalence of formulae as such
a greatest fixed point.

Definition 22 (L-equivalence). The L-equivalence of formulae ≡L⊆ Ls×Ls is defined as

≡L= max{R ⊆ Ls×Ls | R ⊆ E(R )}.

7.1. The mimicking formulae

In [23] it was proved that the logic L is adequate for bisimilarity, i.e., two processes are bisimilar if
and only if they satisfy the same formulae in L. The drawback of this valuable result is that to verify the
equivalence we would need to test all the formulae definable in the logic, that is infinitely many formulae.
As an alternative, in [25] a characterization of bisimilarity was given in terms of characteristic formulae of
processes, i.e., particular formulae that alone capture the entire equivalence class of the related process [38]:
if φs is the characteristic formula of process s for bisimilarity, then s ∼ t if and only if t |= φs. This is the so
called expressive characterization of an equivalence and allows us to establish process equivalence by testing
a single formula. Unfortunately, also in this case there is a little drawback: to guarantee the possibility of
constructing the characteristic formulae we need a very rich logic. For instance, [25] uses the probabilistic
µ-calculus which, differently from L, allows for arbitrary formulae to occur after the diamond modality and
includes fixpoint operators.

Recently, [11–13] proposed a different technique for the characterization. When we compare the behavior
of two processes, we compare those properties that are observable for them with respect to the considered
semantics. The idea is to introduce a special formula, called mimicking formula, for each process expressing
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all and only its observable properties. In a broader sense, the mimicking formula of a process can be regarded
as its specification. [11–13] showed that semantic equivalence of processes holds if and only if their mimicking
formulae are syntactically equivalent (Theorem 4 below). Hence, to establish process equivalence we need to
compare only two formulae. Moreover, the logic on which the mimicking formulae are constructed is always
minimal with respect to the chosen semantics, i.e., it only includes the operators necessary to express the
observable properties with respect to that semantics.

Here, we recall the definition of mimicking formula and the weak expressive characterization of bisimilarity
from [11]. Mimicking formulae are defined inductively over the depth of formulae as up-to-k mimicking
formulae. Intuitively, the up-to-k mimicking formula of process s, denoted by ϕks , characterizes the branching
structure of the first k-steps of s by specifying which transitions are enabled for s as well as all the actions
that it cannot perform.

Definition 23 (Mimicking formula, [11]). For a process s ∈ S and k ∈ N, the up-to-k mimicking formula
of s, notation ϕks , is defined inductively by

ϕ0
s = >

ϕks =
∧

(s,a,π)∈→

〈a〉
⊕

t∈supp(π)

π(t)ϕk−1
t ∧

∧
b6∈init(s)

¬〈b〉>

Then, the mimicking formula of s, notation ϕs, is defined as ϕs = limk→∞ ϕks .

Example 12. Consider process s in Figure 4 and assume that A = {a, b, c}. We aim at constructing the
mimicking formula of s. We have

ϕnil = ¬〈a〉> ∧ ¬〈b〉> ∧ ¬〈c〉>
ϕs1 = 〈b〉ϕnil ∧ ¬〈a〉> ∧ ¬〈c〉>
ϕs2 = 〈b〉ϕnil ∧ 〈c〉ϕnil ∧ ¬〈a〉>
ϕs3 = 〈c〉ϕnil ∧ ¬〈a〉> ∧ ¬〈b〉>
ϕs4 = ϕs3

ϕs = 〈a〉ϕs1 ∧ 〈a〉(1/2ϕs2 ⊕ 1/2ϕs3) ∧ 〈a〉ϕs4 ∧ ¬〈b〉> ∧ ¬〈c〉>.

Mimicking formulae allow us to characterize probabilistic bisimilarity.

Theorem 4 ([11]). Given any s, t ∈ S we have that ϕs ≡L ϕt iff s ∼ t.

8. Logical characterization of generalized bisimulation metrics

In this section we exploit the relation between the semantic properties of a process and the syntactic
structure of its mimicking formula to provide a logical characterization of the family of bisimilarity metrics
introduced in Section 6.2. The idea follows that of [11, 12]:

(i) Firstly we transform the logic L into a family of metric spaces by defining a suitable syntactic distance
over formulae. Intuitively, since distribution formulae are defined as probability distributions over state
formulae, we can exploit the generalized Kantorovich metric to lift the distance over state formulae to
a distance over distribution formulae.

(ii) Then we lift these syntactic distances to a family of pseudometrics over processes, called logical dis-
tances. Briefly, the logical distance `λ,V between two processes is defined as the syntactic distance
between their mimicking formulae.

(iii) We show that the logical distance `λ,V coincides with the bisimilarity metric dλ,V (Theorem 6).
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The family of syntactic distances over formulae is defined inductively over the depth of formulae and
their structure.

Definition 24 (Up-to-k distance on L). Let λ ∈ (0, 1] and let (V, dV ) be a metric space with V ⊆ R convex.
For k ∈ N, the up-to-k distance on state formulae is the mapping dkλ,V : Ls×Ls → [0,+∞] defined by:

d0
λ,V (ϕ1, ϕ2) = 0 for all ϕ1, ϕ2 ∈ Ls

dkλ,V (ϕ1, ϕ2) =



0 if ϕ1 = >, ϕ2 = >
dkλ,V (ϕ′1, ϕ

′
2) if ϕ1 = ¬ϕ′1, ϕ2 = ¬ϕ′2

λ ·KV (dk−1
λ,V )(ψ1, ψ2) if ϕ1 = 〈a〉ψ1, ϕ2 = 〈a〉ψ2

H(dkλ,V )({ϕj}j∈J , {ϕi}i∈I) if ϕ1 =
∧
j∈J

ϕj , ϕ2 =
∧
i∈I

ϕi

�dV (V ) otherwise.

Clearly, the mapping dkλ,V is a pseudometric and it is bounded whenever KV is bounded. The discount
factor λ ∈ (0, 1] allows us to specify how much the distance between state formulae at the same depth is
taken into account. For this reason, the discount factor λ is introduced in the evaluation of the distance
between equally labeled diamond modalities.

We define the family of syntactic distances over formulae, denoted by dλ,V , as the limit of their up-to-k
distances, whose existence is guaranteed by the following two results.

Lemma 2. For each k ∈ N and for all ϕ,ϕ′ ∈ Ls, dk+1
λ,V (ϕ,ϕ′) ≥ dkλ,V (ϕ,ϕ′).

Proof. The proof can be found in Appendix D.

Proposition 7. The mapping dλ,V : Ls×Ls → [0,+∞] defined, for all ϕ,ϕ′ ∈ Ls, by dλ,V (ϕ,ϕ′) =
limk→∞ dkλ,V (ϕ,ϕ′) is well-defined.

Proof. The proof can be found in Appendix D.

For a complete presentation of our generalized syntactic distances over L, we remark that each of them
is a pseudometric whose kernel is L-equivalence. However, the proof of the latter property requires an
additional restriction on the metric space (V, dV ) on which the distance is built: we need that (V, dV ) has
a geodesic, which can be informally seen as the shortest path between two points in a curved space. Notice
that such requirement is the same imposed in [15] to obtain that the kernel of any generalized bisimilarity
metric is ∼, and thus it does not compromise the relevance of our results.

Proposition 8. If (V, dV ) has a geodesic, then ≡L= ker(dλ,V ).

Proof. The proof can be found in Appendix D.

We are now ready to lift each metric on L to a metric on S. To this end, we exploit the close relation
between processes and their own mimicking formulae.

Definition 25 (Logical distance). For any k ∈ N, the up-to-k logical distance `kλ,V : S × S → [0,+∞] over

processes is defined for all s, t ∈ S by `kλ,V (s, t) = dkλ,V (ϕks , ϕ
k
t ). Then, the logical distance `λ : S×S → [0,+∞]

over processes is defined, for all s, t ∈ S by

`λ,V (s, t) = dλ,V (ϕs, ϕt).

The next Theorem gives us the logical characterization of the up-to-k generalized bisimilarity metrics in
terms of the up-to-k logical distances over processes.

Theorem 5. Let λ ∈ (0, 1]. For any s, t ∈ S and k ∈ N we have `kλ,V (s, t) = dkλ,V (s, t).
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Proof. The proof is by induction on k ∈ N and can be found in Appendix D.

From the characterization of the up-to-k metrics, we can derive the logical characterization of generalized
bisimilarity metric.

Theorem 6. Let λ ∈ (0, 1]. For any s, t ∈ S we have `λ,V (s, t) = dλ,V (s, t).

Proof. Let us prove now that
`λ,V (s, t) = dλ,V (s, t). (2)

We have

`λ,V (s, t)

= dλ,V (ϕs, ϕt) (by definition of `λ,V (Definition 25))

= lim
k→∞

dkλ,V (ϕks , ϕ
k
t ) (by def. of dλ,V (Definition 7) and def. of ϕs (Definition 23))

= lim
k→∞

dkλ,V (s, t) (by Theorem 5)

= dλ,V (s, t) (by Proposition 6).

which gives Equation 2 and concludes the proof.

9. A logical bound on dX -privacy: the logical distance

We exploit the multiplicative variant of the logical distance over processes to obtain a logical bound on
dX -privacy. In detail, we model randomized mechanisms as LMCs and then:

(i) We show that the multiplicative variant of the logical distance on the states of the LMC is an upper
bound to the multiplicative total variation distance on the probability measures over traces induced
by them.

(ii) We rephrase the dX -privacy property as an upper bound on the logical distance between states corre-
sponding to the considered secrets.

We remark that since we will use traces as a mere representation of the information on secrets, the actual
length of the trace should play no role in the evaluation of the distances. More precisely, the depth of the
mimicking formula of the process that induces those traces in the LMC should not interfere in the evaluation
of the distance as we are not interested in keeping track of the number of computation steps performed by
a process, but, rather, in the possibility of executing them and the related execution probability. Hence, in
the remaining of this section we assume the discount factor λ = 1 and we omit it.

As shown in [15], we can express the multiplicative total variation distance in terms of the multiplicative
variant of the Kantorovich lifting K⊗ of the discrete metric over traces. More precisely, we let dm�V be the
�dV (V )-valued discrete metric over A? which is defined as dm�V (α, α′) = 0 if α = α′ and dm�V (α, α′) =
�dV (V ) otherwise. Then let K⊗ be the multiplicative variant of the Kantorovich lifting introduced in
Example 10. In [15] it has been proved that for �d⊗([0, 1]) = +∞ it holds tv⊗ = K⊗(dm�⊗). Hence, from
dλ,⊗ ≥ K⊗(dm�⊗) (cf. [15]) and Theorem 6 we obtain the following result.

Proposition 9. Assume a LMC and let s, t be two processes in it. Let πs = Pr(s, ·) and πt = Pr(t, ·). Then
tv⊗(πs, πt) ≤ `⊗(s, t).

Proof. The proof can be found in Appendix E.

We remark that Proposition 2, Theorem 6 and Proposition 9 imply that dT⊗ � d⊗.
We can then restate Definition 5 in terms of an upper bound on the multiplicative logical distance, thus

obtaining the logical bound on dX -privacy.
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Theorem 7 (Logical bound on dX -privacy). Let M be a randomized mechanism defined by M(x)(α) =
Pr(sx, α) for all x ∈ X , α ∈ A?. Then, given ε > 0, M is ε · dX -private if

`⊗(sx, sx′) ≤ ε · dX (x,x′) ∀ x,x′ ∈ X .

Proof. In [15, Theorem 3] it was proved that M is ε-differentially private if dλ,⊗(sx, sx′) ≤ ε for all adjacent
q, q′. Thus, the proof follows by this result and our characterization Theorem 6.

The following example illustrates a case of standard differential privacy.

Example 13. We recall that we are using an alternative notion of privacy in which all the databases have
the same number of records n, and where the absence of a record is represented by a special value. Consider
two medical databases x and x′, both of size n, and assume that they are adjacent, i.e. that they differ only
for one individual record. Assume that we ask a counting query of the form a =“How many people in the
database have the disease da?”. Assume that, to sanitize the answer, we use a geometric mechanism [35],
namely a probabilistic function that reports as answer the integer j with a probability distribution of the
form pa(j) = c e−|i−j|ε, where i is the true answer, ε is the desired privacy level, and c is a normalization
factor. In order to obtain a finite support, we can truncate the mechanism in the interval [0, n], namely
accumulate on 0 all the probability mass of the interval (−∞, 0], and on n all the probability mass of the
interval [n,+∞). It is well known that the resulting mechanism is ε-differentially private. Consider now a
new counting query of the form b =“How many people in the database have the disease db ?”, and again,
assume that the answer is sanitized by a truncated geometric mechanism of the same form, with probability
distribution pb.

From the differential privacy literature we know that the combination of both mechanisms, in which
the second query is asked after having obtained the answer from the first one, is 2ε-differentially private.
However, we can obtain a better bound by looking at the various situations. To this purpose, let us consider
the systems s and s′ corresponding to the two databases x and x′ respectively, and let pa, pb, p

′
a and p′b the

probability distributions for the queries a and b in x and x′ respectively. We can completely describe them
by the mimicking formulae (which in this case are also characteristic formulae) ϕ and ϕ′ defined as (for
simplicity we omit the negative parts and the probabilities when they are 1):

ϕs = 〈a〉
⊕
j∈[0,n]

pa(j)〈j〉〈b〉
⊕

m∈[0,n]

pb(m)〈m〉>

ϕs′ = 〈a〉
⊕
j∈[0,n]

p′a(j)〈j〉〈b〉
⊕

m∈[0,n]

p′b(m)〈m〉>

Consider now the four scenarios obtained by combining the various cases that the individual corresponding
to the new record in x′ has or does not have the diseases da and db.

• If he does not have either of them, then pa coincides with p′a and pb coincides with p′b, which means that
the distance between ϕs and ϕs′ is 0: the two systems are indistinguishable (0-differentially private).

• If he has da but not db, or vice versa, then either pa coincides p′a and the ratio between pb and p′b is
bound by ε, or vice versa. The distance between ϕs and ϕs′ is ε: the two systems are ε-differentially
private.

• If he has both da and db, then the ratio between pa and p′a, and that between pb and p′b, are bound by
ε. The distance between ϕs and ϕs′ is 2ε: the two systems are 2ε-differentially private.
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10. Related work and extensions

In this section we discuss related work and possible extensions of our results. In particular, we compare
the expressive power of the modal logic L to that of PHML [46], a probabilistic variant of HML usually
used in the literature to provide the characterization of probabilistic bisimilarity. We show that L is more
expressive thus assessing its choice in our characterization technique. Moreover, we consider the problem of
adding recursion to our framework. We argue that this extension would be made possible by exploiting the
equational µ-calculus approach [1, 45, 51].

10.1. Related work

First of all we remark that, as already mentioned, this paper builds on the work of [11, 15]. The main
novelty is in that we develop a technique for characterizing privacy properties, and that we deal with dX -
privacy rather than DP. We stress that ours are the first proposal of a logical characterization of dX -privacy
and weak anonymity.

We can, however, find logical formulations of the verification tools for DP properties [4–6] mainly based
on Hoare like logics and the tools and theorem provers constructed for them. In particular, such formulations
are based on apRHL (approximated probabilistic relational Hoare logic) a relational logic designed to support
differentially private computations. By means of apRHL the authors were able to verify and provide accurate
bounds on the (ε, δ)-differential privacy of some randomized mechanisms. Interestingly, in [5] apRHL is
combined with probabilistic coupling techniques to obtain novel techniques for privacy verification.

Moreover, prominent approaches to the verification of DP that are based on type systems have been
proposed [34, 50].

To obtain our characterization we have exploited a reformulation of dX -privacy in terms of the bisimu-
lation metrics defined via the multiplicative Kantorovich lifting.

In the recent paper [17] the problem of verifying differential privacy in concurrent systems was considered.
More precisely, the authors considered (ε, δ)-DP, and, assuming ε known, they established a bound on δ by
computing a bisimilarity metric based on the (standard) Kantorovich distance, and provided an analysis of
the complexity.

Earlier papers [54, 57] also defined bisimulation metrics suitable for proving DP. Briefly, in [54] the authors
consider the model of probabilistic I/O automata on which they use a notion of differential noninterference
to sanitize data. The level of privacy is measured via the notions of δ-approximated lifting and ε-unwinding
relation. The former allows for lifting a relation over the states of the automaton to probability distributions
over them. The latter extends the concept of unwinding relation usually used for noninterference [37] to a
sound relation for DP.

In [57], by using notions of approximated lifting inspired by that in [54], two behavioral metrics are
presented and shown to preserve differential privacy properties on probabilistic automata: the accumulative
pseudometric and the amortized pseudometric. Although the kernels of both metrics induce a sort of ε-
bisimulation equivalence on the states of automata, they both suffer from the fact that such relations do not
fully characterize probabilistic bisimilarity.

10.2. The expressive power of L
In the seminal work [46], probabilistic bisimilarity was defined as the equivalence resulting from testing

processes on modal formulae in PHML, namely HML equipped with a quantitative version of the diamond
operator 〈·〉r. Briefly, a process s satisfies the formula 〈a〉rφ if and only if there a distribution π such that

s
a−→ π and π({s′ | s′ |= φ}) ≥ r. Basically, the formula 〈a〉rφ imposes a lower bound r on the total

probability of a process to evolve into a process satisfying φ via the execution of action a. The same logic
was then equipped with a real-valued semantics and used in [27] to define the bisimilarity metric.

The reason why we decided to use the modal logic L in place of PHML is to be found in its expressive
power. We can easily prove that L is more expressive than PHML, in he sense that all formulae in PHML
can be expressed by formulae in L, but the converse is not true. As the difference in the two classes of
formulae is in the diamond operator, we only outline this case.
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Figure 5: Processes s, t show that L is more expressive than PHML.

Given any formula PHLM φ, we let φL denote the rewriting of φ as a formula in L. Symmetrically, for
any formula ϕ ∈ L, we let ϕPHML denote the rewriting of φ as a formula in PHML. Then, one can easily
prove that, given any process s ∈ S, any formula φ in PHML and any state formula ϕ ∈ Ls:

1. s |= 〈a〉rφ if and only if s |= 〈a〉[rφL ⊕ (1− r)>];

2. s |= 〈a〉
⊕

i∈I riϕi implies s |=
∧
i∈I〈a〉riϕPHML

i ;

3. s |=
∧
i∈I〈a〉riϕPHML

i does not imply s |= 〈a〉
⊕

i∈I riϕi.

The first two items are immediate. To give more insights into the third item, consider process t in Fig-
ure 5. Clearly, we have that t |= 〈a〉1/2〈b〉0>∧〈a〉1/2〈c〉0> since process t2 satisfies both 〈b〉0> and 〈c〉0> and
can thus contribute to reach the required probability bound in both formulae in the conjunction. However,
we have t 6|= 〈a〉(1/2〈b〉>⊕ 1/2〈c〉>). In fact, process t2 still satisfies both formulae 〈b〉> and 〈c〉> but its the
probability weight, which is 1/4, can either be used to reach the required probability on only one of the two
formulae in the ⊕, or it can be split between them. In the former case only half of the probabilistic choice
is satisfied; whereas in the latter no part of the formula is satisfied.

Interestingly, this difference leads to a more consistent disparity in the expressiveness of the two classes
of formulae. In fact, we have that L without negation characterizes probabilistic simulation, namely the
asymmetric version of probabilistic bisimulation, whereas PHML without negation is not powerful enough
to do so and we must add the disjunction modality to obtain such a characterization [26].

To see this, consider processes s, t in Figure 5. We have that neither s is simulated by t nor vice versa.
Accordingly, the two processes are distinguished by the L-formula 〈a〉(1/2〈b〉> ⊕ 1/2〈c〉>) which is satisfied
by s but not by t, as discussed above. However, no formula in PHML can distinguish s from t. In particular,
we notice that both processes satisfy the PHML-formula 〈a〉1/2〈b〉0> ∧ 〈a〉1/2〈c〉0>.

10.3. How to treat recursion

We would like to stress that our characterization technique can be applied alto to processes with recursion.
We could in fact apply the equational µ-calculus approach of [45] (later generalized in [1, 51]) which allows
us to define the fixed point semantics of formulae without introducing the fix-point operators in the syntax
of formulae. As one can expect, this is a great advantage from the point of view of our characterization
technique based on a syntactic distance on formulae. Since the development of the equational µ-calculus
in our setting would be technically involved, we decided not to present it in this paper, thus favoring a
simplified presentation of the characterization technique and of its application to privacy. Still, for sake of
the interested reader, we dedicate this paragraph to a brief description of how recursion could be dealt with.
We refer the interested reader to [13] for a detailed presentation of the following technique.

First of all we notice that even in the case of processes with recursion we would still require 1. the image-
finiteness hypothesis, since without it defining probabilistic bisimilarity as the limit of its approximations
would not be possible [41] and 2. the use of finitely supported probability distributions, in order to guarantee
the continuity of the bisimulation metric functional (cf. Section 6.3). Then, we can focus on bisimulation
semantics and the equational µ-calculus approach. In detail, we extend the logic L to a modal S-indexed
logic by adding the S-indexed family of variables {Xs | s ∈ S}. Intuitively, these variables allow for a
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recursive specification of modal properties. Then, an appropriate interpretation (called model in [45]) to
each variable is provided as the solution of a system of equations obtained by means of an endodeclaration,
which is a function E mapping variables to formulae of the logic. More specifically, E allows us to implicitly
define a system of equations

γ(X) = JE(X) Kγ (3)

whose solution will correspond to the proper variable interpretation for the formula: an interpretation γ is
a solution for the system (3) if the semantics of X under γ corresponds to the interpretation of the formula
E(X) assigned to X by E . As solution of the system we consider the variable interpretation corresponding
to the greatest fixed point of the system. We remark that also the notion of equivalence of formulae, which
is a syntactic equivalence, would depend on the endoclaration E , and thus be defined as the fixed-point of a
proper Scott-continuous functional FE . Finally, we assign to each process s the related mimicking formula
ϕs defined as E(Xs). Once we have obtained the mimicking formulae, we can easily regain all the results of
this paper.

11. Conclusions

We have provided a logical characterization of privacy properties based on behavioral metrics. The un-
derlying idea is quite simple: (i) We consider a boolean modal logic powerful enough to express the desired
semantics; (ii) We define a syntactic distance over the formulae in the chosen logic; (iii) We express the dif-
ferences in the behavior of processes in terms of such distance. We have shown that this technique applied
in the case of trace semantics on LMCs results in a logical characterization of dX -privacy. Moreover, we
have also shown how it is possible to define a real-valued semantics for formulae starting from the syntactic
distance on them and we have exploited this result to obtain a logical characterization of weak probabilistic
anonymity. Then we have switched to bisimulation semantics and we have provided a logical characterization
of generalized bisimulation metrics. Beside the syntactic distance on formulae, this characterization is based
on the notion of mimicking formula of a process, namely a special formula that captures the observable
behavior of that process. We have shown that from the characterization of generalized bisimulation metrics
we can obtain bounds on dX -privacy properties.

As future work, we will further investigate the relation between the distance on formulae and real-valued
semantics on richer classes of formulae, by providing a thorough comparison with the real-valued semantics
proposed in [27, 28] for the characterization of bisimulation semantics.

Moreover, we aim at using the metrics and logical properties explored in this paper to reason about
privacy in concurrent systems. This will require to deal with nondeterminism, which is already considered
in the present paper, but probably we will need to reason explicitly about the scheduler and to restrict its
capabilities, in order to avoid the problem of the “omniscient scheduler”, which could break any privacy
defense.

It would also be interesting to apply our characterization method to notions of DP which are not related
to the semantics of LMCs. For instance, we could consider the cases of Rényi DP (RDP) [48] and Gaussian
DP (GDP) [29]. These notions of DP are based on a comparison of the outputs of randomized mechanisms
obtained, respectively, via a Kullback-Leibler-like distance, for RDP, and a trade-off function, for GDP.
Despite there is no relation between these and the semantics of LMCs, we strongly believe that our technique
could also be applied to them. The idea behind their characterization would be the same: find a class of
modal formulae which allows for expressing the desired properties, and then define a suitable metric over
that class.

Finally, we aim at developing quantitative analysis techniques and tools for proving privacy properties. In
particular, it could be interesting to write an algorithm for the evaluation of (approximated) weak anonymity
based on our characterization of it in terms of a total variation distance on the values of formulae and the
results in [43] on the complexity of evaluating (approximated) total variation distances on Markov processes.
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Appendix A. Proofs of results in Section 4

Proof of Theorem 1. The implication L(s) = L(t) ⇒ s ∼Tr t can be proved by an easy induction over
the structure of formulae in L.

For s ∼Tr t⇒ L(s) = L(t), we have

s ∼Tr t iff ∀α ∈ A? : Pr(s, α) = Pr(t, α)

iff ∀Φ ∈ Ll : Pr(s,Tr(Φ)) = Pr(t,Tr(Φ))

iff ∀Φ ∈ Ll : Pr(s,Tr(Φ))Φ ∈ L(s)⇔ Pr(s,Tr(Φ))Φ ∈ L(t)

iff L(s) = L(t).

Proof of Proposition 1. The proof follows by noticing that since dp
D is a metric over Lp and L(s) and

L(t) are closed sets wrt. the topology induced by it, then H(dp
D)(L(s),L(t)) = 0 if and only if L(s) = L(t).

Proof of Proposition 2. In what follows, for each α ∈ A?, let Φα denote the only formula in Ll such that
Tr(Φα) = α. We have

dT⊗(s, t)

= H(dp
⊗)(L(s),L(t))

= max

{
sup

Ψs∈L(s)

inf
Ψt∈L(t)

dp
⊗(Ψs,Ψt); sup

Ψt∈L(t)

inf
Ψs∈L(s)

dp
⊗(Ψs,Ψt)

}
= sup

Ψs∈L(s)

inf
Ψt∈L(t)

dp
⊗(Ψs,Ψt) (assume wlog.)

= sup
Φα∈Ll

inf
Φβ∈Ll

dp
⊗(Pr(s, α)Φα,Pr(t, β)Φβ) (by def. of Lp)

= sup
α∈A?

dp
⊗(Pr(s, α)Φα,Pr(t, α)Φα) (dp

⊗ ≤ �⊗([0, 1]))

= sup
α∈A?

| ln(Pr(s, α))− ln(Pr(t, α))| (by def. of dp
⊗)

= tv⊗(µs, µt) (by def. of tv⊗, µs, µt).

Appendix B. Proofs of results in Section 5

Proof of Proposition 3. Firstly we show that

H(DD)(L1, L2) ≤ sup
φ∈L
| inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)|. (B.1)

We can assume wlog. that H(DD)(L1, L2) = supφ1∈L1
infφ2∈L2 DD(φ1, φ2). Then

sup
φ1∈L1

inf
φ2∈L2

DD(φ1, φ2) = sup
φ1∈L1

| inf
φ2∈L2

DD(φ1, φ2)− inf
φ′∈L1

DD(φ1, φ
′)|

≤ sup
φ∈L
| inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)|

from which Equation (B.1) holds.
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Next, we aim to show the converse inequality, namely

H(DD)(L1, L2) ≥ sup
φ∈L
| inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)|. (B.2)

To this aim, we show that

for each φ ∈ L it holds | inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)| ≤ H(DD)(L1, L2). (B.3)

• Assume that φ ∈ L1. Then infφ1∈L1
DD(φ, φ1) = 0 so that | infφ1∈L1

DD(φ, φ1)−infφ2∈L2
DD(φ, φ2)| =

infφ2∈L2
DD(φ, φ2). Moreover

inf
φ2∈L2

DD(φ, φ2) ≤ sup
φ1∈L1

inf
φ2∈L2

DD(φ1, φ2) ≤ H(DD)(L1, L2)

and Equation (B.3) follows in this case.

• The case of φ ∈ L2 is analogous and therefore Equation (B.3) follows also in this case.

• Finally, assume that φ 6∈ L1∪L2. Without loss of generality, we can assume that infφ1∈L1 DD(φ, φ1) ≥
infφ2∈L2 DD(φ, φ2). Moreover, we recall that by definition of infimum it holds that for each ε > 0
there exists a formula φε ∈ L2 such that

DD(φ, φε) < inf
φ2∈L2

DD(φ, φ2) + ε. (B.4)

Analogously, for each ε′ > 0 and for each φ2 ∈ L2 there is a φε′ ∈ L1 such that

DD(φ2, φε′) < inf
φ1∈L1

DD(φ2, φ1) + ε′. (B.5)

Let us fix ε, ε′ > 0. Then let φε ∈ L2 be the formula realizing Equation (B.4), with respect to φ, and
let φ̃ε′ be the formula in L1 realizing Equation (B.4), with respect to this φε. Therefore, we have

| inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)|

= inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)

< inf
φ1∈L1

DD(φ, φ1)−DD(φ, φε) + ε (by Equation (B.4))

<DD(φ, φ̃ε′)−DD(φ, φε) + ε

≤DD(φ, φε) +DD(φε, φ̃ε′)−DD(φ, φε) + ε (by triangle inequality)

=DD(φε, φ̃ε′) + ε

< inf
φ1∈L1

DD(φε, φ1) + ε′ + ε (by Equation (B.5))

≤ sup
φ2∈L2

inf
φ1∈L1

DD(φ2, φ1) + ε′ + ε

≤H(DD)(L1, L2) + ε′ + ε.

Summarizing, we have obtained that

| inf
φ1∈L1

DD(φ, φ1)− inf
φ2∈L2

DD(φ, φ2)| < H(DD)(L1, L2) + ε′ + ε

and since this inequality holds for each ε and ε′, we can conclude that Equation (B.3) follows also in
this case.
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Equation (B.1) and Equation (B.2) taken together prove the thesis.

Proof of Lemma 1. Immediate from Definition 10, Definition 11 and Proposition 3.

Proof of Proposition 4. We expand only the case of the additive total variation distance. The general
case can be obtained by proving the two inequalities separately.

Since in this case �D([0, 1]) = 1, we have

sup
Φ∈Ll

|JΦK(s)− JΦK(t)| = sup
Φ∈Ll

∣∣∣∣ inf
Ψs∈L(s)

dp(Φ,Ψs)− inf
Ψt∈L(t)

dp(Φ,Ψt)

∣∣∣∣
= sup

α∈A?

∣∣∣∣ inf
Ψs∈L(s)

dp(Φα,Ψs)− inf
Ψt∈L(t)

dp(Φα,Ψt)

∣∣∣∣
= sup

α∈A?
|dp(Φα,Pr(s, α)Φα)− dp(Φα,Pr(t, α)Φα)|

= sup
α∈A?

| |1− Pr(s, α)| − |1− Pr(t, α)| |

= sup
α∈A?

|Pr(s, α)− Pr(t, α)|

= tv(µs, µt)

where:

• the second step follows by letting Φα be the formula in Ll s.t. Tr(Φα) = α;

• the third step follows by definition of dp and the fact that |r1 − r2| ≤ 1 for all r1, r2 ∈ [0, 1];

• the sixth step follows by definition of tv.

Appendix C. Proofs of results in Section 6

Proof of Proposition 6. First of all we notice that the up-to-k bisimilarity metrics constitute an ascending
chain of BV

B(0) � B2(0) � · · · � Bn(0) � . . .

Moreover, since we are considering image-finite processes and distributions with finite support, functional
BV is monotone, continuous and its closure ordinal is ω. Thus we can infer that limk→∞ dkλ,V = dωλ,V =

supk∈N Bk
V (0) and that dωλ,V is a fixed point of BV . By an easy induction over k ∈ N, we can prove that

dλ,V ≥ dkλ,V for all k ∈ N. In particular dλ,V ≥ dωλ,V . Hence, by uniqueness of the least fixed point, we can
conclude that dωλ,V = dλ,V .

Appendix D. Proofs of the results in Section 8

Proof of Lemma 2. The proof follows by induction over k ∈ N and over the structure of formulae combined
with the monotonicity of the generalized Kantorovich lifting proved in [15].

Proof of Proposition 7. Assume any ϕ,ϕ′ ∈ Ls. By Lemma 2 we have dkλ,V (ϕ,ϕ′) ≤ dk+1
λ,V (ϕ,ϕ′) and

moreover, since we are in the hypothesis of Remark 1, dkλ,V is bounded for each k ∈ N. Hence (dkλ,V (ϕ,ϕ′))k∈N
is a bounded non decreasing sequence of pseudometrics. This ensures that limk→∞ dkλ,V (ϕ,ϕ′) exists. We
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conclude that dλ,V is well-defined.

Proof of Proposition 8. The proof of the inclusion ≡L⊆ ker(dλ,V ) follows by induction over the structure
of formulae. The only interesting case, that we expand here, is the inductive step related to the diamond
modality. So, let ϕ = 〈a〉ψ. Then, by Definition 22, ϕ′ ≡L ϕ only if ϕ′ =

∧
j∈J〈a〉ψj with ψj ≡L† ψ for all

j ∈ J . For simplicity, we consider the case of |J | = 1. The case of |J | > 1 follows as an easy generalization.
Let ϕ′ = 〈a〉ψ′ with ψ′ ≡L† ψ. Consequently, if we assume ψ =

⊕
i∈I riϕi, by Definition 12 we get that ψ′

is of the form ψ′ =
⊕

i∈I riϕ
′
i with ϕ′i ≡L ϕi for all i ∈ I. Then we have

dλ,V (ϕ,ϕ′)

= dλ,V (〈a〉ψ, 〈a〉ψ′)
= λ ·KV (dλ,V )(ψ,ψ′)

= λ · sup
f
dV (

∑
i∈I

rif(ϕi),
∑
i∈I

rif(ϕ′i)) subject to dV (f(ϕi), f(ϕ′i)) ≤ dλ,V (ϕi, ϕ
′
i) ∀ i ∈ I

= λ · sup
f
dV (

∑
i∈I

rif(ϕi),
∑
i∈I

rif(ϕ′i)) subject to dV (f(ϕi), f(ϕ′i)) ≤ 0 ∀ i ∈ I

= λ · sup
f
dV (

∑
i∈I

rif(ϕi),
∑
i∈I

rif(ϕ′i)) subject to f(ϕi) = f(ϕ′i) ∀ i ∈ I

= 0

where:

• the third step follows by the evaluation of the Kantorovich metric in terms of the equivalent linear
program;

• the forth step follows by the inductive hypothesis, for which ϕi ≡L ϕ′i implies dλ,V (ϕi, ϕ
′
i) = 0 for all

i ∈ I;

• the fifth and sixth steps follow by dV being a metric.

The proof of the opposite inclusion ker(dλ,V ) ⊆≡L follows from the same arguments used in the technical
report version of [15] to prove that the kernel of each bisimulation metric is a bisimulation [15, Proposition
4]. Thus, we just sketch here the main reasoning and we refer the interested reader to [15] for a detailed
proof.

Our purpose is to prove that ker(dλ,V ) is a post-fixed point of the functional E introduced in Defini-
tion 21. To this aim, we need first to ensure that the lifting of the kernel of dλ,V to a relation over distribution
formulae coincides with the kernel of the generalized Kantorovich metric KV , that we use to evaluate the
distance over formulae in Ld. This result corresponds to [15, Lemma 1] and it holds under the requirement
of (V, dV ) having a geodesic. This is to guarantee that in V there are no isolated points that can cause the
distance dV (and thus KV ) to explode. Having this preliminary result, we can proceed by induction over
the structure of formulae to prove that ker(dλ,V ) ⊆ E(ker(dλ,V )). The non-trivial inductive step of the
diamond modality will follow by ker(dλ,V )† = ker(KV (dλ,V )).

Proof of Theorem 5. We aim at proving that

`kλ,V (s, t) = dkλ,V (s, t) for all k ∈ N and for all s, t ∈ S (D.1)

To this end, we proceed by induction over k. Consider the base case k = 0. We have

d0
λ,V (s, t)

= 0 (by definition of d0
λ,V )

= d0
λ,V (>,>) (by definition of d0

λ,V )
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= d0
λ,V (ϕ0

s, ϕ
0
t ) (by definition of ϕ0

s, ϕ
0
t )

= `0λ,V (s, t) (by definition of `0λ,V ).

Consider the inductive step k > 0. By the inductive hypothesis, for all s′, t′ ∈ S it holds that `kλ,V (s′, t′) =

dkλ,V (s′, t′). Given any process s, we define

φks =
∧

(s,a,π)∈→

〈a〉ψkπ and θs =
∧

b 6∈init(s)

¬〈b〉>

so that the up-to-(k+1) mimicking formula of s can be rewritten as

ϕk+1
s = φks ∧ θs.

Hence, for any pair of processes s, t ∈ S we have

`k+1
λ,V (s, t)

= dk+1
λ,V (ϕk+1

s , ϕk+1
t )

= dk+1
λ,V (φks ∧ θs, φkt ∧ θt)

= max


sup

{
inf{dk+1

λ,V (φks , φ
k
t ), dk+1

λ,V (φks , θt)}
inf{dk+1

λ,V (θs, φ
k
t ), dk+1

λ,V (θs, θt)}

}
,

sup

{
inf{dk+1

λ,V (φks , φ
k
t ), dk+1

λ,V (θs, φ
k
t )}

inf{dk+1
λ,V (φks , θt), d

k+1
λ,V (θs, θt)}

}


= max


sup

{
inf{dk+1

λ,V (φks , φ
k
t ),�dV (V )}

inf{�dV (V ), dk+1
λ,V (θs, θt)}

}
,

sup

{
inf{dk+1

λ,V (φks , φ
k
t ),�dV (V )}

inf{�dV (V ), dk+1
λ,V (θs, θt)}

}


= max{dk+1
λ,V (φks , φ

k
t ), dk+1

λ,V (θs, θt)}

where the second last equality follows by

dk+1
λ,V (φks , θt)

= dk+1
λ,V (

∧
(s,a,π)∈→

〈a〉ψkπ,
∧

b6∈init(t)

¬〈b〉>)

= max


sup

(s,a,π)∈→
inf

b 6∈init(t)
dk+1
λ,V (〈a〉ψkπ,¬〈b〉>),

sup
b 6∈init(t)

inf
(s,a,π)∈→

dk+1
λ,V (〈a〉ψkπ,¬〈b〉>)


= max

{
sup

(s,a,π)∈→
inf

b6∈init(t)
{�dV (V )}, sup

b 6∈init(t)

inf
(s,a,π)∈→

{�dV (V )}
}

= �dV (V )

and, analogously, dk+1
λ,V (θs, φ

k
t ) = �dV (V ).

Summarizing, Equation D.1 becomes

dk+1
λ,V (s, t) = max{dk+1

λ,V (φks , φ
k
t ), dk+1

λ,V (θs, θt)}. (D.2)
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To show Equation D.2 we distinguish two cases: either init(s) 6= init(t) or init(s) = init(t). Let us

start with the case init(s) 6= init(t). Without loss of generality, assume that there is some action b̂ with

b̂ ∈ init(s) \ init(t). The case b̂ ∈ init(t) \ init(s) is analogous. Under this assumption, we have

dk+1
λ,V (θs, θt)

= max{ sup
b6∈init(s)

inf
b′ 6∈init(t)

dk+1
λ,V (¬〈b〉>,¬〈b′〉>), sup

b′ 6∈init(t)

inf
b 6∈init(s)

dk+1
λ,V (¬〈b〉>,¬〈b′〉>)}

≥ max{ sup
b6∈init(s)

inf
b′ 6∈init(t)

dk+1
λ,V (¬〈b〉>,¬〈b′〉>), inf

b6∈init(s)
dk+1
λ,V (¬〈b〉>,¬〈b̂〉>)}

= max{ sup
b6∈init(s)

inf
b′ 6∈init(t)

dk+1
λ,V (¬〈b〉>,¬〈b′〉>),�dV (V )}

= �dV (V )

where the second last equality follows from t
b̂−→6 whereas s

b̂−→6 does not hold. Thus Equation D.2 instantiates
as

dk+1
λ,V (s, t) = max{dk+1

λ,V (φks , φ
k
t ), dk+1

λ,V (θs, θt)} = max{dk+1
λ,V (φks , φ

k
t ),�dV (V )} = �dV (V )

which holds by init(s) 6= init(t).
The second case is init(s) = init(t). We prove first that dk+1

λ,V (θs, θt) = 0. We have

dk+1
λ,V (θs, θt)

= max{ sup
b6∈init(s)

inf
b′ 6∈init(t)

dk+1
λ,V (¬〈b〉>,¬〈b′〉>), sup

b′ 6∈init(t)

inf
b 6∈init(s)

dk+1
λ,V (¬〈b〉>,¬〈b′〉>)}

≤max{ sup
b6∈init(s)

dk+1
λ,V (¬〈b〉>,¬〈b〉>), sup

b′ 6∈init(t)

dk+1
λ,V (¬〈b′〉>,¬〈b′〉>)}

= max{ sup
b6∈init(s)

0, sup
b′ 6∈init(t)

0}

= 0.

Therefore, Equation D.2 becomes
dk+1
λ,V (s, t) = dk+1

λ,V (φks , φ
k
t ) (D.3)

which follows by

dk+1
λ,V (φks , φ

k
t )

= dk+1
λ,V (

∧
(s,a,πs)∈→

〈a〉ψkπs ,
∧

(t,a,πt)∈→

〈a′〉ψkπt)

= max


sup

(s,a,πs)∈→
inf

(t,a,πt)∈→
dk+1
λ,V (〈a〉ψkπs , 〈a

′〉ψkπt),

sup
(t,a,πt)∈→

inf
(s,a,πs)∈→

dk+1
λ,V (〈a〉ψkπs , 〈a

′〉ψkπt)


= max


sup
a∈A

sup
(s,a,πs)∈→

inf
(t,a,πt)∈→

λ ·KV (dkλ,V )(ψkπs , ψ
k
πt),

sup
a∈A

sup
(t,a,πt)∈→

inf
(s,a,πs)∈→

λ ·KV (dkλ,V )(ψkπs , ψ
k
πt)



= max


sup
a∈A

sup
(s,a,πs)∈→

inf
(t,a,πt)∈→

λ ·KV (dkλ,V )(πs, πt),

sup
a∈A

sup
(t,a,πt)∈→

inf
(s,a,πs)∈→

λ ·KV (dkλ,V )(πs, πt)


= dk+1

λ,V (s, t)
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where the forth equality can be proved as follows. By definition we have that

KV (dkλ,V )(ψkπs , ψ
k
πt) = sup

f
dV

 ∑
s′∈supp(πs)

πs(s
′)f(ϕks′),

∑
t′∈supp(πt)

πt(t
′)f(ϕkt′)


where the supremum is evaluated over all functions f such that dV (f(ϕks′), f(ϕkt′)) ≤ dkλ,V (ϕks′ , ϕ

k
t′) for all

s′ ∈ supp(πs), t
′ ∈ supp(πt). By definition of supremum, for each ε > 0, there is a particular function fε

satisfying this constraint such that

KV (dkλ,V )(ψkπs , ψ
k
πt) < dV

 ∑
s′∈supp(πs)

πs(s
′)fε(ϕ

k
s′),

∑
t′∈supp(πt)

πt(t
′)fε(ϕ

k
t′)

+ ε.

Let g : S → V be defined as g(s) = fε(ϕ
k
s) for all s ∈ S. Then, since by the inductive hypothesis we have

dkλ,V (ϕks′ , ϕ
k
t′) = dkλ,V (s′, t′) for all s′, t′ ∈ S, by the choice of g we obtain that dV (g(s′), g(t′)) ≤ dkλ,V (s′, t′)

for all s′ ∈ supp(πs), t
′ ∈ supp(πt). Therefore, g is one of the 1-Lipschitz functions on which KV (dkλ,V )(πs, πt)

is evaluated and thus we can draw that

KV (dkλ,V )(ψkπs , ψ
k
πt)

< dV

 ∑
s′∈supp(πs)

πs(s
′)fε(ϕ

k
s′),

∑
t′∈supp(πt)

πt(t
′)fε(ϕ

k
t′)

+ ε

= dV

 ∑
s′∈supp(πs)

πs(s
′)g(s′),

∑
t′∈supp(πt)

πt(t
′)g(t′)

+ ε

≤ KV (dkλ,V )(πs, πt) + ε.

Since the inequality holds for all ε > 0, we can conclude that

KV (dkλ,V )(ψkπs , ψ
k
πt) ≤ KV (dkλ,V )(πs, πt).

Similarly, we can prove that
KV (dkλ,V )(πs, πt) ≤ KV (dkλ,V )(ψkπs , ψ

k
πt)

and thus the equality at the forth step above follows.

Appendix E. Proofs of results in Section 9

Proof of Proposition 9. In [15, Theorem 2] it was proved that for all (V, dV ) we have KV (dm�V )(πs, πt) ≤
dλ,V (s, t). Therefore, the proof follows by this result, our characterization Theorem 6 and the equality
tv⊗ = K⊗(dm�⊗).
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