Francesco Romanò 
email: frromano@umich.edu
  
Reconstructing the uid ow by tracking of large particles

All the methods which estimate the unperturbed uid ow velocity relying on particle suspensions address the same question: How can the uid velocity be computed measuring the particles trajectory and/or their velocities? The tracking of a few large density-mismatched particles is here used to eciently and accurately reconstruct the background uid ow. Approximating the particulate phase space and taking the limit of vanishing Stokes number St → 0, we retrieve the background ow for three test cases: a shear ow near a wall, a rigid-body vortex, and a strained vortex. The major advantages and the potentials of this approach are discussed in the end, highlighting how to overcome the classic shortcomings of experimental measurements faced for near-boundaries particle tracking.

I. INTRODUCTION

Particle-laden ows consist of a dispersed phase made of rigid particles immersed in a continuous uid phase. The relevance of this class of multiphase ows is readily understood considering that several natural phenomena (e.g. debris ows, [START_REF] Iverson | Debris-ow mobilization from landslides[END_REF], or transport of red blood cells, [START_REF] Minerick | Electrokinetic transport of red blood cells in microcapillaries[END_REF]) and industrial applications (e.g. aerosol technology, [START_REF] Hinds | Aerosol technology: properties, behavior, and measurement of airborne particles[END_REF], or combustion, [START_REF] Burtscher | Characterization of particles in combustion engine exhaust[END_REF]) involve particle suspensions over a very wide range of scales.

The understanding, prediction and control of particle-laden ows is best achieved knowing the background ow, i.e. the uid ow in the absence of the particulate phase. This becomes even more important when dilute suspensions are considered, and the motion of the particles is strongly correlated to the background ow and weakly correlated to collective eects [START_REF] Schwabe | Formation of dynamic particle accumulation structures in oscillatory thermocapillary ow in liquid bridges[END_REF][START_REF] Romanò | A generic mechanism for nite-size coherent particle structures[END_REF].

Moreover, the reconstruction of the unperturbed ow eld in presence of the particulate phase is the goal of measurement techniques such as particle image velocimetry (PIV and µPIV, [START_REF] Wereley | Recent advances in micro-particle image velocimetry[END_REF]) and particle tracking velocimetry [START_REF] Nishino | Three-dimensional particle tracking velocimetry based on automated digital image processing[END_REF].

The motion of a particle immersed in a uid ow depends on the velocity of the uid, on the presence of boundaries (walls, free surfaces, other particles, see [START_REF] Kuehn | Tracking particles in ows near invariant manifolds via balance functions[END_REF][START_REF] Romanò | Limit cycles for the motion of nite-size particles in axisymmetric thermocapillary ows in liquid bridges[END_REF]), and on particle parameters which relate the shape, density and size of the particle to characteristic lengths, densities and time scales of the background ow [START_REF] Lasheras | Dynamics of a small spherical particle in steady two-dimensional vortex ows[END_REF]. Apart from very theoretical cases, the particle trajectory diers from the pathline of a tracer initialized at the same location and with the same velocity. This concept is best highlighted by considering the motion of a particle in an incompressible two-dimensional steady ow. In fact, the particulate dynamical system is intrinsically dissipative, whereas the uid ow is a Hamiltonian system, where the Hamiltonian coincides with the streamfunction. One major consequence is the particle dynamics can admit attractors and repellors, while a corresponding tracer cannot [START_REF] Romanò | Particle-boundary interaction in a shear-driven cavity ow[END_REF]. Such considerations further extend to time-periodic two-dimensional and steady threedimensional uid ows, which are the analogous of a piecewise Hamiltonian system with 1.5 degrees of freedom [START_REF] Bajer | Hamiltonian formulation of the equations of streamlines in three-dimensional steady ows[END_REF].

The characterization of the dynamical properties of the particulate system immersed in a turbulent uid ow has been studied by [1416] using a point-particle model based on the MaxeyRiley equation [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform ow[END_REF]. They showed that the particle inertia induces preferential concentrations for the particles, and the characterization of the statistical and dynamical properties of the particulate system can be done in terms of the particle size, the particle-to-uid density ratio and the properties of the background ow. More recent investigations have considered the eect of nite-size particles which interact with the smallest active scales of a turbulent ow (i.e. the Kolmogorov scale, see e.g. [1823] for experimental and theoretical studies). In this case the particle motion and the uid ow are strongly aected by their mutual interactions, and an explicit equation which models the particle dynamics is not available. Hence, several numerical methodologies with dierent degrees of approximation have been developed to take into account the coupling between the two phases (see e.g. [START_REF] Botto | A fully resolved numerical simulation of turbulent ow past one or several spherical particles[END_REF][START_REF] Cisse | Slipping motion of large neutrally buoyant particles in turbulence[END_REF]), and in the recent years dierent approaches have been proposed to reconstruct the undisturbed uid ow for two-way coupled Euler-Lagrangian simulation (see e.g. [2629]).

For a review of mixed particles in developed turbulence and of particle-modulated turbulent ows we refer to [START_REF] Balachandar | Turbulent dispersed multiphase ow[END_REF]. Particle suspensions are, however, also used in laminar ows and especially in microuidics, and in such low-Reynolds-numbers ows the relevant ow scale cannot be identied by Kolmogorov scaling. Hence, in the followings, we will address as large particles all those particles whose size a p (equivalent radius) is comparable to the length scale of the background ow L which we want to reconstruct, i.e. a p = O(10 -2 -10 0 )L.

An important parameter for particle-laden ows is the Stokes number, dened as St = 2Reρ p a 2 p /9ρ f L 2 , where ρ p and ρ f are the density of the particle and of the uid, respectively, a p is the radius of the particle, L the characteristic length scale of the uid ow, Re = U L/ν is the Reynolds number of the unperturbed ow and ν the kinematic viscosity of the uid.

The limit for St → 0 leads the particle to behave like a tracer, hence the particle velocity becomes a direct measure of the background uid ow. Following the classic experimental approach, i.e. employing smaller and smaller particles (better if density matched to the uid), has major experimental shortcomings. In fact, there are technological limitations in accurately tracking very small particles, and the smaller the particle, the harder and inaccurate the tracking. Thereafter, particleboundary interactions strongly inuence the particle trajectories at distance O(a p ) from the boundary [START_REF] Romanò | Finite-size Lagrangian coherent structures in thermocapillary liquid bridges[END_REF][START_REF] Romanò | Finite-size Lagrangian coherent structures in a two-sided lid-driven cavity[END_REF]. As a result, near a wall or a free surface, the particle velocity remarkably deviates from the velocity of the uid.

Moreover, even for conditions in which almost-tracer particles can be accurately tracked, employing very small particles requires a very expensive experimental apparatus.

In this paper, we propose to exploit the dissipative eects related to the particle nite size and the particle-to-uid density and velocity mismatch in order to eciently reconstruct the background ow. Rather than following the approach St ≈ 0 by employing smaller and smaller particles with the same Stokes number, we reconstruct the particle phase space for nite-size (even relatively large) particles with dierent Stokes numbers and then compute the limit for St → 0 in the approximated phase space, constraining ρ p /ρ f to remain nite and not tend to zero. For three cases, it will be shown that very accurate estimates of the uid ow velocity can be obtained, and that the diculties of estimating the uid ow velocity near the boundaries can be overcome.

Recalling that the MaxeyRiley equation has been used by [START_REF] Calzavarini | Acceleration statistics of nite-sized particles in turbulent ow: the role of faxén forces[END_REF] to study the eect of the Faxén correction for nite-size particles in turbulent ows, we will employ this same particle motion model to theoretically demonstrate the potential of our approach. The concept at the basis of our study is however not limited by the use of the MaxeyRiley equation, since the methodology we propose does not rely on it. Assuming the MaxeyRiley equation as particle motion model, the uid ow velocity could be computed by solving an inverse problem in which the particle trajectory is given and the uid velocity is unknown. We stress, however, that this is not the purpose of our paper and the MaxeyRiley equation is employed just for demonstration purpose. The aim of this study is to propose an approach to reconstruct the background ow regardless of how the particle trajectories are numerically or experimentally obtained. By only exploiting the tracer limit, our paper will demonstrate how to reliably and accurately retrieve the background ow by approximating the phase space and taking the limit St → 0. The only requirement of our approach is the assumption that there are no phase-space catastrophes, i.e. the phase space subdomain employed in the neighborhood of St = 0 to compute the limit St → 0 must be smooth enough. This is not the case for caustics, i.e. singularities in the particle dynamics which imply that the phase space manifold of the particulate ow admits a fold [START_REF] Gustavsson | Distribution of relative velocities in turbulent aerosols[END_REF]. Hence, the approach proposed in this study is limited, in general, to St < O(1).

The remainder of this paper is structured as follows: Sec. II denes the mathematical model, which is solved numerically as described in Sec. III. Section IV reports the results of our study for the three ows considered and discusses them. The conclusions are drawn in Sec. V, pointing out the potentials of the current approach.

II. PROBLEM FORMULATION

The motion of a rigid spherical particle in an incompressible ow is modeled by a modied version of the MaxeyRiley equation [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform ow[END_REF], in which we include the force exerted by the boundaries on the particle
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where t is the time, v = (v x , v y ) and u = (u x , u y ) denote the velocity of the particle and of the uid, respectively, and g indicates the gravity acceleration. The rate of change of the particle momentum is represented by the left-hand side of (1), whereas the right-hand side includes: the force due to the background ow, the buoyancy term, the Stokes drag, the added mass, the particleboundary interaction force F b , and the Basset history force. In addition, the Faxén correction [START_REF] Faxén | Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist[END_REF] is taken into account by the terms proportional to a p ∇ 2 u.

The eect of the particle rotation is neglected. The dierent notations used for indicating the material derivatives d t and D t refer to the derivative along the particle trajectory

dA dt = ∂A ∂t + (v • ∇) A (2) 
and along the uid trajectory

DA Dt = ∂A ∂t + (u • ∇) A, (3) 
where A denotes an arbitrary vector eld and ∂ t is the Eulerian derivative.

The interaction between a particle and a rigid wall is modeled assuming that, near the boundary, the particle is immersed in a creeping ow. Such an assumption holds true if the particle Reynolds number, Re p = |u -v|a p /ν 1, where u and v denote the dimensional uid ow and particle velocity evaluated at the particle centroid. If we further consider |u -v|a 2 p /νh, where h is the distance of the particle centroid from the wall, the ow around the particle is governed by Stokesian dynamics. Hence, it is described by a linear momentum equation and dierent contributions to the particlewall interaction can be FIG. 1. (a) Force F x exerted by the uid on a steady particle in a creeping shear ow near a steady wall. Bullets: solution of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: Ii couette ow[END_REF]; solid line: cubic spline interpolant of the results reported in tab. 1 of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: Ii couette ow[END_REF]. (a) Force F x exerted by the uid on a particle moving in a quiescient ow near a steady wall.

Bullets: solution of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: I motion through a quiescent uid[END_REF]; solid line: cubic spline interpolant of the results reported in tab. 1 of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: I motion through a quiescent uid[END_REF].

superposed splitting the problem in three sub-problems. The boundary force

F b = (F x , F y )
is computed by superposing: (a) the force on a particle moving towards a rigid wall, (b) the force on a steady particle immersed in a near-wall shear ow, and (c) the force on a particle moving along a solid wall. For consistency with (1), the eect of the particle rotation is neglected.

Case (a) gives rise to F y , and an exact solution is reported in [START_REF] Brenner | The slow motion of a sphere through a viscous uid towards a plane surface[END_REF] 

F y 6πνρ f a p v y = 4 3 sinh α ∞ n=1 n(n + 1) (2n -1)(2n + 3)   2 sinh(2n + 1)α + (2n + 1) sinh(2α) 4 sinh 2 (n + 1/2)α -(2n + 1) 2 sinh 2 α -1   , (4) 
where α = cosh -1 (h/a p ).

Cases (b) and (c) give rise to an F x obtained by superposing the approximated solutions by [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: Ii couette ow[END_REF] and by [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: I motion through a quiescent uid[END_REF] for case (b) and (c), respectively. Their results are here included in the MaxeyRiley equation by interpolating tab. 1 of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: Ii couette ow[END_REF] and tab. 1 of [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall: I motion through a quiescent uid[END_REF] by cubic splines. The result of the interpolations is depicted by solid lines in g. 1, whereas the original data are denoted by the bullets.

III. NUMERICAL SIMULATIONS

The MaxeyRiley equation is solved by means of the 4th-order RungeKutta, 3/8-rule.

The Basset-history term is discretized explicitly following the same approach of [START_REF] Romanò | Oscillatory switching centrifugation: dynamics of a particle in a pulsating vortex[END_REF], where the code has been validated. Throughout this paper, the time step is set equal to ∆t = 10 -3

when dealing with unbounded ows, and ∆t = 10 -5 for particle trajectories near a wall.

The data obtained by tracking the particles are scattered in the particulate phase space, hence, a meshless interpolant is required to numerically reconstruct a phase space approximation. The reconstruction of the particulate phase space is carried out by using a multiquadratic radial basis interpolant. The radial basis functions φ(r) have as argument the scalar radius r = ||x -x i || 2 from the i-th coordinate to interpolate x i . We use a generalized radial basis function interpolant f RBF (x) for approximating the multivariate function f (x).

This yields

f RBF (x) = L l=1 β l p l (x) + N n=1 λ n φ(||x -x n || 2 ), (5) 
where N is the number of nodes to interpolate, p l are the elements of a hierarchical polynomial functional basis usually employed to make the interpolant f RBF positive denite, and L is the maximum order of the polynomials. The coecients β l and λ n are found using the matching conditions f RBF (x i ) = f (x i ) and imposing the following homogenous conditions to constrain the interpolant:

N n=1 λ n p l (x) = 0, 1 ≤ l ≤ L.
The multiquadratic functions are dened as φ(r) = 1 + (r/σ) 2 , where σ is set equal to the average distance between the nodes. In our study, L is set equal to 2.

IV. RESULTS AND DISCUSSION

A. Shear ow near a wall

The rst case we consider is a linear shear ow near a rigid wall characterized by the length scale H, initial distance of the particle centroid from the rigid wall, and the velocity scale U , uid ow velocity at distance H from the wall. Scaling lengths, velocities and time by H, U and H/U , the unperturbed uid ow velocity is u = (y, 0) (see inset of g. 2(a) and left panel of g. 2(c)) and the non-dimensional MaxeyRiley equation for an initially velocity-matched particle reads

dv dt = 1 + 1/2     3 2 Du Dt - λ St (v -u) + ( -1)
Fr 2 e g -
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where, e g = g/|g| = (0, -1), a = a p /H and u, v and t are now intended as non-dimensional velocities and time. Beside , St and Re, another non-dimensional group arises: the Froude number Fr = U/ √ gH. In (6), the Faxén correction is identically null since ∇ 2 u ≡ 0 and the parameter λ is used to take into account the boundary-induced forces on the particle due to its nite size. We assume that the particle dynamics near the wall is dominated by creeping ow eects and the corresponding enhanced particle drag is taken into account as explained in Sec. III. We further remark that no lift forces are included when considering the Stokesian solutions of [3638].

The trajectory of ve relatively large particles is computed by numerical integration of ( 6)

and the Basset term is neglected in this rst example. The uid ow parameters are Re = 1

and Fr 2 ∈ {10 -4 , 10 -5 , 10 -6 }, and the ve particles have (a, ) = (0.02, 0.5), (0.02, 2.5), (0.03, 1.7), (0.04, 0.8) and (0.05, 1.05).

The smaller the Froude number, the larger the eect of gravity becomes, if compared to the shear ow velocity. Hence, for Fr 2 = 10 -6 the particle trajectory is strongly aected by sedimentation eects and reconstructing the background ow using large-particle trajectories becomes very challenging. This is the case presented in g. 2, where sedimenting particles travel a longitudinal distance which is 200 times smaller than the traveled height, as shown by the particle trajectories in g. 2(a) and by the fast sedimentation velocity depicted in the bottom panel of g. 2(b). Analogous results for the larger-Froude-number cases are reported in the Appendix.

The deviation between the velocity of the particle and the velocity of the uid is depicted the particle size for reconstructing near-boundary ows without taking the limit St → 0.

Indeed, halving the Stokes number by passing from a = 0.03 ( * ) to a = 0.02 ( ) brings the innite-norm of the relative deviation in longitudinal velocity from 59% only to 48%.

Instead of relying on the tracking of a single particle which might approximate the ow relatively well, we rather reconstruct the shear ow prole by approximation of the phase space of the particulate dynamical system. Gathering the trajectories and the velocities of all the ve particles, we obtain a discrete characterization of v x in the hyperspace (St, , y), dened on scattered points. We then use multiquadratic radial basis functions to dene an interpolant V x (St, , y) which considers St, and y as coordinates and v x as function to interpolate. The boundary condition along the wall v x (St → 0, , y = 0) = u x (y = 0) = 0 is nally enforced when constructing the interpolant V x by applying V x (St → 0, , y = 0) = 0.

Computing the limit ũx = lim St→0 V x (St, , y) ≈ u x (y) leads to an approximation of the uid ow velocity u x (arrows and dashed line in the left panel of g. 2(c)). Such an approximation is depicted as solid line in the left panel of g. 2(c) for Fr 2 = 10 -6 . The right panel of g. 2(c)

shows the absolute and relative deviation of ũx from u x as function of y. Respectively, they are at most about 1% and 4% even though only ve particles have been used to approximate the particle parameter space. We remark that the relative deviation in terms of longitudinal velocity is one order of magnitude more accurate than what obtained by the single-particle tracking of the smallest particle we used (for a = 0.02 the relative deviation is 48%). The reconstruction of the shear ow becomes more accurate for Fr 2 = 10 -5 , for which ũx -u x and

(ũ x -u x )/u x are, at most, 0.5% and 0.8%. Even better for Fr 2 = 10 -4 , where max(ũ x -u x )

and max((ũ x -u x )/u x ) are 0.15% and 0.23%.

B. Solid-body vortex

The second example we consider is a two-dimensional Kirchho vortex. In this case we include the Basset history force and neglect gravitational forces. Since the vortex is unbounded, F b ≡ 0. Lengths, velocities and time are scaled, respectively, by the characteristic radius R of the vortical region to reconstruct, the characteristic velocity ΩR, where Ω is the constant ow vorticity, and by the characteristic time scale 1/Ω. The non-dimensional velocity eld is given by u = (u x , u y ) = (y/2, -x/2) and the uid ow Reynolds number is assumed to equal Re = ΩR 2 /ν = 1.

Only two particles are here employed to reconstruct the uid ow: one particle lighter than the uid (a, ) = (0.1, 0.8) is initialized at (x, y) = (-0.5, 0), the other, much heavier than the uid (a, ) = (0.2, 10), is initialized at (x, y) = (0.5, 0). These particle parameters are chosen to exploit the inertial attraction/repulsion of the lighter/heavier particle to the steady vortex core. Especially when a remarkable density mismatch is employed, the particle experiences a pronounced spiraling motion which cannot be admitted by uid elements. This would be a drawback in the classic experimental approach for measuring the ow velocity, but it is here exploited to let the particle acting like a probe by moving away from the initial streamline and reporting information about the uid ow in a broad region of the uid domain. A sketch of the uid ow is reported in g. 3(a); the spiraling-out (dashed line) and spiraling-in (solid line) trajectories of our two particles are depicted g. 3(b), together with the ow streamlines (gray). Based on the two particle trajectories, the hyperspace in (St, , x, y) is approximated by the interpolant V (St, , x, y), which is the analogous of V x introduced above for the shear ow near a wall. Once again, computing the limit ũ = lim St→0 V (St, , x, y) ≈ u(x, y) we construct an approximation of the uid ow. Even if we challenge our approach making use of only two (relatively large) particles, the magnitude of the absolute (|ũ -u|, g. The background ow streamlines are depicted by gray contours. Making use of the two particle trajectories, the hyperspace in (St, , x, y) is interpolated with multiquadratic radial basis functions leading to V (St, , x, y). The reconstruction of the uid ow is carried out by taking the limit ũ = lim St→0 V (St, , x, y) ≈ u(x, y). Even if the tracked particles remarkably deviate from the conceptual limit of perfect tracers, our reconstruction of the uid ow deviates from the actual background ow of, at most, 3.5% in relative (|ũ-u|/|u|, not shown) and absolute error (|ũ -u|, g. 4(c)).

V. CONCLUSION

Tracking a few large particles in three dierent background ows, we demonstrated that the uid ow velocity can accurately be reconstructed by approximating the particulate phase space and taking the limit St → 0. This approach is essentially dierent from approximating the uid ow velocity by using small, but nite-size particles (St 1) of almost the same St and , as typically done in experimental ow measurements. In fact, combining the trajectories of particles with dierent St allows to approximate the particle velocity in the hyperspace (St, , ..., x) and taking the limit St → 0 allows to get rid of nite-size and inertial eects. Moreover, in the tracer limit, boundary eects vanish (lim St→0 F b = 0) and we can rigorously enforce the uid ow boundary conditions along the walls, overcoming the usual limitations of experimental particle measurements near the boundaries.

A further advantage of our approach arises when dilute polydisperse suspensions of large particles are considered. In this case, if the particles are tracked for reasons independent of the reconstruction of the background ow, our approach allows to eciently and accurately retrieve the unperturbed uid ow without any additional experimental measurement. We stress that assuming that the unperturbed ow velocity is well approximated by the largeparticle velocity would not be accurate. Approximating the phase space and taking the asymptotic limit St → 0 are therefore required steps for an accurate reconstruction of the background ow.

A similar approach can also be employed for two-and four-way coupled simulations, as well as for fully-resolved simulations. In fact, the methodology here proposed does not rely on a specic particle motion model, but only requires that the tracer limit is recovered when St → 0. Limitations in terms of the particle volume ratio apply.

Moreover, our approach is straightforward to extend to time-dependent ows by including t among the coordinates of the particulate phase space. This method consists only of instantaneous characterizations of the phase space, and can therefore be used for uctuating ows by carrying out the phase-space approximation and taking the limit for St → 0 at each instant of time. Hence, also turbulent ow measurement techniques can benet from it. When experimental uncertainties are considered, the accuracy of the phase space reconstruction will be aected by them, leading to a worse approximation of the interpolant V (St, , x, y, ...) the larger the errorbar in St, , etc. We moreover point out that our approach is more sensitive to errors committed for small-Stokes-number particles since their trajectories are more inuential when taking the limit St → 0. We however stress that the method has been proven robust to the reconstruction of the phase space by means of large particles, which are normally aected by lower relative measurement errors. Finally, our approach can be used for modeling the particleboundary interaction forces starting from experimental particle tracking: Computing ũ = lim St→0 V (St, , x, y) ≈ u(x, y), and measuring v(t) and x(t), one can plug them in (1) to retrieve F b .

(I) Fr 

in g. 2 (

 2 b). The top panel shows the relative deviation in terms of horizontal velocity, the middle panel depicts the particle-to-uid dierence in x-velocity, and the bottom panel shows the vertical velocity of the particle (we recall that u y ≡ 0). The major deviations are observed for particles which approach the boundary. Near the wall, the innite-norm of their relative deviation between longitudinal velocities is about 60% (see * and in the top panel of g. 2(b)). This makes very unreliable the near-boundary estimate of the uid velocity based on the particle velocity. Moreover it demonstrates the limitations of reducing
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 2 FIG. 2. (a) Particle trajectories and sketch of the background shear ow. (b) Deviation of the particle velocity from the uid ow velocity. (c) Fluid ow velocity u x (arrows and dashed line), approximation of the uid ow ũx (solid line), relative (+) and absolute (•) approximation error (right panel) for the horizontal velocity. In (a) and (b), the markers depict: (a, ) = (0.02, 0.5), •, (0.02, 2.5), , (0.03, 1.7), * , (0.04, 0.8), , and (0.05, 1.05), ×. All the results refer to Fr 2 = 10 -6 .

FIG. 3 .

 3 FIG. 3. (a) Sketch of the background Kirchho vortex. (b) Particle trajectories for (a, ) = (0.1, 0.8) and (a, ) = (0.2, 10) (solid and dashed line, respectively), and streamlines (gray). (c) Absolute approximation error, |ũ -u|. (d) Relative approximation error, |ũ -u|/|u|.

  3(c)) and relative approximation error (|ũ -u|/|u|, g. 3(d)) are always below 2.5%.
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 4 FIG. 4. (a) Sketch of the background strained vortex. (b) Particle trajectories for (a, ) = (0.5, 0.7) and (a, ) = (0.3, 6) (solid and dashed line, respectively), and streamlines (gray). (c) Absolute approximation error, |ũ -u|.
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 10421055 FIG. 5. (a) Particle trajectories. (b) Deviation of the particle velocity from the uid ow velocity. (c) Fluid velocity u x (arrows), approximation of the uid ow ũx (solid line), relative (+) and absolute (•) approximation error (right panel) for the horizontal velocity. In (a) and (b), the markers depict: (a, ) = (0.02, 0.5), •, (0.02, 2.5), , (0.03, 1.7), * , (0.04, 0.8), , and (0.05, 1.05), ×. (I) refers to Fr 2 = 10 -4 , whereas (II) depicts results for Fr 2 = 10 -5 .

  

Appendix A: Near-wall shear ow: Fr 2 = 10 -4 and Fr 2 = 10 -5

The uid ow reconstruction for Froude number Fr 2 = 10 -4 and Fr 2 = 10 -5 is reported in g. 5. Its panels are organized using the same template employed for Fr 2 = 10 -6 . We stress that changing Fr is not a viable option for experimental measurements since it implies a change of H or U . For this reason we treated Fr as a given constant and did not include it among the coordinates of the hyperspace to interpolate, even if the reconstruction of the particulate phase space would benet from using Fr as a variable.