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OPTIMAL POLYNOMIAL STABILIZATION OF THE TRANSMISSION PROBLEM OF THE BRESSE BEAM IN THERMOELASTICITY

The transmission problem of the Bresse beam in thermoelasticity is treated. During the motion of the beam, the particle that separates the elastic and thermoelastic parts has a given particular acceleration. Using a frequency domain method, an optimal polynomial stability is showed.

Introduction

We consider the following transmission problem for the following Bresse beam which is composed of two components, elastic and thermoelastic. This problem is governed by the following differential equations:

(1.1)                                                    ρ 1 φ tt -k(φ x + ψ + lw) x -k 0 l(ω x -lφ) = 0 in (c, L) × (0, ∞), ρ 2 ψ tt -bψ xx + k(φ x + ψ + lω) = 0 in (c, L) × (0, ∞),
ρ 1 ω tt -k 0 (ω x -lφ) x + kl(φ x + ψ + lω) = 0 in (c, L) × (0, ∞),

δ 1 Φ tt -k 1 (Φ x + Ψ + lΩ) x -k 01 l(Ω x -lΦ) + lαθ 1 = 0 in (0, c) × (0, ∞), δ 2 Ψ tt -b 1 Ψ xx + k 1 (Φ x + Ψ + lΩ) + αθ 2x = 0 in (0, c) × (0, ∞), δ 1 Ω tt -k 01 (Ω x -lΦ) x + k 1 l(Φ x + Ψ + lΩ) + αθ 1x = 0 in (0, c) × (0, ∞), θ 1t -θ 1xx + α(Ω x -lΦ) t = 0 in (0, c) × (0, ∞), θ 2t -θ 2xx + αΨ xt = 0 in (0, c) × (0, ∞).
with t > 0, 0 < x < L, and 0 < c < L. ρ 1 , ρ 2 , k, b, k 0 , δ 1 , δ 2 , k 1 , b 1 , k 01 , are positive physical constants. α ≥ 0 is the coupling parameter. 

               Φ(0, t) = Ψ(0, t) = Ω(0, t) = θ 1 (0, t) = θ 2 (0, t) = 0, kφ(c, t) = k 1 Φ(c, t), bψ(c, t) = b 1 Ψ(c, t), k 0 ω(c, t) = k 01 Ω(c, t) = 0, θ 1x (c) = θ 2x (c) = 0, -M Φ tt (c, t) = k 1 (Φ x + Ψ + lΩ)(c, t) -k(φ x + ψ + lω)(c, t), -M Ψ tt (c, t) = b 1 Ψ x (c, t) -αθ 2 (c, t) -bψ x (c, t), -M Ω tt (d, t) = k 01 (Ω x -lΦ)(d, t) -αθ 1 (c, t) -k 0 (ω x -lϕ)(c, t),
where M > 0. The initial conditions for this problem are:

(1.3) { (φ, φ t , ψ, ψ t , ω, ω t )(x, 0) = (φ 0 , φ 1 , ψ, ψ 1 , ω 0 , ω 1 ) on (c, L), (Φ, Φ t , Ψ, Ψ t , Ω, Ω t , θ 1 , θ 2 ) = (Φ 0 , Φ 1 , Ψ 0 , Ψ 1 , Ω 0 , Ω 1 , θ 10 , θ 20 )(x) on (0, c).

The energy of solutions of the system (1.1) is defined by

E(t) = E 1 (t) + E 2 (t) + M 2 |Φ t (c, t)| 2 + M 2 |Ψ t (c, t)| 2 + + M 2 |Ω t (c, t)| 2 ,
where

(1.4)    E 1 (t) = 1 2 ∫ L c ( ρ 1 |φ t | 2 + ρ 2 |ψ t | 2 + ρ 1 |ω t | 2 + b|ψ x | 2 +k|φ x + ψ + lω| 2 + k 0 |ω x -lφ| 2 ) dx and (1.5)    E 2 (t) = 1 2 ∫ c 0 ( ρ 1 |Φ t | 2 + ρ 2 |Ψ t | 2 + ρ 1 |Ω t | 2 + b|Ψ x | 2 +k|Φ x + Ψ + lΩ| 2 + k 0 |Ω x -lΦ| 2 + |θ 1 | 2 + |θ 2 | 2 ) dx.
Moreover, the dissipation relation is

(1.6) d dt E(t) = - ∫ L c ( |θ 1x | 2 + |θ 2x | 2 ) dx ≤ 0.
Remark 1.1. From physical point of view, the fourth condition in (1.2) describes the equality between the acceleration of the transversal displacement and the difference between the shear forces acting on the particle in the elastic and thermoelastic parts during the motion. The fifth condition describes the equality between the acceleration of the shear angle displacement and the difference between the bending moments acting on the particle in the elastic and thermoelastic parts during the motion. The sixth condition describes the equality between the acceleration of the longitudinal displacement and the difference between the axial forces acting on the particle in the elastic and thermoelastic parts during the motion. Now, we mention some papers studied the stability with thermoelasticity. In [5] F. Gallego and J. E. M. Rivera studied the energy decay for the thermoelastic Bresse system in the whole line with two dissipative mechanisms, given by heat conduction (Types I and III). They proved that the decay rate of the solutions are very slow and the wave speeds of propagation have influence on the decay rate with respect to the regularity of the initial data. In [START_REF] Liu | Energy Decay of the thermoelastic Bresse System[END_REF] invistigated the thermoelastic Bresse system which describes the motion of a linear planar, shearable thermoelastic beam. They proved that the exponentially decay rate is preserved when the wave speed of the vertical displacement coincides with the wave speed of longitudinal displacement or of the shear angle displacement. Otherwise, they obtained a polynomial type decay rate.

Our result on the polynomial stability, it is based on the Borichev and Tomilov theorem [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF].

Theorem 1.1. Let A be the generator of C 0 -semigroup of contractions on a Hilbert space X. Then,

(1.7) iR ⊆ ρ(A), ∥(iλI -A) -1 ∥ < C|λ| l ,
for some l > 0 and for all λ ∈ R if and only if we have

(1.8) ∥S(t)W 0 ∥ X ≤ C t 1/l ∥W 0 ∥ D(A) ,
and for some constant C > 0 and for all W 0 ∈ D(A).

The remaining part of this paper is organized as follows. In section 2 we prove the well posedness of the system (1.1)-(1.3) by formulating an appropriate Hilbert state space setting. Section 3 is devoted to the polynomial stability.

Well-Posedness

For well-posedness, let us introduce the following spaces:

H 1 :=            (φ, ψ, ω, Φ, Ψ, Ω, θ 1 , θ 2 ) ∈ ( H 1 (c, L) ) 3 × ( H 1 (0, c) ) 5 ; Φ(0, t) = Ψ(0, t) = Ω(0, t) = θ 1 (0, t) = θ 2 (0, t) = 0, kφ(c, t) = k 1 Φ(c, t), bψ(c, t) = b 1 Ψ(c, t), k 0 ω(c, t) = k 01 Ω(c, t) = 0, θ 1x (c) = θ 2x (c) = 0.            and L := ( L 2 (c, L) ) 3 × ( L 2 (0, c) ) 3 . For l ̸ = nπ L , c ̸ = (2n ′ + 1)π 2l
, with n, n ′ ∈ N the space

H := H 1 × L 2 × C 3 .
is a Hilbert space. Let

W := (φ, ψ, ω, Φ, Ψ, Ω, θ 1 , θ 2 , φ t , ψ t , ω t , Φ t , Ψ t , Ω t , p, q, r).
We define the linear unbounded operator A by:

D(A) :=      (φ, ψ, ω, Φ, Ψ, Ω, θ 1 , θ 2 , u, v, z, U, V, Z, p, q, r) ∈ H/ (φ, ψ, ω, Φ, Ψ, Ω, θ 1 , θ 2 ) ∈ H 1 ∩ [ ( H 2 (]c, L[) ) 3 × ( H 2 (0, c) ) 5 ] , (u, v, z, p, q, r, θ 1xx -α(r x -lp), θ 2xx -αq x ) ∈ H 1 , p = U (c), q = V (c), r = Z(c)      ,       u v z U V Z θ 1xx -α(r x -lp) θ 2xx -αq x k ρ 1 (φ xx + ψ x + lω x ) + lk 0 ρ 1 (ω x -lφ) b ρ 2 ψ xx - k ρ 2 (φ x + ψ + lω) k 0 ρ 1 (ω xx -lφ x ) - lk ρ 1 (φ x + ψ + lω) k ρ 1 (Φ xx + Ψ x + lΩ x ) + lk 0 ρ 1 (Ω x -lΦ) - lα ρ 1 θ 1 b ρ 2 Ψ xx - k ρ 2 (Φ x + Ψ + lΩ) - α ρ 2 θ 2x k 0 ρ 1 (Ω xx -lΦ x ) - lk ρ 1 (Φ x + Ψ + lΩ) - α ρ 1 θ 1x - 1 M [ k 1 (Φ x + Ψ + lΩ)(c) -k(φ x + ψ + lω)(c) ] - 1 M [ b 1 Ψ x (c) -αθ 2 (c) -bψ x (c) ] - 1 M [ k 0 (Ω x -lΦ)(c) -αθ 1 (c) -k 01 (ω x -lφ)(c) ]                                             .
Then the system (1.1) can be reformulated into an evolution problem of first order on H in the form (2.1)

{ W ′ (t) = AW (t), t > 0 W (0) = W 0 ∈ D(A), .
Using a classical semigroup theorem, we have the following well-Posedness result:

Theorem 2.1. The operator A generates a C 0 -semigroup S(t) of contractions on H. Then, for any initial data

W 0 ∈ D(A), the W (t) is a strong solution of (2.1) i.e. W (t) ∈ C 1 ( [0, ∞), H ) ∩ C 0 ( [0, ∞), D(A)
) .

Polynomial Stabilisation

From the proof of Theorem 3.1 in [START_REF] Youssef | Stabilization for the transmission problem of the Timoshenko system in thermoelasticity with two concentrated masses[END_REF], we can see that the transmission problem (1.1), (1.2), and (1.3) is not exponentially. The polynomial stabilisation is summarized in the following theorem. Theorem 3.1. There exists a positive constant C > 0 such that

(3.1) ∥S(t)W 0 ∥ H ≤ C t 1/48 ∥W 0 ∥ D(A) , for all W 0 ∈ D(A).
Proof. To conclude the mentioned polynomial stability, we must prove the following two conditions:

(3.2) iR ⊂ ρ(A),
and

(3.3) lim λ-→∞ 1 λ 48 ∥(iλI -A) -1 ∥ < +∞.
We will establish these conditions by contradictions. The proof of the condition (3.2) is standard. Now, Suppose that the condition (3.3) is false. Then, there is a real sequence (λ n ) and a sequence

W n = (φ n , ψ n , ω n , Φ n , Ψ n , Ω n , θ n 1 , θ n 2 , u n , v n , z n , U n , V n , Z n , p n , q n , r n ) ∈ D(A) such that (3.4) |λ n | -→ +∞, (3.5) ∥ W n ∥ H = 1, and 
(3.6) lim n-→∞ λ 48 n ∥(iλ n I -A)W n ∥ H = 0. So (3.7) λ 48 n [ (iλ n I -A) ] W n = (f n 1 , f n 2 , ..., f n 17 ) -→ 0 in H, Therefore, in H 1 (]c, L[) we have the following convergence (3.8) λ 48 n [ iλ n φ n -u n ] = f n 1 -→ 0, (3.9) λ 48 n [ iλ n ψ n -v n ] = f n 2 -→ 0, (3.10) λ 48 n [ iλ n ω n -z n ] = f n 3 -→ 0.
In H 1 (0, c) we have the following convergenve

(3.11) λ 48 n [ iλ n Φ n -U n ] = f n 4 -→ 0, (3.12) λ 48 n [ iλ n Ψ n -V n ] = f n 5 -→ 0, (3.13) λ 48 n [ iλ n Ω n -Z n ] = f n 6 -→ 0. In L 2 (0, c) we have the following convergence (3.14) λ 48 n [ iλ n θ n 1 -θ n 1xx + α(Z n x -lU n ) ] = f n 7 -→ 0, and 
(3.15) λ 48 n [ iλ n θ n 2 -θ n 2xx + αV n x ] = f n 8 -→ 0. In L 2 (]c, L[) we have the following convergence (3.16) λ 48 n [ iλ n u n - k ρ 1 (φ n xx + ψ n x + w n x ) -k 0 l(w n x -lφ n ) ] = f n 9 -→ 0, (3.17) λ 48 n [ iλ n v n - b ρ 2 ψ n xx + k ρ 2 (φ n x + ψ n + w n ) ] = f n 10 -→ 0, (3.18) λ 48 n [ iλ n z n - k 0 ρ 1 (ω n xx -lφ n x ) + lk ρ 1 (φ n x + ψ n + lω n ) ] = f n 11 -→ 0,
In L 2 (0, c) we have the following convergence

(3.19) λ 48 n [ iλ n U n - k 1 δ 1 (Φ n xx + Ψ n x + Ω n x ) - k 01 δ 1 l(Ω n x -lΦ n ) + α δ 1 θ n 1 ] = f n 12 -→ 0, (3.20) λ 48 n [ iλ n V n - b 1 δ 2 Ψ n xx + k 1 δ 2 (Φ n x + Ψ n + Ω n ) + α δ 2 θ n 2x ] = f n 13 -→ 0, (3.21) λ 48 n [ iλ n Z n - k 01 δ 1 (Ω n xx -lΦ n x ) + lk 1 δ 1 (Φ n x + Ψ n + lΩ n ) + α δ 1 θ n 1x ] = f n 14 -→ 0,
Also, in C we have the following convergence

(3.22) λ 48 n [ iλ n p n + 1 M ( k 1 (Φ n x + Ψ n )(c) -k(φ n x + ψ n )(c) )] = f n 15 -→ 0, (3.23) λ 48 n [ iλ n q n + 1 M ( b 1 Ψ n x (c) -αθ n 2 (c) -bψ n x (c) )] = f n 16 -→ 0 and (3.24) λ 48 n [ iλ n r n + 1 M ( k 01 (Ω n x -lΦ n )(d) -αθ n 1 (c) -k 0 (ω n x -lφ n )(c) )] = f n 17 -→ 0.
Note that

∥ W n ∥ 2 H = ∫ L c [ ρ 1 |u n | 2 + ρ 2 |v n | 2 + ρ 1 |z n | 2 + b|ψ n x | 2 + k|φ n x + ψ + lω n | 2 +k 0 |ω n x -lφ n | 2 ] dx + ∫ c 0 [ δ 1 |p n | 2 + δ 2 |q n | 2 + δ 1 |r n | 2 + b 1 |Ψ n x | 2 + k 1 |Φ n x + Ψ n + lΩ n | 2 +k 01 |Ω n x -lΦ n | 2 + |θ n 1 | 2 + |θ n 2 | 2 ] dx +|p n | 2 + |q n | 2 + |r n | 2 .
The main goal is to prove that ∥ W n ∥ 2 H -→ 0 to get a contradiction with (3.5). On the other side, we have The proof will contains several steps.

Step 1. Thanks to (3.7), we obtain

(3.25) Re⟨(λ 48 n (iλ n -A))W n , W n ⟩ H = ∫ c 0 ( |λ 24 n θ n 1x | 2 + |λ 24 n θ n 2x | 2 ) dx -→ 0 Hence (3.26) λ 24 n θ n 1x , λ 24 n θ n 2x -→ 0 in L 2 (0, c).
Thanks to the Poincaré inequality, we have also

(3.27) λ 24 n θ n 1 , λ 24 n θ n 2 -→ 0 in L 2 (0, c).
Step 2. In this step, to achieve the proof, we shall establish that

u n , v n , z n -→ 0 in L 2 (c, L), (3.28) ψ n x -→ 0 in L 2 (c, L), (3.29) φ n x + ψ n + lω n -→ 0 in L 2 (c, L), (3.30) ω n x -lφ n -→ 0 in L 2 (c, L). (3.31)
Firstly, dividing (3.8), (3.9), (3.10), (3.11), (3.12), and (3.13) by λ 49 n and using the fact that u n , v n , z n , p n , q n , and r n are bounded from (3.5) lead to

(3.32) φ n , ψ n , ω n -→ 0 in L 2 (c, L). (3.33) Φ n , Ψ n , Ω n -→ 0 in L 2 (0, c).
Next, eliminating u n in (3.16) by (3.8) then taking the inner product of resulting equation with

ρ 1 λ 48 n (L -x)φ n x in L 2 (c, L)
and integrating by parts lead to

(3.34)                - ρ 1 2 ∫ L c |λ n φ n | 2 + ρ 1 L -c 2 |λ n φ n (c)| 2 - k 2 ∫ L c |φ n x | 2 + (L -c)k 2 |φ n x (c)| 2 -k ∫ L c (L -x)ψ n x φ n x -lk ∫ L c (L -x)ω n x φ n x -lk 0 ∫ L c (L -x)ω n x φ n x + l 2 k 0 ∫ L c (L -x)φ n φ n x -→ 0. The sequence ∥φ n x ∥ L 2 (c,L) is bouded. Indeed, ∥φ n x ∥ L 2 (c,L) ≤ ∥φ n x + ψ n + lω n ∥ L 2 (c,L) + ∥ψ n ∥ L 2 (c,L) + l∥ω n ∥ L 2 (c,L) , ∥φ n x + ψ n + lω n ∥ L 2 (c,L
) is bounded from (3.5) and ∥ψ n ∥ L 2 (c,L) , ∥ω n ∥ L 2 (c,L) are bounded from (3.32). Therefore, the last term in (3.34) tends to zero thanks to (3.32). Thus, (3.34) gives

(3.35)                - ρ 1 2 ∫ L c |λ n φ n | 2 + ρ 1 L -c 2 |λ n φ n (L)| 2 - k 2 ∫ L c |φ n x | 2 + (L -c)k 2 |φ n x (c)| 2 -k ∫ L c (L -x)ψ n x φ n x -lk ∫ L c (L -x)ω n x φ n x -lk 0 ∫ L c (L -x)ω n x φ n x -→ 0.
Similarly, eliminating v n in (3.17) by (3.9) and z n in (3.18) by (3.10), then taking the inner product of resulting equations with c,L) respectively and integrating by parts lead to

ρ 2 λ 48 n (L -x)ψ n x and ρ 1 λ 48 n (L -x)ω n x in L 2 (
(3.36)                - ρ 2 2 ∫ L c |λ n ψ n | 2 + ρ 2 L -c 2 |λ n ψ n (c)| 2 - (L -c)b 2 ∫ L c |ψ n x | 2 + b 2 |ψ n x (c)| 2 + k ∫ L c (L -x)ψ n x φ n x + k ∫ L c (L -x)ψ n x φ n +k ∫ L c (L -x)ψ n x ω n -→ 0 and (3.37)                - ρ 1 2 ∫ L c |λ n ω n | 2 + ρ 1 L -c 2 |λ n ω n (c)| 2 - k 0 2 ∫ L c |ω n x | 2 + (L -c)k 0 2 |ω n x (c)| 2 + lk 0 ∫ L c (L -x)ω n x φ n x + lk ∫ L c (L -x)ω n x φ n x +lk ∫ L c (L -x)ω n x ψ n + lk ∫ L c (L -x)ω n x ω n -→ 0.
On the other hand, the sequence ∥ω n x ∥ L 2 (c,L) is bouded. Indeed,

∥ω n x ∥ L 2 (c,L) ≤ ∥ω n x -lφ n ∥ L 2 (c,L) + l∥φ n ∥ L 2 (c,L) , ∥ω n x -lφ n ∥ L 2 (c,L) is bounded from (3.5) and ∥φ n ∥ L 2 (c,L) is bounded from (3.32). Moreover, ∥ψ n x ∥ L 2 (c,L
) is bounded by (3.5). Therefore, the last two terms in (3.36) and those in (3.37) tend to zero thanks to zero (3.32). Hence, (3.36) and (3.37) respectively leads to

(3.38)        - ρ 2 2 ∫ L c |λ n ψ n | 2 + ρ 2 L -c 2 |λ n ψ n (c)| 2 - b 2 ∫ L c |ψ n x | 2 + (L -c)b 2 |ψ n x (c)| 2 + k ∫ L c (L -x)ψ n x φ n x -→ 0. and (3.39)                - ρ 1 2 ∫ L c |λ n ω n | 2 + ρ 1 L -c 2 |λ n ω n (c)| 2 - k 0 2 ∫ L c |ω n x | 2 + (L -c)k 0 2 |ω n x (c)| 2 + lk 0 ∫ L c (L -x)ω n x φ n x +lk ∫ L c (L -x)ω n x φ n x -→ 0.
Adding (3.35), (3.38), and (3.39) lead to

(3.40)                      - ρ 1 2 ∫ L c |λ n φ n | 2 - ρ 2 2 ∫ L c |λ n ψ n | 2 - ρ 1 2 ∫ L c |λ n ω n | 2 - k 2 ∫ L c |φ n x | 2 - b 2 ∫ L c |ψ n x | 2 - k 0 2 ∫ L c |ω n x | 2 +ρ 1 L -c 2 |λ n φ n (c)| 2 + ρ 2 L -c 2 |λ n ψ n (c)| 2 + ρ 1 L -c 2 |λ n ω n (c)| 2 + k 2 |φ n x (c)| 2 + b 2 |ψ n x (c)| 2 + k 0 2 |ω n x (c)| 2 -→ 0.
In the following steps and calculation, we shall denote by ∥ . ∥ c := ∥ . ∥ L 2 (0,c) .

Step 3. In this step, the main goal is the proving that all the terms defined at x = c in (3.40) tend to zero. Only, the transmission conditions will give back information from the thermoelastic part of the beam to the elastic part. Let us start with the term λ n ψ n (c). So by the Gagliardo-Nirenberg inequality, we have

(3.41) |λ n ψ n (c)| 2 = |λ n Ψ n (c)| 2 ≲ ∥Ψ n ∥ c ∥λ n Ψ n x ∥ c .
Eliminating V n in (3.15) by (3.12) then taking the inner product of resulting equation with 1 λ 37 n Ψ n x in L 2 (0, c) and integrating by parts lead to

(3.42) i ∫ c 0 λ 12 n θ n 2 Ψ n x + ∫ c 0 λ 11 n θ n 2x Ψ n xx - [ λ 11 n θ n 2x Ψ n x ] c 0 + iα ∫ c 0 |λ 6 n Ψ n x | 2 -→ 0.
The first term tends to zero since λ 12 n θ n 2 -→ 0 by (3.26) and Ψ n x is bounded in L 2 (0, c) due to (3.5). The second term can be written as

∫ c 0 λ 12 n θ n 2x Ψ n xx λ n .
So this term tends to zero since Ψ n xx λ n is bounded from the dividing of (3.20) by λ 49 n and λ 12 n θ n 2x tends to zero in L 2 (0, c) by (3.26). About the boundary term, using the transmission conditions on

θ n 2x gives [ λ 11 n θ n 2x Ψ n x ] c 0 = -λ 11 n θ n 2x (0)Ψ n x (0)
. By the Gagliardo-Nirenberg inequality we have

λ 11 n θ n 2x (0)Ψ n x (0) ≲ ∥λ 24 n θ n 2x ∥ 1 2 c θ n 2xx λ n 1 2 c ∥Ψ n x ∥ 1 2 c Ψ n xx λ n 1 2 c
. Now, dividing (3.12) by λ 9 n implies that

V n x λ n is bounded in L 2 (0, c). Then, dividing (3.15 
) by λ 9 n yields to

θ n 2xx λ n is bounded in L 2 (0, c).
Consequently, the first three terms in (3.42) tend to zero and so

(3.43) ∥λ 6 n Ψ n x ∥ c -→ 0. Therefore, (3.44) ∥λ n Ψ n x ∥ c -→ 0.
On the other hand, Ψ n is bounded in L 2 (0, c) from the Poincaré inequality and since Ψ n

x is bounded in L 2 (0, c) from (3.5). Thus, using (3.44) in (3.41) leads to (3.45) λ n ψ n (c) -→ 0.

Repeating the same arguments to (3.14), (3.11), and (3.13) yields to

(3.46) ∥λ n (Ω n x -lΦ n )∥ c -→ 0. Now, let us prove that (3.47) ∥λ n (Φ x + Ψ n + lΩ n )∥ c -→ 0.
For this goal, eliminating V n in (3.20) by (3.12) then taking the inner product of resulting equation with 

1 λ 46 n (Φ x + Ψ n + lΩ n ) in L 2 (0,
             - ∫ c 0 λ 4 n Ψ n (Φ x + Ψ n + lΩ n ) + b ρ 2 ∫ c 0 λ 2 n Ψ n x (Φ x + Ψ n + lΩ n ) x - b 1 δ 2 [ λ 2 n Ψ n x (Φ x + Ψ n + lΩ n ) ] c 0 + k 1 δ 2 ∫ c 0 |λ n (Φ n x + Ψ n + Ω n )| 2 + α δ 2 ∫ c 0 λ 2 n θ n 2x (Φ x + Ψ n + lΩ n ) -→ 0.
By the poincaré inequality we have 

∥λ 4 n Ψ n ∥ c ≤ ∥λ 4 n Ψ n x ∥ c .
∫ c 0 λ 4 n Ψ n (Φ x + Ψ n + lΩ n ) -→ 0.
Next, we have (3.51) 

∫ c 0 λ 2 n Ψ n x (Φ x + Ψ n + lΩ n ) x = ∫ c 0 λ 3 n Ψ n x (Φ x + Ψ n + lΩ n ) x λ n -→ 0 since λ 3 n Ψ n x -→ 0 in L 2 (0,
∫ c 0 λ 2 n θ n 2x (Φ x + Ψ n + lΩ n ) -→ 0
Thanks to (3.26) and the fact that Φ x + Ψ n + lΩ n is bounded due to (3.5). Now, about the boundary terms in (3.48), by the Gagliardo-Nirenberg inequality we have for x = 0, c

(3.53)    |λ 2 n Ψ n x (x)(Φ x + Ψ n + lΩ n )(x)| ≲ ∥λ 6 n Ψ n x ∥ 1 2 L Ψ n xx λ n 1 2 c ∥Φ x + Ψ n + lΩ n ∥ 1 2 c (Φ x + Ψ n + lΩ n ) x λ n 1 2 c .
Thus, (3.43) and the boundedness of Ψ n xx λ n , Φ x + Ψ n + lΩ n , and

(Φ x + Ψ n + lΩ n ) x λ n yield (3.54) [ λ 2 n Ψ n x (Φ x + Ψ n + lΩ n ) ] c 0 -→ 0.
Consequently, (3.50), (3.51), (3.52), and (3.54) imply (3.47). Next, by the transmission condition and the Gagliardo-Nirenberg, we have

(3.55) |λ n φ n (c)| = |λ n Φ n (c)| ≲ ∥λ n Φ n x ∥ 1 2 c ∥λ n Φ n ∥ 1 2 c and (3.56) |λ n ω n (c)| = |λ n Ω n (c)| ≲ ∥λ n Ω n x ∥ 1 2 c ∥λ n Ω n ∥ 1 2
c . Next, the Poincaré inequality leads to

(3.57) |λ n φ n (L)| ≲ ∥λ n Φ n x ∥ c and (3.58) |λ n ω n (L)| ≲ ∥λ n Ω n x ∥ c . In addition, for l / ∈ { nπ L , (2n ′ + 1) 2d /n, n ′ ∈ Z } there exists a positive constant C such that (3.59) ∥Φ x ∥ 2 c + ∥Ψ x ∥ 2 c + ∥Ω x ∥ 2 c ≤ C ( ∥Φ x + Ψ n + lΩ n ∥ 2 c + ∥Ψ x ∥ 2 c + ∥Ω x -lΦ n ∥ 2 c
) .

Therefore 

|λ n φ n (c)|, |λ n ω n (c)| -→ 0.
Step 4. In this step, the claim is the proving that the last three terms in (3.40) tend to zero. Firstly, by the transmission conditions (1.2) and the Gagliardo-Nirenberg inequality we have

|φ n (c)| = |Φ n (c)| ≲ ∥Φ n ∥ 1 2 c ∥Φ n x ∥ 1 2
c . Thus, (3.60) gives

(3.62) |φ n (c)| -→ 0.
Repeating the same process yiels also

(3.63) |ψ n (c)|, |ω n (c)| -→ 0.
Next, by the transmission conditions (1.2), we have Therefore, by dividing (3.11), (3.12), and (3.13) by λ 48 n we get (3.78) p n , q n , r n -→ 0 in L 2 (0, c).

(3.64) { |φ n x (c)| ≤ |(φ n x + ψ n + ω n )(c)| + |ψ(c)| + |ω n (c)| = |(Φ n x + Ψ n + Ω n )(c)| + |ψ(c)| + |ω n (c)|. So by the Gagliardo-Nirenberg inequality we get (3.65)    |φ n x (c)| ≲ ∥λ n (Φ n x + Ψ n + Ω n )∥ 1 2 c (Φ n x + Ψ n + Ω n ) x λ n 1 2 c +|ψ n (c)| + |ω n (c)|. Since (Φ n x + Ψ n + Ω n ) x λ n is bounded in L 2 (0,
(c)| = |Ψ n x (c) - α b 1 θ n 2 (c)| ≲ ∥λ n Ψ n x ∥ 1 2 c Ψ n xx λ n 1 2 c + ∥θ n 2 ∥ 1 2 c ∥θ n 2x ∥ 1 2 c .

Also

       - ρ 1 2 ∫ L c |λ n φ n | 2 - ρ 2 2 ∫ L c |λ n ψ n | 2 - ρ 1 2 ∫ L c |λ n ω n | 2 - k 2 ∫ L c |φ n x | 2 - b 2 ∫ L c |ψ n x | 2 - k 0 2 ∫ L c |ω n x | 2 -→ 0.
In addition, dividing (3.27) by λ 24 n leads to This a contradiction with (3.5) and the proof is completed. □

λ 4 n

 4 Ψ n -→ 0 in L 2 (0, c). So (3.49) and the boundedness of Φ x + Ψ n + lΩ n in L 2 (0, c) due to(3.5) give(3.50) 

, since Ψ n xx λ n and θ n 2x are bounded in L 2 c

 2 (0, c), using (3.27) and (3.44) in (3.67) gives (3.68) |ψ n x (c)| -→ 0. It remains to prove that the last term in (3.40) converges to zero. In a similar way, due the transmission conditions (1.2))| ≤ |(ω n x -lφ n )(c)| + l|φ(c)| = |(Ω n x -lΦ n )(c) -α k 01 θ n 1 (c)| + |ω n (c)| ≲ ∥λ n Ω n x -lΦ n ∥ + l|φ(c)|. Since (Ω n x -lΦ n ) x λ n and θ n 2x are bounded in L 2 (0,c), using (3.46), (3.27) and (3.62) in (3.65) gives (3.70) |ω n x (c)| -→ 0. Hence, thanks to (3.45), (3.61), (3.66), (3.68), and (3.70), we get from (3.40) that (3.71)

  λ n φ n , λ n ψ n , λ n ω n -→ 0 in L 2 (c, L) and (3.73) φ n x , ψ n x , ω n x -→ 0 in L 2 (c, L).Thus, (3.72), (3.8), (3.9), and (3.10) imply that(3.74) u n , v n , z n -→ 0 in L 2 (c, L).Also, (3.72) with (3.32) leads to(3.75) φ n x + ψ n + ω n , ψ n x , ω n x -lφ n -→ 0 in L 2 (c, L).Thanks (3.44),(3.46), and (3.47) we have(3.76) Φ n x + Ψ n + Ω n , Ψ n x , Ω n x -lΦ n -→ 0 in L 2 (0, c).Also, the poincaré inequality, (3.44), (3.46), (3.47), and (3.33) give (3.77) λ n Φ n , λ n Ψ n , λ n Ω n -→ 0 in L 2 (0, c).

(3.79) θ n 1 , θ n 2 -

 12 → 0 in L 2 (0, c). On the other hand, dividing (3.22), (3.23), and (3.24) by λ 49 n , we get (3.80) p n , q n , r n -→ 0 in C. Finally, (3.74), (3.75), (3.76), (3.78), and (3.80) imply (3.81) ∥ W n ∥ H -→ 0.