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1 Introduction

1.1 Motivations

In this paper we consider an optimal investment/consumption problem during a fixed time
interval [0, T ] for a financial market generated by exponential Lévy process. It should be
noted that, the optimal investment/consumption problems are very popular in the stochas-
tic financial markets theory. Beginning with the classical paper of Merton [30], where in
the first time an optimal investment problem was studied for the Black-Scholes models,
the interest in these problems constantly increases until today (see, for example, [31,22,25,
17] and the references therein). It should be emphasized that financial markets defined by
the continuous stochastic processes similar to the geometric brownian motion are very lim-
ited for the practical applications and they do not allow us to describe situations of abrupt,
impulsive changes in price processes observed during of the crises and instability in finan-
cial markets. It seems that for the first time an optimization portfolio problem for financial
markets with jumps was studied in the paper [15], in which the authors using the stochas-
tic Pontryagin maximum principle constructed optimal investment/consumption strategies.
The main drawback of the maximum principle approach is that this method can’t consider
the objective function including the term depending of the terminal wealth value which is
very important for the applications of this strategies. This means that for this case the op-
timization problem does not take into account the portfolio value, i.e. indeed, this is only
optimal consumption problem which has not enough practical interest. Later, these prob-
lems were studied for more complex market models and in different settings, in [27] authors
considered a maximization utility problem in general semimartingale settings and found the
necessary and sufficient condition on a utility functions. In the papers [34,12,2,29] such
problems were considered for stochastic volatility markets (as example, in [29] authors an-
alyzed the Bellman equation but did not proved the verification theorem), in [13,21] for the
market defined by the the affine processes, in the papers [23,24,9,14] the authors considered
the portfolio optimization problems with constraints. The similar problem was considered
in [20] with semimartingale prices framework without constraints on risks measures. Au-
thors of [4,33] considered a problem of optimal consumption in the specific budget form.
In particular, similar approach was developed in [10] under restricted information. In [28]
considered pure consumption problem on Lévy markets with infinite time horizon under
proportional transaction costs where they used geometric approach and viscosity solutions
in similar spirit as it was done in [6] (without transacion costs). In the paper [7] studied
optimal investment for finite time horizon and consumption problem for infinite horizon us-
ing stochastic duality for market with jumps. Closed solution was found in case of variance
gamma class with HARA utility function. Authors of [5] characterized q-optimal equivalent
martingale measures for Lévy processes and solved 2 examples of optimal investment and
consumption problem for some special form of utility functions. In the papers [11,28] the
authors studied a special geometric model for the optimization problem on the Lévy mar-
kets with integrated jumps. In the papers [1,3] the optimization problems were considered
for the spread markets. Such problems are of prime interest for practical investors such as
those in the electricity and gas markets, and also in other sectors like microstructure level
within the aircraft construction, for the precious metals (see, for example, [8,32,16]). The
three main drawbacks of the papers are consideration only pure consumption problem which
is not enough for practical interest, as it was noted earlier, or merely improvement existence
(and in some works uniqueness) of optimal strategy without computing these strategies, or
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finding investment strategies which has practical interest but for some cases it is also not
enough.

The main goal of our work is to study the classical investment and consumption problem
for the general Lévy markets, i.e. in the case when the objective functions are constructed
trough the both the integrated consumption term and the function of the terminal capital
on the finite time interval. Moreover, we are interested to find the optimal solutions in the
explicit form and to illustrate its behavior by the Monte - Carlo methods.

1.2 Main results

In this paper we consider a portfolio optimization problem for financial markets with jumps
on the basis of the stochastic dynamic programming method. To this end we obtain and
study the Hamilton–Jacobi–Bellman (HJB) equation. The challenge here is that we could
not use directly the classical HJB analysis method from [22], which was due to the addi-
tional integral term corresponding to the jumps in the market model. Therefore, we need to
develop a special analytical tool to analyze this equation and to construct optimal strategies.
Similar to [23,24,12,2] we study this problem through the verification theorem method. So,
in this paper, in the first time we show a special verification theorem for objective functions
containing terminal functionals in non gaussian Lévy financial markets framework. Then,
using this theorem we construct the optimal strategies, and, finally, for the power utility
functions we provide the solutions for such optimisation problems in explicit form. Finally,
we illustrate the obtained theoretical results by the numeric simulations.

1.3 Plan of the paper

The rest of the paper is organized as follows. In Section 2 we introduce the financial market
and all main conditions. In Section 3 we obtain the HJB equation and we show the veri-
fication theorem. In Section 4 we construct the optimal investment/consumption strategies
in the explicit form for the power utility functions. In Section 5 we give the Monte Carlo
simulations for the obtained optimal strategies. Finally the proofs of the auxiliary results are
given in Appendix A.

2 Problem

Let us consider the problem of constructing optimal investment strategies for financial mar-
kets described by Lévy processes with jumps that are widely used in financial mathematics
(see, for example, [19]). Suppose the financial market with finite time horizon T <∞ con-
sists of a risk-free asset (bond) (Bt)0≤t≤T and risky assets (stocks) (St)0≤t≤T , St ∈ Rn+ ,
i = 1, . . . , n , 

dBt = r Bt dt , B0 = 1 ,

dS it = µi S
i
t dt+ S it−

n∑
j=1

(
σij dW j

t + ςij dLjt

)
,

(2.1)

where r ≥ 0 is a risk-free interest rate, µ = (µ1, . . . , µn)
′
∈ Rn is a drift vector, the volatil-

ities σ = (σi,j)1≤i,j≤n and ς = (ςi,j)1≤i,j≤n are n × n matrices such that σ is positive
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definite and, for any i, j = 1, . . . , n , 0 ≤ ςij ≤ 1. The prime ′ denotes the transposition.
Moreover, (W 1

t )0≤t≤T , . . . , (W
n
t )0≤t≤T are independent standard brownian motions and

(L1
t )0≤t≤T , . . . , (L

n
t )0≤t≤T are independent pure jumps Lévy processes, i.e.

Ljt =

t∫
0

∫
R∗

y
(
ν j(ω; dy ,ds)− ν̃ j(dy ,ds)

)
,

where ν j(ω; dy ,ds) are random jump measures with compensators ν̃ j(dy ,ds) = Πj(dy) ds
and Πj(·) are the corresponding Lévy measures on R∗ = R\{0} . It should be noted that in
this case ∆Ljt ∆L

i
t = 0 , for any t ≤ T and i 6= j . We also assume the following conditions

Πj (]−∞,−1]) = 0 and Πj(y2) =

∫
R∗

y2Πj(dy) <∞ , (2.2)

which imply almost sure positivity of the processes S it , for any 1 ≤ i ≤ n and 0 ≤ t ≤ T .
Everywhere bellow we use the filtration (Ft)0≤t≤T with Ft = σ{Wu, Lu : 0 ≤ u ≤ t} .
Similar to [23] in this paper we use the fractional strategies defined as

θ it =
αit S

i
t

Xt
and ct =

ζt
Xt

, (2.3)

where αit is number of units of i-th risky asset purchased by an investor at time moment t,
Xt is her amount of capital, i.e. (we define α̌t as number of risk-free asset)

Xt =
n∑
i=1

αit S
i
t + α̌tBt , (2.4)

and from the equation above we can deduce

1−
n∑
i=1

θ it =
α̌tBt
Xt

.

Moreover, the process ζt in (2.3) is the consumption intensity i.e. it is non negative integrated
process for which the integral

∫ t
0
ζs ds is the consumption on time interval [0, t] . Now using

the self-financing-consumption principle for the wealth process (2.4) (see, for example, [22])
and the definition (2.1), we obtain thatdXt = Xt (r + θ

′

t µ̌− ct) dt+Xt θ
′

t σ dWt +Xt− θ
′

t− ς dLt ,

X0 = x > 0 ,
(2.5)

where µ̌ = (µ − r 1n) , 1n = (1, . . . , 1)
′
∈ Rn and θt = (θ1

t , . . . , θ
n
t )
′
. It should be noted

that to provide the positivity of the portfolio value Xt the jump sizes of the process

Ľt =

t∫
0

θ
′

s− ς dLs
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have to be greater than−1 , i.e.∆Ľs > −1 . To this end we assume that the financial strategy
θt = (θ1

t , . . . , θ
n
t )′ is a càdlàg process with the values in the set [0, 1]n such, that for any

fixed 0 ≤ t ≤ T almost sure
∑n
j=1 θ

j
t ≤ 1 . In the sequel we denote by

Θ =

x = (x1, . . . , xn)
′
∈ [0, 1]n :

n∑
j=1

xj ≤ 1

 . (2.6)

Now, using this set we introduce the admissible strategies for which we will consider the
optimal consumption and investment problem.

Definition 2.1. A stochastic process υ = (θt, ct)0≤t≤T is called admissible if the first
component (θt)0≤t≤T is adapted, càdlàg process with the values in the set (2.6) and the
process (ct)0≤t≤T is adapted, non negative integrated on the interval [0, T ] for which the
equation (2.5) has unique strong strictly positive solution (Xt)0≤t≤T .

We denote by V the set of admissible strategies. Now, for any υ ∈ V , we set the objective
function as

J(x, υ) := Ex

 T∫
0

U(Xs cs) ds+ U(XT )

 , (2.7)

where Ex is the conditional expectation given X0 = x and the utility function U(x) = xγ ,
0 < γ < 1 . Our goal is to find a strategy υ∗ ∈ V , such that

J(x, υ∗) = sup
υ∈V

J(x, υ) =: J∗(x) . (2.8)

According to the dynamic programming principle we define the value function on [t, T ] as

J∗(t, x) := sup
υ∈V

J(t, x, υ) , (2.9)

where the objective function on the time interval [t, T ] is given as

J(t, x, υ) := Ex,t

 T∫
t

U(Xs cs) ds+ U(XT )

 .

Here Ex,t is the conditional expectation with respect to Xt = x . Note that in our case
J(t, x, υ) can be equal to∞ for some strategy υ .

Remark 2.2. Note that the optimal consumption and investment problem without terminal
fucntional for the model (2.1) is studied in [15] (the problem (4.2)) through the maximum
Pontryagin principle.
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3 Verification theorem

Now we will generalize the controlled process (2.5) and the definition of admissible strate-
gies. For such framework we formulate and prove the verification theorem. Let define duf-
fusion jumps controlled process Xt whose takes values in an open convex set X ⊆ R (we
need convexity to apply Ito’s Lemma for a process z(t,Xt) and to guarantee the existance
of derivative zx(t, x) on interior of X and openess to define a finite summand which corre-
sponds to jumps in HJB’s equation) and control process υt with values in closed set K (we
need closure to be sure that if, for any t ∈ [0, T ] , υt ∈ K , then υt− ∈ K ), where K ⊆ Rn .
The main difference between classical HJB’s approach and our solution is to use arbitrary
sets X and K which allows us do not define stopping time τ = inf{s ∈ [0, T ] : Xs /∈ X} .
In particular case, for financial markets (when X =]0,∞[ ), stopping time τ means ruin mo-
ment. Although our solution guarantees that the controlled process will take values in X .
But it does not mean that optimal portfolio will have low volatility over time interval [0, T ] .

Let X = (Xt)0≤t≤T , Xt ∈ X be Ito’s process in formdXt = a(Xt, υt) dt+ b
′
(Xt−, υt−) dVt ,

X0 = x ∈ X ,
(3.1)

where Vt = σWt+ς Lt . (Lt)t≥0 , (Wt)t≥0 are independent n-dimentional standart brown-
ian motion and pure jumps Lévy process. Also, the processes (L1

t )0≤t≤T , . . . , (L
n
t )0≤t≤T

are mutually independent,

Ljt =

t∫
0

∫
R∗

y
(
ν j(ω; dy ,ds)− ν̃ j(dy ,ds)

)
,

here ν j(ω; dy ,ds) is a random measure of j-th component of jumps with it’s deterministic
compensator

ν̃ j(dy ,ds) = Πj(dy) ds ,

where Πj(·) is Lévy measure on R∗ = R \ {0} with

Πj(y2) <∞ .

σ ∈ Rn×n is positive definite matrix, and, for any i, j = 1, . . . , n , 0 ≤ ςij ≤ 1 . Functions

a : X ×K → R and b : X ×K → Rn

are not random, continuous and such that for any fixed non-random point κ ∈ K the equa-
tion (3.1) with υt ≡ κ has an unique strong solution Xt ∈ X on time interval [0, T ] . For
fixed x and κ , b(x, κ) is a vector-column. Moreover, for given continuous utility functions
U1(t, x, κ) and U2(x) with values in R ,

E

 T∫
0

(U1(s,Xs, κ))− ds+ (U2(XT ))−

 <∞ ,

where, for any x ∈ R , (x)− = max(0,−x) . The conditions on functions a and b guarantee
existence of control processes (at least υt ≡ κ = const ∈ K ).



Optimal investment and consumption for financial markets with jumps 7

Definition 3.1. We will say, a stochastic process υ = (υt)0≤t≤T is called admissible if it
is (Ft)0≤t≤T -adapted, has càdlàg trajectories, takes values in the set K , and such that
the equation (3.1) on time interval [0, T ] has an unique strong solution, such that, for any
t ∈ [0, T ] : Xt ∈ X , Xt− ∈ X ,

T∫
0

(
|a(Xt, υt)|+ |b(Xt, υt)|

2
)

dt <∞ P-a.s. (3.2)

and

E

 T∫
0

(U1(s,Xs, υs))− ds+ (U2(XT ))−

 <∞ . (3.3)

We define V as a set of all admissible strategies (note thatK ⊆ V ) and the value function
on the interval [t, T ] as

J∗(t, x) := sup
υ∈V

J(t, x, υ) , (3.4)

where the objective function defined

J(t, x, υ) := Et,x

 T∫
t

U1(s,Xs, υs) ds+ U2(XT )

 .

The goal will be to find an admissible strategy υ∗ ∈ V , such that

J(0, x, υ∗) = J∗(0, x) = sup
υ∈V

J(0, x, υ) . (3.5)

Remark 3.2. Note the process (2.5) can be obtained as a special case

a(x, κ) = x (r + κ
′

1 µ̌− κ2) and b(x, κ) = xκ1 ,

with κ = (κ1, κ2) ∈ K := Θ ×R+ , κ1 = (κ1
1, . . . , κ

n
1 ) is a vector-column.

To apply the dynamic programming method, we will need to introduce Hamilton func-
tion. For any twice continuously differentiable function g(t, x) , g : [0, T ] × X → R with
respect to x and continuously differentiated with respect to t , such that

sup
x∈X

|g(t, x)|
1 + |x| <∞ ,

we define
H(t, x, g) := sup

κ∈K
H0(t, x, g, κ) , (3.6)

where

H0(t, x, g, κ) = a(x, κ) gx(t, x) +
1

2
tr
{
σ
′
b(x, κ) b

′
(x, κ)σ

}
gxx(t, x)

+ U1(t, x, κ) + g(t, x, κ) , (3.7)

here notation trA means trace of matrix A ∈ Rn×n and

g(t, x, κ) =
n∑
i=1

∫
R∗

Υ (t, x, b
′
(x, κ) ςi y)Π

i(dy) , (3.8)
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where ςi = (ς1i , . . . , ςni)
′

is i-th column of the matrix ς ,

Υ (t, x, v) = [g(t, x+ v)− g(t, x)− gx(t, x) v]1{x+v∈X} , (3.9)

and v ∈ R∗ . Here Πi(dy) is Levy measure of the process Lit . We need an indicator
1{x+v∈X} since there are no assumptions on measure Π(·) to guarantee x + v belongs
to X , for any v ∈ R∗ . Notations gt , gx , gxx mean corresponding derivatives of function
g(t, x) .

It is proved in Appendix A.1 that g is finite and it will be used as jumps compensator
of the process g(t,Xt) . Note that this function is a sum of integrals since Lt consists of
mutually independent Lévy processes, see Remark A.2 in Appendix.

To solve the problem (3.5), we need to study the following Hamilton–Jacobi–Bellman
equation with respect to the function of two variables z(t, x) ,zt(t, x) +H(t, x, z) = 0 , t ∈ [0, T ] ,

z(T, x) = U2(x) x ∈ X .
(3.10)

Next, we need the following conditions.
H1) There exists solution z ∈ C1,2([0, T ]×X ,R) of the equation (3.10), such that

z∗ = inf
0≤s≤T

inf
x∈X

z(s, x) > −∞ , (3.11)

and, for any fixed t ∈ [0, T ] ,

sup
x∈X

|z(t, x)|
1 + |x| <∞ . (3.12)

H2) There exists [0, T ]×X → K measurable function υ∗ , such that

H(t, x, z) = H0(t, x, z, υ∗(t, x)) ,

for any 0 ≤ t ≤ T and x ∈ X .
H3) For any x ∈ X , there exists an unique almost surely solution X∗ = (X∗t )0≤t≤T

with values in the set X such that X∗t− ∈ X of equation

dX∗t = a∗(t,X∗t ) dt+ (b∗(t−, X∗t−))
′
dVt , X∗0 = x , (3.13)

where Vt = σWt + ς Lt ,

a∗(t, x) = a(x, υ∗(t, x)) and b∗(t, x) = b(x, υ∗(t, x)) .

Moreover, the process υ∗ = (υ∗t )0≤t≤T , υ∗t = υ∗(t,X∗t ) is admissible, i.e. belongs to V .
H4) For any 0 ≤ t ≤ T and x ∈ X ,

Et,x sup
t≤s≤T

|z(s,X∗s )| <∞ . (3.14)

Remark 3.3. Here H1) and H4) are technical conditions. In particular, z∗ will be used to
apply Fatou’s lemma for limit transition under conditional expectation. The condition (3.12)
guarantees finiteness of the jumps compensator (function z ) of the process z(Xt, t) , where
Xt is Lévy process and H4) will be used to apply Lebesgue convergence theorem to prove
optimality of the process υ∗(t,X∗t ) .
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Remark 3.4. We don’t need uniqueness of a solution z(t, x) of (3.10). But if conditions of
theorem 3.6 are satisfied then z(t, x) will be unique and J(t, x, υ∗) <∞ , for any t ∈ [0, T ]
and x ∈ X .

Remark 3.5. Indeed, we use the same type of the conditions as it is done in paper [23] to
show the verification theorem.

Using the approach proposed in [23], we show the following verification theorem.

Theorem 3.6. Suppose conditions H1) – H4) are hold. Then, for any 0 ≤ t ≤ T and
x ∈ X ,

z(t, x) = J∗(t, x) = J(t, x, υ∗) ,

where the optimal strategy υ∗ = (υ∗s )t≤s≤T , υ∗s = υ∗(s,X∗s ) is determined in terms of
H2) – H4).

Proof. We will consider an arbitrary fixed time moment t ∈ [0, T [ . The proof is conducted
in two parts: the first step is shown that, for an arbitrary control υ ∈ V and any x ∈ X , the
following inequality hold:

J(t, x, υ) ≤ z(t, x) .

Which implies, for ∀x ∈ X , t ∈ [0, T [ :

sup
υ∈V

J(t, x, υ) ≤ z(t, x) .

The second part is shown that, for υ∗ = (υ∗s )t≤s≤T , the following equality achieved

J(t, x, υ∗) = z(t, x) ,

where υ∗s = υ∗(s,X∗s ) .
1 part. Let υ ∈ V , υ = (υs)t≤s≤T be an arbitrary admissible control (we will consider
the control on time interval [t, T ] , while the control itself can be defined over the whole
interval). And consider the stochastic differential equation on the interval [t, T ] . By the
definition of an admissible control process, the equation

dXs = a(Xs, υs) ds+ b
′
(Xs−, υs−) dVs , Xt = x ∈ X , s ∈ [t, T ] ,

with Vs = σWs + ς Ls must have an unique (P-a.s.) strong solution X = (Xs)t≤s≤T
(since it has an unique strong solution on the whole interval [0, T ] ).

By condition H1), function z : [0, T ] × X → R is the solution of HJB’s equation with
continuous zt(t, x), zx(t, x) and zxx(t, x) . Applying Ito’s formula we have, for arbitrary
t < u ≤ T and Xt = x ,

z(u,Xu) = z(t, x) +

u∫
t

zt(s,Xs) ds+

u∫
t

zx(s,Xs−) dXs

+
1

2

u∫
t

zxx(s,Xs−) d〈Xc〉s +
∑
t≤s≤u

(∆z(s,Xs)− zx(s,Xs−)∆Xs) ,

where 〈Xc〉 is variation of continuous part of semimartingale X (predictable quadratic vari-
ation) and

∆z(s,Xs) = z(s,Xs)− z(s,Xs−) , ∆Xs = Xs −Xs− .
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It is easy to compute (note, we have n-dimensional Wiener process in form of σWs ), that

d〈Xc〉s = tr
{
σ
′
b(Xs, υs) b

′
(Xs, υs)σ

}
ds .

Therefore Ito’s formula has the following form

z(u,Xu) = z(t, x) +

u∫
t

[
zt(s,Xs) + zx(s,Xs) a(Xs, υs)

+
1

2
zxx(s,Xs) tr

{
σ
′
b(Xs, υs) b

′
(Xs, υs)σ

}]
ds

+

u∫
t

zx(s,Xs−) b
′
(Xs−, υs−) dVs

+
∑
t≤s≤u

(∆z(s,Xs)− zx(s,Xs−)∆Xs) .

The key idea to prove the 1st step will be the following, we need to compensate the jump
term, add to and subtract from Ito’s formula the integral

∫ u
t
U1(s,Xs, υs) ds and take a

conditional expectation given Xt = x . But we cannot apply the last operation directly since
there are no conditions on finitness of expectations (in particular, for stochastic integrals).
Thus we introduce a sequence of stopping times (τm)m>0 (see Lemma A.5 in Appendix
why they are stopping times)

τm := inf

u ≥ t :

u∫
t

(
|β(s)|2 + |z(s,Xs−, υs−)|

)
ds ≥ m

 ∧ T , (3.15)

where
β(s) = zx(s,Xs) b

′
(Xs, υs)

and z is given as in (3.8) (g ≡ z ),

z(t, x, κ) =
n∑
i=1

∫
R∗

Υ (t, x, b
′
(x, κ) ςi y)Π

i(dy) , (3.16)

where ςi = (ς1i , . . . , ςni)
′

is i-th column of the matrix ς ,

Υ (t, x, v) = [z(t, x+ v)− z(t, x)− zx(t, x) v]1{x+v∈X} ,

Πi(·) is Lévy measure of Lit . Note that the integrals in (3.16) are finite (see Lemma A.1 in
Appendix). Here we used obvious equalities

∆z(s,Xs) = z(s,Xs− +∆Xs)− z(s,Xs−)

and

∆Xs = b
′
(Xs−, υs−) ς ∆Ls =

n∑
i=1

b
′
(Xs−, υs−) ςi∆L

i
s ,
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to find a jumps compensator (see Remark A.2 in Appendix how we can define it)

E
∑

t≤s≤τm

(∆z(s,Xs)− zx(s,Xs−)∆Xs) = E

τm∫
t

z(s,Xs−, υs−) ds ≤ m. (3.17)

Also note that in this case

Et,x

τm∫
t

zx(s,Xs−) b
′
(Xs−, υs−) dVs = 0 . (3.18)

As the result, considering the definition (3.7) of function H0(t, x, z, κ) , replace u to τm in
Ito’s formula, we have

τm∫
t

U1(s,Xs,υs) ds+ z
(
τm, Xτm

)
= z(t, x) +

τm∫
t

[zt(s,Xs) +H0(s,Xs, z, υs)] ds

+

τm∫
t

zx(s,Xs−) b
′
(Xs−, υs−) dVs

+
∑

t≤s≤τm

(∆z(s,Xs)− zx(s,Xs−)∆Xs)−

τm∫
t

z(s,Xs, υs) ds . (3.19)

Note, that
τm∫
t

[zt(s,Xs) +H0(s,Xs, z, υs)] ds ≤ 0 P-a.s. ,

since, by the condition H1), for any s ∈ [t, T ] and x ∈ X , z(s, x) is the solution of HJB’s
equation, i.e.

zt(s, x) = −H(s, x, z) ,

from (3.6), it follows that, for any κ ∈ K ,

H(s, x, z) ≥ H0(s, x, z, κ) .

Therefore, from (3.19), we can obtain the following inequality,

τm∫
t

U1(s,Xs, υs) ds+ z
(
τm, Xτm

)
≤ z(t, x) +

τm∫
t

zx(s,Xs−) b
′
(Xs−, υs−) dVs

+
∑

t≤s≤τm

(∆z(s,Xs)− zx(s,Xs−)∆Xs)−

τm∫
t

z(s,Xs, υs) ds . (3.20)

Now we can take the conditional expectation (given Xt = x) in inequality (3.20), consider-
ing (3.17) and (3.18) (note that Vt is square integrable martingale),

Et,x

 τm∫
t

U1(s,Xs, υs) ds+ z
(
τm, Xτm

) ≤ z(t, x) . (3.21)
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The next step will be tom→∞ (i.e. τm → T ) and do limit transition under expectation
Et,x by using Fatou’s lemma. To do it, for m ∈ N , let’s define random variable

ξm :=

τm∫
t

U1(s,Xs, υs) ds+ z
(
τm, Xτm

)
.

By hypothesis H1) of the theorem, we have z∗ = inf
0≤t≤T

inf
x∈X

z(t, x) > −∞ . Therefore, for

any m ∈ N ,

ξm = z
(
τm, Xτm

)
+

τm∫
t

U1(s,Xs, υs) ds

≥ z∗ −

τm∫
t

[U1(s,Xs, υs)]− ds ≥ z∗ −
T∫
t

[U1(s,Xs, υs)]− ds , P-a.s. (3.22)

Let’s define

η := z∗ −
T∫
t

[U1(s,Xs, υs)]− ds ,

and note that, by Definition 3.1 of admissible strategies, Et,x|η| < +∞ . By (3.22), we have,
for any m ∈ N ,

(ξm)− ≥ η .

Therefore, by Fatou’s lemma for conditional expectation, we have next inequality

Et,x lim inf
m→∞

ξm ≤ lim inf
m→∞

Et,x ξm .

Thus inequality (3.21) can be rewritten as following

Et,x

(
lim inf
m→∞

ξm

)
≤ z(t, x) . (3.23)

Note that limm→∞ ξm is well-defined, namely,

lim
m→∞

ξm = z(T,XT ) +

T∫
t

U1(s,Xs, υs) ds ,

since Lebesgue integral is continuous (as function of upper limit), τm → T as m → ∞ ,
P-a.s., and X is Lévy process, in particular, at time moment T there is no jump (i.e. X is
continuous at t = T ), therefore

lim inf
m→∞

ξm = lim
m→∞

ξm = z(T,XT ) +

T∫
t

U1(s,Xs, υs) ds

= U2(XT ) +

T∫
t

U1(s,Xs, υs) ds ,
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and inequality (3.23) can be rewritten in the following form

Et,x lim inf
k→∞

ξk = Et,x

U2(XT ) +

T∫
t

U1(s,Xs, υs) ds


= J(t, x, υ) ≤ z(t, x) . (3.24)

Taking into account that this inequality holds, for any admissible strategy υ ∈ V , we obtain
that

sup
υ∈V

J(t, x, υ) =: J∗(t, x) ≤ z(t, x) . (3.25)

2 part. By the hypotheses H1)–H4) of the theorem, there exist: a solution z(t, x) of the
Hamilton-Jacobi-Bellman equation, the measurable function υ∗ : [0, T ] × X → K , such
that, ∀x ∈ X and ∀s ∈ [0, T ] :

H(s, x, z) = H0(s, x, z, υ∗(s, x)) ,

the stochastic processX∗ = (X∗s )0≤s≤T and admissible control process υ∗ = (υ∗s )0≤s≤T ,
υ∗s = υ∗(s,X∗s ) , such that

dX∗s = a∗(s,X∗s ) ds+ (b∗(s−, X∗s−))
′
dVs , X∗0 = x ∈ X , s ∈ [0, T ] .

And, for ∀u ∈ [0, T ] ,
Eu,x sup

u≤s≤T
|z(s,X∗s )| < +∞ ,

where
a∗(s, x) = a(x, υ∗(s, x)) , b∗(s, x) = b(x, υ∗(s, x)) .

In the first part we have considered an arbitrary admissible control process υ ∈ V , and
noted that, for any m > 0 , τm defined by (3.15) is stopping time. Then, for any m > 0 , a
random variable τ∗m is also stopping time (in case of υ∗ ), where

τ∗m = inf

u ≥ t :

u∫
t

(
|β∗(s)|2 + |z∗(s,Xs−, υs−)|

)
ds ≥ m

 ∧ T , (3.26)

here, for s ∈ [t, T ] ,

β∗(s) = zx(s,X∗s )
(
b∗(s,X∗s )

)′
,

z∗(t, x, κ) =
n∑
i=1

∫
R∗

Υ (t, x,
(
b∗(x, κ)

)′
ςi y)Π

i(dy) ,

where ςi = (ς1i , . . . , ςni)
′

is i-th column of the matrix ς and Υ (s, x, v) defined by (3.16).
With analogously to the previous arguments in the first part, using the Ito formula, we

obtain the process z(u,X∗u) , u ∈]t, T ] . Then, adding to and subtracting from Ito’s formula
the sum of Lebesgue integrals (υ∗s = υ∗(s,X∗s ))

τ∗
m∫
t

z∗(s,X∗s , υ
∗
s ) ds+

τ∗
m∫
t

U1(s,X∗s , υ
∗
s ) ds ,



14 Sergei Egorov, Serguei Pergamenchtchikov

we get (similarly to expression (3.19))

τ∗
m∫
t

U1(s,X∗s , υ
∗
s ) ds+ z

(
τ∗m, X

∗
τ∗m

)
= z(t, x) +

τ∗
m∫
t

[
zt(s,X

∗
s ) +H0(s,X∗s , z, υ

∗
s )
]

ds

+

τ∗
m∫
t

zx(s,X∗s−)
(
b∗(s−, X∗s−)

)′
dVs

+
∑

t≤s≤τ∗m

(
∆z(s,X∗s )− zx(s,X∗s−)∆X∗s

)
−

τ∗
m∫
t

z∗(s,X∗s , υ
∗
s ) ds . (3.27)

Further,

1) It follows from the conditions H1)–H3) that

τ∗
m∫
t

[
zt(s,X

∗
s ) +H0(s,X∗s , z, υ

∗
s )
]

ds = 0 , P-a.s.

2) In the first part we have showed (for an arbitrary admissible control υ ∈ V and cor-
responding stopping time τm) finiteness of the expectation (3.17) and equality (3.18),
i.e.

Et,x

τ∗
m∫
t

zx(s,X∗s−)
(
b∗(s−, X∗s−)

)′
dVs = 0 .

3) By the condition H4) , for any t ∈ [0, T ] , x ∈ X ,

Et,x sup
t≤s≤T

|z(s,X∗s )| < +∞ ,

hence the sequence {z(τ∗m, Xτ∗
m

)}m>0 is integrated (w.r.t. P) and all integrals are uni-
formly bounded, that is, for any m ∈ N ,

Et,x

∣∣∣z (τ∗m, X∗τ∗
m

)∣∣∣ ≤ Et,x sup
t≤s≤T

∣∣z(s,X∗s )
∣∣ < +∞ .

4) by the definition of an admissible control (m ∈ N):

Et,x

τ∗
m∫
t

[
U1(s,X∗s , υ

∗
s )
]
−

ds ≤ Et,x

T∫
t

[
U1(s,X∗s , υ

∗
s )
]
−

ds < +∞ .

On the one hand, based on the points 3) and 4) we have, for any m > 0 ,

Et,x

τ∗m∫
t

∣∣U1(s,X∗s , υ
∗
s )
∣∣ds+ Et,x

∣∣∣z (τ∗m, X∗τ∗
m

)∣∣∣ < +∞ .
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On the other hand, it follows from points 1) and 2), considering (3.27), that

Et,x

τ∗
m∫
t

U1(s,X∗s , υ
∗
s ) ds+ Et,x z

(
τ∗m, X

∗
τ∗
m

)
= z(t, x) . (3.28)

Now we show that there exists a limit

lim
m→∞

Et,x z
(
τ∗m, X

∗
τ∗
m

)
.

From the point 3) and since the function z(t, x) is continuous, the process X∗ is càdlàg (i.e.
there is no jump at maturity time T ) and P–limm→∞ τ∗m = T , it follows that

P– lim
m→∞

z
(
τ∗m, X

∗
τ∗
m

)
= z(T,X∗T ) = U2(X∗T ) .

Therefore, by the Dominated convergence theorem, we have

lim
m→∞

Et,x z
(
τ∗m, X

∗
τ∗
m

)
= Et,x lim

m→∞
z
(
τ∗m, X

∗
τ∗
m

)
= Et,x z(T,X

∗
T ) = Et,x U2(X∗T ) .

To prove the following limit transition

lim
m→∞

Et,x

τ∗
m∫
t

U1(s,X∗s , υ
∗
s ) ds = Et,x

T∫
t

U1(s,X∗s , υ
∗
s ) ds

we use twice Levi’s monotone convergence theorem for

τ∗
m∫
t

[
U1(s,X∗s , υ

∗
s )
]
−

ds and

τ∗
m∫
t

[
U1(s,X∗s , υ

∗
s )
]
+

ds

separately.
Thus, we obtain that the limit transition is valid for (3.28) :

lim
m→∞

Et,x

τ∗
m∫
t

U1(s,X∗s , υ
∗
s ) ds+ Et,x z

(
τ∗m, X

∗
τ∗
m

)
= Et,x

T∫
t

[
U1(s,X∗s , υ

∗
s )
]
+

ds−Et,x

T∫
t

[
U1(s,X∗s , υ

∗
s )
]
−

ds+ Et,x z(T,X
∗
T )

= Et,x

T∫
t

U1(s,X∗s , υ
∗
s ) ds+ Et,x U2(X∗T ) = J(t, x, υ∗) = z(t, x). (3.29)

In the first part of the proof we have obtained the inequality

sup
υ∈V

J(t, x, υ) =: J∗(t, x) ≤ z(t, x) ,

therefore, since there is only one supremum on the set V , it follows that

J(t, x, υ∗) = J∗(t, x) = z(t, x) ,

and z(t, x) is the unique solution of HJB’s equation (3.10). Hence we proved the theorem.
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4 Optimal Investment and Consumption

Now we apply results obtained in section 3 to the problem (2.8). In this case the controlled
process driven by (2.5) with state spaceX =]0,∞[ , admissible strategy υ = (θt, ct)0≤t≤T ∈
V with values in K = Θ × R+ , where the set Θ defined by (2.6). So, for given utility func-
tions U1(x, κ) = (xκ2)γ , U2(x) = xγ , 0 < γ < 1 , optimization problem consists to find
an admissible strategy υ∗ ∈ V , such that

υ∗ = arg sup
υ∈V

Ex

T∫
0

U1(Xs, υs) ds+ Ex U2(XT )

 , (4.1)

where Ex is conditional expectation with respect to X0 = x .
Note that according to the definition 2.1, for any υ ∈ V , there exists unique strictly

positive solution X = (Xt)0≤t≤T of the equation (2.5) which can be derived explicitly

Xt = x er t+
∫ t
0
θ
′
s
µ̌ ds−

∫ t
0
cs ds Et(V̌ ) , (4.2)

where

V̌t =

t∫
0

θ
′

s σ dWs +

t∫
0

θ
′

s− ς dLs

and Doléan exponential

Et(V̌ ) = exp

V̌t − 1

2

t∫
0

tr
{
σ
′
θs θ

′

s σ
}

ds


∏

0≤s≤t

(
1 + θ

′

s− ς ∆Ls

)
e
−θ
′
s− ς ∆Ls .

Note that inf0≤t≤T Et(V ) > 0 , which implies that, for any t ∈ [0, T ] , Xt , Xt− ∈ X =
]0,∞[ . As the result (since utility functions U1, U2 ≥ 0 ), the definition 2.1 gives non-empty
set of admissible strategies V and satisfies the definition 3.1.

The main result of the article can be formulated as theorem.

Theorem 4.1. The solution υ∗ = (θ∗t , c
∗
t )0≤t≤T of optimization problem (4.1) is given by

θ∗t = θ∗ = arg max
θ∈Θ

F (θ) (4.3)

and

c∗t =


[
−1− γ

%
+

(
1 +

1− γ
%

)
exp

(
%

1− γ (T − t)
)]−1

if % 6= 0 ,

(T − t+ 1)−1 if % = 0 ,

(4.4)

where

F (θ) = γ θ
′
µ̌+

γ (γ − 1)

2
tr
{
σ
′
θ θ
′
σ
}

+
n∑
i=1

∫
R∗

[
(1 + θ

′
ςi y)

γ − 1− γ θ
′
ςi y
]
Πi(dy) ,
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ςi = (ς1i , . . . , ςni)
′

is i-th column of matrix ς , with

% = F (θ∗) + r γ . (4.5)

The corresponding optimal wealth processl (X∗t )0≤t≤T is given

X∗t = x e(r+(θ∗)
′
µ̌) t−

∫ t
0
c∗
s

ds Et(V ) , (4.6)

where Vt = (θ∗)
′
σWt + (θ∗)

′
ς Lt and

Et(V ) = exp

(
Vt −

1

2
tr
{
σ
′
θ∗ (θ∗)

′
σ
}
t

)
∏

0≤s≤t

(
1 + (θ∗)

′
ς ∆Ls

)
e−(θ∗)

′
ς ∆Ls . (4.7)

The proof is given in section 6.

5 Monte Carlo simulations

We define one dimentional market model with integrable jumps on [0, T ]
Bt = er t ,

St = S0 exp
[(
µ− σ2

2

)
t+ σWt + Lt

] ∏
s≤t

(1 +∆Ls) e
−∆Ls ,

and constants r = 0.02 , µ = 0.04 , S0 = 100 , T = 10 , Wiener process Wt , Compound
Poisson process Lt defined by Lt =

∑Nt
j=1 Yj , where Nt is Poisson process with constant

intensity λ = 9.5 and sequence {Yj}j≥1 of i.i.d. real valued random variables with EY1 =
0 and density function

pY (y) =
exp

(
− y2

2 η2

)
∫∞
−1

exp
(
− z2

2 η2

)
dz

1{y>−1} ,

where η2 = 0.005 is called jumps variance.
For such case, under the given U1(x, κ) = (xκ2)γ , κ = (κ1 , κ2) ∈ [0, 1] × R+ ,

U2(x) = xγ utility functions, optimal self-financing portfolio with consumption

X∗t = x exp

[r + (µ− r) θ∗ − (σ θ∗)2

2

]
t−

t∫
0

c∗s ds+ θ∗[σWt + Lt]


∏

0≤s≤t

(
1 + θ∗∆Ls

)
e−θ

∗∆Ls

determined by optimal strategy (θ∗, c∗t ) , where the fractional investment strategy θ∗ defined
as (see the equation (6.10))

F (θ∗) = max
θ∈[0,1]

F (θ) ,
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F (θ) = γ θ (µ− r) +
γ (γ − 1)

2
σ2 θ2 +

∞∫
−1

[(1 + θ y)γ − 1− γ θ y]Π(dy) ,

with the Lévy measure
Π(dy) = λ pY (y) dy .

and optimal consumption rate c∗t given by (4.4).
Note that in our case the solution of HJB’s equation z(t, x) = A(t)xγ can be defined as

supremum of conditional expectation over all admissible strategies

z(t, x) = sup
υ∈V

J(t, x, υ) ,

and

J(t, x, υ) = Et,x

 T∫
t

U1(Xs, υs) ds+ U2(XT )

 ,

where υt is an admissible strategy and Xt is corresponding controlled process.
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Fig. 1 The Optimal capital

Fig. 2 Number of risky asset Fig. 3 Number of risk-free asset
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Fig. 4 Price Fig. 5 Price increments

Remark 5.1. Note that the numerical simulations confirm the natural behaviour for the
optimal strategies, i.e. the more consumption, the less capital. Therefore, as it is seen in
Figure 1, there is a point of equilibrium between consumption and wealth. The graphs in
Figures 4 and 5 show the dynamics of the Lévy markets.

6 Proof of Theorem 4.1

Proof. First we solve HJB’s equation, from which will be found strategy υ∗ and can be de-
fined corresponding capital X∗ . Then we prove that the conditions of Verification Theorem
3.6 hold which implies that processesX∗ and υ∗ are optimal. To this end, first we show, that
the function z(t, x) given by

z(t, x) = A(t)xγ (6.1)

is the solution of corresponding Hamilton–Jacobi–Bellman equation (3.10), where

A(t) =


[
−1− γ

%
+

(
1 +

1− γ
%

)
exp

(
%

1− γ (T − t)
)]1−γ

if % 6= 0 ,

(T − t+ 1)1−γ if % = 0 ,

(6.2)

where % defined in (4.5).
Indeed, note that the Hamilton–Jacobi–Bellman equation (3.10) with respect to the function
of two variables z(t, x) in this case has the formzt(t, x) + sup

κ∈Θ×R∗
H0(t, x, z, κ) = 0 , t ∈ [0, T ] ,

z(T, x) = xγ x > 0 ,
(6.3)

where κ = (θ, c) ,

H0(t, x, z, κ) = x (r + θ
′
µ̌− c) zx(t, x)

+
x2 zxx(t, x)

2
tr
{
σ
′
θ θ
′
σ
}

+ (c x)γ + z(t, x, θ) , (6.4)
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z(t, x, θ) =
n∑
i=1

∫
R∗

[
z(t, x+ x θ

′
ςi y)− z(t, x)− zx(t, x)x θ

′
ςi y
]
Πi(dy) ,

ςi = (ς1i , . . . , ςni)
′

is i-th column of the matrix ς ; and it is to compute, θ
′
ςi ∈ [0, 1] .

Note that z is finite (see Lemma A.1 in Appendix) and depends only on θ , but in the
verification theorem 3.6 we gave the proof in case of dependence on κ = (θ, c) ∈ K . The
supremum in (6.3) can be rewritten as

sup
κ∈Θ×R∗

H0(t, x, z, κ) = r x zx(t, x)

+ max
θ∈Θ

[
x zx(t, x) θ

′
µ̌+

x2 zxx(t, x)

2
tr
{
σ
′
θ θ
′
σ
}

+ z(t, x, θ)

]
+ max
c∈R+

[(x c)γ − x zx(t, x) c] ,

where the second maximum occurs (for fixed t and x) at the point

c∗ = c∗(t, x) =

(
γ

zx(t, x)

) 1
1−γ 1

x
, (6.5)

and, as a result, HJB’s equation (6.3) can be presented as following
zt(t, x) + r x zx(t, x) + max

θ∈Θ
F̌ (θ) + (1− γ)

(
zx(t,x)
γ

) γ
γ−1

= 0 ,

z(T, x) = xγ

(6.6)

where

F̌ (θ) = x zx(t, x) θ
′
µ̌+

x2 zxx(t, x)

2
tr
{
σ
′
θ θ
′
σ
}

+ z(t, x, θ) .

Assume that the function z(t, x) can be derived as

z(t, x) = A(t)xγ , (6.7)

where A(t) is a continuously differentiable function. From (6.6) it follows that boundary
condition on A(t) should be A(T ) = 1 . And, by definition, z can be computed as

z(t, x, θ) = A(t)xγ
n∑
i=1

∫
R∗

[
(1 + θ

′
ςi y)

γ − 1− γ θ
′
ςi y
]
Πi(dy) . (6.8)

It is proved in Lemma A.3 in Appendix that the integral is finite.
Note that under the assumption (6.7) on z(t, x) , and given c∗(t, x) in (6.5) we can

rewrite equation (6.6) as followingȦ(t)xγ + r γ A(t)xγ +A(t)xγ max
θ∈Θ

F (θ) + (1− γ)A1+ 1
γ−1 (t)xγ = 0 ,

A(T ) = 1

(6.9)
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where Ȧ(t) = dA(t)
dt and

F (θ) = γ θ
′
µ̌+

γ (γ − 1)

2
tr
{
σ
′
θ θ
′
σ
}

+
n∑
i=1

∫
R∗

[
(1 + θ

′
ςi y)

γ − 1− γ θ
′
ςi y
]
Πi(dy)

is continuous function with finite integral term, for any θ ∈ Θ , and Θ is bounded set, thus
there exists θ∗, such that

F (θ∗) = max
θ∈Θ

F (θ) . (6.10)

Note that the optimal c∗ defined in (6.5) under assumption (6.7) (at fixed time moment t) is
given

c∗ = c∗t = A−
1

1−γ (t) . (6.11)

Therefore HJB equation (6.9) can be rewritten asȦ(t) + %A(t) + (1− γ)A1+ 1
γ−1 (t) = 0 , t ∈ [0, T ] ,

A(T ) = 1 , x > 0 ,

where the constant % is given
% = F (θ∗) + r γ . (6.12)

Now we have got the equation which can be easily solved w.r.t. unknown function A(t) with
boundary condition A(T ) = 1 , hence

A(t) =


[
−1−γ

% +
(

1 + 1−γ
%

)
exp

(
%

1−γ (T − t)
)]1−γ

if % 6= 0 ,

(T − t+ 1)1−γ if % = 0 ,

(6.13)

Let’s check the conditions H1) – H4).
H1), H2) are fulfilled, since we found the function z(t, x) such that

inf
0≤s≤t

inf
x>0

z(s, x) = 0 ,

for any fixed t ∈ [0, T ] ,

sup
x∈]0,∞[

z(t, x)

1 + x
= A(t)

(
γ

1− γ

)γ
(1− γ) <∞ ,

and for υ∗(t, x) = (θ∗, c∗t ) (see (6.10) and (6.11)) we have the equality

H(t, x, z) = H0(t, x, z, υ∗(t, x)) = % z(t, x) + (1− γ)A
1

γ−1 (t) z(t, x) ,

where % = F (θ∗) + r γ .
To prove H3) we need to solve the equation (2.5) in case of optimal control υ∗t =

υ∗(t,X∗t ) , i.e.

dX∗t = X∗t (r + (θ∗)
′
µ̌− c∗t ) dt+X∗t (θ∗)

′
σ dWt +X∗t− (θ∗)

′
ς dLt ,
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X0 = x > 0 . According to Doléans exponential theorem, the solution of equation will be

X∗t = x e(r+(θ∗)
′
µ̌) t−

∫ t
0
c∗
s

ds Et(V ) , (6.14)

where Vt = (θ∗)
′
σWt + (θ∗)

′
ς Lt , and

Et(V ) = exp

(
Vt −

1

2
tr{σ

′
θ∗ (θ∗)

′
σ} t

)
∏

0≤s≤t

(
1 + (θ∗)

′
ς ∆Ls

)
e−(θ∗)

′
ς ∆Ls . (6.15)

Note that X∗t > 0 (i.e. for any x > 0 , t ∈ [0, T ] , X∗t ∈ X ), since (θ∗)
′
ς ∆Lt > −1 where

θ∗ ∈ [0, 1]n such that
∑n
i=1 θ

∗
i ≤ 1 , and, for any i, j , 0 ≤ ςij ≤ 1 , by the definitions of Lt

and constant θ∗ . Also, for any t ∈ [0, T ] , X∗t , X
∗
t− ∈ X , since inf0≤t≤T X

∗
t > 0 . I.e. the

strategy (θ∗, c∗t )0≤t≤T belongs to V .
The last condition H4) consists to verify, for any x ∈ X , t ∈ [0, T ] ,

Et,x sup
t≤s≤T

|z(s,X∗s )| <∞ , (6.16)

for
z(t,X∗t ) = A(t) (X∗t )γ ,

where 0 < γ < 1 .
Note that, for any increasing continuous function f(x) , it is true

sup
x∈D

f(x) = f(sup
x∈D

x) , (6.17)

where D is an arbitrary measurable set.
Obviously, that

z(t,X∗t ) ≤ C (Et(V ))
γ
,

where

C = x max
0≤s≤T

A(s) eγ (r+(θ∗)
′
µ̌) t−γ

∫ t
0
c∗
s

ds <∞ , (6.18)

and Et(V ) is Doléan exponential given by (4.7). Thus to prove (6.16) it is sufficient to show

Et,x sup
t≤s≤T

(Et(V ))
γ = Et,x

(
sup
t≤s≤T

Et(V )

)γ
<∞ .

We will use Hölder’s inequality,

Et,x

(
sup
t≤s≤T

Et(V )

)γ
≤

Et,x
(

sup
t≤s≤T

Et(V )

)2

γ
2

=

[
Et,x sup

t≤s≤T
(Et(V ))

2

] γ
2

.
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Note that Et(V ) is square integrable martingale (see Lemma A.4 in Appendix) therefore
we can apply martingale inequality (A.11) of Lemma A.6 in Appendix,

Et,x sup
t≤s≤T

(Et(V ))
2 ≤ 2Et,x (ET (V ))

2
<∞ .

Therefore we finally have proved the following chains inequalities

Et,x sup
t≤s≤T

|z(s,X∗s )| ≤ C Et,x

(
sup
t≤s≤T

Et(V )

)γ
≤ 2γ/2 C

[
Et,x (ET (V ))

2
] γ

2
<∞ ,

with the constant C given by (6.18).
Thus all conditions of Verification theorem 3.6 are satisfied and optimal fractional strat-

egy υ∗t = (θ∗, c∗t ) is given by (4.3) and (4.4).
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A Appendix

Lemma A.1. Let X ⊂ R be an open convex set, T <∞ . For any function g ∈ C1,2([0, T ]×
X ,R) , such that, for any fixed t ∈ [0, T ] ,

sup
x∈X

|g(t, x)|
1 + |x| <∞ , (A.1)

for any Lévy measure Π(·) on R∗ = R \ {0} , with

Π
(
y2
)
<∞ , (A.2)

and, for any constant $ ∈ R , we have, for fixed t ∈ [0, T ] , x ∈ X ,∫
R∗

|Υ (t, x,$ y)|Π(dy) <∞ , (A.3)

where
Υ (t, x, v) = [g(t, x+ v)− g(t, x)− gx(t, x) v]1{x+v∈X}

and v ∈ R∗ .
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Proof. We consider two cases,$ = 0 and$ 6= 0 . In the first case, obviously Υ (t, x, 0) = 0
and (A.3) is true.

Let $ 6= 0 . Then by definition of open convex set, if x ∈ X , then ∃ε0 > 0 such that
∀|v| < ε0 , x+ v ∈ X . We set ε =

ε0
|$| . If |y| < ε :

|$y| = |$| |y| < ε0 ,

then, by definition of open convex set, x+$y ∈ X , for any |y| < ε . Thus, for given $ ,x ,

we fixed ε = ε(x,$) > 0 and present∫
R∗

|Υ (t, x,$ y)|Π(dy) =

∫
{|y|<ε}

|Υ (t, x,$ y)|Π(dy) +

∫
{|y|≥ε}

|Υ (t, x,$ y)|Π(dy) .

Note that for |y| < ε

|Υ (t, x,$ y)| =

∣∣∣∣∣∣
x+$y∫
x

 z∫
x

gxx(t, u) du

dz

∣∣∣∣∣∣
≤ $2 y

2

2
max

x−ε0≤u≤x+ε0

|gxx(t, u)| <∞ .

Then, for some constant 0 < C1 <∞ ,∫
{|y|<ε}

|Υ (t, x,$ y)|Π(dy) ≤ C1

∫
{|y|<ε}

y2Π(dy) .

For the second integral we will use the fact (A.1), means for some constant 0 < C2 <∞ ,∫
{|y|≥ε}

|Υ (t, x,$ y)|Π(dy) ≤ C2

∫
{|y|≥ε}

(1 + |y|)Π(dy) + |g(t, x)|Π({|y| ≥ ε})

+ |gx(t, x)$|
∫

{|y|≥ε}

|y|Π(dy) <∞ ,

since, by Cauchy–Schwarz inequality,

∫
{|y|≥ε}

|y|Π(dy) ≤
√√√√ ∫
{|y|≥ε}

y2Π(dy)
√
Π({|y| ≥ ε}) <∞ .

Thus for any t , x , $ (A.3) is hold.

Remark A.2. If n-dimensional Lévy process Lt = (L1
t , . . . , L

n
t ) consists of mutually in-

dependent processes then, for any vector Y ∈ Rn , x ∈ R and continuously differentiable
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function g ∈ C1,2([0, T ]×X ,R) , we have the following reduction,

E
∑

0≤t≤T

[
g(t, x+ Y

′
∆Lt)− g(t, x)− gx(t, x)Y

′
∆Lt

]
1{x+Y

′
∆Lt∈X}

= E
∑

0≤t≤T

[
g(t, x+ Y

′
∆Lt)− g(t, x)− gx(t, x)Y

′
∆Lt

]
1{|∆Lt|6=0} 1{x+Y

′
∆Lt∈X}

= E

n∑
i=1

∑
0≤t≤T

[
g(t, x+ Yi∆L

i
t)− g(t, x)− gx(t, x)Yi∆L

i
t

]
1{|∆Lit|6=0} 1{x+Y

′
∆Lt∈X}

=
n∑
i=1

∫
[0,T ]

∫
R∗

[g(t, x+ Yi y)− g(t, x)− gx(t, x)Yi y]1{x+Y
′
∆Lt∈X}

Πi(dy) dt ,

where Πi(·) is Lévy measure of (Lit)0≤t≤T on R∗ = R \ {0}, i = 1, ..., n , y ∈ R and | · |
is Euclidean norm. Since elements of the vector Lt are independent whence follows, for any
i 6= j ,

P{∆Lit∆L
j
t = 0 , t ∈ [0, T ]} = 1 ,

1{|∆Lt|6=0} =
n∑
i=1

1{|∆Li
t
|6=0} ,

where 1{Γ} is an indicator function of the event Γ .

Lemma A.3. Let Lévy measure Π be such that

Π(y2) <∞ , Π(]−∞,−1]) = 0 . (A.4)

Then, for any fixed θ ∈ [0, 1] and γ ∈]0, 1[ ,∫
R∗

((1 + θ y)γ − 1− γ θ y)Π(dy) <∞ ,

where R∗ = R \ {0} .

Proof. Let’s define
F̌ (y) = (1 + θ y)γ − 1− γ θ y .

We have, for any fixed δ ∈]0, 1[ ,∫
R∗

F̌ (y)Π(dy) =

∫
[−1,−1+δ[

F̌ (y)Π(dy) +

∫
[−1+δ,1+δ]\{0}

F̌ (y)Π(dy)

+

∫
[1+δ,+∞[

F̌ (y)Π(dy) ,

Let’s estimate the first integral∣∣∣∣∣∣∣
∫

[−1,−1+δ[

F̌ (y)Π(dy)

∣∣∣∣∣∣∣ ≤
∫

[−1,−1+δ[

∣∣1− (1 + θ y)γ − γ θ y
∣∣Π(dy)

≤ Π([−1,−1 + δ[) + γ θ

∫
[−1,−1+δ[

|y|Π(dy) <∞ .
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To estimate the second integral, we will use Taylor series to expand F̌ in a neighborhood of
zero, y ∈ [−1 + δ, 1 + δ] ,

F̌ (y) = 1 + F̌
′
(0) y +

F̌
′′
(ξ)

2
y2 ,

where ξ ∈ [0, y] is some fixed point,

F̌
′
(y) =

γ θ

(1 + θ y)1−γ − γ θ , F̌
′′
(y) =

γ (γ − 1) θ2

(1 + θ y)2−γ .

Note that (since δ ∈]0, 1[ )

max
y∈[−1+δ,1+δ]

|F̌
′′
(y)| = γ (γ − 1) θ2

(1 + θ (−1 + δ))2−γ <∞ .

Thus we can present (given lemma’s condition (A.4)), for some constant C ,∣∣∣∣∣∣∣
∫

[−1+δ,1+δ]\{0}

F̌ (y)Π(dy)

∣∣∣∣∣∣∣ ≤ Π ([−1 + δ, 1 + δ] \ {0}) + C Π(y2) <∞ .

Estimation of the third integral will be given, for any y ∈]1 + δ,∞[ , by the fact

(1 + y)γ ≤ 1 + yγ , yγ ≤ y2 .

Therefore (given lemma’s condition (A.4))∣∣∣∣∣∣∣
∫

[1+δ,∞[

F̌ (y)Π(dy)

∣∣∣∣∣∣∣ ≤
∫

[1+δ,∞]

yγ Π(dy) ≤
∫

[1+δ,∞]

y2Π(dy) <∞ .

Lemma A.4. Let Wt and Lt = (L1
t , . . . , L

n
t ) be independent n-dimensional Wiener and

pure jumps Lévy processes, where (L1
t )0≤t≤T , . . . , (L

n
t )0≤t≤T , are mutually independent

and

Lit =

t∫
0

∫
R∗

y
(
νi − ν̃ i

)
(ω; dy ,ds) ,

ν̃ i(dy ,ds) = Πi(dy) ds , i = 1, . . . , n , and such that the corresponding Lévy measures
Πi (defined on R∗ = R \ {0} ) have properties

Πi(y2) <∞ , Πi(]−∞,−1]) = 0 . (A.5)

Then, for any vector θ ∈ [0, 1]n such that
∑n
i=1 θi ≤ 1 and the process Vt = σWt + ς Lt ,

where matrices σ ∈ Rn×n is positive definite and ς ∈ [0, 1]n×n , Doléan exponential

Et(V ) = exp

(
θ
′
Vt −

1

2
tr{σ

′
θ θ

′
σ} t

)
∏

0≤s≤t

(
1 + θ

′
ς ∆Ls

)
e−θ

′
ς ∆Ls , (A.6)

is square interable martingale, i.e. E [Et(V )]
2
<∞ .
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Proof. first notice that Vt is square integrable martingale and applying the Ito formula to
Doléan exponential we have

dEt(V ) = Et(V ) θ
′
dVt . (A.7)

Therefore, to prove the lemma, it is sufficient to show that E [Et(V )]
2
<∞ .

Because of W and L are independent, the fact that

exp

(
θ
′
σWt −

1

2
tr{σ

′
θ θ

′
σ} t

)
is square integrable martingale and processes L1

t , . . . , L
n
t don’t have jumps simultaneously,

it follows that we need to show only a process

eθ
′
ς Lt

∏
0≤s≤t

(
1 + θ

′
ς ∆Ls

)
e−θ

′
ς ∆Ls

= exp

 n∑
j=1

aj L
j
t +

n∑
j=1

∑
0≤s≤t

[
ln(1 + aj ∆L

j
s)− aj ∆L

j
s

]
is square integrated. Where aj =

∑n
i=1 θi ςij . Note, that 0 ≤ aj ≤ 1 . To do this it is

enough to show, for any j = 1, . . . , n ,

E exp

2

aj Ljt +
∑

0≤s≤t

[
ln(1 + aj ∆L

j
s)− aj ∆L

j
s

] <∞ .

Let’s define a process Zjt (for simplicity, the index j will be omitted below)

Zjt = Zt = aj L
j
t +

∑
0≤s≤t

[
ln(1 + aj ∆L

j
s)− aj ∆L

j
s

]
.

Considering the definition of Ljt and equality

∑
0≤s≤t

[
ln(1 + aj ∆L

j
s)− aj ∆L

j
s

]
=

t∫
0

∫
R∗

[
ln(1 + aj y)− aj y

]
νj(ω; dy ,dt) ,

we can see that a process Zt can be derived as following

Zt = tΠj (h (ln(1 + aj y)
)
− aj y

)
+ h

(
ln(1 + aj y)

)
∗ (νj − ν̃ j)t

+ h
(
ln(1 + aj y)

)
∗ νjt ,

where we used standart notations

h(x) = 1{|x|≤1} , h(x) = 1{|x|>1} ,

h
(
ln(1 + aj y)

)
∗(νj− ν̃ j)t =

t∫
0

∫
R∗

ln(1+aj y)1{| ln(1+aj y)|≤1}(ν
j− ν̃ j)(ω; dy ,dt) ,
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h
(
ln(1 + aj y)

)
∗(νj− ν̃ j)t =

t∫
0

∫
R∗

ln(1+aj y)1{| ln(1+aj y)|>1}(ν
j− ν̃ j)(ω; dy ,dt) .

Therefore Zt is Lévy process and the cumulant-generating function (here the index j is also
omitted) H : q → lnE

(
eqZ1

)
of the random variable Z1 defined as

H(q) = q Πj (h(ln(1 + aj y))− aj y
)

+Πj
(
eq ln(1+ajy) − 1− q h

(
ln(1 + aj y)

))
,

i.e., for any j , q , E eq Zt = etH(q) (if H(q) is well defined). Note that using Taylor series
near zero and inequality aj y ≤ aj y2 , when |y| > 1 , one can be shown that

Πj (h(ln(1 + aj y))− aj y
)
<∞ . (A.8)

Then, for q = 2 (to prove square integrability of Z1 which implies that Zt is square inte-
grable process), if we define a function

G(y) = e2 ln(1+ajy) − 1− 2h(ln(1 + aj y)) ,

then

Πj(G(y)) = Πj
(
G(y)1{| ln(1+aj y)|≤1}

)
+Πj

(
G(y)1{| ln(1+aj y)|>1}

)
<∞ , (A.9)

since, applying Taylor series to G(y) , for some constant C > 0 ,

Πj
(
G(y)1{| ln(1+aj y)|≤1}

)
≤ C Πj(y2) <∞ ,

and

Πj
(
G(y)1{| ln(1+aj y)|>1}

)
= Πj

(
e2 ln(1+ajy) 1{y>ε1}

)
+Πj

(
e2 ln(1+ajy) 1{y<−ε2}

)
−Πj ({y ∈ R∗ : | ln(1 + ajy)| > 1}

)
,

where ε1 > 0 and ε2 > 0 are such that, for any y ∈] − ε2, ε1[ : | ln(1 + ajy)| > 1 . Here,
using inequality (1 + aj y)

2 ≤ 2 + 2 y2 , we can estimate

Πj
(
e2 ln(1+ajy) 1{y>ε1}

)
= Πj

(
(1 + aj y)

2 1{y>ε1}

)
<∞ ,

in case, when ε2 < 1 , considering lemma’s condition Πj( ] −∞,−1]) = 0 , we can see,
that ln(1 + aj y) < 0 , for −1 < y < −ε2 . Which implies 0 < e2 ln(1+aj y) < 1 , therefore

Πj
(
e2 ln(1+ajy) 1{y<−ε2}

)
≤ Πj ({−1 < y < −ε2}) <∞

and
Πj ({y ∈ R∗ : | ln(1 + ajy)| > 1}

)
<∞ ,

since Lt has a finite number of big jumps (property of Lévy process).
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Therefore, from (A.8) and (A.9) follows that, for q = 2 , the cumulant-generating func-
tion Hj(2) = H(2) <∞ , which implies (note, Zj are independent processes)

E [Et(V )]
2 = E exp

2
n∑
j=1

Zjt

 =
n∏
j=1

etHj(2) <∞ .

And considering stochastic integral representation (A.7) we get that Et(V ) is square inter-
able martingale.

Lemma A.5. For an arbitrary twice continuously differentiable w.r.t x and differentiated
w.r.t. t function z(t, x), and Ito’s process XdXt = a(Xt, υt) dt+ b

′
(Xt−, υt−) dVt ,

X0 = x > 0 ,

where non-random functions a : X ×K → R and b : X ×K → Rn are continuous and such
that the process X is well-defined, Vt = σWt + ς Lt and Lt consists of independent pure
jumps Lévy processes, a sequence of random variables

τm(ω) = inf

u ≥ t :

u∫
t

(
|α(s, ω)|2 + |β(s, ω)|

)
ds ≥ m

 ∧ T ,
is a sequence of Markov moments, where

α(s) = zx(s,Xs) b
′
(Xs, υs)

and

β(s) =
n∑
i=1

∫
R∗

[
z(s,Xs− + b

′
(Xs−, υs−) ςi y)− z(s,Xs−)

− zx(s,Xs−) b
′
(Xs−, υs−) ςi y

]
Πi(dy) .

Proof. Let’s fix an arbitrary m > 0 . By the definition of Markov moment, it is necessary to
show that

∀s ∈ [0, T ] : {ω ∈ Ω : τm(ω) ≤ s} ∈ Fs .

An arbitrary time moment t ∈ [0, T [ is fixed. We carry out the proof in 3 steps:

a) Let s ∈ [0, t] . By the definition, τm : Ω → [t, T ], then

{ω : τm(ω) ≤ s} = ∅ .

b) Let s ∈ ]t, T [ . Note that, for any m ∈ N ,

{ω ∈ Ω : τm(ω) ≤ s} =

ω ∈ Ω :

s∫
t

(|α(v)|2 + |β(v)|) dv ≥ m

 .
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Denote by

A := {ω ∈ Ω : τm(ω) ≤ s} and B := {ω ∈ Ω : F (s, ω) ≥ m} ,

where

F (s, ω) =

s∫
t

(|α(v, ω)|2 + |β(v, ω)|) dv .

We show the inclusion: A ⊆ B .
Let ω0 ∈ A , then τm(ω0) ≤ s . By the definition of τm(ω0) and considering s ∈ ]t, T [ ,
we obtain that F (s, ω0) ≥ m . Thus A ⊆ B .
Show the inclusion: A ⊇ B.
Let ω0 ∈ B , then

s∫
t

(
|α(v, ω0)|2 + |β(v, ω0)|

)
dv ≥ m ⇒ s ∈ {u ∈ [t, T ] : F (u, ω0) ≥ m} ,

so the set {u ∈ [t, T ] : F (u, ω0) ≥ m} is not empty. Denote it by

Γm(ω0) := {u ∈ [t, T ] : F (u, ω0) ≥ m} .

Since Γm(ω0) is bounded below by the constant t , then there exists inf{Γm(ω0)} ≥ t .
By the definition

τm(ω0) = inf{Γm(ω0)} ,
but s ∈ Γm(ω0) then τm(ω0) ≤ s ⇒ ω0 ∈ A . So, A ⊇ B.
Proceeding from the fact that A ⊆ B and A ⊇ B are fulfilled simultaneously, it follows
that A = B.
Note, the process F = (F (s, ω))

0≤s≤T is adapted, since the processes α(s) and β(s)

are càdlàg processes.
Thus {ω ∈ Ω : F (s, ω) ≥ m} ∈ Fs and hence

{ω ∈ Ω : τm(ω) ≤ s} ∈ Fs , for any s ∈ (t, T ) .

c) Let s = T . As we noted earlier, by the definition, τm : Ω → [t, T ]. Then

{ω : τm(ω) ≤ T} = Ω .

Note that P (τm(ω) ≤ T ) = 1 by the construction, therefore τm(ω) is stopping time,

lim
m→∞

τm = T , P-a.s. .

Lemma A.6 (Martingales inequalities). If the processXt is a martingale and the condition
E (|Xt|p) <∞ is satisfied, then

P

[
sup
t∈[0,s]

|Xt| > λ

]
≤ E (|Xs|p)

λp
(p ≥ 1) , (A.10)

E sup
t∈[0,s]

|Xt|
p ≤

(
p

p− 1

)p
E (|Xs|

p) (p > 1) , (A.11)

for all s > 0. Inequality (A.11) holds in the case when X is a nonnegative submartingale
with E (|Xs|p) <∞.
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