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Seismic Acquisitions

Seismic Acquisitions (Fig.1) are used to get information from
the subsurface. This data is in the form of traces collected by
the Receivers. The traces are representing the evolution of a
disturbance (pressure, displacement, constraint, etc) over time.
Those curves are revealing the different reflectors of the media
through which the wave generated by the Source passed.
The objective of the FWI is to retrieve the characteristics of the
propagation medium using the data collected during Seismic
Acquisition campaigns [1].
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Figure 1: Seismic Acquisition

Wave Propagation Modeling

Continuous problem :
In fluid domain, the propagation of waves is driven by the acous-
tic wave equation and depends on the nature of the medium. We
consider the time domain formulation :



1
ρc2

∂p

∂t
+∇ · v = fp on Ω

ρ
∂v

∂t
+∇p = 0 on Ω

p = 0 on Γ1
∂p

∂t
+ c∇p · n = 0 on Γ2

p(0) = 0, v(0) = 0

With :

p = pressure
v = wavespeed

c = velocity of the media
ρ = density of the media
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Figure 2: Domain with Absorbing Boundary Conditions

To minimize the effect of an abrupt encapsulation of a finite
domain, we can use Absorbing Boundary Conditions (ABC) on
Γ2 (Fig.2). This boundary condition reduces the computational
domain and avoid producing artificial reflections at the bound-
ary.
Time schemes :
To approach the time derivative of the continuous equation we
use different explicit time schemes :
I Runge Kutta 2 / 4
I Adam Bashforth 3

Discontinuous Galerkin Method (DGM) :
DGM [2] are still different from the Finite Element Method
(FEM) because of the discontinuity of the basis function through
the boundaries. Leading to have independent elements that are
using fluxes to exchange the numerical information.
DGM Assets :

I Unstructured mesh

Figure 3: Unstructured mesh adapted to the model

I hp-adaptivity

Figure 4: h-adaptivity illustration Figure 5: p-adaptivity illustration

I High Performance Computing properties :

Figure 6: 2D mesh partition (10 processors)

I Different Polynomial Basis Function [3]

I Nodal (Lagrange
Polynomial basis)

I Modal
(Bernstein-Bézier
Polynomial basis)
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Full Waveform Inversion
The Full Waveform Inversion is a minimisation problem that aim to reconstruct
the subsurface parameters m (c, ρ, etc) by using the experimental data collected
(dobs). To quantify the differences between the observed data and the current model
parameters m under study, we introduce the least-square misfit function defined
by :

J(m) = 1
2||dobs −F(m)||2

That is comparing the experimental data (dobs) with the result obtain with a For-
ward simulation F for the current model m. The goal of the FWI is to find the
optimal m that minimize J .

FWI ⇔ min
m

(J(m))⇒ ∂mJ(m) = 0
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Figure 7: Comparison Observations / Simulations
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Figure 8: Full Waveform Inversion workflow

The Adjoint State Method :
The FWI is following an iterative process that updatesm follow-
ing a descent direction. This direction needs the computation of
the gradient of J by m (Fig.8). This gradient is computed by
an adjoint state method, which is recommended due to the
high amount of parameter to reconstruct [4].
Let us introduce the Lagrangian fonctional :

L(û, λ̂,m) = 1
2 ||dobs −R(û)||2+ < Forwardm(û)− f, λ̂ >

With :
_ û = Arbitrary wavefield state.
_ λ̂ = Arbitrary adjoint wavefield state.
_ R = Wavefield restriction to the receivers
_ Forwardm = Left Hand Side of the Forward system.

If û = u Solution of (Forwardm(u)− f = 0) :

J(m) = L(u, λ̂,m)

Let us choose λ̂ = λ such as ∂L
∂u = 0

(R∗dobs − u) + Forward∗
m(λ) = 0

For Forwardm(u)− f = 0 :

∂miJ(m) = ∂miL(u,λ,m) = ∂mi < Forwardm(u),λ >

For the following results we aim to reconstruct the acoustic ve-
locity model from the marmousi dataset.
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We will consider :
I Constant model par element
I 47k elements
I ρ = 1 on Ω
I Synthetic data set noised with a SNR = 10
I Parametrization : ( 1

κ , ρ) (With : κ = ρc2)
Leading to have this gradient expression :

∂ 1
κ
J =< ∂tp,λp >

2D Reconstruction
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Computational specifications :
I 47k P1 elements

I Time schemes : RK2, RK4, AB3

I Polynomial basis : Nodal, Modal

I 30 FWI iterations

I 120 cores

I 19 Sources / 181 Receivers

Cost function evolution :
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Multiscale Reconstruction [5]

Initial c Model

I Time Scheme : RK2

I 120 cores

I 20 FWI iterations per filter

I Computation time : 10h

I Frequencies : 1-2.5Hz,
1-5.0Hz, 1-7.5Hz, 1-10Hz,
1-15Hz

Cost function evolution :
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Optimization [6]
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