

Numerical Scheme Impacts on Time Domain Full Waveform Inversion

Pierre Jacquet, Andreas Atle, Hélène Barucq, Henri Calandra, Julien Diaz

▶ To cite this version:

Pierre Jacquet, Andreas Atle, Hélène Barucq, Henri Calandra, Julien Diaz. Numerical Scheme Impacts on Time Domain Full Waveform Inversion. MATHIAS 2019, Oct 2019, Serris, France. hal-02422842

HAL Id: hal-02422842 https://hal.science/hal-02422842v1

Submitted on 23 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Numerical Scheme Impacts on Time Domain Full Waveform Inversion

Mathias 2019

Pierre Jacquet pierre.jacquet@inria.fr

Atle Andreas, Barucq Hélène, Calandra Henri, Diaz Julien Second year PhD Student Inria - Magique 3D - DIP

Pau, FRANCE

Seismic Acquisition

Ínría

Seismic Acquisition

Ínría

Ínría 2

 $Pierre\ Jacquet\ \texttt{pierre}\ \texttt{,}\ \texttt{jacquet}\ \texttt{@inria.fr}\ |\ \textbf{Numerical\ Scheme\ Impacts\ on\ Time\ Domain\ FWI}$

2

Cost function to minimize :

$$\mathcal{J}(\boldsymbol{m}) = rac{1}{2} ||\boldsymbol{d}_{obs} - \mathcal{F}(\boldsymbol{m})||^2$$

- F(*m*) is the restriction on the receivers of the simulated waves in the medium *m*. (With $m = c, \rho, \kappa$...)
- FWI iterates until $\mathcal{J}(\boldsymbol{m}) \longrightarrow 0$

[1] Patrick Lailly

The seismic inverse problem as a sequence of before stack migrations Conference on Inverse Scattering

[2] Albert Tarantola

Inversion of seismic reflection data in the acoustic approximation Geophysics, Vol. 49, 1984

Ínría

2

Ínría 3

Ínría 3

Ínría_

3

Ínría_

3

Continuous Forward Model

First order acoustic wave equation

$$\begin{cases} \frac{1}{\rho c^2} \frac{\partial \boldsymbol{p}}{\partial t} + \nabla \cdot \boldsymbol{v} = f_{\rho} & \text{on } \Omega \\ \rho \frac{\partial \boldsymbol{v}}{\partial t} + \nabla \boldsymbol{p} = 0 & \text{on } \Omega \\ \boldsymbol{p} = 0 & \text{on } \boldsymbol{\Gamma}_1 \\ \frac{\partial \boldsymbol{p}}{\partial t} + \boldsymbol{c} \nabla \boldsymbol{p} \cdot \boldsymbol{n} = 0 & \text{on } \boldsymbol{\Gamma}_2 \\ \boldsymbol{p}(0) = 0, \quad \boldsymbol{v}(0) = 0 \end{cases}$$

Conditions

Ínría

Discrete Forward Model

Ínría

5

Space Discretization : Discontinuous Galerkin Elements

- Nodal (Lagrangian / Jacobian)
- Modal (Bernstein-Bézier)

Discrete Forward Model

Contraction 5

Space Discretization : Discontinuous Galerkin Elements

- Nodal (Lagrangian / Jacobian)
- Modal (Bernstein-Bézier)

Semi-discretized model :

$$\frac{\partial}{\partial t} \bar{\boldsymbol{U}}(t) = A \bar{\boldsymbol{U}}(t) + \bar{\boldsymbol{F}}(t)$$

with :

$$\mathbf{\bar{U}}(t) = \begin{pmatrix} \mathbf{\bar{P}}(t) \\ \mathbf{\bar{V}}(t) \end{pmatrix}$$

Discrete Forward Model

Contraction 5

Space Discretization : Discontinuous Galerkin Elements

- Nodal (Lagrangian / Jacobian)
- Modal (Bernstein-Bézier)

Time schemes :

- Runge Kutta 2/4
- Adams Bashforth 3

Semi-discretized model :

$$\frac{\partial}{\partial t} \bar{\boldsymbol{U}}(t) = \boldsymbol{A} \bar{\boldsymbol{U}}(t) + \bar{\boldsymbol{F}}(t)$$

with :

$$\bar{\boldsymbol{U}}(t) = \begin{pmatrix} \bar{\boldsymbol{P}}(t) \\ \bar{\boldsymbol{V}}(t) \end{pmatrix}$$

Discontinuous Galerkin Method

Assets of Discontinuous Galerkin Methods :

- Unstructured grid (enable to match the topography and medium irregularities)
- Robust to physical discontinuities
- hp-adaptivity
- Massively parallel performance properties

h-adaptivity

p-adaptivity with P1, P2, P3 elements

Outline

Time Domain Full Waveform Inversion

Seismic Acquisition FWI Workflow Forward Discretization

Some Results

1D Results 2D Time Domain FWI Results 2D Multiscale Reconstruction 1D Preliminary tests

FWI 1D Results

Ínría

9

2D Time Domain Reconstruction

2D FWI :

- Developped in Total environmement (DIP¹)
- Nodal Space Operators (Lagrangian/Jacobian)
- Modal Space Operators (Bernstein-Bézier)
- Runge Kutta 2/4 and Adams Bashforth 3 time-schemes

Gradient expression :

$$\nabla_{\frac{1}{\kappa}} \mathcal{J} = \int_0^T \int_\Omega \frac{\partial \boldsymbol{\rho}}{\partial t} \boldsymbol{\lambda}_1 d\Omega dt \quad \text{with} : \boldsymbol{\kappa} = \boldsymbol{\rho} \boldsymbol{c}^2$$

 $m{c},\,
ho$ and $m{\kappa}$ Constant per elements

¹http://dip.inria.fr/

2D Time Domain FWI Reconstructions

RK2 Reconstructed *c* Model (30 iterations)

5,000 4,000 3,000 2,000

Ínría

 $m \cdot s^{-1}$

Pierre Jacquet pierre.jacquet@inria.fr | Numerical Scheme Impacts on Time Domain FWI

depth (km)

2D Time Domain FWI Reconstructions Time-schemes comparison

RK4 Reconstructed c Model (30 iterations)

5,000 4,000 3,000 2,000

Ínría

 $m \cdot s^{-1}$

Pierre Jacquet pierre.jacquet@inria.fr | Numerical Scheme Impacts on Time Domain FWI

depth (km)

2D Time Domain FWI Reconstructions Time-schemes comparison

AB3 Reconstructed c Model (30 iterations)

Ínría

Pierre Jacquet pierre.jacquet@inria.fr | Numerical Scheme Impacts on Time Domain FWI

depth (km)

2D Time Domain FWI Reconstructions

- 47k P1 elements
- Constant ρ model ($\rho = 1$)
- 19 sources / 181 Receivers
- Noise : SNR=10
- 30 iterations
- 120 cores
- Polynomial basis : Nodal

Computational time :

- RK2 : 3h15
- RK4 : 4h30
- AB3 : 5h10

2D Time Domain FWI Reconstructions

- 47k P1 elements
- Time Scheme : RK2
- Constant ρ model ($\rho = 1$)
- ▶ 19 sources / 181 Receivers
- Noise : SNR=10
- 30 iterations
- 120 cores

Computational time :

- Nodal : 3h15
- Modal: 4h30^[1]

Cost function evolution :

Chan J. and Warburton T. GPU-Accelerated Bernstein Bézier Discontinuous Galerkin Methods for Wave Problems SIAM Journal on Scientific Computing 2017

Reconstruction with an initial smooth model

Reconstructed model *c* Model (30 iterations RK2)

Ínría

 $m \cdot s^{-1}$

2D Multiscale Reconstructions Multiscale Principle [1]

 C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent Multiscale seismic waveform inversion GEOPHYSICS, Vol. 60, No. 5, 1995

2D Multiscale Reconstructions Multiscale Principle [1]

Ínría

 C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent Multiscale seismic waveform inversion GEOPHYSICS, Vol. 60, No. 5, 1995

depth (km)

Ínría

Reconstruction with an initial smooth model

Reconstructed *c* Model with 1.0-7.5Hz filter

Ínría

 $m \cdot s^{-1}$

Reconstruction with an initial smooth model

depth (km)

Reconstructed *c* Model with 1.0-15Hz filter

Ínría

 $m \cdot s^{-1}$

- 47k P1 elements
 Time Scheme : RK2
- Constant ρ model ($\rho = 1$)
- 19 sources / 181 Receivers
- Noise : SNR=10
- 120 cores
- 20 FWI iterations per filter
- Computation time : 10h
- Frequencies : 1-2.5Hz, 1-5.0Hz

- 47k P1 elements
- Time Scheme : RK2
- Constant ρ model ($\rho = 1$)
- 19 sources / 181 Receivers
- Noise : SNR=10
- 120 cores
- 20 FWI iterations per filter
- Computation time : 10h
- Frequencies : 1-2.5Hz, 1-5.0Hz, 1-7.5Hz

- 47k P1 elements
- Time Scheme : RK2
- Constant ρ model ($\rho = 1$)
- 19 sources / 181 Receivers
- Noise : SNR=10
- 120 cores
- 20 FWI iterations per filter
- Computation time : 10h
- Frequencies : 1-2.5Hz, 1-5.0Hz, 1-7.5Hz, 1-10Hz

- 47k P1 elements
- Time Scheme : RK2
- Constant ρ model ($\rho = 1$)
- 19 sources / 181 Receivers
- Noise : SNR=10
- 120 cores
- 20 FWI iterations per filter
- Computation time : 10h
- Frequencies : 1-2.5Hz, 1-5.0Hz, 1-7.5Hz, 1-10Hz, 1-15Hz

Conclusion

Main Results :

- 2D Acoustic Reconstruction performed with different discretization
- Multiscale FWI implemented and working on Marmousi

Conclusion

Main Results :

- 2D Acoustic Reconstruction performed with different discretization
- Multiscale FWI implemented and working on Marmousi

Perspectives :

- Perform reconstruction on other test cases (2D/3D)
- Develop enhanced optimizers (NLCG, Limited BFGS)
- Adapt the code to use High order Model
- Extend the code to elastic and elasto-acoustic propagator
- Exploit coupled numerical method (SEM/DG) (Aurélien Citrain Thesis)

Conclusion

Main Results :

- 2D Acoustic Reconstruction performed with different discretization
- Multiscale FWI implemented and working on Marmousi

Perspectives :

- Perform reconstruction on other test cases (2D/3D)
- Develop enhanced optimizers (NLCG, Limited BFGS)
- Adapt the code to use High order Model
- Extend the code to elastic and elasto-acoustic propagator
- Exploit coupled numerical method (SEM/DG) (Aurélien Citrain Thesis)

Thank you.

Adjoint State Method

Lagrangian fonctional [1] :

$$\mathcal{L}(\widehat{\boldsymbol{u}},\widehat{\boldsymbol{\lambda}},\boldsymbol{m}) = rac{1}{2} ||\boldsymbol{d}_{obs} - \mathcal{R}(\widehat{\boldsymbol{u}})||^2 + < \textit{Forward}_{\boldsymbol{m}}(\widehat{\boldsymbol{u}}) - f_{p},\widehat{\boldsymbol{\lambda}} >$$

If $\hat{\boldsymbol{u}} = \boldsymbol{u}$ Solution of the Direct Problem $\iff (Forward_{\boldsymbol{m}}(\boldsymbol{u}) - f_{p} = 0)$:

 $\mathcal{J}(\boldsymbol{m}) = \mathcal{L}(\boldsymbol{u}, \widehat{\boldsymbol{\lambda}}, \boldsymbol{m})$

 Plessix R-E A review of the adjoint-state method for computing the gradient of a functional with geophysical applications Geophysical Journal International, Volume 167, Issue 2, 2006

Adjoint State Method

Lagrangian fonctional [1] :

$$\mathcal{L}(\widehat{\boldsymbol{u}},\widehat{\boldsymbol{\lambda}},\boldsymbol{m}) = rac{1}{2} ||\boldsymbol{d}_{obs} - \mathcal{R}(\widehat{\boldsymbol{u}})||^2 + < \textit{Forward}_{\boldsymbol{m}}(\widehat{\boldsymbol{u}}) - f_{p},\widehat{\boldsymbol{\lambda}} >$$

If $\hat{\boldsymbol{u}} = \boldsymbol{u}$ Solution of the Direct Problem $\iff (Forward_{\boldsymbol{m}}(\boldsymbol{u}) - f_{\rho} = 0)$:

$$\mathcal{J}(\textbf{\textit{m}}) = \mathcal{L}(\textbf{\textit{u}}, \widehat{oldsymbol{\lambda}}, \textbf{\textit{m}})$$

Let us choose $\widehat{\boldsymbol{\lambda}} = \boldsymbol{\lambda}$ such as $\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}} = 0$

$$(\mathcal{R}^* d_{obs} - u) + \mathit{Forward}^*_{m}(oldsymbol{\lambda}) = 0$$

Plessix R-E

A review of the adjoint-state method for computing the gradient of a functional with geophysical applications Geophysical Journal International, Volume 167, Issue 2, 2006

Adjoint State Method

Lagrangian fonctional [1] :

$$\mathcal{L}(\widehat{\boldsymbol{u}},\widehat{\boldsymbol{\lambda}},\boldsymbol{m}) = rac{1}{2} ||\boldsymbol{d}_{obs} - \mathcal{R}(\widehat{\boldsymbol{u}})||^2 + < \textit{Forward}_{\boldsymbol{m}}(\widehat{\boldsymbol{u}}) - f_{p},\widehat{\boldsymbol{\lambda}} >$$

If $\hat{\boldsymbol{u}} = \boldsymbol{u}$ Solution of the Direct Problem $\iff (Forward_{\boldsymbol{m}}(\boldsymbol{u}) - f_{\rho} = 0)$:

$$\mathcal{J}(\textit{\textbf{m}}) = \mathcal{L}(\textit{\textbf{u}}, \widehat{m{\lambda}}, \textit{\textbf{m}})$$

Let us choose $\widehat{\boldsymbol{\lambda}} = \boldsymbol{\lambda}$ such as $\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}} = 0$

$$(\mathcal{R}^* \textit{d}_{obs} - \textit{u}) + \textit{Forward}^*_{m}(m{\lambda}) = 0$$

For *Forward*_{*m*}(\boldsymbol{u}) - $f_p = 0$:

$$\partial_{\boldsymbol{m}_i} \mathcal{J}(\boldsymbol{m}) = \partial_{\boldsymbol{m}_i} \mathcal{L}(\boldsymbol{u}, \boldsymbol{\lambda}, \boldsymbol{m}) = \partial_{\boldsymbol{m}_i} < \textit{Forward}_{\boldsymbol{m}}(\boldsymbol{u}), \boldsymbol{\lambda} >$$

[1] Plessix R-E

A review of the adjoint-state method for computing the gradient of a functional with geophysical applications Geophysical Journal International, Volume 167, Issue 2, 2006

Adjoint Formulation

Continuous Direct Problem

Adjoint Formulation

Ínría

Adjoint Formulation

Ínría

AtD : Adjoint then Discretized Strategy

$$\mathcal{J}(\boldsymbol{p}) = rac{1}{2} ||\boldsymbol{d}_{obs} - R\boldsymbol{p}||^2$$

1

$$\begin{cases} \frac{1}{\rho \boldsymbol{c}^2} \frac{\partial \boldsymbol{p}}{\partial t} + \nabla \cdot \boldsymbol{v} = f_p & \text{on } \Omega \\ \rho \frac{\partial \boldsymbol{v}}{\partial t} + \nabla \boldsymbol{p} = 0 & \text{on } \Omega \\ \boldsymbol{p} = 0 & \text{on } \boldsymbol{\Gamma}_1 \\ \frac{\partial \boldsymbol{p}}{\partial t} + \boldsymbol{c} \nabla \boldsymbol{p} \cdot \boldsymbol{n} = 0 & \text{on } \boldsymbol{\Gamma}_2 \\ \boldsymbol{p}(0) = 0, \quad \boldsymbol{v}(0) = 0 \end{cases}$$

$$\frac{1}{\rho c^2} \frac{\partial \lambda_1}{\partial t} + \nabla \cdot \lambda_2 = \frac{\partial \mathcal{J}}{\partial \rho} \quad \text{on } \Omega$$
$$\rho \frac{\partial \lambda_2}{\partial t} + \nabla \lambda_1 = 0 \quad \text{on } \Omega$$
$$\lambda_1 = 0 \quad \text{on } \Gamma_1$$
$$\frac{\partial \lambda_1}{\partial t} - c \nabla \lambda_1 \cdot n = 0 \quad \text{on } \Gamma_2$$
$$\lambda_1(T) = 0, \quad \lambda_2(T) = 0$$

Ínría

19

 $t \in [0, T]$ $t \in [T, 0]$

AtD : Adjoint then Discretized Strategy

$$\mathcal{J}(\boldsymbol{p}) = \frac{1}{2} ||\boldsymbol{d}_{obs} - \boldsymbol{R}\boldsymbol{p}||^{2}$$

$$\begin{cases} \frac{\partial \boldsymbol{\bar{U}}}{\partial t}^{n} = \boldsymbol{A}\boldsymbol{\bar{U}}^{n} + \boldsymbol{\bar{F}}^{n} \\ \text{With} : \quad \boldsymbol{\bar{U}}^{n} = \begin{pmatrix} \boldsymbol{\bar{P}}^{n} \\ \boldsymbol{\bar{V}}^{n} \end{pmatrix} \qquad \begin{cases} \frac{\partial \boldsymbol{\bar{\Lambda}}}{\partial t}^{n} = \boldsymbol{A}\boldsymbol{\bar{\Lambda}}^{n} + \boldsymbol{R}^{*}(\boldsymbol{R}\boldsymbol{\bar{U}}^{n} - \boldsymbol{d}_{obs}) \\ \text{With} : \quad \boldsymbol{\bar{\Lambda}}^{n} = \begin{pmatrix} \boldsymbol{\bar{\Lambda}}_{1}^{n} \\ \boldsymbol{\bar{\Lambda}}_{2}^{n} \end{pmatrix} \end{cases}$$

$$0 \underbrace{\boldsymbol{1}}_{\text{Time-steps going Forward}} T \qquad 0 \underbrace{\boldsymbol{1}}_{\text{Time-steps going Backward}} T$$

Ínría

19

All time scheme can be summed-up such as :

 $L\overline{U} = E\overline{F}$

RK4 time-scheme leads to :

$$\bar{\bm{U}}^{n+1} = B\bar{\bm{U}}^n + \bm{C_0}\bar{\bm{F}}^n + \bm{C_1}\bar{\bm{F}}^{n+\frac{1}{2}} + \bm{C_1}\bar{\bm{F}}^{n+1}$$

Pierre Jacquet pierre.jacquet@inria.fr | Numerical Scheme Impacts on Time Domain FWI

DtA : Discretize then Adjoint Strategy

All time scheme can be summed-up such as :

$L\bar{U} = E\bar{F}$

We are looking for a Discrete Adjoint state satisfying :

 $\boldsymbol{L^*} \boldsymbol{\bar{\Lambda}} = -R^* (\boldsymbol{d_{obs}} - R \boldsymbol{\bar{U}})$

With the adjoint operator L* satisfying :

 $< Lar{U},ar{\Lambda}> = <ar{U},L^*ar{\Lambda}>$

All time scheme can be summed-up such as :

 $L\bar{U}=E\bar{F}=\bar{G}$

We are looking for a Discrete Adjoint state satisfying :

 $\boldsymbol{L^*} \boldsymbol{\bar{\Lambda}} = -R^* (\boldsymbol{d_{obs}} - R \boldsymbol{\bar{U}}) = \boldsymbol{\bar{D}}$

With the adjoint operator L* satisfying :

 $< Lar{U},ar{\Lambda}> = <ar{U},L^*ar{\Lambda}>$

 $<ar{m{G}},ar{m{\Lambda}}>=<ar{m{U}},ar{m{D}}>$ (Adjoint Test)

Adjoint test succeeds \iff operator L^* well established

DtA : Discretize then Adjoint Strategy Example with RK4

RK4 time-scheme leads to :

$$\bar{\bm{U}}^{n+1} = B\bar{\bm{U}}^n + \bm{C_0}\bar{\bm{F}}^n + \bm{C_1}\bar{\bm{F}}^{n+\frac{1}{2}} + \bm{C_1}\bar{\bm{F}}^{n+1}$$

Ínría

19

$$\boldsymbol{L}\boldsymbol{\bar{U}} = \boldsymbol{E}\boldsymbol{\bar{F}} = \boldsymbol{\bar{G}}$$

$$\begin{pmatrix} I & & \\ -B & I & \\ & -B & I & \\ & & \ddots & \ddots & \\ & & & -B & I \end{pmatrix} \begin{pmatrix} \boldsymbol{\bar{U}}^{0} \\ \boldsymbol{\bar{U}}^{1} \\ \boldsymbol{\bar{U}}^{2} \\ \vdots \\ \boldsymbol{\bar{U}}^{n} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\bar{G}}^{0} \\ \boldsymbol{\bar{G}}^{1} \\ \boldsymbol{\bar{G}}^{2} \\ \vdots \\ \boldsymbol{\bar{G}}^{n} \end{pmatrix}$$

So :

$$\boldsymbol{L^*} = \begin{pmatrix} I & -B^* & & \\ & I & -B^* & \\ & \ddots & \ddots & \\ & & & I & -B^* & \\ & & & & I & \end{pmatrix}$$

Adjoint Strategies Comparison

Adjoint Then Discretize

- + Physical approach
- + Same discrete operators for Forward and Backward
- -- Approximate gradient [1]
 - Consistent with the discretization

Discretize then Adjoint

- + Numerical approach
- + Has an Adjoint Test
- Tremendous work to develop the adjoint operators

Inría

• Non-consistency of the adjoint state [2]

- Sirkes, Ziv and Tziperman, Eli Finite Difference of Adjoint or Adjoint of Finite Difference ? 1997
- [2] Sei Alain and Symes William A Note on Consistency and Adjointness for Numerical Schemes 1997

Adjoint Strategies Comparison

Adjoint Then Discretize

- + Physical approach
- + Same discrete operators for Forward and Backward
- - Approximate gradient [1]
 - Consistent with the discretization

Discretize then Adjoint

- + Numerical approach
- + / Has an Adjoint Test (in theory)

Inría

- Tremendous work to develop the adjoint operators
- Non-consistency of the adjoint state [2]

- Sirkes, Ziv and Tziperman, Eli Finite Difference of Adjoint or Adjoint of Finite Difference ? 1997
- [2] Sei Alain and Symes William A Note on Consistency and Adjointness for Numerical Schemes 1997

1D Preliminary tests :

1D FWI :

Gradient expression :

- Lagrange / B-Bézier Operators
- RK4 / AB3 time-schemes

 $\nabla_{\boldsymbol{c}} \mathcal{J} = -\int_{0}^{T} \int_{\Omega} \frac{2}{\rho \boldsymbol{c}^{3}} \frac{\partial \boldsymbol{p}}{\partial t} \boldsymbol{\lambda}_{1} d\Omega dt$

1D Preliminary tests :

1D FWI :

- Lagrange / B-Bézier Operators
- RK4 / AB3 time-schemes

Adjoint test passed with :

- With a canonical space inner-product (< u, v >_X = ∑_i u_iv_i)
- ► With a M-space inner product (< u, v >^M_X =< Mu, v >_X)

Pierre Jacquet pierre.jacquet@inria.fr | Numerical Scheme Impacts on Time Domain FWI

Gradient expression :

$$\nabla_{\boldsymbol{c}} \mathcal{J} = -\int_{0}^{T} \int_{\Omega} \frac{2}{\boldsymbol{\rho} \boldsymbol{c}^{3}} \frac{\partial \boldsymbol{\rho}}{\partial t} \boldsymbol{\lambda}_{1} d\Omega dt$$

./run --- Adjoint test ---inner product U/D 553123.57586755091 inner product G/Q 553123.57586756046

1D Preliminary tests :

1D FWI :

- Lagrange / B-Bézier Operators
- RK4 / AB3 time-schemes

Adjoint test passed with :

- With a canonical space inner-product (< u, v >_X = ∑_i u_iv_i)
- ► With a M-space inner product (< u, v >^M_X = < Mu, v >_X)

Gradient expression :

$$\nabla_{\boldsymbol{c}} \mathcal{J} = -\int_{0}^{T} \int_{\Omega} \frac{2}{\boldsymbol{\rho} \boldsymbol{c}^{3}} \frac{\partial \boldsymbol{\rho}}{\partial t} \boldsymbol{\lambda}_{1} d\Omega dt$$

Ínría

```
./run
--- Adjoint test -----
inner product U/D 553123.57586755091
inner product G/Q 553123.57586756046
./run
--- Adjoint test -----
inner product U/D -75077.332007383695
inner product G/Q -75077.332007386358
./run
---- Adjoint test -----
inner product U/D 125669.89223600870
inner product U/D 125669.89223600870
```


c Model at the 100th FWI iteration

²With Bernstein-Bézier elements and AB3 time scheme ³With canonical scalar product

- For AB3 scheme : DtA is slighly better than AtD
- No predominant behaviour